1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the FastISel class.
10 //
11 // "Fast" instruction selection is designed to emit very poor code quickly.
12 // Also, it is not designed to be able to do much lowering, so most illegal
13 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
14 // also not intended to be able to do much optimization, except in a few cases
15 // where doing optimizations reduces overall compile time.  For example, folding
16 // constants into immediate fields is often done, because it's cheap and it
17 // reduces the number of instructions later phases have to examine.
18 //
19 // "Fast" instruction selection is able to fail gracefully and transfer
20 // control to the SelectionDAG selector for operations that it doesn't
21 // support.  In many cases, this allows us to avoid duplicating a lot of
22 // the complicated lowering logic that SelectionDAG currently has.
23 //
24 // The intended use for "fast" instruction selection is "-O0" mode
25 // compilation, where the quality of the generated code is irrelevant when
26 // weighed against the speed at which the code can be generated.  Also,
27 // at -O0, the LLVM optimizers are not running, and this makes the
28 // compile time of codegen a much higher portion of the overall compile
29 // time.  Despite its limitations, "fast" instruction selection is able to
30 // handle enough code on its own to provide noticeable overall speedups
31 // in -O0 compiles.
32 //
33 // Basic operations are supported in a target-independent way, by reading
34 // the same instruction descriptions that the SelectionDAG selector reads,
35 // and identifying simple arithmetic operations that can be directly selected
36 // from simple operators.  More complicated operations currently require
37 // target-specific code.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "llvm/CodeGen/FastISel.h"
42 #include "llvm/ADT/APFloat.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/Optional.h"
46 #include "llvm/ADT/SmallPtrSet.h"
47 #include "llvm/ADT/SmallString.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/Analysis/BranchProbabilityInfo.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/CodeGen/Analysis.h"
53 #include "llvm/CodeGen/FunctionLoweringInfo.h"
54 #include "llvm/CodeGen/ISDOpcodes.h"
55 #include "llvm/CodeGen/MachineBasicBlock.h"
56 #include "llvm/CodeGen/MachineFrameInfo.h"
57 #include "llvm/CodeGen/MachineInstr.h"
58 #include "llvm/CodeGen/MachineInstrBuilder.h"
59 #include "llvm/CodeGen/MachineMemOperand.h"
60 #include "llvm/CodeGen/MachineModuleInfo.h"
61 #include "llvm/CodeGen/MachineOperand.h"
62 #include "llvm/CodeGen/MachineRegisterInfo.h"
63 #include "llvm/CodeGen/StackMaps.h"
64 #include "llvm/CodeGen/TargetInstrInfo.h"
65 #include "llvm/CodeGen/TargetLowering.h"
66 #include "llvm/CodeGen/TargetSubtargetInfo.h"
67 #include "llvm/CodeGen/ValueTypes.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfo.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Mangler.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Type.h"
92 #include "llvm/IR/User.h"
93 #include "llvm/IR/Value.h"
94 #include "llvm/MC/MCContext.h"
95 #include "llvm/MC/MCInstrDesc.h"
96 #include "llvm/MC/MCRegisterInfo.h"
97 #include "llvm/Support/Casting.h"
98 #include "llvm/Support/Debug.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/MachineValueType.h"
101 #include "llvm/Support/MathExtras.h"
102 #include "llvm/Support/raw_ostream.h"
103 #include "llvm/Target/TargetMachine.h"
104 #include "llvm/Target/TargetOptions.h"
105 #include <algorithm>
106 #include <cassert>
107 #include <cstdint>
108 #include <iterator>
109 #include <utility>
110 
111 using namespace llvm;
112 using namespace PatternMatch;
113 
114 #define DEBUG_TYPE "isel"
115 
116 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
117                                          "target-independent selector");
118 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
119                                     "target-specific selector");
120 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
121 
122 /// Set the current block to which generated machine instructions will be
123 /// appended.
124 void FastISel::startNewBlock() {
125   assert(LocalValueMap.empty() &&
126          "local values should be cleared after finishing a BB");
127 
128   // Instructions are appended to FuncInfo.MBB. If the basic block already
129   // contains labels or copies, use the last instruction as the last local
130   // value.
131   EmitStartPt = nullptr;
132   if (!FuncInfo.MBB->empty())
133     EmitStartPt = &FuncInfo.MBB->back();
134   LastLocalValue = EmitStartPt;
135 }
136 
137 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
138 
139 bool FastISel::lowerArguments() {
140   if (!FuncInfo.CanLowerReturn)
141     // Fallback to SDISel argument lowering code to deal with sret pointer
142     // parameter.
143     return false;
144 
145   if (!fastLowerArguments())
146     return false;
147 
148   // Enter arguments into ValueMap for uses in non-entry BBs.
149   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
150                                     E = FuncInfo.Fn->arg_end();
151        I != E; ++I) {
152     DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I);
153     assert(VI != LocalValueMap.end() && "Missed an argument?");
154     FuncInfo.ValueMap[&*I] = VI->second;
155   }
156   return true;
157 }
158 
159 /// Return the defined register if this instruction defines exactly one
160 /// virtual register and uses no other virtual registers. Otherwise return 0.
161 static Register findLocalRegDef(MachineInstr &MI) {
162   Register RegDef;
163   for (const MachineOperand &MO : MI.operands()) {
164     if (!MO.isReg())
165       continue;
166     if (MO.isDef()) {
167       if (RegDef)
168         return Register();
169       RegDef = MO.getReg();
170     } else if (MO.getReg().isVirtual()) {
171       // This is another use of a vreg. Don't delete it.
172       return Register();
173     }
174   }
175   return RegDef;
176 }
177 
178 static bool isRegUsedByPhiNodes(Register DefReg,
179                                 FunctionLoweringInfo &FuncInfo) {
180   for (auto &P : FuncInfo.PHINodesToUpdate)
181     if (P.second == DefReg)
182       return true;
183   return false;
184 }
185 
186 void FastISel::flushLocalValueMap() {
187   // If FastISel bails out, it could leave local value instructions behind
188   // that aren't used for anything.  Detect and erase those.
189   if (LastLocalValue != EmitStartPt) {
190     MachineBasicBlock::reverse_iterator RE =
191         EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
192                     : FuncInfo.MBB->rend();
193     MachineBasicBlock::reverse_iterator RI(LastLocalValue);
194     for (; RI != RE;) {
195       MachineInstr &LocalMI = *RI;
196       // Increment before erasing what it points to.
197       ++RI;
198       Register DefReg = findLocalRegDef(LocalMI);
199       if (!DefReg)
200         continue;
201       if (FuncInfo.RegsWithFixups.count(DefReg))
202         continue;
203       bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
204       if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
205         if (EmitStartPt == &LocalMI)
206           EmitStartPt = EmitStartPt->getPrevNode();
207         LLVM_DEBUG(dbgs() << "removing dead local value materialization"
208                           << LocalMI);
209         LocalMI.eraseFromParent();
210       }
211     }
212   }
213 
214   LocalValueMap.clear();
215   LastLocalValue = EmitStartPt;
216   recomputeInsertPt();
217   SavedInsertPt = FuncInfo.InsertPt;
218 }
219 
220 bool FastISel::hasTrivialKill(const Value *V) {
221   // Don't consider constants or arguments to have trivial kills.
222   const Instruction *I = dyn_cast<Instruction>(V);
223   if (!I)
224     return false;
225 
226   // No-op casts are trivially coalesced by fast-isel.
227   if (const auto *Cast = dyn_cast<CastInst>(I))
228     if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0)))
229       return false;
230 
231   // Even the value might have only one use in the LLVM IR, it is possible that
232   // FastISel might fold the use into another instruction and now there is more
233   // than one use at the Machine Instruction level.
234   Register Reg = lookUpRegForValue(V);
235   if (Reg && !MRI.use_empty(Reg))
236     return false;
237 
238   // GEPs with all zero indices are trivially coalesced by fast-isel.
239   if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
240     if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
241       return false;
242 
243   // Only instructions with a single use in the same basic block are considered
244   // to have trivial kills.
245   return I->hasOneUse() &&
246          !(I->getOpcode() == Instruction::BitCast ||
247            I->getOpcode() == Instruction::PtrToInt ||
248            I->getOpcode() == Instruction::IntToPtr) &&
249          cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
250 }
251 
252 Register FastISel::getRegForValue(const Value *V) {
253   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
254   // Don't handle non-simple values in FastISel.
