1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/CodeGen/FastISel.h" 43 #include "llvm/ADT/APFloat.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/DenseMap.h" 46 #include "llvm/ADT/Optional.h" 47 #include "llvm/ADT/SmallPtrSet.h" 48 #include "llvm/ADT/SmallString.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/Statistic.h" 51 #include "llvm/Analysis/BranchProbabilityInfo.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/CodeGen/Analysis.h" 54 #include "llvm/CodeGen/FunctionLoweringInfo.h" 55 #include "llvm/CodeGen/ISDOpcodes.h" 56 #include "llvm/CodeGen/MachineBasicBlock.h" 57 #include "llvm/CodeGen/MachineFrameInfo.h" 58 #include "llvm/CodeGen/MachineInstr.h" 59 #include "llvm/CodeGen/MachineInstrBuilder.h" 60 #include "llvm/CodeGen/MachineMemOperand.h" 61 #include "llvm/CodeGen/MachineModuleInfo.h" 62 #include "llvm/CodeGen/MachineOperand.h" 63 #include "llvm/CodeGen/MachineRegisterInfo.h" 64 #include "llvm/CodeGen/MachineValueType.h" 65 #include "llvm/CodeGen/StackMaps.h" 66 #include "llvm/CodeGen/TargetInstrInfo.h" 67 #include "llvm/CodeGen/TargetLowering.h" 68 #include "llvm/CodeGen/TargetSubtargetInfo.h" 69 #include "llvm/CodeGen/ValueTypes.h" 70 #include "llvm/IR/Argument.h" 71 #include "llvm/IR/Attributes.h" 72 #include "llvm/IR/BasicBlock.h" 73 #include "llvm/IR/CallSite.h" 74 #include "llvm/IR/CallingConv.h" 75 #include "llvm/IR/Constant.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfo.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GetElementPtrTypeIterator.h" 83 #include "llvm/IR/GlobalValue.h" 84 #include "llvm/IR/InlineAsm.h" 85 #include "llvm/IR/InstrTypes.h" 86 #include "llvm/IR/Instruction.h" 87 #include "llvm/IR/Instructions.h" 88 #include "llvm/IR/IntrinsicInst.h" 89 #include "llvm/IR/LLVMContext.h" 90 #include "llvm/IR/Mangler.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Operator.h" 93 #include "llvm/IR/Type.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/MC/MCContext.h" 97 #include "llvm/MC/MCInstrDesc.h" 98 #include "llvm/MC/MCRegisterInfo.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/Debug.h" 101 #include "llvm/Support/ErrorHandling.h" 102 #include "llvm/Support/MathExtras.h" 103 #include "llvm/Support/raw_ostream.h" 104 #include "llvm/Target/TargetMachine.h" 105 #include "llvm/Target/TargetOptions.h" 106 #include <algorithm> 107 #include <cassert> 108 #include <cstdint> 109 #include <iterator> 110 #include <utility> 111 112 using namespace llvm; 113 114 #define DEBUG_TYPE "isel" 115 116 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 117 "target-independent selector"); 118 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 119 "target-specific selector"); 120 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 121 122 /// Set the current block to which generated machine instructions will be 123 /// appended, and clear the local CSE map. 124 void FastISel::startNewBlock() { 125 LocalValueMap.clear(); 126 127 // Instructions are appended to FuncInfo.MBB. If the basic block already 128 // contains labels or copies, use the last instruction as the last local 129 // value. 130 EmitStartPt = nullptr; 131 if (!FuncInfo.MBB->empty()) 132 EmitStartPt = &FuncInfo.MBB->back(); 133 LastLocalValue = EmitStartPt; 134 } 135 136 bool FastISel::lowerArguments() { 137 if (!FuncInfo.CanLowerReturn) 138 // Fallback to SDISel argument lowering code to deal with sret pointer 139 // parameter. 140 return false; 141 142 if (!fastLowerArguments()) 143 return false; 144 145 // Enter arguments into ValueMap for uses in non-entry BBs. 146 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 147 E = FuncInfo.Fn->arg_end(); 148 I != E; ++I) { 149 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I); 150 assert(VI != LocalValueMap.end() && "Missed an argument?"); 151 FuncInfo.ValueMap[&*I] = VI->second; 152 } 153 return true; 154 } 155 156 void FastISel::flushLocalValueMap() { 157 LocalValueMap.clear(); 158 LastLocalValue = EmitStartPt; 159 recomputeInsertPt(); 160 SavedInsertPt = FuncInfo.InsertPt; 161 } 162 163 bool FastISel::hasTrivialKill(const Value *V) { 164 // Don't consider constants or arguments to have trivial kills. 165 const Instruction *I = dyn_cast<Instruction>(V); 166 if (!I) 167 return false; 168 169 // No-op casts are trivially coalesced by fast-isel. 170 if (const auto *Cast = dyn_cast<CastInst>(I)) 171 if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0))) 172 return false; 173 174 // Even the value might have only one use in the LLVM IR, it is possible that 175 // FastISel might fold the use into another instruction and now there is more 176 // than one use at the Machine Instruction level. 177 unsigned Reg = lookUpRegForValue(V); 178 if (Reg && !MRI.use_empty(Reg)) 179 return false; 180 181 // GEPs with all zero indices are trivially coalesced by fast-isel. 182 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 183 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 184 return false; 185 186 // Only instructions with a single use in the same basic block are considered 187 // to have trivial kills. 188 return I->hasOneUse() && 189 !(I->getOpcode() == Instruction::BitCast || 190 I->getOpcode() == Instruction::PtrToInt || 191 I->getOpcode() == Instruction::IntToPtr) && 192 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 193 } 194 195 unsigned FastISel::getRegForValue(const Value *V) { 196 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 197 // Don't handle non-simple values in FastISel. 198 if (!RealVT.isSimple()) 199 return 0; 200 201 // Ignore illegal types. We must do this before looking up the value 202 // in ValueMap because Arguments are given virtual registers regardless 203 // of whether FastISel can handle them. 204 MVT VT = RealVT.getSimpleVT(); 205 if (!TLI.isTypeLegal(VT)) { 206 // Handle integer promotions, though, because they're common and easy. 207 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 208 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 209 else 210 return 0; 211 } 212 213 // Look up the value to see if we already have a register for it. 214 unsigned Reg = lookUpRegForValue(V); 215 if (Reg) 216 return Reg; 217 218 // In bottom-up mode, just create the virtual register which will be used 219 // to hold the value. It will be materialized later. 220 if (isa<Instruction>(V) && 221 (!isa<AllocaInst>(V) || 222 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 223 return FuncInfo.InitializeRegForValue(V); 224 225 SavePoint SaveInsertPt = enterLocalValueArea(); 226 227 // Materialize the value in a register. Emit any instructions in the 228 // local value area. 229 Reg = materializeRegForValue(V, VT); 230 231 leaveLocalValueArea(SaveInsertPt); 232 233 return Reg; 234 } 235 236 unsigned FastISel::materializeConstant(const Value *V, MVT VT) { 237 unsigned Reg = 0; 238 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 239 if (CI->getValue().getActiveBits() <= 64) 240 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 241 } else if (isa<AllocaInst>(V)) 242 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 243 else if (isa<ConstantPointerNull>(V)) 244 // Translate this as an integer zero so that it can be 245 // local-CSE'd with actual integer zeros. 246 Reg = getRegForValue( 247 Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 248 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 249 if (CF->isNullValue()) 250 Reg = fastMaterializeFloatZero(CF); 251 else 252 // Try to emit the constant directly. 253 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 254 255 if (!Reg) { 256 // Try to emit the constant by using an integer constant with a cast. 257 const APFloat &Flt = CF->getValueAPF(); 258 EVT IntVT = TLI.getPointerTy(DL); 259 uint32_t IntBitWidth = IntVT.getSizeInBits(); 260 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); 261 bool isExact; 262 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); 263 if (isExact) { 264 unsigned IntegerReg = 265 getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); 266 if (IntegerReg != 0) 267 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 268 /*Kill=*/false); 269 } 270 } 271 } else if (const auto *Op = dyn_cast<Operator>(V)) { 272 if (!selectOperator(Op, Op->getOpcode())) 273 if (!isa<Instruction>(Op) || 274 !fastSelectInstruction(cast<Instruction>(Op))) 275 return 0; 276 Reg = lookUpRegForValue(Op); 277 } else if (isa<UndefValue>(V)) { 278 Reg = createResultReg(TLI.getRegClassFor(VT)); 279 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 280 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 281 } 282 return Reg; 283 } 284 285 /// Helper for getRegForValue. This function is called when the value isn't 286 /// already available in a register and must be materialized with new 287 /// instructions. 288 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 289 unsigned Reg = 0; 290 // Give the target-specific code a try first. 291 if (isa<Constant>(V)) 292 Reg = fastMaterializeConstant(cast<Constant>(V)); 293 294 // If target-specific code couldn't or didn't want to handle the value, then 295 // give target-independent code a try. 296 if (!Reg) 297 Reg = materializeConstant(V, VT); 298 299 // Don't cache constant materializations in the general ValueMap. 300 // To do so would require tracking what uses they dominate. 301 if (Reg) { 302 LocalValueMap[V] = Reg; 303 LastLocalValue = MRI.getVRegDef(Reg); 304 } 305 return Reg; 306 } 307 308 unsigned FastISel::lookUpRegForValue(const Value *V) { 309 // Look up the value to see if we already have a register for it. We 310 // cache values defined by Instructions across blocks, and other values 311 // only locally. This is because Instructions already have the SSA 312 // def-dominates-use requirement enforced. 