1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
11 //
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time.  For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
19 //
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support.  In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
24 //
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated.  Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time.  Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
33 //
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators.  More complicated operations currently require
38 // target-specific code.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/ADT/Optional.h"
43 #include "llvm/ADT/Statistic.h"
44 #include "llvm/Analysis/BranchProbabilityInfo.h"
45 #include "llvm/Analysis/Loads.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/CodeGen/Analysis.h"
48 #include "llvm/CodeGen/FastISel.h"
49 #include "llvm/CodeGen/FunctionLoweringInfo.h"
50 #include "llvm/CodeGen/MachineFrameInfo.h"
51 #include "llvm/CodeGen/MachineInstrBuilder.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/StackMaps.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DebugInfo.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/GetElementPtrTypeIterator.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Mangler.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetInstrInfo.h"
68 #include "llvm/Target/TargetLowering.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetSubtargetInfo.h"
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "isel"
74 
75 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
76                                          "target-independent selector");
77 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
78                                     "target-specific selector");
79 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
80 
81 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS,
82                                            unsigned AttrIdx) {
83   IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt);
84   IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
85   IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg);
86   IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
87   IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest);
88   IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
89   IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
90   IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
91   IsSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf);
92   IsSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError);
93   Alignment = CS->getParamAlignment(AttrIdx);
94 }
95 
96 /// Set the current block to which generated machine instructions will be
97 /// appended, and clear the local CSE map.
98 void FastISel::startNewBlock() {
99   LocalValueMap.clear();
100 
101   // Instructions are appended to FuncInfo.MBB. If the basic block already
102   // contains labels or copies, use the last instruction as the last local
103   // value.
104   EmitStartPt = nullptr;
105   if (!FuncInfo.MBB->empty())
106     EmitStartPt = &FuncInfo.MBB->back();
107   LastLocalValue = EmitStartPt;
108 }
109 
110 bool FastISel::lowerArguments() {
111   if (!FuncInfo.CanLowerReturn)
112     // Fallback to SDISel argument lowering code to deal with sret pointer
113     // parameter.
114     return false;
115 
116   if (!fastLowerArguments())
117     return false;
118 
119   // Enter arguments into ValueMap for uses in non-entry BBs.
120   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
121                                     E = FuncInfo.Fn->arg_end();
122        I != E; ++I) {
123     DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I);
124     assert(VI != LocalValueMap.end() && "Missed an argument?");
125     FuncInfo.ValueMap[&*I] = VI->second;
126   }
127   return true;
128 }
129 
130 void FastISel::flushLocalValueMap() {
131   LocalValueMap.clear();
132   LastLocalValue = EmitStartPt;
133   recomputeInsertPt();
134   SavedInsertPt = FuncInfo.InsertPt;
135 }
136 
137 bool FastISel::hasTrivialKill(const Value *V) {
138   // Don't consider constants or arguments to have trivial kills.
139   const Instruction *I = dyn_cast<Instruction>(V);
140   if (!I)
141     return false;
142 
143   // No-op casts are trivially coalesced by fast-isel.
144   if (const auto *Cast = dyn_cast<CastInst>(I))
145     if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) &&
146         !hasTrivialKill(Cast->getOperand(0)))
147       return false;
148 
149   // Even the value might have only one use in the LLVM IR, it is possible that
150   // FastISel might fold the use into another instruction and now there is more
151   // than one use at the Machine Instruction level.
152   unsigned Reg = lookUpRegForValue(V);
153   if (Reg && !MRI.use_empty(Reg))
154     return false;
155 
156   // GEPs with all zero indices are trivially coalesced by fast-isel.
157   if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
158     if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
159       return false;
160 
161   // Only instructions with a single use in the same basic block are considered
162   // to have trivial kills.
163   return I->hasOneUse() &&
164          !(I->getOpcode() == Instruction::BitCast ||
165            I->getOpcode() == Instruction::PtrToInt ||
166            I->getOpcode() == Instruction::IntToPtr) &&
167          cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
168 }
169 
170 unsigned FastISel::getRegForValue(const Value *V) {
171   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
172   // Don't handle non-simple values in FastISel.
173   if (!RealVT.isSimple())
174     return 0;
175 
176   // Ignore illegal types. We must do this before looking up the value
177   // in ValueMap because Arguments are given virtual registers regardless
178   // of whether FastISel can handle them.
179   MVT VT = RealVT.getSimpleVT();
180   if (!TLI.isTypeLegal(VT)) {
181     // Handle integer promotions, though, because they're common and easy.
182     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
183       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
184     else
185       return 0;
186   }
187 
188   // Look up the value to see if we already have a register for it.
189   unsigned Reg = lookUpRegForValue(V);
190   if (Reg)
191     return Reg;
192 
193   // In bottom-up mode, just create the virtual register which will be used
194   // to hold the value. It will be materialized later.
195   if (isa<Instruction>(V) &&
196       (!isa<AllocaInst>(V) ||
197        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
198     return FuncInfo.InitializeRegForValue(V);
199 
200   SavePoint SaveInsertPt = enterLocalValueArea();
201 
202   // Materialize the value in a register. Emit any instructions in the
203   // local value area.
204   Reg = materializeRegForValue(V, VT);
205 
206   leaveLocalValueArea(SaveInsertPt);
207 
208   return Reg;
209 }
210 
211 unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
212   unsigned Reg = 0;
213   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
214     if (CI->getValue().getActiveBits() <= 64)
215       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
216   } else if (isa<AllocaInst>(V))
217     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
218   else if (isa<ConstantPointerNull>(V))
219     // Translate this as an integer zero so that it can be
220     // local-CSE'd with actual integer zeros.
221     Reg = getRegForValue(
222         Constant::getNullValue(DL.getIntPtrType(V->getContext())));
223   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
224     if (CF->isNullValue())
225       Reg = fastMaterializeFloatZero(CF);
226     else
227       // Try to emit the constant directly.
228       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
229 
230     if (!Reg) {
231       // Try to emit the constant by using an integer constant with a cast.
232       const APFloat &Flt = CF->getValueAPF();
233       EVT IntVT = TLI.getPointerTy(DL);
234 
235       uint64_t x[2];
236       uint32_t IntBitWidth = IntVT.getSizeInBits();
237       bool isExact;
238       (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
239                                  APFloat::rmTowardZero, &isExact);
240       if (isExact) {
241         APInt IntVal(IntBitWidth, x);
242 
243         unsigned IntegerReg =
244             getRegForValue(ConstantInt::get(V->getContext(), IntVal));
245         if (IntegerReg != 0)
246           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
247                            /*Kill=*/false);
248       }
249     }
250   } else if (const auto *Op = dyn_cast<Operator>(V)) {
251     if (!selectOperator(Op, Op->getOpcode()))
252       if (!isa<Instruction>(Op) ||
253           !fastSelectInstruction(cast<Instruction>(Op)))
254         return 0;
255     Reg = lookUpRegForValue(Op);
256   } else if (isa<UndefValue>(V)) {
257     Reg = createResultReg(TLI.getRegClassFor(VT));
258     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
259             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
260   }
261   return Reg;
262 }
263 
264 /// Helper for getRegForValue. This function is called when the value isn't
265 /// already available in a register and must be materialized with new
266 /// instructions.
267 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
268   unsigned Reg = 0;
269   // Give the target-specific code a try first.
270   if (isa<Constant>(V))
271     Reg = fastMaterializeConstant(cast<Constant>(V));
272 
273   // If target-specific code couldn't or didn't want to handle the value, then
274   // give target-independent code a try.
275   if (!Reg)
276     Reg = materializeConstant(V, VT);
277 
278   // Don't cache constant materializations in the general ValueMap.
279   // To do so would require tracking what uses they dominate.
280   if (Reg) {
281     LocalValueMap[V] = Reg;
282     LastLocalValue = MRI.getVRegDef(Reg);
283   }
284   return Reg;
285 }
286 
287 unsigned FastISel::lookUpRegForValue(const Value *V) {
288   // Look up the value to see if we already have a register for it. We
289   // cache values defined by Instructions across blocks, and other values
290   // only locally. This is because Instructions already have the SSA
291   // def-dominates-use requirement enforced.
292   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
293   if (I != FuncInfo.ValueMap.end())
294     return I->second;
295   return LocalValueMap[V];
296 }
297 
298 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
299   if (!isa<Instruction>(I)) {
300     LocalValueMap[I] = Reg;
301     return;
302   }
303 
304   unsigned &AssignedReg = FuncInfo.ValueMap[I];
305   if (AssignedReg == 0)
306     // Use the new register.