255   if (!RealVT.isSimple())
256     return Register();
257 
258   // Ignore illegal types. We must do this before looking up the value
259   // in ValueMap because Arguments are given virtual registers regardless
260   // of whether FastISel can handle them.
261   MVT VT = RealVT.getSimpleVT();
262   if (!TLI.isTypeLegal(VT)) {
263     // Handle integer promotions, though, because they're common and easy.
264     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
265       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
266     else
267       return Register();
268   }
269 
270   // Look up the value to see if we already have a register for it.
271   Register Reg = lookUpRegForValue(V);
272   if (Reg)
273     return Reg;
274 
275   // In bottom-up mode, just create the virtual register which will be used
276   // to hold the value. It will be materialized later.
277   if (isa<Instruction>(V) &&
278       (!isa<AllocaInst>(V) ||
279        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
280     return FuncInfo.InitializeRegForValue(V);
281 
282   SavePoint SaveInsertPt = enterLocalValueArea();
283 
284   // Materialize the value in a register. Emit any instructions in the
285   // local value area.
286   Reg = materializeRegForValue(V, VT);
287 
288   leaveLocalValueArea(SaveInsertPt);
289 
290   return Reg;
291 }
292 
293 Register FastISel::materializeConstant(const Value *V, MVT VT) {
294   Register Reg;
295   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
296     if (CI->getValue().getActiveBits() <= 64)
297       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
298   } else if (isa<AllocaInst>(V))
299     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
300   else if (isa<ConstantPointerNull>(V))
301     // Translate this as an integer zero so that it can be
302     // local-CSE'd with actual integer zeros.
303     Reg =
304         getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType())));
305   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
306     if (CF->isNullValue())
307       Reg = fastMaterializeFloatZero(CF);
308     else
309       // Try to emit the constant directly.
310       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
311 
312     if (!Reg) {
313       // Try to emit the constant by using an integer constant with a cast.
314       const APFloat &Flt = CF->getValueAPF();
315       EVT IntVT = TLI.getPointerTy(DL);
316       uint32_t IntBitWidth = IntVT.getSizeInBits();
317       APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
318       bool isExact;
319       (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
320       if (isExact) {
321         Register IntegerReg =
322             getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
323         if (IntegerReg)
324           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
325                            /*Op0IsKill=*/false);
326       }
327     }
328   } else if (const auto *Op = dyn_cast<Operator>(V)) {
329     if (!selectOperator(Op, Op->getOpcode()))
330       if (!isa<Instruction>(Op) ||
331           !fastSelectInstruction(cast<Instruction>(Op)))
332         return 0;
333     Reg = lookUpRegForValue(Op);
334   } else if (isa<UndefValue>(V)) {
335     Reg = createResultReg(TLI.getRegClassFor(VT));
336     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
337             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
338   }
339   return Reg;
340 }
341 
342 /// Helper for getRegForValue. This function is called when the value isn't
343 /// already available in a register and must be materialized with new
344 /// instructions.
345 Register FastISel::materializeRegForValue(const Value *V, MVT VT) {
346   Register Reg;
347   // Give the target-specific code a try first.
348   if (isa<Constant>(V))
349     Reg = fastMaterializeConstant(cast<Constant>(V));
350 
351   // If target-specific code couldn't or didn't want to handle the value, then
352   // give target-independent code a try.
353   if (!Reg)
354     Reg = materializeConstant(V, VT);
355 
356   // Don't cache constant materializations in the general ValueMap.
357   // To do so would require tracking what uses they dominate.
358   if (Reg) {
359     LocalValueMap[V] = Reg;
360     LastLocalValue = MRI.getVRegDef(Reg);
361   }
362   return Reg;
363 }
364 
365 Register FastISel::lookUpRegForValue(const Value *V) {
366   // Look up the value to see if we already have a register for it. We
367   // cache values defined by Instructions across blocks, and other values
368   // only locally. This is because Instructions already have the SSA
369   // def-dominates-use requirement enforced.
370   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V);
371   if (I != FuncInfo.ValueMap.end())
372     return I->second;
373   return LocalValueMap[V];
374 }
375 
376 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) {
377   if (!isa<Instruction>(I)) {
378     LocalValueMap[I] = Reg;
379     return;
380   }
381 
382   Register &AssignedReg = FuncInfo.ValueMap[I];
383   if (!AssignedReg)
384     // Use the new register.
385     AssignedReg = Reg;
386   else if (Reg != AssignedReg) {
387     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
388     for (unsigned i = 0; i < NumRegs; i++) {
389       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
390       FuncInfo.RegsWithFixups.insert(Reg + i);
391     }
392 
393     AssignedReg = Reg;
394   }
395 }
396 
397 std::pair<Register, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
398   Register IdxN = getRegForValue(Idx);
399   if (!IdxN)
400     // Unhandled operand. Halt "fast" selection and bail.
401     return std::pair<Register, bool>(Register(), false);
402 
403   bool IdxNIsKill = hasTrivialKill(Idx);
404 
405   // If the index is smaller or larger than intptr_t, truncate or extend it.
406   MVT PtrVT = TLI.getPointerTy(DL);
407   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
408   if (IdxVT.bitsLT(PtrVT)) {
409     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
410                       IdxNIsKill);
411     IdxNIsKill = true;
412   } else if (IdxVT.bitsGT(PtrVT)) {
413     IdxN =
414         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
415     IdxNIsKill = true;
416   }
417   return std::pair<Register, bool>(IdxN, IdxNIsKill);
418 }
419 
420 void FastISel::recomputeInsertPt() {
421   if (getLastLocalValue()) {
422     FuncInfo.InsertPt = getLastLocalValue();
423     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
424     ++FuncInfo.InsertPt;
425   } else
426     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
427 
428   // Now skip past any EH_LABELs, which must remain at the beginning.
429   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
430          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
431     ++FuncInfo.InsertPt;
432 }
433 
434 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
435                               MachineBasicBlock::iterator E) {
436   assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
437          "Invalid iterator!");
438   while (I != E) {
439     if (SavedInsertPt == I)
440       SavedInsertPt = E;
441     if (EmitStartPt == I)
442       EmitStartPt = E.isValid() ? &*E : nullptr;
443     if (LastLocalValue == I)
444       LastLocalValue = E.isValid() ? &*E : nullptr;
445 
446     MachineInstr *Dead = &*I;
447     ++I;
448     Dead->eraseFromParent();
449     ++NumFastIselDead;
450   }
451   recomputeInsertPt();
452 }
453 
454 FastISel::SavePoint FastISel::enterLocalValueArea() {
455   SavePoint OldInsertPt = FuncInfo.InsertPt;
456   recomputeInsertPt();
457   return OldInsertPt;
458 }
459 
460 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
461   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
462     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
463 
464   // Restore the previous insert position.
465   FuncInfo.InsertPt = OldInsertPt;
466 }
467 
468 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
469   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
470   if (VT == MVT::Other || !VT.isSimple())
471     // Unhandled type. Halt "fast" selection and bail.
472     return false;
473 
474   // We only handle legal types. For example, on x86-32 the instruction
475   // selector contains all of the 64-bit instructions from x86-64,
476   // under the assumption that i64 won't be used if the target doesn't
477   // support it.
478   if (!TLI.isTypeLegal(VT)) {
479     // MVT::i1 is special. Allow AND, OR, or XOR because they
480     // don't require additional zeroing, which makes them easy.
481     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
482                           ISDOpcode == ISD::XOR))
483       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
484     else
485       return false;
486   }
487 
488   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
489   // we don't have anything that canonicalizes operand order.
490   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
491     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
492       Register Op1 = getRegForValue(I->getOperand(1));
493       if (!Op1)
494         return false;
495       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
496 
497       Register ResultReg =
498           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
499                        CI->getZExtValue(), VT.getSimpleVT());
500       if (!ResultReg)
501         return false;
502 
503       // We successfully emitted code for the given LLVM Instruction.
504       updateValueMap(I, ResultReg);
505       return true;
506     }
507 
508   Register Op0 = getRegForValue(I->getOperand(0));
509   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
510     return false;
511   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
512 
513   // Check if the second operand is a constant and handle it appropriately.