313 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 314 if (I != FuncInfo.ValueMap.end()) 315 return I->second; 316 return LocalValueMap[V]; 317 } 318 319 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 320 if (!isa<Instruction>(I)) { 321 LocalValueMap[I] = Reg; 322 return; 323 } 324 325 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 326 if (AssignedReg == 0) 327 // Use the new register. 328 AssignedReg = Reg; 329 else if (Reg != AssignedReg) { 330 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 331 for (unsigned i = 0; i < NumRegs; i++) 332 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 333 334 AssignedReg = Reg; 335 } 336 } 337 338 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 339 unsigned IdxN = getRegForValue(Idx); 340 if (IdxN == 0) 341 // Unhandled operand. Halt "fast" selection and bail. 342 return std::pair<unsigned, bool>(0, false); 343 344 bool IdxNIsKill = hasTrivialKill(Idx); 345 346 // If the index is smaller or larger than intptr_t, truncate or extend it. 347 MVT PtrVT = TLI.getPointerTy(DL); 348 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 349 if (IdxVT.bitsLT(PtrVT)) { 350 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 351 IdxNIsKill); 352 IdxNIsKill = true; 353 } else if (IdxVT.bitsGT(PtrVT)) { 354 IdxN = 355 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 356 IdxNIsKill = true; 357 } 358 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 359 } 360 361 void FastISel::recomputeInsertPt() { 362 if (getLastLocalValue()) { 363 FuncInfo.InsertPt = getLastLocalValue(); 364 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 365 ++FuncInfo.InsertPt; 366 } else 367 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 368 369 // Now skip past any EH_LABELs, which must remain at the beginning. 370 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 371 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 372 ++FuncInfo.InsertPt; 373 } 374 375 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 376 MachineBasicBlock::iterator E) { 377 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 378 "Invalid iterator!"); 379 while (I != E) { 380 MachineInstr *Dead = &*I; 381 ++I; 382 Dead->eraseFromParent(); 383 ++NumFastIselDead; 384 } 385 recomputeInsertPt(); 386 } 387 388 FastISel::SavePoint FastISel::enterLocalValueArea() { 389 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 390 DebugLoc OldDL = DbgLoc; 391 recomputeInsertPt(); 392 DbgLoc = DebugLoc(); 393 SavePoint SP = {OldInsertPt, OldDL}; 394 return SP; 395 } 396 397 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 398 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 399 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 400 401 // Restore the previous insert position. 402 FuncInfo.InsertPt = OldInsertPt.InsertPt; 403 DbgLoc = OldInsertPt.DL; 404 } 405 406 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 407 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 408 if (VT == MVT::Other || !VT.isSimple()) 409 // Unhandled type. Halt "fast" selection and bail. 410 return false; 411 412 // We only handle legal types. For example, on x86-32 the instruction 413 // selector contains all of the 64-bit instructions from x86-64, 414 // under the assumption that i64 won't be used if the target doesn't 415 // support it. 416 if (!TLI.isTypeLegal(VT)) { 417 // MVT::i1 is special. Allow AND, OR, or XOR because they 418 // don't require additional zeroing, which makes them easy. 419 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 420 ISDOpcode == ISD::XOR)) 421 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 422 else 423 return false; 424 } 425 426 // Check if the first operand is a constant, and handle it as "ri". At -O0, 427 // we don't have anything that canonicalizes operand order. 428 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 429 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 430 unsigned Op1 = getRegForValue(I->getOperand(1)); 431 if (!Op1) 432 return false; 433 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 434 435 unsigned ResultReg = 436 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 437 CI->getZExtValue(), VT.getSimpleVT()); 438 if (!ResultReg) 439 return false; 440 441 // We successfully emitted code for the given LLVM Instruction. 442 updateValueMap(I, ResultReg); 443 return true; 444 } 445 446 unsigned Op0 = getRegForValue(I->getOperand(0)); 447 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 448 return false; 449 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 450 451 // Check if the second operand is a constant and handle it appropriately. 452 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 453 uint64_t Imm = CI->getSExtValue(); 454 455 // Transform "sdiv exact X, 8" -> "sra X, 3". 456 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 457 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 458 Imm = Log2_64(Imm); 459 ISDOpcode = ISD::SRA; 460 } 461 462 // Transform "urem x, pow2" -> "and x, pow2-1". 463 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 464 isPowerOf2_64(Imm)) { 465 --Imm; 466 ISDOpcode = ISD::AND; 467 } 468 469 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 470 Op0IsKill, Imm, VT.getSimpleVT()); 471 if (!ResultReg) 472 return false; 473 474 // We successfully emitted code for the given LLVM Instruction. 475 updateValueMap(I, ResultReg); 476 return true; 477 } 478 479 unsigned Op1 = getRegForValue(I->getOperand(1)); 480 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 481 return false; 482 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 483 484 // Now we have both operands in registers. Emit the instruction. 485 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 486 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 487 if (!ResultReg) 488 // Target-specific code wasn't able to find a machine opcode for 489 // the given ISD opcode and type. Halt "fast" selection and bail. 490 return false; 491 492 // We successfully emitted code for the given LLVM Instruction. 493 updateValueMap(I, ResultReg); 494 return true; 495 } 496 497 bool FastISel::selectGetElementPtr(const User *I) { 498 unsigned N = getRegForValue(I->getOperand(0)); 499 if (!N) // Unhandled operand. Halt "fast" selection and bail. 500 return false; 501 bool NIsKill = hasTrivialKill(I->getOperand(0)); 502 503 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 504 // into a single N = N + TotalOffset. 505 uint64_t TotalOffs = 0; 506 // FIXME: What's a good SWAG number for MaxOffs? 507 uint64_t MaxOffs = 2048; 508 MVT VT = TLI.getPointerTy(DL); 509 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 510 GTI != E; ++GTI) { 511 const Value *Idx = GTI.getOperand(); 512 if (StructType *StTy = GTI.getStructTypeOrNull()) { 513 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 514 if (Field) { 515 // N = N + Offset 516 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 517 if (TotalOffs >= MaxOffs) { 518 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 519 if (!N) // Unhandled operand. Halt "fast" selection and bail. 520 return false; 521 NIsKill = true; 522 TotalOffs = 0; 523 } 524 } 525 } else { 526 Type *Ty = GTI.getIndexedType(); 527 528 // If this is a constant subscript, handle it quickly. 529 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 530 if (CI->isZero()) 531 continue; 532 // N = N + Offset 533 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 534 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 535 if (TotalOffs >= MaxOffs) { 536 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 537 if (!N) // Unhandled operand. Halt "fast" selection and bail. 538 return false; 539 NIsKill = true; 540 TotalOffs = 0; 541 } 542 continue; 543 } 544 if (TotalOffs) { 545 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 546 if (!N) // Unhandled operand. Halt "fast" selection and bail. 547 return false; 548 NIsKill = true; 549 TotalOffs = 0; 550 } 551 552 // N = N + Idx * ElementSize; 553 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 554 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 555 unsigned IdxN = Pair.first; 556 bool IdxNIsKill = Pair.second; 557 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 558 return false; 559 560 if (ElementSize != 1) { 561 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 562 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 563 return false; 564 IdxNIsKill = true; 565 } 566 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 567 if (!N) // Unhandled operand. Halt "fast" selection and bail. 568 return false; 569 } 570 } 571 if (TotalOffs) { 572 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 573 if (!N) // Unhandled operand. Halt "fast" selection and bail. 574 return false; 575 } 576 577 // We successfully emitted code for the given LLVM Instruction. 578 updateValueMap(I, N); 579 return true; 580 } 581 582 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 583 const CallInst *CI, unsigned StartIdx) { 584 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 585 Value *Val = CI->getArgOperand(i); 586 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 587 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 588 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 589 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 590 } else if (isa<ConstantPointerNull>(Val)) { 591 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 592 Ops.push_back(MachineOperand::CreateImm(0)); 593 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 594 // Values coming from a stack location also require a special encoding, 595 // but that is added later on by the target specific frame index 596 // elimination implementation. 597 auto SI = FuncInfo.StaticAllocaMap.find(AI); 598 if (SI != FuncInfo.StaticAllocaMap.end()) 599 Ops.push_back(MachineOperand::CreateFI(SI->second)); 600 else 601 return false; 602 } else { 603 unsigned Reg = getRegForValue(Val); 604 if (!Reg) 605 return false; 606 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 607 } 608 } 609 return true; 610 } 611 612 bool FastISel::selectStackmap(const CallInst *I) { 613 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 614 // [live variables...]) 