307     AssignedReg = Reg;
308   else if (Reg != AssignedReg) {
309     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
310     for (unsigned i = 0; i < NumRegs; i++)
311       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
312 
313     AssignedReg = Reg;
314   }
315 }
316 
317 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
318   unsigned IdxN = getRegForValue(Idx);
319   if (IdxN == 0)
320     // Unhandled operand. Halt "fast" selection and bail.
321     return std::pair<unsigned, bool>(0, false);
322 
323   bool IdxNIsKill = hasTrivialKill(Idx);
324 
325   // If the index is smaller or larger than intptr_t, truncate or extend it.
326   MVT PtrVT = TLI.getPointerTy(DL);
327   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
328   if (IdxVT.bitsLT(PtrVT)) {
329     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
330                       IdxNIsKill);
331     IdxNIsKill = true;
332   } else if (IdxVT.bitsGT(PtrVT)) {
333     IdxN =
334         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
335     IdxNIsKill = true;
336   }
337   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
338 }
339 
340 void FastISel::recomputeInsertPt() {
341   if (getLastLocalValue()) {
342     FuncInfo.InsertPt = getLastLocalValue();
343     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
344     ++FuncInfo.InsertPt;
345   } else
346     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
347 
348   // Now skip past any EH_LABELs, which must remain at the beginning.
349   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
350          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
351     ++FuncInfo.InsertPt;
352 }
353 
354 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
355                               MachineBasicBlock::iterator E) {
356   assert(I && E && std::distance(I, E) > 0 && "Invalid iterator!");
357   while (I != E) {
358     MachineInstr *Dead = &*I;
359     ++I;
360     Dead->eraseFromParent();
361     ++NumFastIselDead;
362   }
363   recomputeInsertPt();
364 }
365 
366 FastISel::SavePoint FastISel::enterLocalValueArea() {
367   MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
368   DebugLoc OldDL = DbgLoc;
369   recomputeInsertPt();
370   DbgLoc = DebugLoc();
371   SavePoint SP = {OldInsertPt, OldDL};
372   return SP;
373 }
374 
375 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
376   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
377     LastLocalValue = std::prev(FuncInfo.InsertPt);
378 
379   // Restore the previous insert position.
380   FuncInfo.InsertPt = OldInsertPt.InsertPt;
381   DbgLoc = OldInsertPt.DL;
382 }
383 
384 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
385   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
386   if (VT == MVT::Other || !VT.isSimple())
387     // Unhandled type. Halt "fast" selection and bail.
388     return false;
389 
390   // We only handle legal types. For example, on x86-32 the instruction
391   // selector contains all of the 64-bit instructions from x86-64,
392   // under the assumption that i64 won't be used if the target doesn't
393   // support it.
394   if (!TLI.isTypeLegal(VT)) {
395     // MVT::i1 is special. Allow AND, OR, or XOR because they
396     // don't require additional zeroing, which makes them easy.
397     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
398                           ISDOpcode == ISD::XOR))
399       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
400     else
401       return false;
402   }
403 
404   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
405   // we don't have anything that canonicalizes operand order.
406   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
407     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
408       unsigned Op1 = getRegForValue(I->getOperand(1));
409       if (!Op1)
410         return false;
411       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
412 
413       unsigned ResultReg =
414           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
415                        CI->getZExtValue(), VT.getSimpleVT());
416       if (!ResultReg)
417         return false;
418 
419       // We successfully emitted code for the given LLVM Instruction.
420       updateValueMap(I, ResultReg);
421       return true;
422     }
423 
424   unsigned Op0 = getRegForValue(I->getOperand(0));
425   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
426     return false;
427   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
428 
429   // Check if the second operand is a constant and handle it appropriately.
430   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
431     uint64_t Imm = CI->getSExtValue();
432 
433     // Transform "sdiv exact X, 8" -> "sra X, 3".
434     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
435         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
436       Imm = Log2_64(Imm);
437       ISDOpcode = ISD::SRA;
438     }
439 
440     // Transform "urem x, pow2" -> "and x, pow2-1".
441     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
442         isPowerOf2_64(Imm)) {
443       --Imm;
444       ISDOpcode = ISD::AND;
445     }
446 
447     unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
448                                       Op0IsKill, Imm, VT.getSimpleVT());
449     if (!ResultReg)
450       return false;
451 
452     // We successfully emitted code for the given LLVM Instruction.
453     updateValueMap(I, ResultReg);
454     return true;
455   }
456 
457   // Check if the second operand is a constant float.
458   if (const auto *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
459     unsigned ResultReg = fastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
460                                      ISDOpcode, Op0, Op0IsKill, CF);
461     if (ResultReg) {
462       // We successfully emitted code for the given LLVM Instruction.
463       updateValueMap(I, ResultReg);
464       return true;
465     }
466   }
467 
468   unsigned Op1 = getRegForValue(I->getOperand(1));
469   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
470     return false;
471   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
472 
473   // Now we have both operands in registers. Emit the instruction.
474   unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
475                                    ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
476   if (!ResultReg)
477     // Target-specific code wasn't able to find a machine opcode for
478     // the given ISD opcode and type. Halt "fast" selection and bail.
479     return false;
480 
481   // We successfully emitted code for the given LLVM Instruction.
482   updateValueMap(I, ResultReg);
483   return true;
484 }
485 
486 bool FastISel::selectGetElementPtr(const User *I) {
487   unsigned N = getRegForValue(I->getOperand(0));
488   if (!N) // Unhandled operand. Halt "fast" selection and bail.
489     return false;
490   bool NIsKill = hasTrivialKill(I->getOperand(0));
491 
492   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
493   // into a single N = N + TotalOffset.
494   uint64_t TotalOffs = 0;
495   // FIXME: What's a good SWAG number for MaxOffs?
496   uint64_t MaxOffs = 2048;
497   MVT VT = TLI.getPointerTy(DL);
498   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
499        GTI != E; ++GTI) {
500     const Value *Idx = GTI.getOperand();
501     if (auto *StTy = dyn_cast<StructType>(*GTI)) {
502       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
503       if (Field) {
504         // N = N + Offset
505         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
506         if (TotalOffs >= MaxOffs) {
507           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
508           if (!N) // Unhandled operand. Halt "fast" selection and bail.
509             return false;
510           NIsKill = true;
511           TotalOffs = 0;
512         }
513       }
514     } else {
515       Type *Ty = GTI.getIndexedType();
516 
517       // If this is a constant subscript, handle it quickly.
518       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
519         if (CI->isZero())
520           continue;
521         // N = N + Offset
522         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
523         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
524         if (TotalOffs >= MaxOffs) {
525           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
526           if (!N) // Unhandled operand. Halt "fast" selection and bail.
527             return false;
528           NIsKill = true;
529           TotalOffs = 0;
530         }
531         continue;
532       }
533       if (TotalOffs) {
534         N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
535         if (!N) // Unhandled operand. Halt "fast" selection and bail.
536           return false;
537         NIsKill = true;
538         TotalOffs = 0;
539       }
540 
541       // N = N + Idx * ElementSize;
542       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
543       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
544       unsigned IdxN = Pair.first;
545       bool IdxNIsKill = Pair.second;
546       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
547         return false;
548 
549       if (ElementSize != 1) {
550         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
551         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
552           return false;
553         IdxNIsKill = true;
554       }
555       N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
556       if (!N) // Unhandled operand. Halt "fast" selection and bail.
557         return false;
558     }
559   }
560   if (TotalOffs) {
561     N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
562     if (!N) // Unhandled operand. Halt "fast" selection and bail.
563       return false;
564   }
565 
566   // We successfully emitted code for the given LLVM Instruction.
567   updateValueMap(I, N);
568   return true;
569 }
570 
571 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
572                                    const CallInst *CI, unsigned StartIdx) {
573   for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
574     Value *Val = CI->getArgOperand(i);
575     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
576     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
577       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
578       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
579     } else if (isa<ConstantPointerNull>(Val)) {
580       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
581       Ops.push_back(MachineOperand::CreateImm(0));
582     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
583       // Values coming from a stack location also require a sepcial encoding,
584       // but that is added later on by the target specific frame index
585       // elimination implementation.
586       auto SI = FuncInfo.StaticAllocaMap.find(AI);
587       if (SI != FuncInfo.StaticAllocaMap.end())
588         Ops.push_back(MachineOperand::CreateFI(SI->second));
589       else
590         return false;
591     } else {
592       unsigned Reg = getRegForValue(Val);
593       if (!Reg)
594         return false;
595       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
596     }
597   }
598   return true;
599 }
600 
601 bool FastISel::selectStackmap(const CallInst *I) {
602   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
603   //                                  [live variables...])