514   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
515     uint64_t Imm = CI->getSExtValue();
516 
517     // Transform "sdiv exact X, 8" -> "sra X, 3".
518     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
519         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
520       Imm = Log2_64(Imm);
521       ISDOpcode = ISD::SRA;
522     }
523 
524     // Transform "urem x, pow2" -> "and x, pow2-1".
525     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
526         isPowerOf2_64(Imm)) {
527       --Imm;
528       ISDOpcode = ISD::AND;
529     }
530 
531     Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
532                                       Op0IsKill, Imm, VT.getSimpleVT());
533     if (!ResultReg)
534       return false;
535 
536     // We successfully emitted code for the given LLVM Instruction.
537     updateValueMap(I, ResultReg);
538     return true;
539   }
540 
541   Register Op1 = getRegForValue(I->getOperand(1));
542   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
543     return false;
544   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
545 
546   // Now we have both operands in registers. Emit the instruction.
547   Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
548                                    ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
549   if (!ResultReg)
550     // Target-specific code wasn't able to find a machine opcode for
551     // the given ISD opcode and type. Halt "fast" selection and bail.
552     return false;
553 
554   // We successfully emitted code for the given LLVM Instruction.
555   updateValueMap(I, ResultReg);
556   return true;
557 }
558 
559 bool FastISel::selectGetElementPtr(const User *I) {
560   Register N = getRegForValue(I->getOperand(0));
561   if (!N) // Unhandled operand. Halt "fast" selection and bail.
562     return false;
563 
564   // FIXME: The code below does not handle vector GEPs. Halt "fast" selection
565   // and bail.
566   if (isa<VectorType>(I->getType()))
567     return false;
568 
569   bool NIsKill = hasTrivialKill(I->getOperand(0));
570 
571   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
572   // into a single N = N + TotalOffset.
573   uint64_t TotalOffs = 0;
574   // FIXME: What's a good SWAG number for MaxOffs?
575   uint64_t MaxOffs = 2048;
576   MVT VT = TLI.getPointerTy(DL);
577   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
578        GTI != E; ++GTI) {
579     const Value *Idx = GTI.getOperand();
580     if (StructType *StTy = GTI.getStructTypeOrNull()) {
581       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
582       if (Field) {
583         // N = N + Offset
584         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
585         if (TotalOffs >= MaxOffs) {
586           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
587           if (!N) // Unhandled operand. Halt "fast" selection and bail.
588             return false;
589           NIsKill = true;
590           TotalOffs = 0;
591         }
592       }
593     } else {
594       Type *Ty = GTI.getIndexedType();
595 
596       // If this is a constant subscript, handle it quickly.
597       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
598         if (CI->isZero())
599           continue;
600         // N = N + Offset
601         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
602         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
603         if (TotalOffs >= MaxOffs) {
604           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
605           if (!N) // Unhandled operand. Halt "fast" selection and bail.
606             return false;
607           NIsKill = true;
608           TotalOffs = 0;
609         }
610         continue;
611       }
612       if (TotalOffs) {
613         N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
614         if (!N) // Unhandled operand. Halt "fast" selection and bail.
615           return false;
616         NIsKill = true;
617         TotalOffs = 0;
618       }
619 
620       // N = N + Idx * ElementSize;
621       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
622       std::pair<Register, bool> Pair = getRegForGEPIndex(Idx);
623       Register IdxN = Pair.first;
624       bool IdxNIsKill = Pair.second;
625       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
626         return false;
627 
628       if (ElementSize != 1) {
629         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
630         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
631           return false;
632         IdxNIsKill = true;
633       }
634       N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
635       if (!N) // Unhandled operand. Halt "fast" selection and bail.
636         return false;
637     }
638   }
639   if (TotalOffs) {
640     N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
641     if (!N) // Unhandled operand. Halt "fast" selection and bail.
642       return false;
643   }
644 
645   // We successfully emitted code for the given LLVM Instruction.
646   updateValueMap(I, N);
647   return true;
648 }
649 
650 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
651                                    const CallInst *CI, unsigned StartIdx) {
652   for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
653     Value *Val = CI->getArgOperand(i);
654     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
655     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
656       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
657       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
658     } else if (isa<ConstantPointerNull>(Val)) {
659       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
660       Ops.push_back(MachineOperand::CreateImm(0));
661     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
662       // Values coming from a stack location also require a special encoding,
663       // but that is added later on by the target specific frame index
664       // elimination implementation.
665       auto SI = FuncInfo.StaticAllocaMap.find(AI);
666       if (SI != FuncInfo.StaticAllocaMap.end())
667         Ops.push_back(MachineOperand::CreateFI(SI->second));
668       else
669         return false;
670     } else {
671       Register Reg = getRegForValue(Val);
672       if (!Reg)
673         return false;
674       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
675     }
676   }
677   return true;
678 }
679 
680 bool FastISel::selectStackmap(const CallInst *I) {
681   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
682   //                                  [live variables...])
683   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
684          "Stackmap cannot return a value.");
685 
686   // The stackmap intrinsic only records the live variables (the arguments
687   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
688   // intrinsic, this won't be lowered to a function call. This means we don't
689   // have to worry about calling conventions and target-specific lowering code.
690   // Instead we perform the call lowering right here.
691   //
692   // CALLSEQ_START(0, 0...)
693   // STACKMAP(id, nbytes, ...)
694   // CALLSEQ_END(0, 0)
695   //
696   SmallVector<MachineOperand, 32> Ops;
697 
698   // Add the <id> and <numBytes> constants.
699   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
700          "Expected a constant integer.");
701   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
702   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
703 
704   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
705          "Expected a constant integer.");
706   const auto *NumBytes =
707       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
708   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
709 
710   // Push live variables for the stack map (skipping the first two arguments
711   // <id> and <numBytes>).
712   if (!addStackMapLiveVars(Ops, I, 2))
713     return false;
714 
715   // We are not adding any register mask info here, because the stackmap doesn't
716   // clobber anything.
717 
718   // Add scratch registers as implicit def and early clobber.
719   CallingConv::ID CC = I->getCallingConv();
720   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
721   for (unsigned i = 0; ScratchRegs[i]; ++i)
722     Ops.push_back(MachineOperand::CreateReg(
723         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
724         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
725 
726   // Issue CALLSEQ_START
727   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
728   auto Builder =
729       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
730   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
731   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
732     Builder.addImm(0);
733 
734   // Issue STACKMAP.
735   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
736                                     TII.get(TargetOpcode::STACKMAP));
737   for (auto const &MO : Ops)
738     MIB.add(MO);
739 
740   // Issue CALLSEQ_END
741   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
742   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
743       .addImm(0)
744       .addImm(0);
745 
746   // Inform the Frame Information that we have a stackmap in this function.
747   FuncInfo.MF->getFrameInfo().setHasStackMap();
748 
749   return true;
750 }
751 
752 /// Lower an argument list according to the target calling convention.
753 ///
754 /// This is a helper for lowering intrinsics that follow a target calling
755 /// convention or require stack pointer adjustment. Only a subset of the
756 /// intrinsic's operands need to participate in the calling convention.
757 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
758                                  unsigned NumArgs, const Value *Callee,
759                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
760   ArgListTy Args;
761   Args.reserve(NumArgs);
762 
763   // Populate the argument list.
764   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
765     Value *V = CI->getOperand(ArgI);
766 
767     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
768 
769     ArgListEntry Entry;
770     Entry.Val = V;
771     Entry.Ty = V->getType();
772     Entry.setAttributes(CI, ArgI);
773     Args.push_back(Entry);
774   }
775 
776   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
777                                : CI->getType();
778   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
779 
780   return lowerCallTo(CLI);
781 }
782 
783 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
784     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
785     StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
786   SmallString<32> MangledName;
787   Mangler::getNameWithPrefix(MangledName, Target, DL);
788   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
789   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
790 }
791 
792 bool FastISel::selectPatchpoint(const CallInst *I) {
793   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
794   //                                                 i32 <numBytes>,
795   //                                                 i8* <target>,
796   //                                                 i32 <numArgs>,
797   //                                                 [Args...],
798   //                                                 [live variables...])