615 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 616 "Stackmap cannot return a value."); 617 618 // The stackmap intrinsic only records the live variables (the arguments 619 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 620 // intrinsic, this won't be lowered to a function call. This means we don't 621 // have to worry about calling conventions and target-specific lowering code. 622 // Instead we perform the call lowering right here. 623 // 624 // CALLSEQ_START(0, 0...) 625 // STACKMAP(id, nbytes, ...) 626 // CALLSEQ_END(0, 0) 627 // 628 SmallVector<MachineOperand, 32> Ops; 629 630 // Add the <id> and <numBytes> constants. 631 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 632 "Expected a constant integer."); 633 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 634 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 635 636 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 637 "Expected a constant integer."); 638 const auto *NumBytes = 639 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 640 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 641 642 // Push live variables for the stack map (skipping the first two arguments 643 // <id> and <numBytes>). 644 if (!addStackMapLiveVars(Ops, I, 2)) 645 return false; 646 647 // We are not adding any register mask info here, because the stackmap doesn't 648 // clobber anything. 649 650 // Add scratch registers as implicit def and early clobber. 651 CallingConv::ID CC = I->getCallingConv(); 652 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 653 for (unsigned i = 0; ScratchRegs[i]; ++i) 654 Ops.push_back(MachineOperand::CreateReg( 655 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 656 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 657 658 // Issue CALLSEQ_START 659 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 660 auto Builder = 661 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 662 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 663 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 664 Builder.addImm(0); 665 666 // Issue STACKMAP. 667 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 668 TII.get(TargetOpcode::STACKMAP)); 669 for (auto const &MO : Ops) 670 MIB.add(MO); 671 672 // Issue CALLSEQ_END 673 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 674 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 675 .addImm(0) 676 .addImm(0); 677 678 // Inform the Frame Information that we have a stackmap in this function. 679 FuncInfo.MF->getFrameInfo().setHasStackMap(); 680 681 return true; 682 } 683 684 /// \brief Lower an argument list according to the target calling convention. 685 /// 686 /// This is a helper for lowering intrinsics that follow a target calling 687 /// convention or require stack pointer adjustment. Only a subset of the 688 /// intrinsic's operands need to participate in the calling convention. 689 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 690 unsigned NumArgs, const Value *Callee, 691 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 692 ArgListTy Args; 693 Args.reserve(NumArgs); 694 695 // Populate the argument list. 696 ImmutableCallSite CS(CI); 697 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { 698 Value *V = CI->getOperand(ArgI); 699 700 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 701 702 ArgListEntry Entry; 703 Entry.Val = V; 704 Entry.Ty = V->getType(); 705 Entry.setAttributes(&CS, ArgIdx); 706 Args.push_back(Entry); 707 } 708 709 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 710 : CI->getType(); 711 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 712 713 return lowerCallTo(CLI); 714 } 715 716 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 717 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 718 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 719 SmallString<32> MangledName; 720 Mangler::getNameWithPrefix(MangledName, Target, DL); 721 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 722 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 723 } 724 725 bool FastISel::selectPatchpoint(const CallInst *I) { 726 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 727 // i32 <numBytes>, 728 // i8* <target>, 729 // i32 <numArgs>, 730 // [Args...], 731 // [live variables...]) 732 CallingConv::ID CC = I->getCallingConv(); 733 bool IsAnyRegCC = CC == CallingConv::AnyReg; 734 bool HasDef = !I->getType()->isVoidTy(); 735 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 736 737 // Get the real number of arguments participating in the call <numArgs> 738 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 739 "Expected a constant integer."); 740 const auto *NumArgsVal = 741 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 742 unsigned NumArgs = NumArgsVal->getZExtValue(); 743 744 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 745 // This includes all meta-operands up to but not including CC. 746 unsigned NumMetaOpers = PatchPointOpers::CCPos; 747 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 748 "Not enough arguments provided to the patchpoint intrinsic"); 749 750 // For AnyRegCC the arguments are lowered later on manually. 751 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 752 CallLoweringInfo CLI; 753 CLI.setIsPatchPoint(); 754 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 755 return false; 756 757 assert(CLI.Call && "No call instruction specified."); 758 759 SmallVector<MachineOperand, 32> Ops; 760 761 // Add an explicit result reg if we use the anyreg calling convention. 762 if (IsAnyRegCC && HasDef) { 763 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 764 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 765 CLI.NumResultRegs = 1; 766 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 767 } 768 769 // Add the <id> and <numBytes> constants. 770 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 771 "Expected a constant integer."); 772 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 773 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 774 775 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 776 "Expected a constant integer."); 777 const auto *NumBytes = 778 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 779 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 780 781 // Add the call target. 782 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 783 uint64_t CalleeConstAddr = 784 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 785 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 786 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 787 if (C->getOpcode() == Instruction::IntToPtr) { 788 uint64_t CalleeConstAddr = 789 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 790 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 791 } else 792 llvm_unreachable("Unsupported ConstantExpr."); 793 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 794 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 795 } else if (isa<ConstantPointerNull>(Callee)) 796 Ops.push_back(MachineOperand::CreateImm(0)); 797 else 798 llvm_unreachable("Unsupported callee address."); 799 800 // Adjust <numArgs> to account for any arguments that have been passed on 801 // the stack instead. 802 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 803 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 804 805 // Add the calling convention 806 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 807 808 // Add the arguments we omitted previously. The register allocator should 809 // place these in any free register. 810 if (IsAnyRegCC) { 811 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 812 unsigned Reg = getRegForValue(I->getArgOperand(i)); 813 if (!Reg) 814 return false; 815 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 816 } 817 } 818 819 // Push the arguments from the call instruction. 820 for (auto Reg : CLI.OutRegs) 821 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 822 823 // Push live variables for the stack map. 824 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 825 return false; 826 827 // Push the register mask info. 828 Ops.push_back(MachineOperand::CreateRegMask( 829 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 830 831 // Add scratch registers as implicit def and early clobber. 832 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 833 for (unsigned i = 0; ScratchRegs[i]; ++i) 834 Ops.push_back(MachineOperand::CreateReg( 835 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 836 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 837 838 // Add implicit defs (return values). 839 for (auto Reg : CLI.InRegs) 840 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 841 /*IsImpl=*/true)); 842 843 // Insert the patchpoint instruction before the call generated by the target. 844 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 845 TII.get(TargetOpcode::PATCHPOINT)); 846 847 for (auto &MO : Ops) 848 MIB.add(MO); 849 850 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 851 852 // Delete the original call instruction. 853 CLI.Call->eraseFromParent(); 854 855 // Inform the Frame Information that we have a patchpoint in this function. 856 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 857 858 if (CLI.NumResultRegs) 859 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 860 return true; 861 } 862 863 bool FastISel::selectXRayCustomEvent(const CallInst *I) { 864 const auto &Triple = TM.getTargetTriple(); 865 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 866 return true; // don't do anything to this instruction. 