604   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
605          "Stackmap cannot return a value.");
606 
607   // The stackmap intrinsic only records the live variables (the arguments
608   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
609   // intrinsic, this won't be lowered to a function call. This means we don't
610   // have to worry about calling conventions and target-specific lowering code.
611   // Instead we perform the call lowering right here.
612   //
613   // CALLSEQ_START(0...)
614   // STACKMAP(id, nbytes, ...)
615   // CALLSEQ_END(0, 0)
616   //
617   SmallVector<MachineOperand, 32> Ops;
618 
619   // Add the <id> and <numBytes> constants.
620   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
621          "Expected a constant integer.");
622   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
623   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
624 
625   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
626          "Expected a constant integer.");
627   const auto *NumBytes =
628       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
629   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
630 
631   // Push live variables for the stack map (skipping the first two arguments
632   // <id> and <numBytes>).
633   if (!addStackMapLiveVars(Ops, I, 2))
634     return false;
635 
636   // We are not adding any register mask info here, because the stackmap doesn't
637   // clobber anything.
638 
639   // Add scratch registers as implicit def and early clobber.
640   CallingConv::ID CC = I->getCallingConv();
641   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
642   for (unsigned i = 0; ScratchRegs[i]; ++i)
643     Ops.push_back(MachineOperand::CreateReg(
644         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
645         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
646 
647   // Issue CALLSEQ_START
648   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
649   auto Builder =
650       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
651   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
652   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
653     Builder.addImm(0);
654 
655   // Issue STACKMAP.
656   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
657                                     TII.get(TargetOpcode::STACKMAP));
658   for (auto const &MO : Ops)
659     MIB.addOperand(MO);
660 
661   // Issue CALLSEQ_END
662   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
663   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
664       .addImm(0)
665       .addImm(0);
666 
667   // Inform the Frame Information that we have a stackmap in this function.
668   FuncInfo.MF->getFrameInfo()->setHasStackMap();
669 
670   return true;
671 }
672 
673 /// \brief Lower an argument list according to the target calling convention.
674 ///
675 /// This is a helper for lowering intrinsics that follow a target calling
676 /// convention or require stack pointer adjustment. Only a subset of the
677 /// intrinsic's operands need to participate in the calling convention.
678 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
679                                  unsigned NumArgs, const Value *Callee,
680                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
681   ArgListTy Args;
682   Args.reserve(NumArgs);
683 
684   // Populate the argument list.
685   // Attributes for args start at offset 1, after the return attribute.
686   ImmutableCallSite CS(CI);
687   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
688        ArgI != ArgE; ++ArgI) {
689     Value *V = CI->getOperand(ArgI);
690 
691     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
692 
693     ArgListEntry Entry;
694     Entry.Val = V;
695     Entry.Ty = V->getType();
696     Entry.setAttributes(&CS, AttrI);
697     Args.push_back(Entry);
698   }
699 
700   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
701                                : CI->getType();
702   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
703 
704   return lowerCallTo(CLI);
705 }
706 
707 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
708     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
709     const char *Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
710   SmallString<32> MangledName;
711   Mangler::getNameWithPrefix(MangledName, Target, DL);
712   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
713   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
714 }
715 
716 bool FastISel::selectPatchpoint(const CallInst *I) {
717   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
718   //                                                 i32 <numBytes>,
719   //                                                 i8* <target>,
720   //                                                 i32 <numArgs>,
721   //                                                 [Args...],
722   //                                                 [live variables...])
723   CallingConv::ID CC = I->getCallingConv();
724   bool IsAnyRegCC = CC == CallingConv::AnyReg;
725   bool HasDef = !I->getType()->isVoidTy();
726   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
727 
728   // Get the real number of arguments participating in the call <numArgs>
729   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
730          "Expected a constant integer.");
731   const auto *NumArgsVal =
732       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
733   unsigned NumArgs = NumArgsVal->getZExtValue();
734 
735   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
736   // This includes all meta-operands up to but not including CC.
737   unsigned NumMetaOpers = PatchPointOpers::CCPos;
738   assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
739          "Not enough arguments provided to the patchpoint intrinsic");
740 
741   // For AnyRegCC the arguments are lowered later on manually.
742   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
743   CallLoweringInfo CLI;
744   CLI.setIsPatchPoint();
745   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
746     return false;
747 
748   assert(CLI.Call && "No call instruction specified.");
749 
750   SmallVector<MachineOperand, 32> Ops;
751 
752   // Add an explicit result reg if we use the anyreg calling convention.
753   if (IsAnyRegCC && HasDef) {
754     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
755     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
756     CLI.NumResultRegs = 1;
757     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true));
758   }
759 
760   // Add the <id> and <numBytes> constants.
761   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
762          "Expected a constant integer.");
763   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
764   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
765 
766   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
767          "Expected a constant integer.");
768   const auto *NumBytes =
769       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
770   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
771 
772   // Add the call target.
773   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
774     uint64_t CalleeConstAddr =
775       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
776     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
777   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
778     if (C->getOpcode() == Instruction::IntToPtr) {
779       uint64_t CalleeConstAddr =
780         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
781       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
782     } else
783       llvm_unreachable("Unsupported ConstantExpr.");
784   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
785     Ops.push_back(MachineOperand::CreateGA(GV, 0));
786   } else if (isa<ConstantPointerNull>(Callee))
787     Ops.push_back(MachineOperand::CreateImm(0));
788   else
789     llvm_unreachable("Unsupported callee address.");
790 
791   // Adjust <numArgs> to account for any arguments that have been passed on
792   // the stack instead.
793   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
794   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
795 
796   // Add the calling convention
797   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
798 
799   // Add the arguments we omitted previously. The register allocator should
800   // place these in any free register.
801   if (IsAnyRegCC) {
802     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
803       unsigned Reg = getRegForValue(I->getArgOperand(i));
804       if (!Reg)
805         return false;
806       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
807     }
808   }
809 
810   // Push the arguments from the call instruction.
811   for (auto Reg : CLI.OutRegs)
812     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
813 
814   // Push live variables for the stack map.
815   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
816     return false;
817 
818   // Push the register mask info.
819   Ops.push_back(MachineOperand::CreateRegMask(
820       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
821 
822   // Add scratch registers as implicit def and early clobber.
823   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
824   for (unsigned i = 0; ScratchRegs[i]; ++i)
825     Ops.push_back(MachineOperand::CreateReg(
826         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
827         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
828 
829   // Add implicit defs (return values).
830   for (auto Reg : CLI.InRegs)
831     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true,
832                                             /*IsImpl=*/true));
833 
834   // Insert the patchpoint instruction before the call generated by the target.
835   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
836                                     TII.get(TargetOpcode::PATCHPOINT));
837 
838   for (auto &MO : Ops)
839     MIB.addOperand(MO);
840 
841   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
842 
843   // Delete the original call instruction.
844   CLI.Call->eraseFromParent();
845 
846   // Inform the Frame Information that we have a patchpoint in this function.
847   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
848 
849   if (CLI.NumResultRegs)
850     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
851   return true;
852 }
853 
854 /// Returns an AttributeSet representing the attributes applied to the return
855 /// value of the given call.
856 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
857   SmallVector<Attribute::AttrKind, 2> Attrs;
858   if (CLI.RetSExt)
859     Attrs.push_back(Attribute::SExt);
860   if (CLI.RetZExt)
861     Attrs.push_back(Attribute::ZExt);
862   if (CLI.IsInReg)
863     Attrs.push_back(Attribute::InReg);
864 
865   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
866                            Attrs);
867 }
868 
869 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
870                            unsigned NumArgs) {
871   MCContext &Ctx = MF->getContext();
872   SmallString<32> MangledName;
873   Mangler::getNameWithPrefix(MangledName, SymName, DL);
874   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
875   return lowerCallTo(CI, Sym, NumArgs);
876 }
877 
878 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
879                            unsigned NumArgs) {
880   ImmutableCallSite CS(CI);
881 
882   FunctionType *FTy = CS.getFunctionType();
883   Type *RetTy = CS.getType();
884 
885   ArgListTy Args;
886   Args.reserve(NumArgs);
887 
888   // Populate the argument list.
889   // Attributes for args start at offset 1, after the return attribute.
890   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
891     Value *V = CI->getOperand(ArgI);
892 
893     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
894 
895     ArgListEntry Entry;
896     Entry.Val = V;
897     Entry.Ty = V->getType();
898     Entry.setAttributes(&CS, ArgI + 1);
899     Args.push_back(Entry);
900   }
901 
902   CallLoweringInfo CLI;
903   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs);
904 
905   return lowerCallTo(CLI);
906 }
907 
908 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
909   // Handle the incoming return values from the call.