799   CallingConv::ID CC = I->getCallingConv();
800   bool IsAnyRegCC = CC == CallingConv::AnyReg;
801   bool HasDef = !I->getType()->isVoidTy();
802   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
803 
804   // Get the real number of arguments participating in the call <numArgs>
805   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
806          "Expected a constant integer.");
807   const auto *NumArgsVal =
808       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
809   unsigned NumArgs = NumArgsVal->getZExtValue();
810 
811   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
812   // This includes all meta-operands up to but not including CC.
813   unsigned NumMetaOpers = PatchPointOpers::CCPos;
814   assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
815          "Not enough arguments provided to the patchpoint intrinsic");
816 
817   // For AnyRegCC the arguments are lowered later on manually.
818   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
819   CallLoweringInfo CLI;
820   CLI.setIsPatchPoint();
821   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
822     return false;
823 
824   assert(CLI.Call && "No call instruction specified.");
825 
826   SmallVector<MachineOperand, 32> Ops;
827 
828   // Add an explicit result reg if we use the anyreg calling convention.
829   if (IsAnyRegCC && HasDef) {
830     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
831     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
832     CLI.NumResultRegs = 1;
833     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
834   }
835 
836   // Add the <id> and <numBytes> constants.
837   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
838          "Expected a constant integer.");
839   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
840   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
841 
842   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
843          "Expected a constant integer.");
844   const auto *NumBytes =
845       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
846   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
847 
848   // Add the call target.
849   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
850     uint64_t CalleeConstAddr =
851       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
852     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
853   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
854     if (C->getOpcode() == Instruction::IntToPtr) {
855       uint64_t CalleeConstAddr =
856         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
857       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
858     } else
859       llvm_unreachable("Unsupported ConstantExpr.");
860   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
861     Ops.push_back(MachineOperand::CreateGA(GV, 0));
862   } else if (isa<ConstantPointerNull>(Callee))
863     Ops.push_back(MachineOperand::CreateImm(0));
864   else
865     llvm_unreachable("Unsupported callee address.");
866 
867   // Adjust <numArgs> to account for any arguments that have been passed on
868   // the stack instead.
869   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
870   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
871 
872   // Add the calling convention
873   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
874 
875   // Add the arguments we omitted previously. The register allocator should
876   // place these in any free register.
877   if (IsAnyRegCC) {
878     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
879       Register Reg = getRegForValue(I->getArgOperand(i));
880       if (!Reg)
881         return false;
882       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
883     }
884   }
885 
886   // Push the arguments from the call instruction.
887   for (auto Reg : CLI.OutRegs)
888     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
889 
890   // Push live variables for the stack map.
891   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
892     return false;
893 
894   // Push the register mask info.
895   Ops.push_back(MachineOperand::CreateRegMask(
896       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
897 
898   // Add scratch registers as implicit def and early clobber.
899   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
900   for (unsigned i = 0; ScratchRegs[i]; ++i)
901     Ops.push_back(MachineOperand::CreateReg(
902         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
903         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
904 
905   // Add implicit defs (return values).
906   for (auto Reg : CLI.InRegs)
907     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
908                                             /*isImp=*/true));
909 
910   // Insert the patchpoint instruction before the call generated by the target.
911   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
912                                     TII.get(TargetOpcode::PATCHPOINT));
913 
914   for (auto &MO : Ops)
915     MIB.add(MO);
916 
917   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
918 
919   // Delete the original call instruction.
920   CLI.Call->eraseFromParent();
921 
922   // Inform the Frame Information that we have a patchpoint in this function.
923   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
924 
925   if (CLI.NumResultRegs)
926     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
927   return true;
928 }
929 
930 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
931   const auto &Triple = TM.getTargetTriple();
932   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
933     return true; // don't do anything to this instruction.
934   SmallVector<MachineOperand, 8> Ops;
935   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
936                                           /*isDef=*/false));
937   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
938                                           /*isDef=*/false));
939   MachineInstrBuilder MIB =
940       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
941               TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
942   for (auto &MO : Ops)
943     MIB.add(MO);
944 
945   // Insert the Patchable Event Call instruction, that gets lowered properly.
946   return true;
947 }
948 
949 bool FastISel::selectXRayTypedEvent(const CallInst *I) {
950   const auto &Triple = TM.getTargetTriple();
951   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
952     return true; // don't do anything to this instruction.
953   SmallVector<MachineOperand, 8> Ops;
954   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
955                                           /*isDef=*/false));
956   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
957                                           /*isDef=*/false));
958   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
959                                           /*isDef=*/false));
960   MachineInstrBuilder MIB =
961       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
962               TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
963   for (auto &MO : Ops)
964     MIB.add(MO);
965 
966   // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
967   return true;
968 }
969 
970 /// Returns an AttributeList representing the attributes applied to the return
971 /// value of the given call.
972 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
973   SmallVector<Attribute::AttrKind, 2> Attrs;
974   if (CLI.RetSExt)
975     Attrs.push_back(Attribute::SExt);
976   if (CLI.RetZExt)
977     Attrs.push_back(Attribute::ZExt);
978   if (CLI.IsInReg)
979     Attrs.push_back(Attribute::InReg);
980 
981   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
982                             Attrs);
983 }
984 
985 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
986                            unsigned NumArgs) {
987   MCContext &Ctx = MF->getContext();
988   SmallString<32> MangledName;
989   Mangler::getNameWithPrefix(MangledName, SymName, DL);
990   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
991   return lowerCallTo(CI, Sym, NumArgs);
992 }
993 
994 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
995                            unsigned NumArgs) {
996   FunctionType *FTy = CI->getFunctionType();
997   Type *RetTy = CI->getType();
998 
999   ArgListTy Args;
1000   Args.reserve(NumArgs);
1001 
1002   // Populate the argument list.
1003   // Attributes for args start at offset 1, after the return attribute.
1004   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
1005     Value *V = CI->getOperand(ArgI);
1006 
1007     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
1008 
1009     ArgListEntry Entry;
1010     Entry.Val = V;
1011     Entry.Ty = V->getType();
1012     Entry.setAttributes(CI, ArgI);
1013     Args.push_back(Entry);
1014   }
1015   TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args);
1016 
1017   CallLoweringInfo CLI;
1018   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs);
1019 
1020   return lowerCallTo(CLI);
1021 }
1022 
1023 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
1024   // Handle the incoming return values from the call.
1025   CLI.clearIns();
1026   SmallVector<EVT, 4> RetTys;
1027   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
1028 
1029   SmallVector<ISD::OutputArg, 4> Outs;
1030   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1031 
1032   bool CanLowerReturn = TLI.CanLowerReturn(
1033       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
1034 
1035   // FIXME: sret demotion isn't supported yet - bail out.
1036   if (!CanLowerReturn)
1037     return false;
1038 
1039   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
1040     EVT VT = RetTys[I];
1041     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1042     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1043     for (unsigned i = 0; i != NumRegs; ++i) {
1044       ISD::InputArg MyFlags;
1045       MyFlags.VT = RegisterVT;
1046       MyFlags.ArgVT = VT;
1047       MyFlags.Used = CLI.IsReturnValueUsed;
1048       if (CLI.RetSExt)
1049         MyFlags.Flags.setSExt();
1050       if (CLI.RetZExt)
1051         MyFlags.Flags.setZExt();
1052       if (CLI.IsInReg)
1053         MyFlags.Flags.setInReg();
1054       CLI.Ins.push_back(MyFlags);
1055     }
1056   }
1057 
1058   // Handle all of the outgoing arguments.
1059   CLI.clearOuts();
1060   for (auto &Arg : CLI.getArgs()) {
1061     Type *FinalType = Arg.Ty;
1062     if (Arg.IsByVal)
1063       FinalType = cast<PointerType>(Arg.Ty)->getElementType();
1064     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1065         FinalType, CLI.CallConv, CLI.IsVarArg);
1066 
1067     ISD::ArgFlagsTy Flags;
1068     if (Arg.IsZExt)
1069       Flags.setZExt();
1070     if (Arg.IsSExt)
1071       Flags.setSExt();
1072     if (Arg.IsInReg)
1073       Flags.setInReg();
1074     if (Arg.IsSRet)
1075       Flags.setSRet();
1076     if (Arg.IsSwiftSelf)
1077       Flags.setSwiftSelf();
1078     if (Arg.IsSwiftError)
1079       Flags.setSwiftError();
1080     if (Arg.IsCFGuardTarget)
1081       Flags.setCFGuardTarget();
1082     if (Arg.IsByVal)
1083       Flags.setByVal();
1084     if (Arg.IsInAlloca) {
1085       Flags.setInAlloca();
1086       // Set the byval flag for CCAssignFn callbacks that don't know about
1087       // inalloca. This way we can know how many bytes we should've allocated
1088       // and how many bytes a callee cleanup function will pop.  If we port
1089       // inalloca to more targets, we'll have to add custom inalloca handling in
1090       // the various CC lowering callbacks.