867 SmallVector<MachineOperand, 8> Ops; 868 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 869 /*IsDef=*/false)); 870 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 871 /*IsDef=*/false)); 872 MachineInstrBuilder MIB = 873 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 874 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); 875 for (auto &MO : Ops) 876 MIB.add(MO); 877 // Insert the Patchable Event Call instruction, that gets lowered properly. 878 return true; 879 } 880 881 882 /// Returns an AttributeList representing the attributes applied to the return 883 /// value of the given call. 884 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 885 SmallVector<Attribute::AttrKind, 2> Attrs; 886 if (CLI.RetSExt) 887 Attrs.push_back(Attribute::SExt); 888 if (CLI.RetZExt) 889 Attrs.push_back(Attribute::ZExt); 890 if (CLI.IsInReg) 891 Attrs.push_back(Attribute::InReg); 892 893 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 894 Attrs); 895 } 896 897 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 898 unsigned NumArgs) { 899 MCContext &Ctx = MF->getContext(); 900 SmallString<32> MangledName; 901 Mangler::getNameWithPrefix(MangledName, SymName, DL); 902 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 903 return lowerCallTo(CI, Sym, NumArgs); 904 } 905 906 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 907 unsigned NumArgs) { 908 ImmutableCallSite CS(CI); 909 910 FunctionType *FTy = CS.getFunctionType(); 911 Type *RetTy = CS.getType(); 912 913 ArgListTy Args; 914 Args.reserve(NumArgs); 915 916 // Populate the argument list. 917 // Attributes for args start at offset 1, after the return attribute. 918 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 919 Value *V = CI->getOperand(ArgI); 920 921 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 922 923 ArgListEntry Entry; 924 Entry.Val = V; 925 Entry.Ty = V->getType(); 926 Entry.setAttributes(&CS, ArgI); 927 Args.push_back(Entry); 928 } 929 TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args); 930 931 CallLoweringInfo CLI; 932 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs); 933 934 return lowerCallTo(CLI); 935 } 936 937 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 938 // Handle the incoming return values from the call. 939 CLI.clearIns(); 940 SmallVector<EVT, 4> RetTys; 941 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 942 943 SmallVector<ISD::OutputArg, 4> Outs; 944 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 945 946 bool CanLowerReturn = TLI.CanLowerReturn( 947 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 948 949 // FIXME: sret demotion isn't supported yet - bail out. 950 if (!CanLowerReturn) 951 return false; 952 953 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 954 EVT VT = RetTys[I]; 955 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 956 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 957 for (unsigned i = 0; i != NumRegs; ++i) { 958 ISD::InputArg MyFlags; 959 MyFlags.VT = RegisterVT; 960 MyFlags.ArgVT = VT; 961 MyFlags.Used = CLI.IsReturnValueUsed; 962 if (CLI.RetSExt) 963 MyFlags.Flags.setSExt(); 964 if (CLI.RetZExt) 965 MyFlags.Flags.setZExt(); 966 if (CLI.IsInReg) 967 MyFlags.Flags.setInReg(); 968 CLI.Ins.push_back(MyFlags); 969 } 970 } 971 972 // Handle all of the outgoing arguments. 973 CLI.clearOuts(); 974 for (auto &Arg : CLI.getArgs()) { 975 Type *FinalType = Arg.Ty; 976 if (Arg.IsByVal) 977 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 978 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 979 FinalType, CLI.CallConv, CLI.IsVarArg); 980 981 ISD::ArgFlagsTy Flags; 982 if (Arg.IsZExt) 983 Flags.setZExt(); 984 if (Arg.IsSExt) 985 Flags.setSExt(); 986 if (Arg.IsInReg) 987 Flags.setInReg(); 988 if (Arg.IsSRet) 989 Flags.setSRet(); 990 if (Arg.IsSwiftSelf) 991 Flags.setSwiftSelf(); 992 if (Arg.IsSwiftError) 993 Flags.setSwiftError(); 994 if (Arg.IsByVal) 995 Flags.setByVal(); 996 if (Arg.IsInAlloca) { 997 Flags.setInAlloca(); 998 // Set the byval flag for CCAssignFn callbacks that don't know about 999 // inalloca. This way we can know how many bytes we should've allocated 1000 // and how many bytes a callee cleanup function will pop. If we port 1001 // inalloca to more targets, we'll have to add custom inalloca handling in 1002 // the various CC lowering callbacks. 1003 Flags.setByVal(); 1004 } 1005 if (Arg.IsByVal || Arg.IsInAlloca) { 1006 PointerType *Ty = cast<PointerType>(Arg.Ty); 1007 Type *ElementTy = Ty->getElementType(); 1008 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 1009 // For ByVal, alignment should come from FE. BE will guess if this info is 1010 // not there, but there are cases it cannot get right. 1011 unsigned FrameAlign = Arg.Alignment; 1012 if (!FrameAlign) 1013 FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL); 1014 Flags.setByValSize(FrameSize); 1015 Flags.setByValAlign(FrameAlign); 1016 } 1017 if (Arg.IsNest) 1018 Flags.setNest(); 1019 if (NeedsRegBlock) 1020 Flags.setInConsecutiveRegs(); 1021 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 1022 Flags.setOrigAlign(OriginalAlignment); 1023 1024 CLI.OutVals.push_back(Arg.Val); 1025 CLI.OutFlags.push_back(Flags); 1026 } 1027 1028 if (!fastLowerCall(CLI)) 1029 return false; 1030 1031 // Set all unused physreg defs as dead. 1032 assert(CLI.Call && "No call instruction specified."); 1033 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1034 1035 if (CLI.NumResultRegs && CLI.CS) 1036 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 1037 1038 return true; 1039 } 1040 1041 bool FastISel::lowerCall(const CallInst *CI) { 1042 ImmutableCallSite CS(CI); 1043 1044 FunctionType *FuncTy = CS.getFunctionType(); 1045 Type *RetTy = CS.getType(); 1046 1047 ArgListTy Args; 1048 ArgListEntry Entry; 1049 Args.reserve(CS.arg_size()); 1050 1051 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1052 i != e; ++i) { 1053 Value *V = *i; 1054 1055 // Skip empty types 1056 if (V->getType()->isEmptyTy()) 1057 continue; 1058 1059 Entry.Val = V; 1060 Entry.Ty = V->getType(); 1061 1062 // Skip the first return-type Attribute to get to params. 1063 Entry.setAttributes(&CS, i - CS.arg_begin()); 1064 Args.push_back(Entry); 1065 } 1066 1067 // Check if target-independent constraints permit a tail call here. 1068 // Target-dependent constraints are checked within fastLowerCall. 1069 bool IsTailCall = CI->isTailCall(); 1070 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1071 IsTailCall = false; 1072 1073 CallLoweringInfo CLI; 1074 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1075 .setTailCall(IsTailCall); 1076 1077 return lowerCallTo(CLI); 1078 } 1079 1080 bool FastISel::selectCall(const User *I) { 1081 const CallInst *Call = cast<CallInst>(I); 1082 1083 // Handle simple inline asms. 1084 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1085 // If the inline asm has side effects, then make sure that no local value 1086 // lives across by flushing the local value map. 1087 if (IA->hasSideEffects()) 1088 flushLocalValueMap(); 1089 1090 // Don't attempt to handle constraints. 1091 if (!IA->getConstraintString().empty()) 1092 return false; 1093 1094 unsigned ExtraInfo = 0; 1095 if (IA->hasSideEffects()) 1096 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1097 if (IA->isAlignStack()) 1098 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1099 1100 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1101 TII.get(TargetOpcode::INLINEASM)) 1102 .addExternalSymbol(IA->getAsmString().c_str()) 1103 .addImm(ExtraInfo); 1104 return true; 1105 } 1106 1107 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1108 computeUsesVAFloatArgument(*Call, MMI); 1109 1110 // Handle intrinsic function calls. 1111 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1112 return selectIntrinsicCall(II); 1113 1114 // Usually, it does not make sense to initialize a value, 1115 // make an unrelated function call and use the value, because 1116 // it tends to be spilled on the stack. So, we move the pointer 1117 // to the last local value to the beginning of the block, so that 1118 // all the values which have already been materialized, 1119 // appear after the call. It also makes sense to skip intrinsics 1120 // since they tend to be inlined. 1121 flushLocalValueMap(); 1122 1123 return lowerCall(Call); 1124 } 1125 1126 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1127 switch (II->getIntrinsicID()) { 1128 default: 1129 break; 1130 // At -O0 we don't care about the lifetime intrinsics. 1131 case Intrinsic::lifetime_start: 1132 case Intrinsic::lifetime_end: 1133 // The donothing intrinsic does, well, nothing. 1134 case Intrinsic::donothing: 1135 // Neither does the sideeffect intrinsic. 1136 case Intrinsic::sideeffect: 1137 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1138 case Intrinsic::assume: 1139 return true; 1140 case Intrinsic::dbg_declare: { 1141 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1142 assert(DI->getVariable() && "Missing variable"); 1143 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1144 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1145 return true; 1146 } 1147 1148 const Value *Address = DI->getAddress(); 1149 if (!Address || isa<UndefValue>(Address)) { 1150 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1151 return true; 1152 } 1153 1154 // Byval arguments with frame indices were already handled after argument 1155 // lowering and before isel. 1156 const auto *Arg = 1157 dyn_cast<Argument>(Address->stripInBoundsConstantOffsets()); 1158 if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX) 1159 return true; 1160 1161 Optional<MachineOperand> Op; 1162 if (unsigned Reg = lookUpRegForValue(Address)) 1163 Op = MachineOperand::CreateReg(Reg, false); 1164 1165 // If we have a VLA that has a "use" in a metadata node that's then used 1166 // here but it has no other uses, then we have a problem. E.g., 1167 // 1168 // int foo (const int *x) { 1169 // char a[*x]; 1170 // return 0; 1171 // } 1172 // 1173 // If we assign 'a' a vreg and fast isel later on has to use the selection 1174 // DAG isel, it will want to copy the value to the vreg. However, there are 1175 // no uses, which goes counter to what selection DAG isel expects. 