910   CLI.clearIns();
911   SmallVector<EVT, 4> RetTys;
912   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
913 
914   SmallVector<ISD::OutputArg, 4> Outs;
915   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
916 
917   bool CanLowerReturn = TLI.CanLowerReturn(
918       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
919 
920   // FIXME: sret demotion isn't supported yet - bail out.
921   if (!CanLowerReturn)
922     return false;
923 
924   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
925     EVT VT = RetTys[I];
926     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
927     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
928     for (unsigned i = 0; i != NumRegs; ++i) {
929       ISD::InputArg MyFlags;
930       MyFlags.VT = RegisterVT;
931       MyFlags.ArgVT = VT;
932       MyFlags.Used = CLI.IsReturnValueUsed;
933       if (CLI.RetSExt)
934         MyFlags.Flags.setSExt();
935       if (CLI.RetZExt)
936         MyFlags.Flags.setZExt();
937       if (CLI.IsInReg)
938         MyFlags.Flags.setInReg();
939       CLI.Ins.push_back(MyFlags);
940     }
941   }
942 
943   // Handle all of the outgoing arguments.
944   CLI.clearOuts();
945   for (auto &Arg : CLI.getArgs()) {
946     Type *FinalType = Arg.Ty;
947     if (Arg.IsByVal)
948       FinalType = cast<PointerType>(Arg.Ty)->getElementType();
949     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
950         FinalType, CLI.CallConv, CLI.IsVarArg);
951 
952     ISD::ArgFlagsTy Flags;
953     if (Arg.IsZExt)
954       Flags.setZExt();
955     if (Arg.IsSExt)
956       Flags.setSExt();
957     if (Arg.IsInReg)
958       Flags.setInReg();
959     if (Arg.IsSRet)
960       Flags.setSRet();
961     if (Arg.IsSwiftSelf)
962       Flags.setSwiftSelf();
963     if (Arg.IsSwiftError)
964       Flags.setSwiftError();
965     if (Arg.IsByVal)
966       Flags.setByVal();
967     if (Arg.IsInAlloca) {
968       Flags.setInAlloca();
969       // Set the byval flag for CCAssignFn callbacks that don't know about
970       // inalloca. This way we can know how many bytes we should've allocated
971       // and how many bytes a callee cleanup function will pop.  If we port
972       // inalloca to more targets, we'll have to add custom inalloca handling in
973       // the various CC lowering callbacks.
974       Flags.setByVal();
975     }
976     if (Arg.IsByVal || Arg.IsInAlloca) {
977       PointerType *Ty = cast<PointerType>(Arg.Ty);
978       Type *ElementTy = Ty->getElementType();
979       unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
980       // For ByVal, alignment should come from FE. BE will guess if this info is
981       // not there, but there are cases it cannot get right.
982       unsigned FrameAlign = Arg.Alignment;
983       if (!FrameAlign)
984         FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL);
985       Flags.setByValSize(FrameSize);
986       Flags.setByValAlign(FrameAlign);
987     }
988     if (Arg.IsNest)
989       Flags.setNest();
990     if (NeedsRegBlock)
991       Flags.setInConsecutiveRegs();
992     unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty);
993     Flags.setOrigAlign(OriginalAlignment);
994 
995     CLI.OutVals.push_back(Arg.Val);
996     CLI.OutFlags.push_back(Flags);
997   }
998 
999   if (!fastLowerCall(CLI))
1000     return false;
1001 
1002   // Set all unused physreg defs as dead.
1003   assert(CLI.Call && "No call instruction specified.");
1004   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1005 
1006   if (CLI.NumResultRegs && CLI.CS)
1007     updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
1008 
1009   return true;
1010 }
1011 
1012 bool FastISel::lowerCall(const CallInst *CI) {
1013   ImmutableCallSite CS(CI);
1014 
1015   FunctionType *FuncTy = CS.getFunctionType();
1016   Type *RetTy = CS.getType();
1017 
1018   ArgListTy Args;
1019   ArgListEntry Entry;
1020   Args.reserve(CS.arg_size());
1021 
1022   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1023        i != e; ++i) {
1024     Value *V = *i;
1025 
1026     // Skip empty types
1027     if (V->getType()->isEmptyTy())
1028       continue;
1029 
1030     Entry.Val = V;
1031     Entry.Ty = V->getType();
1032 
1033     // Skip the first return-type Attribute to get to params.
1034     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
1035     Args.push_back(Entry);
1036   }
1037 
1038   // Check if target-independent constraints permit a tail call here.
1039   // Target-dependent constraints are checked within fastLowerCall.
1040   bool IsTailCall = CI->isTailCall();
1041   if (IsTailCall && !isInTailCallPosition(CS, TM))
1042     IsTailCall = false;
1043 
1044   CallLoweringInfo CLI;
1045   CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
1046       .setTailCall(IsTailCall);
1047 
1048   return lowerCallTo(CLI);
1049 }
1050 
1051 bool FastISel::selectCall(const User *I) {
1052   const CallInst *Call = cast<CallInst>(I);
1053 
1054   // Handle simple inline asms.
1055   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
1056     // If the inline asm has side effects, then make sure that no local value
1057     // lives across by flushing the local value map.
1058     if (IA->hasSideEffects())
1059       flushLocalValueMap();
1060 
1061     // Don't attempt to handle constraints.
1062     if (!IA->getConstraintString().empty())
1063       return false;
1064 
1065     unsigned ExtraInfo = 0;
1066     if (IA->hasSideEffects())
1067       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1068     if (IA->isAlignStack())
1069       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1070 
1071     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1072             TII.get(TargetOpcode::INLINEASM))
1073         .addExternalSymbol(IA->getAsmString().c_str())
1074         .addImm(ExtraInfo);
1075     return true;
1076   }
1077 
1078   MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
1079   ComputeUsesVAFloatArgument(*Call, &MMI);
1080 
1081   // Handle intrinsic function calls.
1082   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1083     return selectIntrinsicCall(II);
1084 
1085   // Usually, it does not make sense to initialize a value,
1086   // make an unrelated function call and use the value, because
1087   // it tends to be spilled on the stack. So, we move the pointer
1088   // to the last local value to the beginning of the block, so that
1089   // all the values which have already been materialized,
1090   // appear after the call. It also makes sense to skip intrinsics
1091   // since they tend to be inlined.
1092   flushLocalValueMap();
1093 
1094   return lowerCall(Call);
1095 }
1096 
1097 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1098   switch (II->getIntrinsicID()) {
1099   default:
1100     break;
1101   // At -O0 we don't care about the lifetime intrinsics.
1102   case Intrinsic::lifetime_start:
1103   case Intrinsic::lifetime_end:
1104   // The donothing intrinsic does, well, nothing.
1105   case Intrinsic::donothing:
1106     return true;
1107   case Intrinsic::dbg_declare: {
1108     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1109     assert(DI->getVariable() && "Missing variable");
1110     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1111       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1112       return true;
1113     }
1114 
1115     const Value *Address = DI->getAddress();
1116     if (!Address || isa<UndefValue>(Address)) {
1117       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1118       return true;
1119     }
1120 
1121     unsigned Offset = 0;
1122     Optional<MachineOperand> Op;
1123     if (const auto *Arg = dyn_cast<Argument>(Address))
1124       // Some arguments' frame index is recorded during argument lowering.
1125       Offset = FuncInfo.getArgumentFrameIndex(Arg);
1126     if (Offset)
1127       Op = MachineOperand::CreateFI(Offset);
1128     if (!Op)
1129       if (unsigned Reg = lookUpRegForValue(Address))
1130         Op = MachineOperand::CreateReg(Reg, false);
1131 
1132     // If we have a VLA that has a "use" in a metadata node that's then used
1133     // here but it has no other uses, then we have a problem. E.g.,
1134     //
1135     //   int foo (const int *x) {
1136     //     char a[*x];
1137     //     return 0;
1138     //   }
1139     //
1140     // If we assign 'a' a vreg and fast isel later on has to use the selection
1141     // DAG isel, it will want to copy the value to the vreg. However, there are
1142     // no uses, which goes counter to what selection DAG isel expects.
1143     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1144         (!isa<AllocaInst>(Address) ||
1145          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1146       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1147                                      false);
1148 
1149     if (Op) {
1150       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1151              "Expected inlined-at fields to agree");
1152       if (Op->isReg()) {
1153         Op->setIsDebug(true);
1154         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1155                 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0,
1156                 DI->getVariable(), DI->getExpression());
1157       } else
1158         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1159                 TII.get(TargetOpcode::DBG_VALUE))
1160             .addOperand(*Op)
1161             .addImm(0)
1162             .addMetadata(DI->getVariable())
1163             .addMetadata(DI->getExpression());
1164     } else {
1165       // We can't yet handle anything else here because it would require
1166       // generating code, thus altering codegen because of debug info.