1091       Flags.setByVal();
1092     }
1093     if (Arg.IsPreallocated) {
1094       Flags.setPreallocated();
1095       // Set the byval flag for CCAssignFn callbacks that don't know about
1096       // preallocated. This way we can know how many bytes we should've
1097       // allocated and how many bytes a callee cleanup function will pop.  If we
1098       // port preallocated to more targets, we'll have to add custom
1099       // preallocated handling in the various CC lowering callbacks.
1100       Flags.setByVal();
1101     }
1102     if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) {
1103       PointerType *Ty = cast<PointerType>(Arg.Ty);
1104       Type *ElementTy = Ty->getElementType();
1105       unsigned FrameSize =
1106           DL.getTypeAllocSize(Arg.ByValType ? Arg.ByValType : ElementTy);
1107 
1108       // For ByVal, alignment should come from FE. BE will guess if this info
1109       // is not there, but there are cases it cannot get right.
1110       MaybeAlign FrameAlign = Arg.Alignment;
1111       if (!FrameAlign)
1112         FrameAlign = Align(TLI.getByValTypeAlignment(ElementTy, DL));
1113       Flags.setByValSize(FrameSize);
1114       Flags.setByValAlign(*FrameAlign);
1115     }
1116     if (Arg.IsNest)
1117       Flags.setNest();
1118     if (NeedsRegBlock)
1119       Flags.setInConsecutiveRegs();
1120     Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
1121 
1122     CLI.OutVals.push_back(Arg.Val);
1123     CLI.OutFlags.push_back(Flags);
1124   }
1125 
1126   if (!fastLowerCall(CLI))
1127     return false;
1128 
1129   // Set all unused physreg defs as dead.
1130   assert(CLI.Call && "No call instruction specified.");
1131   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1132 
1133   if (CLI.NumResultRegs && CLI.CB)
1134     updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs);
1135 
1136   // Set labels for heapallocsite call.
1137   if (CLI.CB)
1138     if (MDNode *MD = CLI.CB->getMetadata("heapallocsite"))
1139       CLI.Call->setHeapAllocMarker(*MF, MD);
1140 
1141   return true;
1142 }
1143 
1144 bool FastISel::lowerCall(const CallInst *CI) {
1145   FunctionType *FuncTy = CI->getFunctionType();
1146   Type *RetTy = CI->getType();
1147 
1148   ArgListTy Args;
1149   ArgListEntry Entry;
1150   Args.reserve(CI->arg_size());
1151 
1152   for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) {
1153     Value *V = *i;
1154 
1155     // Skip empty types
1156     if (V->getType()->isEmptyTy())
1157       continue;
1158 
1159     Entry.Val = V;
1160     Entry.Ty = V->getType();
1161 
1162     // Skip the first return-type Attribute to get to params.
1163     Entry.setAttributes(CI, i - CI->arg_begin());
1164     Args.push_back(Entry);
1165   }
1166 
1167   // Check if target-independent constraints permit a tail call here.
1168   // Target-dependent constraints are checked within fastLowerCall.
1169   bool IsTailCall = CI->isTailCall();
1170   if (IsTailCall && !isInTailCallPosition(*CI, TM))
1171     IsTailCall = false;
1172   if (IsTailCall && MF->getFunction()
1173                             .getFnAttribute("disable-tail-calls")
1174                             .getValueAsString() == "true")
1175     IsTailCall = false;
1176 
1177   CallLoweringInfo CLI;
1178   CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI)
1179       .setTailCall(IsTailCall);
1180 
1181   return lowerCallTo(CLI);
1182 }
1183 
1184 bool FastISel::selectCall(const User *I) {
1185   const CallInst *Call = cast<CallInst>(I);
1186 
1187   // Handle simple inline asms.
1188   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) {
1189     // Don't attempt to handle constraints.
1190     if (!IA->getConstraintString().empty())
1191       return false;
1192 
1193     unsigned ExtraInfo = 0;
1194     if (IA->hasSideEffects())
1195       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1196     if (IA->isAlignStack())
1197       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1198     if (Call->isConvergent())
1199       ExtraInfo |= InlineAsm::Extra_IsConvergent;
1200     ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
1201 
1202     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1203                                       TII.get(TargetOpcode::INLINEASM));
1204     MIB.addExternalSymbol(IA->getAsmString().c_str());
1205     MIB.addImm(ExtraInfo);
1206 
1207     const MDNode *SrcLoc = Call->getMetadata("srcloc");
1208     if (SrcLoc)
1209       MIB.addMetadata(SrcLoc);
1210 
1211     return true;
1212   }
1213 
1214   // Handle intrinsic function calls.
1215   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1216     return selectIntrinsicCall(II);
1217 
1218   return lowerCall(Call);
1219 }
1220 
1221 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1222   switch (II->getIntrinsicID()) {
1223   default:
1224     break;
1225   // At -O0 we don't care about the lifetime intrinsics.
1226   case Intrinsic::lifetime_start:
1227   case Intrinsic::lifetime_end:
1228   // The donothing intrinsic does, well, nothing.
1229   case Intrinsic::donothing:
1230   // Neither does the sideeffect intrinsic.
1231   case Intrinsic::sideeffect:
1232   // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1233   case Intrinsic::assume:
1234     return true;
1235   case Intrinsic::dbg_declare: {
1236     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1237     assert(DI->getVariable() && "Missing variable");
1238     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1239       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1240                         << " (!hasDebugInfo)\n");
1241       return true;
1242     }
1243 
1244     const Value *Address = DI->getAddress();
1245     if (!Address || isa<UndefValue>(Address)) {
1246       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1247                         << " (bad/undef address)\n");
1248       return true;
1249     }
1250 
1251     // Byval arguments with frame indices were already handled after argument
1252     // lowering and before isel.
1253     const auto *Arg =
1254         dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
1255     if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
1256       return true;
1257 
1258     Optional<MachineOperand> Op;
1259     if (Register Reg = lookUpRegForValue(Address))
1260       Op = MachineOperand::CreateReg(Reg, false);
1261 
1262     // If we have a VLA that has a "use" in a metadata node that's then used
1263     // here but it has no other uses, then we have a problem. E.g.,
1264     //
1265     //   int foo (const int *x) {
1266     //     char a[*x];
1267     //     return 0;
1268     //   }
1269     //
1270     // If we assign 'a' a vreg and fast isel later on has to use the selection
1271     // DAG isel, it will want to copy the value to the vreg. However, there are
1272     // no uses, which goes counter to what selection DAG isel expects.
1273     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1274         (!isa<AllocaInst>(Address) ||
1275          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1276       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1277                                      false);
1278 
1279     if (Op) {
1280       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1281              "Expected inlined-at fields to agree");
1282       // A dbg.declare describes the address of a source variable, so lower it
1283       // into an indirect DBG_VALUE.
1284       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1285               TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true,
1286               *Op, DI->getVariable(), DI->getExpression());
1287     } else {
1288       // We can't yet handle anything else here because it would require
1289       // generating code, thus altering codegen because of debug info.
1290       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1291                         << " (no materialized reg for address)\n");
1292     }
1293     return true;
1294   }
1295   case Intrinsic::dbg_value: {
1296     // This form of DBG_VALUE is target-independent.
1297     const DbgValueInst *DI = cast<DbgValueInst>(II);
1298     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1299     const Value *V = DI->getValue();
1300     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1301            "Expected inlined-at fields to agree");
1302     if (!V || isa<UndefValue>(V)) {
1303       // Currently the optimizer can produce this; insert an undef to
1304       // help debugging.