1176 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1177 (!isa<AllocaInst>(Address) || 1178 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1179 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1180 false); 1181 1182 if (Op) { 1183 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1184 "Expected inlined-at fields to agree"); 1185 if (Op->isReg()) { 1186 Op->setIsDebug(true); 1187 // A dbg.declare describes the address of a source variable, so lower it 1188 // into an indirect DBG_VALUE. 1189 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1190 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, 1191 Op->getReg(), DI->getVariable(), DI->getExpression()); 1192 } else 1193 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1194 TII.get(TargetOpcode::DBG_VALUE)) 1195 .add(*Op) 1196 .addImm(0) 1197 .addMetadata(DI->getVariable()) 1198 .addMetadata(DI->getExpression()); 1199 } else { 1200 // We can't yet handle anything else here because it would require 1201 // generating code, thus altering codegen because of debug info. 1202 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1203 } 1204 return true; 1205 } 1206 case Intrinsic::dbg_value: { 1207 // This form of DBG_VALUE is target-independent. 1208 const DbgValueInst *DI = cast<DbgValueInst>(II); 1209 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1210 const Value *V = DI->getValue(); 1211 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1212 "Expected inlined-at fields to agree"); 1213 if (!V) { 1214 // Currently the optimizer can produce this; insert an undef to 1215 // help debugging. Probably the optimizer should not do this. 1216 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U, 1217 DI->getVariable(), DI->getExpression()); 1218 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1219 if (CI->getBitWidth() > 64) 1220 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1221 .addCImm(CI) 1222 .addImm(0U) 1223 .addMetadata(DI->getVariable()) 1224 .addMetadata(DI->getExpression()); 1225 else 1226 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1227 .addImm(CI->getZExtValue()) 1228 .addImm(0U) 1229 .addMetadata(DI->getVariable()) 1230 .addMetadata(DI->getExpression()); 1231 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1232 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1233 .addFPImm(CF) 1234 .addImm(0U) 1235 .addMetadata(DI->getVariable()) 1236 .addMetadata(DI->getExpression()); 1237 } else if (unsigned Reg = lookUpRegForValue(V)) { 1238 // FIXME: This does not handle register-indirect values at offset 0. 1239 bool IsIndirect = false; 1240 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1241 DI->getVariable(), DI->getExpression()); 1242 } else { 1243 // We can't yet handle anything else here because it would require 1244 // generating code, thus altering codegen because of debug info. 1245 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1246 } 1247 return true; 1248 } 1249 case Intrinsic::objectsize: { 1250 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1251 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1252 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1253 unsigned ResultReg = getRegForValue(ResCI); 1254 if (!ResultReg) 1255 return false; 1256 updateValueMap(II, ResultReg); 1257 return true; 1258 } 1259 case Intrinsic::invariant_group_barrier: 1260 case Intrinsic::expect: { 1261 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1262 if (!ResultReg) 1263 return false; 1264 updateValueMap(II, ResultReg); 1265 return true; 1266 } 1267 case Intrinsic::experimental_stackmap: 1268 return selectStackmap(II); 1269 case Intrinsic::experimental_patchpoint_void: 1270 case Intrinsic::experimental_patchpoint_i64: 1271 return selectPatchpoint(II); 1272 1273 case Intrinsic::xray_customevent: 1274 return selectXRayCustomEvent(II); 1275 } 1276 1277 return fastLowerIntrinsicCall(II); 1278 } 1279 1280 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1281 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1282 EVT DstVT = TLI.getValueType(DL, I->getType()); 1283 1284 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1285 !DstVT.isSimple()) 1286 // Unhandled type. Halt "fast" selection and bail. 1287 return false; 1288 1289 // Check if the destination type is legal. 1290 if (!TLI.isTypeLegal(DstVT)) 1291 return false; 1292 1293 // Check if the source operand is legal. 1294 if (!TLI.isTypeLegal(SrcVT)) 1295 return false; 1296 1297 unsigned InputReg = getRegForValue(I->getOperand(0)); 1298 if (!InputReg) 1299 // Unhandled operand. Halt "fast" selection and bail. 1300 return false; 1301 1302 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1303 1304 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1305 Opcode, InputReg, InputRegIsKill); 1306 if (!ResultReg) 1307 return false; 1308 1309 updateValueMap(I, ResultReg); 1310 return true; 1311 } 1312 1313 bool FastISel::selectBitCast(const User *I) { 1314 // If the bitcast doesn't change the type, just use the operand value. 1315 if (I->getType() == I->getOperand(0)->getType()) { 1316 unsigned Reg = getRegForValue(I->getOperand(0)); 1317 if (!Reg) 1318 return false; 1319 updateValueMap(I, Reg); 1320 return true; 1321 } 1322 1323 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1324 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1325 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1326 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1327 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1328 // Unhandled type. Halt "fast" selection and bail. 1329 return false; 1330 1331 MVT SrcVT = SrcEVT.getSimpleVT(); 1332 MVT DstVT = DstEVT.getSimpleVT(); 1333 unsigned Op0 = getRegForValue(I->getOperand(0)); 1334 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1335 return false; 1336 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1337 1338 // First, try to perform the bitcast by inserting a reg-reg copy. 1339 unsigned ResultReg = 0; 1340 if (SrcVT == DstVT) { 1341 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1342 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1343 // Don't attempt a cross-class copy. It will likely fail. 1344 if (SrcClass == DstClass) { 1345 ResultReg = createResultReg(DstClass); 1346 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1347 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1348 } 1349 } 1350 1351 // If the reg-reg copy failed, select a BITCAST opcode. 1352 if (!ResultReg) 1353 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1354 1355 if (!ResultReg) 1356 return false; 1357 1358 updateValueMap(I, ResultReg); 1359 return true; 1360 } 1361 1362 // Remove local value instructions starting from the instruction after 1363 // SavedLastLocalValue to the current function insert point. 1364 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1365 { 1366 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1367 if (CurLastLocalValue != SavedLastLocalValue) { 1368 // Find the first local value instruction to be deleted. 1369 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1370 // Otherwise it's the first instruction in the block. 1371 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1372 if (SavedLastLocalValue) 1373 ++FirstDeadInst; 1374 else 1375 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1376 setLastLocalValue(SavedLastLocalValue); 1377 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1378 } 1379 } 1380 1381 bool FastISel::selectInstruction(const Instruction *I) { 1382 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1383 // Just before the terminator instruction, insert instructions to 1384 // feed PHI nodes in successor blocks. 1385 if (isa<TerminatorInst>(I)) { 1386 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1387 // PHI node handling may have generated local value instructions, 1388 // even though it failed to handle all PHI nodes. 1389 // We remove these instructions because SelectionDAGISel will generate 1390 // them again. 1391 removeDeadLocalValueCode(SavedLastLocalValue); 1392 return false; 1393 } 1394 } 1395 1396 // FastISel does not handle any operand bundles except OB_funclet. 1397 if (ImmutableCallSite CS = ImmutableCallSite(I)) 1398 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) 1399 if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1400 return false; 1401 1402 DbgLoc = I->getDebugLoc(); 1403 1404 SavedInsertPt = FuncInfo.InsertPt; 1405 1406 if (const auto *Call = dyn_cast<CallInst>(I)) { 1407 const Function *F = Call->getCalledFunction(); 1408 LibFunc Func; 1409 1410 // As a special case, don't handle calls to builtin library functions that 1411 // may be translated directly to target instructions. 1412 if (F && !F->hasLocalLinkage() && F->hasName() && 1413 LibInfo->getLibFunc(F->getName(), Func) && 1414 LibInfo->hasOptimizedCodeGen(Func)) 1415 return false; 1416 1417 // Don't handle Intrinsic::trap if a trap function is specified. 1418 if (F && F->getIntrinsicID() == Intrinsic::trap && 1419 Call->hasFnAttr("trap-func-name")) 1420 return false; 1421 } 1422 1423 // First, try doing target-independent selection. 1424 if (!SkipTargetIndependentISel) { 1425 if (selectOperator(I, I->getOpcode())) { 1426 ++NumFastIselSuccessIndependent; 1427 DbgLoc = DebugLoc(); 1428 return true; 1429 } 1430 // Remove dead code. 1431 recomputeInsertPt(); 1432 if (SavedInsertPt != FuncInfo.InsertPt) 1433 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1434 SavedInsertPt = FuncInfo.InsertPt; 1435 } 1436 // Next, try calling the target to attempt to handle the instruction. 