1167       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1168     }
1169     return true;
1170   }
1171   case Intrinsic::dbg_value: {
1172     // This form of DBG_VALUE is target-independent.
1173     const DbgValueInst *DI = cast<DbgValueInst>(II);
1174     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1175     const Value *V = DI->getValue();
1176     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1177            "Expected inlined-at fields to agree");
1178     if (!V) {
1179       // Currently the optimizer can produce this; insert an undef to
1180       // help debugging.  Probably the optimizer should not do this.
1181       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1182           .addReg(0U)
1183           .addImm(DI->getOffset())
1184           .addMetadata(DI->getVariable())
1185           .addMetadata(DI->getExpression());
1186     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1187       if (CI->getBitWidth() > 64)
1188         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1189             .addCImm(CI)
1190             .addImm(DI->getOffset())
1191             .addMetadata(DI->getVariable())
1192             .addMetadata(DI->getExpression());
1193       else
1194         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1195             .addImm(CI->getZExtValue())
1196             .addImm(DI->getOffset())
1197             .addMetadata(DI->getVariable())
1198             .addMetadata(DI->getExpression());
1199     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1200       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1201           .addFPImm(CF)
1202           .addImm(DI->getOffset())
1203           .addMetadata(DI->getVariable())
1204           .addMetadata(DI->getExpression());
1205     } else if (unsigned Reg = lookUpRegForValue(V)) {
1206       // FIXME: This does not handle register-indirect values at offset 0.
1207       bool IsIndirect = DI->getOffset() != 0;
1208       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1209               DI->getOffset(), DI->getVariable(), DI->getExpression());
1210     } else {
1211       // We can't yet handle anything else here because it would require
1212       // generating code, thus altering codegen because of debug info.
1213       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1214     }
1215     return true;
1216   }
1217   case Intrinsic::objectsize: {
1218     ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1219     unsigned long long Res = CI->isZero() ? -1ULL : 0;
1220     Constant *ResCI = ConstantInt::get(II->getType(), Res);
1221     unsigned ResultReg = getRegForValue(ResCI);
1222     if (!ResultReg)
1223       return false;
1224     updateValueMap(II, ResultReg);
1225     return true;
1226   }
1227   case Intrinsic::expect: {
1228     unsigned ResultReg = getRegForValue(II->getArgOperand(0));
1229     if (!ResultReg)
1230       return false;
1231     updateValueMap(II, ResultReg);
1232     return true;
1233   }
1234   case Intrinsic::experimental_stackmap:
1235     return selectStackmap(II);
1236   case Intrinsic::experimental_patchpoint_void:
1237   case Intrinsic::experimental_patchpoint_i64:
1238     return selectPatchpoint(II);
1239   }
1240 
1241   return fastLowerIntrinsicCall(II);
1242 }
1243 
1244 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1245   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1246   EVT DstVT = TLI.getValueType(DL, I->getType());
1247 
1248   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1249       !DstVT.isSimple())
1250     // Unhandled type. Halt "fast" selection and bail.
1251     return false;
1252 
1253   // Check if the destination type is legal.
1254   if (!TLI.isTypeLegal(DstVT))
1255     return false;
1256 
1257   // Check if the source operand is legal.
1258   if (!TLI.isTypeLegal(SrcVT))
1259     return false;
1260 
1261   unsigned InputReg = getRegForValue(I->getOperand(0));
1262   if (!InputReg)
1263     // Unhandled operand.  Halt "fast" selection and bail.
1264     return false;
1265 
1266   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
1267 
1268   unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1269                                   Opcode, InputReg, InputRegIsKill);
1270   if (!ResultReg)
1271     return false;
1272 
1273   updateValueMap(I, ResultReg);
1274   return true;
1275 }
1276 
1277 bool FastISel::selectBitCast(const User *I) {
1278   // If the bitcast doesn't change the type, just use the operand value.
1279   if (I->getType() == I->getOperand(0)->getType()) {
1280     unsigned Reg = getRegForValue(I->getOperand(0));
1281     if (!Reg)
1282       return false;
1283     updateValueMap(I, Reg);
1284     return true;
1285   }
1286 
1287   // Bitcasts of other values become reg-reg copies or BITCAST operators.
1288   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1289   EVT DstEVT = TLI.getValueType(DL, I->getType());
1290   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1291       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1292     // Unhandled type. Halt "fast" selection and bail.
1293     return false;
1294 
1295   MVT SrcVT = SrcEVT.getSimpleVT();
1296   MVT DstVT = DstEVT.getSimpleVT();
1297   unsigned Op0 = getRegForValue(I->getOperand(0));
1298   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1299     return false;
1300   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
1301 
1302   // First, try to perform the bitcast by inserting a reg-reg copy.
1303   unsigned ResultReg = 0;
1304   if (SrcVT == DstVT) {
1305     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1306     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1307     // Don't attempt a cross-class copy. It will likely fail.
1308     if (SrcClass == DstClass) {
1309       ResultReg = createResultReg(DstClass);
1310       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1311               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1312     }
1313   }
1314 
1315   // If the reg-reg copy failed, select a BITCAST opcode.
1316   if (!ResultReg)
1317     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
1318 
1319   if (!ResultReg)
1320     return false;
1321 
1322   updateValueMap(I, ResultReg);
1323   return true;
1324 }
1325 
1326 // Return true if we should copy from swift error to the final vreg as specified
1327 // by SwiftErrorWorklist.
1328 static bool shouldCopySwiftErrorsToFinalVRegs(const TargetLowering &TLI,
1329                                               FunctionLoweringInfo &FuncInfo) {
1330   if (!TLI.supportSwiftError())
1331     return false;
1332   return FuncInfo.SwiftErrorWorklist.count(FuncInfo.MBB);
1333 }
1334 
1335 // Remove local value instructions starting from the instruction after
1336 // SavedLastLocalValue to the current function insert point.
1337 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1338 {
1339   MachineInstr *CurLastLocalValue = getLastLocalValue();
1340   if (CurLastLocalValue != SavedLastLocalValue) {
1341     // Find the first local value instruction to be deleted.
1342     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1343     // Otherwise it's the first instruction in the block.
1344     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1345     if (SavedLastLocalValue)
1346       ++FirstDeadInst;
1347     else
1348       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1349     setLastLocalValue(SavedLastLocalValue);
1350     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1351   }
1352 }
1353 
1354 bool FastISel::selectInstruction(const Instruction *I) {
1355   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1356   // Just before the terminator instruction, insert instructions to
1357   // feed PHI nodes in successor blocks.
1358   if (isa<TerminatorInst>(I)) {
1359     // If we need to materialize any vreg from worklist, we bail out of
1360     // FastISel.
1361     if (shouldCopySwiftErrorsToFinalVRegs(TLI, FuncInfo))
1362       return false;
1363     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1364       // PHI node handling may have generated local value instructions,
1365       // even though it failed to handle all PHI nodes.
1366       // We remove these instructions because SelectionDAGISel will generate
1367       // them again.
1368       removeDeadLocalValueCode(SavedLastLocalValue);
1369       return false;
1370     }
1371   }
1372 
1373   // FastISel does not handle any operand bundles except OB_funclet.
1374   if (ImmutableCallSite CS = ImmutableCallSite(I))
1375     for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i)
1376       if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1377         return false;
1378 
1379   DbgLoc = I->getDebugLoc();
1380 
1381   SavedInsertPt = FuncInfo.InsertPt;
1382 
1383   if (const auto *Call = dyn_cast<CallInst>(I)) {
1384     const Function *F = Call->getCalledFunction();
1385     LibFunc::Func Func;
1386 
1387     // As a special case, don't handle calls to builtin library functions that
1388     // may be translated directly to target instructions.
1389     if (F && !F->hasLocalLinkage() && F->hasName() &&
1390         LibInfo->getLibFunc(F->getName(), Func) &&
1391         LibInfo->hasOptimizedCodeGen(Func))
1392       return false;
1393 
1394     // Don't handle Intrinsic::trap if a trap function is specified.
1395     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1396         Call->hasFnAttr("trap-func-name"))
1397       return false;
1398   }
1399 
1400   // First, try doing target-independent selection.