1305       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
1306               DI->getVariable(), DI->getExpression());
1307     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1308       if (CI->getBitWidth() > 64)
1309         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1310             .addCImm(CI)
1311             .addImm(0U)
1312             .addMetadata(DI->getVariable())
1313             .addMetadata(DI->getExpression());
1314       else
1315         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1316             .addImm(CI->getZExtValue())
1317             .addImm(0U)
1318             .addMetadata(DI->getVariable())
1319             .addMetadata(DI->getExpression());
1320     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1321       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1322           .addFPImm(CF)
1323           .addImm(0U)
1324           .addMetadata(DI->getVariable())
1325           .addMetadata(DI->getExpression());
1326     } else if (Register Reg = lookUpRegForValue(V)) {
1327       // FIXME: This does not handle register-indirect values at offset 0.
1328       bool IsIndirect = false;
1329       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1330               DI->getVariable(), DI->getExpression());
1331     } else {
1332       // We don't know how to handle other cases, so we drop.
1333       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1334     }
1335     return true;
1336   }
1337   case Intrinsic::dbg_label: {
1338     const DbgLabelInst *DI = cast<DbgLabelInst>(II);
1339     assert(DI->getLabel() && "Missing label");
1340     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1341       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1342       return true;
1343     }
1344 
1345     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1346             TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
1347     return true;
1348   }
1349   case Intrinsic::objectsize:
1350     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1351 
1352   case Intrinsic::is_constant:
1353     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1354 
1355   case Intrinsic::launder_invariant_group:
1356   case Intrinsic::strip_invariant_group:
1357   case Intrinsic::expect: {
1358     Register ResultReg = getRegForValue(II->getArgOperand(0));
1359     if (!ResultReg)
1360       return false;
1361     updateValueMap(II, ResultReg);
1362     return true;
1363   }
1364   case Intrinsic::experimental_stackmap:
1365     return selectStackmap(II);
1366   case Intrinsic::experimental_patchpoint_void:
1367   case Intrinsic::experimental_patchpoint_i64:
1368     return selectPatchpoint(II);
1369 
1370   case Intrinsic::xray_customevent:
1371     return selectXRayCustomEvent(II);
1372   case Intrinsic::xray_typedevent:
1373     return selectXRayTypedEvent(II);
1374   }
1375 
1376   return fastLowerIntrinsicCall(II);
1377 }
1378 
1379 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1380   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1381   EVT DstVT = TLI.getValueType(DL, I->getType());
1382 
1383   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1384       !DstVT.isSimple())
1385     // Unhandled type. Halt "fast" selection and bail.
1386     return false;
1387 
1388   // Check if the destination type is legal.
1389   if (!TLI.isTypeLegal(DstVT))
1390     return false;
1391 
1392   // Check if the source operand is legal.
1393   if (!TLI.isTypeLegal(SrcVT))
1394     return false;
1395 
1396   Register InputReg = getRegForValue(I->getOperand(0));
1397   if (!InputReg)
1398     // Unhandled operand.  Halt "fast" selection and bail.
1399     return false;
1400 
1401   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
1402 
1403   Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1404                                   Opcode, InputReg, InputRegIsKill);
1405   if (!ResultReg)
1406     return false;
1407 
1408   updateValueMap(I, ResultReg);
1409   return true;
1410 }
1411 
1412 bool FastISel::selectBitCast(const User *I) {
1413   // If the bitcast doesn't change the type, just use the operand value.
1414   if (I->getType() == I->getOperand(0)->getType()) {
1415     Register Reg = getRegForValue(I->getOperand(0));
1416     if (!Reg)
1417       return false;
1418     updateValueMap(I, Reg);
1419     return true;
1420   }
1421 
1422   // Bitcasts of other values become reg-reg copies or BITCAST operators.
1423   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1424   EVT DstEVT = TLI.getValueType(DL, I->getType());
1425   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1426       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1427     // Unhandled type. Halt "fast" selection and bail.
1428     return false;
1429 
1430   MVT SrcVT = SrcEVT.getSimpleVT();
1431   MVT DstVT = DstEVT.getSimpleVT();
1432   Register Op0 = getRegForValue(I->getOperand(0));
1433   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1434     return false;
1435   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
1436 
1437   // First, try to perform the bitcast by inserting a reg-reg copy.
1438   Register ResultReg;
1439   if (SrcVT == DstVT) {
1440     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1441     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1442     // Don't attempt a cross-class copy. It will likely fail.
1443     if (SrcClass == DstClass) {
1444       ResultReg = createResultReg(DstClass);
1445       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1446               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1447     }
1448   }
1449 
1450   // If the reg-reg copy failed, select a BITCAST opcode.
1451   if (!ResultReg)
1452     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
1453 
1454   if (!ResultReg)
1455     return false;
1456 
1457   updateValueMap(I, ResultReg);
1458   return true;
1459 }
1460 
1461 bool FastISel::selectFreeze(const User *I) {
1462   Register Reg = getRegForValue(I->getOperand(0));
1463   if (!Reg)
1464     // Unhandled operand.
1465     return false;
1466 
1467   EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType());
1468   if (ETy == MVT::Other || !TLI.isTypeLegal(ETy))
1469     // Unhandled type, bail out.
1470     return false;
1471 
1472   MVT Ty = ETy.getSimpleVT();
1473   const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty);
1474   Register ResultReg = createResultReg(TyRegClass);
1475   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1476           TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
1477 
1478   updateValueMap(I, ResultReg);
1479   return true;
1480 }
1481 
1482 // Remove local value instructions starting from the instruction after
1483 // SavedLastLocalValue to the current function insert point.
1484 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1485 {
1486   MachineInstr *CurLastLocalValue = getLastLocalValue();
1487   if (CurLastLocalValue != SavedLastLocalValue) {
1488     // Find the first local value instruction to be deleted.
1489     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1490     // Otherwise it's the first instruction in the block.
1491     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1492     if (SavedLastLocalValue)
1493       ++FirstDeadInst;
1494     else
1495       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1496     setLastLocalValue(SavedLastLocalValue);
1497     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1498   }
1499 }
1500 
1501 bool FastISel::selectInstruction(const Instruction *I) {
1502   // Flush the local value map before starting each instruction.
1503   // This improves locality and debugging, and can reduce spills.
1504   // Reuse of values across IR instructions is relatively uncommon.
1505   flushLocalValueMap();
1506 
1507   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1508   // Just before the terminator instruction, insert instructions to
1509   // feed PHI nodes in successor blocks.
1510   if (I->isTerminator()) {
1511     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1512       // PHI node handling may have generated local value instructions,
1513       // even though it failed to handle all PHI nodes.
1514       // We remove these instructions because SelectionDAGISel will generate
1515       // them again.
1516       removeDeadLocalValueCode(SavedLastLocalValue);
1517       return false;
1518     }
1519   }
1520 
1521   // FastISel does not handle any operand bundles except OB_funclet.
1522   if (auto *Call = dyn_cast<CallBase>(I))
1523     for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i)
1524       if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1525         return false;
1526 
1527   DbgLoc = I->getDebugLoc();
1528 
1529   SavedInsertPt = FuncInfo.InsertPt;
1530 
1531   if (const auto *Call = dyn_cast<CallInst>(I)) {
1532     const Function *F = Call->getCalledFunction();
1533     LibFunc Func;
1534 
1535     // As a special case, don't handle calls to builtin library functions that
1536     // may be translated directly to target instructions.
1537     if (F && !F->hasLocalLinkage() && F->hasName() &&
1538         LibInfo->getLibFunc(F->getName(), Func) &&
1539         LibInfo->hasOptimizedCodeGen(Func))
1540       return false;
1541 
1542     // Don't handle Intrinsic::trap if a trap function is specified.
1543     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1544         Call->hasFnAttr("trap-func-name"))
1545       return false;
1546   }
1547 
1548   // First, try doing target-independent selection.
1549   if (!SkipTargetIndependentISel) {
1550     if (selectOperator(I, I->getOpcode())) {
1551       ++NumFastIselSuccessIndependent;
1552       DbgLoc = DebugLoc();
1553       return true;
1554     }
1555     // Remove dead code.
1556     recomputeInsertPt();
1557     if (SavedInsertPt != FuncInfo.InsertPt)
1558       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1559     SavedInsertPt = FuncInfo.InsertPt;
1560   }
1561   // Next, try calling the target to attempt to handle the instruction.