1437 if (fastSelectInstruction(I)) { 1438 ++NumFastIselSuccessTarget; 1439 DbgLoc = DebugLoc(); 1440 return true; 1441 } 1442 // Remove dead code. 1443 recomputeInsertPt(); 1444 if (SavedInsertPt != FuncInfo.InsertPt) 1445 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1446 1447 DbgLoc = DebugLoc(); 1448 // Undo phi node updates, because they will be added again by SelectionDAG. 1449 if (isa<TerminatorInst>(I)) { 1450 // PHI node handling may have generated local value instructions. 1451 // We remove them because SelectionDAGISel will generate them again. 1452 removeDeadLocalValueCode(SavedLastLocalValue); 1453 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1454 } 1455 return false; 1456 } 1457 1458 /// Emit an unconditional branch to the given block, unless it is the immediate 1459 /// (fall-through) successor, and update the CFG. 1460 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1461 const DebugLoc &DbgLoc) { 1462 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1463 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1464 // For more accurate line information if this is the only instruction 1465 // in the block then emit it, otherwise we have the unconditional 1466 // fall-through case, which needs no instructions. 1467 } else { 1468 // The unconditional branch case. 1469 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1470 SmallVector<MachineOperand, 0>(), DbgLoc); 1471 } 1472 if (FuncInfo.BPI) { 1473 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1474 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1475 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1476 } else 1477 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1478 } 1479 1480 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1481 MachineBasicBlock *TrueMBB, 1482 MachineBasicBlock *FalseMBB) { 1483 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1484 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1485 // successor/predecessor lists. 1486 if (TrueMBB != FalseMBB) { 1487 if (FuncInfo.BPI) { 1488 auto BranchProbability = 1489 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1490 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1491 } else 1492 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1493 } 1494 1495 fastEmitBranch(FalseMBB, DbgLoc); 1496 } 1497 1498 /// Emit an FNeg operation. 1499 bool FastISel::selectFNeg(const User *I) { 1500 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1501 if (!OpReg) 1502 return false; 1503 bool OpRegIsKill = hasTrivialKill(I); 1504 1505 // If the target has ISD::FNEG, use it. 1506 EVT VT = TLI.getValueType(DL, I->getType()); 1507 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1508 OpReg, OpRegIsKill); 1509 if (ResultReg) { 1510 updateValueMap(I, ResultReg); 1511 return true; 1512 } 1513 1514 // Bitcast the value to integer, twiddle the sign bit with xor, 1515 // and then bitcast it back to floating-point. 1516 if (VT.getSizeInBits() > 64) 1517 return false; 1518 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1519 if (!TLI.isTypeLegal(IntVT)) 1520 return false; 1521 1522 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1523 ISD::BITCAST, OpReg, OpRegIsKill); 1524 if (!IntReg) 1525 return false; 1526 1527 unsigned IntResultReg = fastEmit_ri_( 1528 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1529 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1530 if (!IntResultReg) 1531 return false; 1532 1533 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1534 IntResultReg, /*IsKill=*/true); 1535 if (!ResultReg) 1536 return false; 1537 1538 updateValueMap(I, ResultReg); 1539 return true; 1540 } 1541 1542 bool FastISel::selectExtractValue(const User *U) { 1543 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1544 if (!EVI) 1545 return false; 1546 1547 // Make sure we only try to handle extracts with a legal result. But also 1548 // allow i1 because it's easy. 1549 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1550 if (!RealVT.isSimple()) 1551 return false; 1552 MVT VT = RealVT.getSimpleVT(); 1553 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1554 return false; 1555 1556 const Value *Op0 = EVI->getOperand(0); 1557 Type *AggTy = Op0->getType(); 1558 1559 // Get the base result register. 1560 unsigned ResultReg; 1561 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1562 if (I != FuncInfo.ValueMap.end()) 1563 ResultReg = I->second; 1564 else if (isa<Instruction>(Op0)) 1565 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1566 else 1567 return false; // fast-isel can't handle aggregate constants at the moment 1568 1569 // Get the actual result register, which is an offset from the base register. 1570 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1571 1572 SmallVector<EVT, 4> AggValueVTs; 1573 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1574 1575 for (unsigned i = 0; i < VTIndex; i++) 1576 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1577 1578 updateValueMap(EVI, ResultReg); 1579 return true; 1580 } 1581 1582 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1583 switch (Opcode) { 1584 case Instruction::Add: 1585 return selectBinaryOp(I, ISD::ADD); 1586 case Instruction::FAdd: 1587 return selectBinaryOp(I, ISD::FADD); 1588 case Instruction::Sub: 1589 return selectBinaryOp(I, ISD::SUB); 1590 case Instruction::FSub: 1591 // FNeg is currently represented in LLVM IR as a special case of FSub. 1592 if (BinaryOperator::isFNeg(I)) 1593 return selectFNeg(I); 1594 return selectBinaryOp(I, ISD::FSUB); 1595 case Instruction::Mul: 1596 return selectBinaryOp(I, ISD::MUL); 1597 case Instruction::FMul: 1598 return selectBinaryOp(I, ISD::FMUL); 1599 case Instruction::SDiv: 1600 return selectBinaryOp(I, ISD::SDIV); 1601 case Instruction::UDiv: 1602 return selectBinaryOp(I, ISD::UDIV); 1603 case Instruction::FDiv: 1604 return selectBinaryOp(I, ISD::FDIV); 1605 case Instruction::SRem: 1606 return selectBinaryOp(I, ISD::SREM); 1607 case Instruction::URem: 1608 return selectBinaryOp(I, ISD::UREM); 1609 case Instruction::FRem: 1610 return selectBinaryOp(I, ISD::FREM); 1611 case Instruction::Shl: 1612 return selectBinaryOp(I, ISD::SHL); 1613 case Instruction::LShr: 1614 return selectBinaryOp(I, ISD::SRL); 1615 case Instruction::AShr: 1616 return selectBinaryOp(I, ISD::SRA); 1617 case Instruction::And: 1618 return selectBinaryOp(I, ISD::AND); 1619 case Instruction::Or: 1620 return selectBinaryOp(I, ISD::OR); 1621 case Instruction::Xor: 1622 return selectBinaryOp(I, ISD::XOR); 1623 1624 case Instruction::GetElementPtr: 1625 return selectGetElementPtr(I); 1626 1627 case Instruction::Br: { 1628 const BranchInst *BI = cast<BranchInst>(I); 1629 1630 if (BI->isUnconditional()) { 1631 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1632 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1633 fastEmitBranch(MSucc, BI->getDebugLoc()); 1634 return true; 1635 } 1636 1637 // Conditional branches are not handed yet. 1638 // Halt "fast" selection and bail. 1639 return false; 1640 } 1641 1642 case Instruction::Unreachable: 1643 if (TM.Options.TrapUnreachable) 1644 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1645 else 1646 return true; 1647 1648 case Instruction::Alloca: 1649 // FunctionLowering has the static-sized case covered. 1650 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1651 return true; 1652 1653 // Dynamic-sized alloca is not handled yet. 1654 return false; 1655 1656 case Instruction::Call: 1657 return selectCall(I); 1658 1659 case Instruction::BitCast: 1660 return selectBitCast(I); 1661 1662 case Instruction::FPToSI: 1663 return selectCast(I, ISD::FP_TO_SINT); 1664 case Instruction::ZExt: 1665 return selectCast(I, ISD::ZERO_EXTEND); 1666 case Instruction::SExt: 1667 return selectCast(I, ISD::SIGN_EXTEND); 1668 case Instruction::Trunc: 1669 return selectCast(I, ISD::TRUNCATE); 1670 case Instruction::SIToFP: 1671 return selectCast(I, ISD::SINT_TO_FP); 1672 1673 case Instruction::IntToPtr: // Deliberate fall-through. 1674 case Instruction::PtrToInt: { 1675 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1676 EVT DstVT = TLI.getValueType(DL, I->getType()); 1677 if (DstVT.bitsGT(SrcVT)) 1678 return selectCast(I, ISD::ZERO_EXTEND); 1679 if (DstVT.bitsLT(SrcVT)) 1680 return selectCast(I, ISD::TRUNCATE); 1681 unsigned Reg = getRegForValue(I->getOperand(0)); 1682 if (!Reg) 1683 return false; 1684 updateValueMap(I, Reg); 1685 return true; 1686 } 1687 1688 case Instruction::ExtractValue: 1689 return selectExtractValue(I); 1690 1691 case Instruction::PHI: 1692 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1693 1694 default: 1695 // Unhandled instruction. Halt "fast" selection and bail. 1696 return false; 1697 } 1698 } 1699 1700 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1701 const TargetLibraryInfo *LibInfo, 1702 bool SkipTargetIndependentISel) 1703 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1704 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1705 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1706 TII(*MF->getSubtarget().getInstrInfo()), 1707 TLI(*MF->getSubtarget().getTargetLowering()), 1708 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1709 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1710 1711 FastISel::~FastISel() = default; 1712 1713 bool FastISel::fastLowerArguments() { return false; } 1714 1715 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1716 1717 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1718 return false; 1719 } 1720 1721 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1722 1723 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1724 bool /*Op0IsKill*/) { 1725 return 0; 1726 } 1727 1728 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1729 bool /*Op0IsKill*/, unsigned /*Op1*/, 1730 bool /*Op1IsKill*/) { 1731 return 0; 1732 } 1733 1734 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1735 return 0; 1736 } 1737 1738 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1739 const ConstantFP * /*FPImm*/) { 1740 return 0; 1741 } 1742 1743 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1744 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1745 return 0; 1746 } 1747 1748 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1749 /// instruction with an immediate operand using fastEmit_ri. 1750 /// If that fails, it materializes the immediate into a register and try 1751 /// fastEmit_rr instead. 