1401   if (!SkipTargetIndependentISel) {
1402     if (selectOperator(I, I->getOpcode())) {
1403       ++NumFastIselSuccessIndependent;
1404       DbgLoc = DebugLoc();
1405       return true;
1406     }
1407     // Remove dead code.
1408     recomputeInsertPt();
1409     if (SavedInsertPt != FuncInfo.InsertPt)
1410       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1411     SavedInsertPt = FuncInfo.InsertPt;
1412   }
1413   // Next, try calling the target to attempt to handle the instruction.
1414   if (fastSelectInstruction(I)) {
1415     ++NumFastIselSuccessTarget;
1416     DbgLoc = DebugLoc();
1417     return true;
1418   }
1419   // Remove dead code.
1420   recomputeInsertPt();
1421   if (SavedInsertPt != FuncInfo.InsertPt)
1422     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1423 
1424   DbgLoc = DebugLoc();
1425   // Undo phi node updates, because they will be added again by SelectionDAG.
1426   if (isa<TerminatorInst>(I)) {
1427     // PHI node handling may have generated local value instructions.
1428     // We remove them because SelectionDAGISel will generate them again.
1429     removeDeadLocalValueCode(SavedLastLocalValue);
1430     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1431   }
1432   return false;
1433 }
1434 
1435 /// Emit an unconditional branch to the given block, unless it is the immediate
1436 /// (fall-through) successor, and update the CFG.
1437 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1438                               const DebugLoc &DbgLoc) {
1439   if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
1440       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1441     // For more accurate line information if this is the only instruction
1442     // in the block then emit it, otherwise we have the unconditional
1443     // fall-through case, which needs no instructions.
1444   } else {
1445     // The unconditional branch case.
1446     TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr,
1447                      SmallVector<MachineOperand, 0>(), DbgLoc);
1448   }
1449   if (FuncInfo.BPI) {
1450     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1451         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1452     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1453   } else
1454     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1455 }
1456 
1457 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1458                                 MachineBasicBlock *TrueMBB,
1459                                 MachineBasicBlock *FalseMBB) {
1460   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1461   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1462   // successor/predecessor lists.
1463   if (TrueMBB != FalseMBB) {
1464     if (FuncInfo.BPI) {
1465       auto BranchProbability =
1466           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1467       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1468     } else
1469       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1470   }
1471 
1472   fastEmitBranch(FalseMBB, DbgLoc);
1473 }
1474 
1475 /// Emit an FNeg operation.
1476 bool FastISel::selectFNeg(const User *I) {
1477   unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
1478   if (!OpReg)
1479     return false;
1480   bool OpRegIsKill = hasTrivialKill(I);
1481 
1482   // If the target has ISD::FNEG, use it.
1483   EVT VT = TLI.getValueType(DL, I->getType());
1484   unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1485                                   OpReg, OpRegIsKill);
1486   if (ResultReg) {
1487     updateValueMap(I, ResultReg);
1488     return true;
1489   }
1490 
1491   // Bitcast the value to integer, twiddle the sign bit with xor,
1492   // and then bitcast it back to floating-point.
1493   if (VT.getSizeInBits() > 64)
1494     return false;
1495   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1496   if (!TLI.isTypeLegal(IntVT))
1497     return false;
1498 
1499   unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1500                                ISD::BITCAST, OpReg, OpRegIsKill);
1501   if (!IntReg)
1502     return false;
1503 
1504   unsigned IntResultReg = fastEmit_ri_(
1505       IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
1506       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1507   if (!IntResultReg)
1508     return false;
1509 
1510   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1511                          IntResultReg, /*IsKill=*/true);
1512   if (!ResultReg)
1513     return false;
1514 
1515   updateValueMap(I, ResultReg);
1516   return true;
1517 }
1518 
1519 bool FastISel::selectExtractValue(const User *U) {
1520   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1521   if (!EVI)
1522     return false;
1523 
1524   // Make sure we only try to handle extracts with a legal result.  But also
1525   // allow i1 because it's easy.
1526   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1527   if (!RealVT.isSimple())
1528     return false;
1529   MVT VT = RealVT.getSimpleVT();
1530   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1531     return false;
1532 
1533   const Value *Op0 = EVI->getOperand(0);
1534   Type *AggTy = Op0->getType();
1535 
1536   // Get the base result register.
1537   unsigned ResultReg;
1538   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
1539   if (I != FuncInfo.ValueMap.end())
1540     ResultReg = I->second;
1541   else if (isa<Instruction>(Op0))
1542     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1543   else
1544     return false; // fast-isel can't handle aggregate constants at the moment
1545 
1546   // Get the actual result register, which is an offset from the base register.
1547   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1548 
1549   SmallVector<EVT, 4> AggValueVTs;
1550   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1551 
1552   for (unsigned i = 0; i < VTIndex; i++)
1553     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1554 
1555   updateValueMap(EVI, ResultReg);
1556   return true;
1557 }
1558 
1559 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1560   switch (Opcode) {
1561   case Instruction::Add:
1562     return selectBinaryOp(I, ISD::ADD);
1563   case Instruction::FAdd:
1564     return selectBinaryOp(I, ISD::FADD);
1565   case Instruction::Sub:
1566     return selectBinaryOp(I, ISD::SUB);
1567   case Instruction::FSub:
1568     // FNeg is currently represented in LLVM IR as a special case of FSub.
1569     if (BinaryOperator::isFNeg(I))
1570       return selectFNeg(I);
1571     return selectBinaryOp(I, ISD::FSUB);
1572   case Instruction::Mul:
1573     return selectBinaryOp(I, ISD::MUL);
1574   case Instruction::FMul:
1575     return selectBinaryOp(I, ISD::FMUL);
1576   case Instruction::SDiv:
1577     return selectBinaryOp(I, ISD::SDIV);
1578   case Instruction::UDiv:
1579     return selectBinaryOp(I, ISD::UDIV);
1580   case Instruction::FDiv:
1581     return selectBinaryOp(I, ISD::FDIV);
1582   case Instruction::SRem:
1583     return selectBinaryOp(I, ISD::SREM);
1584   case Instruction::URem:
1585     return selectBinaryOp(I, ISD::UREM);
1586   case Instruction::FRem:
1587     return selectBinaryOp(I, ISD::FREM);
1588   case Instruction::Shl:
1589     return selectBinaryOp(I, ISD::SHL);
1590   case Instruction::LShr:
1591     return selectBinaryOp(I, ISD::SRL);
1592   case Instruction::AShr:
1593     return selectBinaryOp(I, ISD::SRA);
1594   case Instruction::And:
1595     return selectBinaryOp(I, ISD::AND);
1596   case Instruction::Or:
1597     return selectBinaryOp(I, ISD::OR);
1598   case Instruction::Xor:
1599     return selectBinaryOp(I, ISD::XOR);
1600 
1601   case Instruction::GetElementPtr:
1602     return selectGetElementPtr(I);
1603 
1604   case Instruction::Br: {
1605     const BranchInst *BI = cast<BranchInst>(I);
1606 
1607     if (BI->isUnconditional()) {
1608       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1609       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1610       fastEmitBranch(MSucc, BI->getDebugLoc());
1611       return true;
1612     }
1613 
1614     // Conditional branches are not handed yet.
1615     // Halt "fast" selection and bail.
1616     return false;
1617   }
1618 
1619   case Instruction::Unreachable:
1620     if (TM.Options.TrapUnreachable)
1621       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1622     else
1623       return true;
1624 
1625   case Instruction::Alloca:
1626     // FunctionLowering has the static-sized case covered.
1627     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1628       return true;
1629 
1630     // Dynamic-sized alloca is not handled yet.
1631     return false;
1632 
1633   case Instruction::Call:
1634     return selectCall(I);
1635 
1636   case Instruction::BitCast:
1637     return selectBitCast(I);
1638 
1639   case Instruction::FPToSI:
1640     return selectCast(I, ISD::FP_TO_SINT);
1641   case Instruction::ZExt:
1642     return selectCast(I, ISD::ZERO_EXTEND);
1643   case Instruction::SExt:
1644     return selectCast(I, ISD::SIGN_EXTEND);
1645   case Instruction::Trunc:
1646     return selectCast(I, ISD::TRUNCATE);
1647   case Instruction::SIToFP:
1648     return selectCast(I, ISD::SINT_TO_FP);
1649 
1650   case Instruction::IntToPtr: // Deliberate fall-through.