1562   if (fastSelectInstruction(I)) {
1563     ++NumFastIselSuccessTarget;
1564     DbgLoc = DebugLoc();
1565     return true;
1566   }
1567   // Remove dead code.
1568   recomputeInsertPt();
1569   if (SavedInsertPt != FuncInfo.InsertPt)
1570     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1571 
1572   DbgLoc = DebugLoc();
1573   // Undo phi node updates, because they will be added again by SelectionDAG.
1574   if (I->isTerminator()) {
1575     // PHI node handling may have generated local value instructions.
1576     // We remove them because SelectionDAGISel will generate them again.
1577     removeDeadLocalValueCode(SavedLastLocalValue);
1578     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1579   }
1580   return false;
1581 }
1582 
1583 /// Emit an unconditional branch to the given block, unless it is the immediate
1584 /// (fall-through) successor, and update the CFG.
1585 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1586                               const DebugLoc &DbgLoc) {
1587   if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 &&
1588       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1589     // For more accurate line information if this is the only non-debug
1590     // instruction in the block then emit it, otherwise we have the
1591     // unconditional fall-through case, which needs no instructions.
1592   } else {
1593     // The unconditional branch case.
1594     TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1595                      SmallVector<MachineOperand, 0>(), DbgLoc);
1596   }
1597   if (FuncInfo.BPI) {
1598     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1599         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1600     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1601   } else
1602     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1603 }
1604 
1605 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1606                                 MachineBasicBlock *TrueMBB,
1607                                 MachineBasicBlock *FalseMBB) {
1608   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1609   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1610   // successor/predecessor lists.
1611   if (TrueMBB != FalseMBB) {
1612     if (FuncInfo.BPI) {
1613       auto BranchProbability =
1614           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1615       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1616     } else
1617       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1618   }
1619 
1620   fastEmitBranch(FalseMBB, DbgLoc);
1621 }
1622 
1623 /// Emit an FNeg operation.
1624 bool FastISel::selectFNeg(const User *I, const Value *In) {
1625   Register OpReg = getRegForValue(In);
1626   if (!OpReg)
1627     return false;
1628   bool OpRegIsKill = hasTrivialKill(In);
1629 
1630   // If the target has ISD::FNEG, use it.
1631   EVT VT = TLI.getValueType(DL, I->getType());
1632   Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1633                                   OpReg, OpRegIsKill);
1634   if (ResultReg) {
1635     updateValueMap(I, ResultReg);
1636     return true;
1637   }
1638 
1639   // Bitcast the value to integer, twiddle the sign bit with xor,
1640   // and then bitcast it back to floating-point.
1641   if (VT.getSizeInBits() > 64)
1642     return false;
1643   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1644   if (!TLI.isTypeLegal(IntVT))
1645     return false;
1646 
1647   Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1648                                ISD::BITCAST, OpReg, OpRegIsKill);
1649   if (!IntReg)
1650     return false;
1651 
1652   Register IntResultReg = fastEmit_ri_(
1653       IntVT.getSimpleVT(), ISD::XOR, IntReg, /*Op0IsKill=*/true,
1654       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1655   if (!IntResultReg)
1656     return false;
1657 
1658   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1659                          IntResultReg, /*Op0IsKill=*/true);
1660   if (!ResultReg)
1661     return false;
1662 
1663   updateValueMap(I, ResultReg);
1664   return true;
1665 }
1666 
1667 bool FastISel::selectExtractValue(const User *U) {
1668   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1669   if (!EVI)
1670     return false;
1671 
1672   // Make sure we only try to handle extracts with a legal result.  But also
1673   // allow i1 because it's easy.
1674   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1675   if (!RealVT.isSimple())
1676     return false;
1677   MVT VT = RealVT.getSimpleVT();
1678   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1679     return false;
1680 
1681   const Value *Op0 = EVI->getOperand(0);
1682   Type *AggTy = Op0->getType();
1683 
1684   // Get the base result register.
1685   unsigned ResultReg;
1686   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0);
1687   if (I != FuncInfo.ValueMap.end())
1688     ResultReg = I->second;
1689   else if (isa<Instruction>(Op0))
1690     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1691   else
1692     return false; // fast-isel can't handle aggregate constants at the moment
1693 
1694   // Get the actual result register, which is an offset from the base register.
1695   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1696 
1697   SmallVector<EVT, 4> AggValueVTs;
1698   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1699 
1700   for (unsigned i = 0; i < VTIndex; i++)
1701     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1702 
1703   updateValueMap(EVI, ResultReg);
1704   return true;
1705 }
1706 
1707 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1708   switch (Opcode) {
1709   case Instruction::Add:
1710     return selectBinaryOp(I, ISD::ADD);
1711   case Instruction::FAdd:
1712     return selectBinaryOp(I, ISD::FADD);
1713   case Instruction::Sub:
1714     return selectBinaryOp(I, ISD::SUB);
1715   case Instruction::FSub:
1716     return selectBinaryOp(I, ISD::FSUB);
1717   case Instruction::Mul:
1718     return selectBinaryOp(I, ISD::MUL);
1719   case Instruction::FMul:
1720     return selectBinaryOp(I, ISD::FMUL);
1721   case Instruction::SDiv:
1722     return selectBinaryOp(I, ISD::SDIV);
1723   case Instruction::UDiv:
1724     return selectBinaryOp(I, ISD::UDIV);
1725   case Instruction::FDiv:
1726     return selectBinaryOp(I, ISD::FDIV);
1727   case Instruction::SRem:
1728     return selectBinaryOp(I, ISD::SREM);
1729   case Instruction::URem:
1730     return selectBinaryOp(I, ISD::UREM);
1731   case Instruction::FRem:
1732     return selectBinaryOp(I, ISD::FREM);
1733   case Instruction::Shl:
1734     return selectBinaryOp(I, ISD::SHL);
1735   case Instruction::LShr:
1736     return selectBinaryOp(I, ISD::SRL);
1737   case Instruction::AShr:
1738     return selectBinaryOp(I, ISD::SRA);
1739   case Instruction::And:
1740     return selectBinaryOp(I, ISD::AND);
1741   case Instruction::Or:
1742     return selectBinaryOp(I, ISD::OR);
1743   case Instruction::Xor:
1744     return selectBinaryOp(I, ISD::XOR);
1745 
1746   case Instruction::FNeg:
1747     return selectFNeg(I, I->getOperand(0));
1748 
1749   case Instruction::GetElementPtr:
1750     return selectGetElementPtr(I);
1751 
1752   case Instruction::Br: {
1753     const BranchInst *BI = cast<BranchInst>(I);
1754 
1755     if (BI->isUnconditional()) {
1756       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1757       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1758       fastEmitBranch(MSucc, BI->getDebugLoc());
1759       return true;
1760     }
1761 
1762     // Conditional branches are not handed yet.
1763     // Halt "fast" selection and bail.
1764     return false;
1765   }
1766 
1767   case Instruction::Unreachable:
1768     if (TM.Options.TrapUnreachable)
1769       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1770     else
1771       return true;
1772 
1773   case Instruction::Alloca:
1774     // FunctionLowering has the static-sized case covered.
1775     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1776       return true;
1777 
1778     // Dynamic-sized alloca is not handled yet.
1779     return false;
1780 
1781   case Instruction::Call:
1782     // On AIX, call lowering uses the DAG-ISEL path currently so that the
1783     // callee of the direct function call instruction will be mapped to the
1784     // symbol for the function's entry point, which is distinct from the
1785     // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1786     // name is the C-linkage name of the source level function.
1787     if (TM.getTargetTriple().isOSAIX())
1788       return false;
1789     return selectCall(I);
1790 
1791   case Instruction::BitCast:
1792     return selectBitCast(I);
1793 
1794   case Instruction::FPToSI:
1795     return selectCast(I, ISD::FP_TO_SINT);
1796   case Instruction::ZExt:
1797     return selectCast(I, ISD::ZERO_EXTEND);
1798   case Instruction::SExt:
1799     return selectCast(I, ISD::SIGN_EXTEND);
1800   case Instruction::Trunc:
1801     return selectCast(I, ISD::TRUNCATE);
1802   case Instruction::SIToFP:
1803     return selectCast(I, ISD::SINT_TO_FP);
1804 
1805   case Instruction::IntToPtr: // Deliberate fall-through.