1752 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1753 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1754 // If this is a multiply by a power of two, emit this as a shift left. 1755 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1756 Opcode = ISD::SHL; 1757 Imm = Log2_64(Imm); 1758 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1759 // div x, 8 -> srl x, 3 1760 Opcode = ISD::SRL; 1761 Imm = Log2_64(Imm); 1762 } 1763 1764 // Horrible hack (to be removed), check to make sure shift amounts are 1765 // in-range. 1766 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1767 Imm >= VT.getSizeInBits()) 1768 return 0; 1769 1770 // First check if immediate type is legal. If not, we can't use the ri form. 1771 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1772 if (ResultReg) 1773 return ResultReg; 1774 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1775 bool IsImmKill = true; 1776 if (!MaterialReg) { 1777 // This is a bit ugly/slow, but failing here means falling out of 1778 // fast-isel, which would be very slow. 1779 IntegerType *ITy = 1780 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1781 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1782 if (!MaterialReg) 1783 return 0; 1784 // FIXME: If the materialized register here has no uses yet then this 1785 // will be the first use and we should be able to mark it as killed. 1786 // However, the local value area for materialising constant expressions 1787 // grows down, not up, which means that any constant expressions we generate 1788 // later which also use 'Imm' could be after this instruction and therefore 1789 // after this kill. 1790 IsImmKill = false; 1791 } 1792 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); 1793 } 1794 1795 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { 1796 return MRI.createVirtualRegister(RC); 1797 } 1798 1799 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 1800 unsigned OpNum) { 1801 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1802 const TargetRegisterClass *RegClass = 1803 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1804 if (!MRI.constrainRegClass(Op, RegClass)) { 1805 // If it's not legal to COPY between the register classes, something 1806 // has gone very wrong before we got here. 1807 unsigned NewOp = createResultReg(RegClass); 1808 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1809 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1810 return NewOp; 1811 } 1812 } 1813 return Op; 1814 } 1815 1816 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1817 const TargetRegisterClass *RC) { 1818 unsigned ResultReg = createResultReg(RC); 1819 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1820 1821 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1822 return ResultReg; 1823 } 1824 1825 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 1826 const TargetRegisterClass *RC, unsigned Op0, 1827 bool Op0IsKill) { 1828 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1829 1830 unsigned ResultReg = createResultReg(RC); 1831 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1832 1833 if (II.getNumDefs() >= 1) 1834 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1835 .addReg(Op0, getKillRegState(Op0IsKill)); 1836 else { 1837 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1838 .addReg(Op0, getKillRegState(Op0IsKill)); 1839 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1840 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1841 } 1842 1843 return ResultReg; 1844 } 1845 1846 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 1847 const TargetRegisterClass *RC, unsigned Op0, 1848 bool Op0IsKill, unsigned Op1, 1849 bool Op1IsKill) { 1850 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1851 1852 unsigned ResultReg = createResultReg(RC); 1853 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1854 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1855 1856 if (II.getNumDefs() >= 1) 1857 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1858 .addReg(Op0, getKillRegState(Op0IsKill)) 1859 .addReg(Op1, getKillRegState(Op1IsKill)); 1860 else { 1861 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1862 .addReg(Op0, getKillRegState(Op0IsKill)) 1863 .addReg(Op1, getKillRegState(Op1IsKill)); 1864 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1865 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1866 } 1867 return ResultReg; 1868 } 1869 1870 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 1871 const TargetRegisterClass *RC, unsigned Op0, 1872 bool Op0IsKill, unsigned Op1, 1873 bool Op1IsKill, unsigned Op2, 1874 bool Op2IsKill) { 1875 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1876 1877 unsigned ResultReg = createResultReg(RC); 1878 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1879 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1880 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1881 1882 if (II.getNumDefs() >= 1) 1883 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1884 .addReg(Op0, getKillRegState(Op0IsKill)) 1885 .addReg(Op1, getKillRegState(Op1IsKill)) 1886 .addReg(Op2, getKillRegState(Op2IsKill)); 1887 else { 1888 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1889 .addReg(Op0, getKillRegState(Op0IsKill)) 1890 .addReg(Op1, getKillRegState(Op1IsKill)) 1891 .addReg(Op2, getKillRegState(Op2IsKill)); 1892 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1893 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1894 } 1895 return ResultReg; 1896 } 1897 1898 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 1899 const TargetRegisterClass *RC, unsigned Op0, 1900 bool Op0IsKill, uint64_t Imm) { 1901 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1902 1903 unsigned ResultReg = createResultReg(RC); 1904 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1905 1906 if (II.getNumDefs() >= 1) 1907 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1908 .addReg(Op0, getKillRegState(Op0IsKill)) 1909 .addImm(Imm); 1910 else { 1911 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1912 .addReg(Op0, getKillRegState(Op0IsKill)) 1913 .addImm(Imm); 1914 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1915 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1916 } 1917 return ResultReg; 1918 } 1919 1920 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 1921 const TargetRegisterClass *RC, unsigned Op0, 1922 bool Op0IsKill, uint64_t Imm1, 1923 uint64_t Imm2) { 1924 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1925 1926 unsigned ResultReg = createResultReg(RC); 1927 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1928 1929 if (II.getNumDefs() >= 1) 1930 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1931 .addReg(Op0, getKillRegState(Op0IsKill)) 1932 .addImm(Imm1) 1933 .addImm(Imm2); 1934 else { 1935 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1936 .addReg(Op0, getKillRegState(Op0IsKill)) 1937 .addImm(Imm1) 1938 .addImm(Imm2); 1939 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1940 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1941 } 1942 return ResultReg; 1943 } 1944 1945 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 1946 const TargetRegisterClass *RC, 1947 const ConstantFP *FPImm) { 1948 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1949 1950 unsigned ResultReg = createResultReg(RC); 1951 1952 if (II.getNumDefs() >= 1) 1953 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1954 .addFPImm(FPImm); 1955 else { 1956 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1957 .addFPImm(FPImm); 1958 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1959 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1960 } 1961 return ResultReg; 1962 } 1963 1964 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 1965 const TargetRegisterClass *RC, unsigned Op0, 1966 bool Op0IsKill, unsigned Op1, 1967 bool Op1IsKill, uint64_t Imm) { 1968 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1969 1970 unsigned ResultReg = createResultReg(RC); 1971 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1972 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1973 1974 if (II.getNumDefs() >= 1) 1975 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1976 .addReg(Op0, getKillRegState(Op0IsKill)) 1977 .addReg(Op1, getKillRegState(Op1IsKill)) 1978 .addImm(Imm); 1979 else { 1980 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1981 .addReg(Op0, getKillRegState(Op0IsKill)) 1982 .addReg(Op1, getKillRegState(Op1IsKill)) 1983 .addImm(Imm); 1984 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1985 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1986 } 1987 return ResultReg; 1988 } 1989 1990 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 1991 const TargetRegisterClass *RC, uint64_t Imm) { 1992 unsigned ResultReg = createResultReg(RC); 1993 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1994 1995 if (II.getNumDefs() >= 1) 1996 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1997 .addImm(Imm); 1998 else { 1999 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 2000 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2001 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2002 } 2003 return ResultReg; 2004 } 2005 2006 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 2007 bool Op0IsKill, uint32_t Idx) { 2008 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 2009 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 2010 "Cannot yet extract from physregs"); 2011 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2012 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2013 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 2014 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 2015 return ResultReg; 2016 } 2017 2018 /// Emit MachineInstrs to compute the value of Op with all but the least 2019 /// significant bit set to zero. 2020 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 2021 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 2022 } 2023 2024 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2025 /// Emit code to ensure constants are copied into registers when needed. 