1651   case Instruction::PtrToInt: {
1652     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1653     EVT DstVT = TLI.getValueType(DL, I->getType());
1654     if (DstVT.bitsGT(SrcVT))
1655       return selectCast(I, ISD::ZERO_EXTEND);
1656     if (DstVT.bitsLT(SrcVT))
1657       return selectCast(I, ISD::TRUNCATE);
1658     unsigned Reg = getRegForValue(I->getOperand(0));
1659     if (!Reg)
1660       return false;
1661     updateValueMap(I, Reg);
1662     return true;
1663   }
1664 
1665   case Instruction::ExtractValue:
1666     return selectExtractValue(I);
1667 
1668   case Instruction::PHI:
1669     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1670 
1671   default:
1672     // Unhandled instruction. Halt "fast" selection and bail.
1673     return false;
1674   }
1675 }
1676 
1677 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1678                    const TargetLibraryInfo *LibInfo,
1679                    bool SkipTargetIndependentISel)
1680     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1681       MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1682       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1683       TII(*MF->getSubtarget().getInstrInfo()),
1684       TLI(*MF->getSubtarget().getTargetLowering()),
1685       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1686       SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1687 
1688 FastISel::~FastISel() {}
1689 
1690 bool FastISel::fastLowerArguments() { return false; }
1691 
1692 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1693 
1694 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1695   return false;
1696 }
1697 
1698 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1699 
1700 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
1701                               bool /*Op0IsKill*/) {
1702   return 0;
1703 }
1704 
1705 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1706                                bool /*Op0IsKill*/, unsigned /*Op1*/,
1707                                bool /*Op1IsKill*/) {
1708   return 0;
1709 }
1710 
1711 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1712   return 0;
1713 }
1714 
1715 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1716                               const ConstantFP * /*FPImm*/) {
1717   return 0;
1718 }
1719 
1720 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1721                                bool /*Op0IsKill*/, uint64_t /*Imm*/) {
1722   return 0;
1723 }
1724 
1725 unsigned FastISel::fastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/,
1726                                bool /*Op0IsKill*/,
1727                                const ConstantFP * /*FPImm*/) {
1728   return 0;
1729 }
1730 
1731 unsigned FastISel::fastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/,
1732                                 bool /*Op0IsKill*/, unsigned /*Op1*/,
1733                                 bool /*Op1IsKill*/, uint64_t /*Imm*/) {
1734   return 0;
1735 }
1736 
1737 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1738 /// instruction with an immediate operand using fastEmit_ri.
1739 /// If that fails, it materializes the immediate into a register and try
1740 /// fastEmit_rr instead.
1741 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1742                                 bool Op0IsKill, uint64_t Imm, MVT ImmType) {
1743   // If this is a multiply by a power of two, emit this as a shift left.
1744   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1745     Opcode = ISD::SHL;
1746     Imm = Log2_64(Imm);
1747   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1748     // div x, 8 -> srl x, 3
1749     Opcode = ISD::SRL;
1750     Imm = Log2_64(Imm);
1751   }
1752 
1753   // Horrible hack (to be removed), check to make sure shift amounts are
1754   // in-range.
1755   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1756       Imm >= VT.getSizeInBits())
1757     return 0;
1758 
1759   // First check if immediate type is legal. If not, we can't use the ri form.
1760   unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1761   if (ResultReg)
1762     return ResultReg;
1763   unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1764   bool IsImmKill = true;
1765   if (!MaterialReg) {
1766     // This is a bit ugly/slow, but failing here means falling out of
1767     // fast-isel, which would be very slow.
1768     IntegerType *ITy =
1769         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1770     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1771     if (!MaterialReg)
1772       return 0;
1773     // FIXME: If the materialized register here has no uses yet then this
1774     // will be the first use and we should be able to mark it as killed.
1775     // However, the local value area for materialising constant expressions
1776     // grows down, not up, which means that any constant expressions we generate
1777     // later which also use 'Imm' could be after this instruction and therefore
1778     // after this kill.
1779     IsImmKill = false;
1780   }
1781   return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill);
1782 }
1783 
1784 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
1785   return MRI.createVirtualRegister(RC);
1786 }
1787 
1788 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
1789                                             unsigned OpNum) {
1790   if (TargetRegisterInfo::isVirtualRegister(Op)) {
1791     const TargetRegisterClass *RegClass =
1792         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1793     if (!MRI.constrainRegClass(Op, RegClass)) {
1794       // If it's not legal to COPY between the register classes, something
1795       // has gone very wrong before we got here.
1796       unsigned NewOp = createResultReg(RegClass);
1797       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1798               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1799       return NewOp;
1800     }
1801   }
1802   return Op;
1803 }
1804 
1805 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
1806                                  const TargetRegisterClass *RC) {
1807   unsigned ResultReg = createResultReg(RC);
1808   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1809 
1810   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
1811   return ResultReg;
1812 }
1813 
1814 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
1815                                   const TargetRegisterClass *RC, unsigned Op0,
1816                                   bool Op0IsKill) {
1817   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1818 
1819   unsigned ResultReg = createResultReg(RC);
1820   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1821 
1822   if (II.getNumDefs() >= 1)
1823     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1824         .addReg(Op0, getKillRegState(Op0IsKill));
1825   else {
1826     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1827         .addReg(Op0, getKillRegState(Op0IsKill));
1828     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1829             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1830   }
1831 
1832   return ResultReg;
1833 }
1834 
1835 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
1836                                    const TargetRegisterClass *RC, unsigned Op0,
1837                                    bool Op0IsKill, unsigned Op1,
1838                                    bool Op1IsKill) {
1839   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1840 
1841   unsigned ResultReg = createResultReg(RC);
1842   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1843   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1844 
1845   if (II.getNumDefs() >= 1)
1846     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1847         .addReg(Op0, getKillRegState(Op0IsKill))
1848         .addReg(Op1, getKillRegState(Op1IsKill));
1849   else {
1850     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1851         .addReg(Op0, getKillRegState(Op0IsKill))
1852         .addReg(Op1, getKillRegState(Op1IsKill));
1853     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1854             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1855   }
1856   return ResultReg;
1857 }
1858 
1859 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
1860                                     const TargetRegisterClass *RC, unsigned Op0,
1861                                     bool Op0IsKill, unsigned Op1,
1862                                     bool Op1IsKill, unsigned Op2,
1863                                     bool Op2IsKill) {
1864   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1865 
1866   unsigned ResultReg = createResultReg(RC);
1867   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1868   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1869   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
1870 
1871   if (II.getNumDefs() >= 1)
1872     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1873         .addReg(Op0, getKillRegState(Op0IsKill))
1874         .addReg(Op1, getKillRegState(Op1IsKill))
1875         .addReg(Op2, getKillRegState(Op2IsKill));
1876   else {
1877     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1878         .addReg(Op0, getKillRegState(Op0IsKill))
1879         .addReg(Op1, getKillRegState(Op1IsKill))
1880         .addReg(Op2, getKillRegState(Op2IsKill));
1881     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1882             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1883   }
1884   return ResultReg;
1885 }
1886 
1887 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
1888                                    const TargetRegisterClass *RC, unsigned Op0,
1889                                    bool Op0IsKill, uint64_t Imm) {
1890   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1891 
1892   unsigned ResultReg = createResultReg(RC);
1893   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1894 
1895   if (II.getNumDefs() >= 1)
1896     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1897         .addReg(Op0, getKillRegState(Op0IsKill))
1898         .addImm(Imm);
1899   else {
1900     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1901         .addReg(Op0, getKillRegState(Op0IsKill))
1902         .addImm(Imm);
1903     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1904             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1905   }
1906   return ResultReg;
1907 }
1908 
1909 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
1910                                     const TargetRegisterClass *RC, unsigned Op0,
1911                                     bool Op0IsKill, uint64_t Imm1,
1912                                     uint64_t Imm2) {
1913   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1914 
1915   unsigned ResultReg = createResultReg(RC);
1916   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1917 
1918   if (II.getNumDefs() >= 1)
1919     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1920         .addReg(Op0, getKillRegState(Op0IsKill))
1921         .addImm(Imm1)
1922         .addImm(Imm2);
1923   else {
1924     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1925         .addReg(Op0, getKillRegState(Op0IsKill))
1926         .addImm(Imm1)
1927         .addImm(Imm2);
1928     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1929             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1930   }
1931   return ResultReg;
1932 }
1933 
1934 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
1935                                   const TargetRegisterClass *RC,
1936                                   const ConstantFP *FPImm) {
1937   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1938 
1939   unsigned ResultReg = createResultReg(RC);
1940 
1941   if (II.getNumDefs() >= 1)
1942     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1943         .addFPImm(FPImm);
1944   else {
1945     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1946         .addFPImm(FPImm);
1947     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1948             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1949   }
1950   return ResultReg;
1951 }
1952 
1953 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
1954                                     const TargetRegisterClass *RC, unsigned Op0,
1955                                     bool Op0IsKill, unsigned Op1,
1956                                     bool Op1IsKill, uint64_t Imm) {
1957   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1958 
1959   unsigned ResultReg = createResultReg(RC);
1960   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1961   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1962 
1963   if (II.getNumDefs() >= 1)
1964     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1965         .addReg(Op0, getKillRegState(Op0IsKill))
1966         .addReg(Op1, getKillRegState(Op1IsKill))
1967         .addImm(Imm);
1968   else {
1969     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1970         .addReg(Op0, getKillRegState(Op0IsKill))
1971         .addReg(Op1, getKillRegState(Op1IsKill))
1972         .addImm(Imm);
1973     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1974             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1975   }
1976   return ResultReg;
1977 }
1978 
1979 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
1980                                   const TargetRegisterClass *RC, uint64_t Imm) {
1981   unsigned ResultReg = createResultReg(RC);
1982   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1983 
1984   if (II.getNumDefs() >= 1)
1985     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1986         .addImm(Imm);
1987   else {
1988     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
1989     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1990             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1991   }
1992   return ResultReg;
1993 }
1994 
1995 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
1996                                               bool Op0IsKill, uint32_t Idx) {
1997   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1998   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1999          "Cannot yet extract from physregs");
2000   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2001   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2002   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
2003           ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
2004   return ResultReg;
2005 }
2006 
2007 /// Emit MachineInstrs to compute the value of Op with all but the least
2008 /// significant bit set to zero.