2026 /// Remember the virtual registers that need to be added to the Machine PHI 2027 /// nodes as input. We cannot just directly add them, because expansion 2028 /// might result in multiple MBB's for one BB. As such, the start of the 2029 /// BB might correspond to a different MBB than the end. 2030 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2031 const TerminatorInst *TI = LLVMBB->getTerminator(); 2032 2033 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2034 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2035 2036 // Check successor nodes' PHI nodes that expect a constant to be available 2037 // from this block. 2038 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2039 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2040 if (!isa<PHINode>(SuccBB->begin())) 2041 continue; 2042 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2043 2044 // If this terminator has multiple identical successors (common for 2045 // switches), only handle each succ once. 2046 if (!SuccsHandled.insert(SuccMBB).second) 2047 continue; 2048 2049 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2050 2051 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2052 // nodes and Machine PHI nodes, but the incoming operands have not been 2053 // emitted yet. 2054 for (const PHINode &PN : SuccBB->phis()) { 2055 // Ignore dead phi's. 2056 if (PN.use_empty()) 2057 continue; 2058 2059 // Only handle legal types. Two interesting things to note here. First, 2060 // by bailing out early, we may leave behind some dead instructions, 2061 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2062 // own moves. Second, this check is necessary because FastISel doesn't 2063 // use CreateRegs to create registers, so it always creates 2064 // exactly one register for each non-void instruction. 2065 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); 2066 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2067 // Handle integer promotions, though, because they're common and easy. 2068 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2069 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2070 return false; 2071 } 2072 } 2073 2074 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 2075 2076 // Set the DebugLoc for the copy. Prefer the location of the operand 2077 // if there is one; use the location of the PHI otherwise. 2078 DbgLoc = PN.getDebugLoc(); 2079 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2080 DbgLoc = Inst->getDebugLoc(); 2081 2082 unsigned Reg = getRegForValue(PHIOp); 2083 if (!Reg) { 2084 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2085 return false; 2086 } 2087 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2088 DbgLoc = DebugLoc(); 2089 } 2090 } 2091 2092 return true; 2093 } 2094 2095 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2096 assert(LI->hasOneUse() && 2097 "tryToFoldLoad expected a LoadInst with a single use"); 2098 // We know that the load has a single use, but don't know what it is. If it 2099 // isn't one of the folded instructions, then we can't succeed here. Handle 2100 // this by scanning the single-use users of the load until we get to FoldInst. 2101 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2102 2103 const Instruction *TheUser = LI->user_back(); 2104 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2105 // Stay in the right block. 2106 TheUser->getParent() == FoldInst->getParent() && 2107 --MaxUsers) { // Don't scan too far. 2108 // If there are multiple or no uses of this instruction, then bail out. 2109 if (!TheUser->hasOneUse()) 2110 return false; 2111 2112 TheUser = TheUser->user_back(); 2113 } 2114 2115 // If we didn't find the fold instruction, then we failed to collapse the 2116 // sequence. 2117 if (TheUser != FoldInst) 2118 return false; 2119 2120 // Don't try to fold volatile loads. Target has to deal with alignment 2121 // constraints. 2122 if (LI->isVolatile()) 2123 return false; 2124 2125 // Figure out which vreg this is going into. If there is no assigned vreg yet 2126 // then there actually was no reference to it. Perhaps the load is referenced 2127 // by a dead instruction. 2128 unsigned LoadReg = getRegForValue(LI); 2129 if (!LoadReg) 2130 return false; 2131 2132 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2133 // may mean that the instruction got lowered to multiple MIs, or the use of 2134 // the loaded value ended up being multiple operands of the result. 2135 if (!MRI.hasOneUse(LoadReg)) 2136 return false; 2137 2138 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2139 MachineInstr *User = RI->getParent(); 2140 2141 // Set the insertion point properly. Folding the load can cause generation of 2142 // other random instructions (like sign extends) for addressing modes; make 2143 // sure they get inserted in a logical place before the new instruction. 2144 FuncInfo.InsertPt = User; 2145 FuncInfo.MBB = User->getParent(); 2146 2147 // Ask the target to try folding the load. 2148 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2149 } 2150 2151 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2152 // Must be an add. 2153 if (!isa<AddOperator>(Add)) 2154 return false; 2155 // Type size needs to match. 2156 if (DL.getTypeSizeInBits(GEP->getType()) != 2157 DL.getTypeSizeInBits(Add->getType())) 2158 return false; 2159 // Must be in the same basic block. 2160 if (isa<Instruction>(Add) && 2161 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2162 return false; 2163 // Must have a constant operand. 2164 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2165 } 2166 2167 MachineMemOperand * 2168 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2169 const Value *Ptr; 2170 Type *ValTy; 2171 unsigned Alignment; 2172 MachineMemOperand::Flags Flags; 2173 bool IsVolatile; 2174 2175 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2176 Alignment = LI->getAlignment(); 2177 IsVolatile = LI->isVolatile(); 2178 Flags = MachineMemOperand::MOLoad; 2179 Ptr = LI->getPointerOperand(); 2180 ValTy = LI->getType(); 2181 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2182 Alignment = SI->getAlignment(); 2183 IsVolatile = SI->isVolatile(); 2184 Flags = MachineMemOperand::MOStore; 2185 Ptr = SI->getPointerOperand(); 2186 ValTy = SI->getValueOperand()->getType(); 2187 } else 2188 return nullptr; 2189 2190 bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2191 bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2192 bool IsDereferenceable = 2193 I->getMetadata(LLVMContext::MD_dereferenceable) != nullptr; 2194 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2195 2196 AAMDNodes AAInfo; 2197 I->getAAMetadata(AAInfo); 2198 2199 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2200 Alignment = DL.getABITypeAlignment(ValTy); 2201 2202 unsigned Size = DL.getTypeStoreSize(ValTy); 2203 2204 if (IsVolatile) 2205 Flags |= MachineMemOperand::MOVolatile; 2206 if (IsNonTemporal) 2207 Flags |= MachineMemOperand::MONonTemporal; 2208 if (IsDereferenceable) 2209 Flags |= MachineMemOperand::MODereferenceable; 2210 if (IsInvariant) 2211 Flags |= MachineMemOperand::MOInvariant; 2212 2213 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2214 Alignment, AAInfo, Ranges); 2215 } 2216 2217 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2218 // If both operands are the same, then try to optimize or fold the cmp. 2219 CmpInst::Predicate Predicate = CI->getPredicate(); 2220 if (CI->getOperand(0) != CI->getOperand(1)) 2221 return Predicate; 2222 2223 switch (Predicate) { 2224 default: llvm_unreachable("Invalid predicate!"); 2225 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2226 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2227 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2228 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2229 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2230 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2231 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2232 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2233 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2234 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2235 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2236 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2237 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2238 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2239 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2240 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2241 2242 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2243 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2244 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2245 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2246 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2247 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2248 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2249 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2250 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2251 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2252 } 2253 2254 return Predicate; 2255 } 2256