2009 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
2010   return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
2011 }
2012 
2013 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2014 /// Emit code to ensure constants are copied into registers when needed.
2015 /// Remember the virtual registers that need to be added to the Machine PHI
2016 /// nodes as input.  We cannot just directly add them, because expansion
2017 /// might result in multiple MBB's for one BB.  As such, the start of the
2018 /// BB might correspond to a different MBB than the end.
2019 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2020   const TerminatorInst *TI = LLVMBB->getTerminator();
2021 
2022   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2023   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2024 
2025   // Check successor nodes' PHI nodes that expect a constant to be available
2026   // from this block.
2027   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2028     const BasicBlock *SuccBB = TI->getSuccessor(succ);
2029     if (!isa<PHINode>(SuccBB->begin()))
2030       continue;
2031     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2032 
2033     // If this terminator has multiple identical successors (common for
2034     // switches), only handle each succ once.
2035     if (!SuccsHandled.insert(SuccMBB).second)
2036       continue;
2037 
2038     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2039 
2040     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2041     // nodes and Machine PHI nodes, but the incoming operands have not been
2042     // emitted yet.
2043     for (BasicBlock::const_iterator I = SuccBB->begin();
2044          const auto *PN = dyn_cast<PHINode>(I); ++I) {
2045 
2046       // Ignore dead phi's.
2047       if (PN->use_empty())
2048         continue;
2049 
2050       // Only handle legal types. Two interesting things to note here. First,
2051       // by bailing out early, we may leave behind some dead instructions,
2052       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2053       // own moves. Second, this check is necessary because FastISel doesn't
2054       // use CreateRegs to create registers, so it always creates
2055       // exactly one register for each non-void instruction.
2056       EVT VT = TLI.getValueType(DL, PN->getType(), /*AllowUnknown=*/true);
2057       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2058         // Handle integer promotions, though, because they're common and easy.
2059         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2060           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2061           return false;
2062         }
2063       }
2064 
2065       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
2066 
2067       // Set the DebugLoc for the copy. Prefer the location of the operand
2068       // if there is one; use the location of the PHI otherwise.
2069       DbgLoc = PN->getDebugLoc();
2070       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2071         DbgLoc = Inst->getDebugLoc();
2072 
2073       unsigned Reg = getRegForValue(PHIOp);
2074       if (!Reg) {
2075         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2076         return false;
2077       }
2078       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
2079       DbgLoc = DebugLoc();
2080     }
2081   }
2082 
2083   return true;
2084 }
2085 
2086 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2087   assert(LI->hasOneUse() &&
2088          "tryToFoldLoad expected a LoadInst with a single use");
2089   // We know that the load has a single use, but don't know what it is.  If it
2090   // isn't one of the folded instructions, then we can't succeed here.  Handle
2091   // this by scanning the single-use users of the load until we get to FoldInst.
2092   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2093 
2094   const Instruction *TheUser = LI->user_back();
2095   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2096          // Stay in the right block.
2097          TheUser->getParent() == FoldInst->getParent() &&
2098          --MaxUsers) { // Don't scan too far.
2099     // If there are multiple or no uses of this instruction, then bail out.
2100     if (!TheUser->hasOneUse())
2101       return false;
2102 
2103     TheUser = TheUser->user_back();
2104   }
2105 
2106   // If we didn't find the fold instruction, then we failed to collapse the
2107   // sequence.
2108   if (TheUser != FoldInst)
2109     return false;
2110 
2111   // Don't try to fold volatile loads.  Target has to deal with alignment
2112   // constraints.
2113   if (LI->isVolatile())
2114     return false;
2115 
2116   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2117   // then there actually was no reference to it.  Perhaps the load is referenced
2118   // by a dead instruction.
2119   unsigned LoadReg = getRegForValue(LI);
2120   if (!LoadReg)
2121     return false;
2122 
2123   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2124   // may mean that the instruction got lowered to multiple MIs, or the use of
2125   // the loaded value ended up being multiple operands of the result.
2126   if (!MRI.hasOneUse(LoadReg))
2127     return false;
2128 
2129   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2130   MachineInstr *User = RI->getParent();
2131 
2132   // Set the insertion point properly.  Folding the load can cause generation of
2133   // other random instructions (like sign extends) for addressing modes; make
2134   // sure they get inserted in a logical place before the new instruction.
2135   FuncInfo.InsertPt = User;
2136   FuncInfo.MBB = User->getParent();
2137 
2138   // Ask the target to try folding the load.
2139   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2140 }
2141 
2142 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2143   // Must be an add.
2144   if (!isa<AddOperator>(Add))
2145     return false;
2146   // Type size needs to match.
2147   if (DL.getTypeSizeInBits(GEP->getType()) !=
2148       DL.getTypeSizeInBits(Add->getType()))
2149     return false;
2150   // Must be in the same basic block.
2151   if (isa<Instruction>(Add) &&
2152       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2153     return false;
2154   // Must have a constant operand.
2155   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2156 }
2157 
2158 MachineMemOperand *
2159 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2160   const Value *Ptr;
2161   Type *ValTy;
2162   unsigned Alignment;
2163   unsigned Flags;
2164   bool IsVolatile;
2165 
2166   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2167     Alignment = LI->getAlignment();
2168     IsVolatile = LI->isVolatile();
2169     Flags = MachineMemOperand::MOLoad;
2170     Ptr = LI->getPointerOperand();
2171     ValTy = LI->getType();
2172   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2173     Alignment = SI->getAlignment();
2174     IsVolatile = SI->isVolatile();
2175     Flags = MachineMemOperand::MOStore;
2176     Ptr = SI->getPointerOperand();
2177     ValTy = SI->getValueOperand()->getType();
2178   } else
2179     return nullptr;
2180 
2181   bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr;
2182   bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
2183   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2184 
2185   AAMDNodes AAInfo;
2186   I->getAAMetadata(AAInfo);
2187 
2188   if (Alignment == 0) // Ensure that codegen never sees alignment 0.
2189     Alignment = DL.getABITypeAlignment(ValTy);
2190 
2191   unsigned Size = DL.getTypeStoreSize(ValTy);
2192 
2193   if (IsVolatile)
2194     Flags |= MachineMemOperand::MOVolatile;
2195   if (IsNonTemporal)
2196     Flags |= MachineMemOperand::MONonTemporal;
2197   if (IsInvariant)
2198     Flags |= MachineMemOperand::MOInvariant;
2199 
2200   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2201                                            Alignment, AAInfo, Ranges);
2202 }
2203 
2204 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2205   // If both operands are the same, then try to optimize or fold the cmp.
2206   CmpInst::Predicate Predicate = CI->getPredicate();
2207   if (CI->getOperand(0) != CI->getOperand(1))
2208     return Predicate;
2209 
2210   switch (Predicate) {
2211   default: llvm_unreachable("Invalid predicate!");
2212   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2213   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2214   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2215   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2216   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2217   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2218   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2219   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2220   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2221   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2222   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2223   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2224   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2225   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2226   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2227   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2228 
2229   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2230   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2231   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2232   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2233   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2234   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2235   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2236   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2237   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2238   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2239   }
2240 
2241   return Predicate;
2242 }
2243