1806   case Instruction::PtrToInt: {
1807     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1808     EVT DstVT = TLI.getValueType(DL, I->getType());
1809     if (DstVT.bitsGT(SrcVT))
1810       return selectCast(I, ISD::ZERO_EXTEND);
1811     if (DstVT.bitsLT(SrcVT))
1812       return selectCast(I, ISD::TRUNCATE);
1813     Register Reg = getRegForValue(I->getOperand(0));
1814     if (!Reg)
1815       return false;
1816     updateValueMap(I, Reg);
1817     return true;
1818   }
1819 
1820   case Instruction::ExtractValue:
1821     return selectExtractValue(I);
1822 
1823   case Instruction::Freeze:
1824     return selectFreeze(I);
1825 
1826   case Instruction::PHI:
1827     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1828 
1829   default:
1830     // Unhandled instruction. Halt "fast" selection and bail.
1831     return false;
1832   }
1833 }
1834 
1835 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1836                    const TargetLibraryInfo *LibInfo,
1837                    bool SkipTargetIndependentISel)
1838     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1839       MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1840       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1841       TII(*MF->getSubtarget().getInstrInfo()),
1842       TLI(*MF->getSubtarget().getTargetLowering()),
1843       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1844       SkipTargetIndependentISel(SkipTargetIndependentISel),
1845       LastLocalValue(nullptr), EmitStartPt(nullptr) {}
1846 
1847 FastISel::~FastISel() = default;
1848 
1849 bool FastISel::fastLowerArguments() { return false; }
1850 
1851 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1852 
1853 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1854   return false;
1855 }
1856 
1857 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1858 
1859 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
1860                               bool /*Op0IsKill*/) {
1861   return 0;
1862 }
1863 
1864 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1865                                bool /*Op0IsKill*/, unsigned /*Op1*/,
1866                                bool /*Op1IsKill*/) {
1867   return 0;
1868 }
1869 
1870 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1871   return 0;
1872 }
1873 
1874 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1875                               const ConstantFP * /*FPImm*/) {
1876   return 0;
1877 }
1878 
1879 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1880                                bool /*Op0IsKill*/, uint64_t /*Imm*/) {
1881   return 0;
1882 }
1883 
1884 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1885 /// instruction with an immediate operand using fastEmit_ri.
1886 /// If that fails, it materializes the immediate into a register and try
1887 /// fastEmit_rr instead.
1888 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1889                                 bool Op0IsKill, uint64_t Imm, MVT ImmType) {
1890   // If this is a multiply by a power of two, emit this as a shift left.
1891   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1892     Opcode = ISD::SHL;
1893     Imm = Log2_64(Imm);
1894   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1895     // div x, 8 -> srl x, 3
1896     Opcode = ISD::SRL;
1897     Imm = Log2_64(Imm);
1898   }
1899 
1900   // Horrible hack (to be removed), check to make sure shift amounts are
1901   // in-range.
1902   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1903       Imm >= VT.getSizeInBits())
1904     return 0;
1905 
1906   // First check if immediate type is legal. If not, we can't use the ri form.
1907   Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1908   if (ResultReg)
1909     return ResultReg;
1910   Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1911   bool IsImmKill = true;
1912   if (!MaterialReg) {
1913     // This is a bit ugly/slow, but failing here means falling out of
1914     // fast-isel, which would be very slow.
1915     IntegerType *ITy =
1916         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1917     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1918     if (!MaterialReg)
1919       return 0;
1920     // FIXME: If the materialized register here has no uses yet then this
1921     // will be the first use and we should be able to mark it as killed.
1922     // However, the local value area for materialising constant expressions
1923     // grows down, not up, which means that any constant expressions we generate
1924     // later which also use 'Imm' could be after this instruction and therefore
1925     // after this kill.
1926     IsImmKill = false;
1927   }
1928   return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill);
1929 }
1930 
1931 Register FastISel::createResultReg(const TargetRegisterClass *RC) {
1932   return MRI.createVirtualRegister(RC);
1933 }
1934 
1935 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op,
1936                                             unsigned OpNum) {
1937   if (Op.isVirtual()) {
1938     const TargetRegisterClass *RegClass =
1939         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1940     if (!MRI.constrainRegClass(Op, RegClass)) {
1941       // If it's not legal to COPY between the register classes, something
1942       // has gone very wrong before we got here.
1943       Register NewOp = createResultReg(RegClass);
1944       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1945               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1946       return NewOp;
1947     }
1948   }
1949   return Op;
1950 }
1951 
1952 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode,
1953                                  const TargetRegisterClass *RC) {
1954   Register ResultReg = createResultReg(RC);
1955   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1956 
1957   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
1958   return ResultReg;
1959 }
1960 
1961 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
1962                                   const TargetRegisterClass *RC, unsigned Op0,
1963                                   bool Op0IsKill) {
1964   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1965 
1966   Register ResultReg = createResultReg(RC);
1967   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1968 
1969   if (II.getNumDefs() >= 1)
1970     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1971         .addReg(Op0, getKillRegState(Op0IsKill));
1972   else {
1973     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1974         .addReg(Op0, getKillRegState(Op0IsKill));
1975     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1976             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1977   }
1978 
1979   return ResultReg;
1980 }
1981 
1982 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
1983                                    const TargetRegisterClass *RC, unsigned Op0,
1984                                    bool Op0IsKill, unsigned Op1,
1985                                    bool Op1IsKill) {
1986   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1987 
1988   Register ResultReg = createResultReg(RC);
1989   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1990   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1991 
1992   if (II.getNumDefs() >= 1)
1993     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1994         .addReg(Op0, getKillRegState(Op0IsKill))
1995         .addReg(Op1, getKillRegState(Op1IsKill));
1996   else {
1997     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1998         .addReg(Op0, getKillRegState(Op0IsKill))
1999         .addReg(Op1, getKillRegState(Op1IsKill));
2000     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2001             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2002   }
2003   return ResultReg;
2004 }
2005 
2006 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
2007                                     const TargetRegisterClass *RC, unsigned Op0,
2008                                     bool Op0IsKill, unsigned Op1,
2009                                     bool Op1IsKill, unsigned Op2,
2010                                     bool Op2IsKill) {
2011   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2012 
2013   Register ResultReg = createResultReg(RC);
2014   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2015   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2016   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
2017 
2018   if (II.getNumDefs() >= 1)
2019     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2020         .addReg(Op0, getKillRegState(Op0IsKill))
2021         .addReg(Op1, getKillRegState(Op1IsKill))
2022         .addReg(Op2, getKillRegState(Op2IsKill));
2023   else {
2024     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2025         .addReg(Op0, getKillRegState(Op0IsKill))
2026         .addReg(Op1, getKillRegState(Op1IsKill))
2027         .addReg(Op2, getKillRegState(Op2IsKill));
2028     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2029             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2030   }
2031   return ResultReg;
2032 }
2033 
2034 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2035                                    const TargetRegisterClass *RC, unsigned Op0,
2036                                    bool Op0IsKill, uint64_t Imm) {
2037   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2038 
2039   Register ResultReg = createResultReg(RC);
2040   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2041 
2042   if (II.getNumDefs() >= 1)
2043     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2044         .addReg(Op0, getKillRegState(Op0IsKill))
2045         .addImm(Imm);
2046   else {
2047     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2048         .addReg(Op0, getKillRegState(Op0IsKill))
2049         .addImm(Imm);
2050     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2051             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2052   }
2053   return ResultReg;
2054 }
2055 
2056 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2057                                     const TargetRegisterClass *RC, unsigned Op0,
2058                                     bool Op0IsKill, uint64_t Imm1,
2059                                     uint64_t Imm2) {
2060   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2061 
2062   Register ResultReg = createResultReg(RC);
2063   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2064 
2065   if (II.getNumDefs() >= 1)
2066     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2067         .addReg(Op0, getKillRegState(Op0IsKill))
2068         .addImm(Imm1)
2069         .addImm(Imm2);
2070   else {
2071     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2072         .addReg(Op0, getKillRegState(Op0IsKill))
2073         .addImm(Imm1)
2074         .addImm(Imm2);
2075     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2076             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2077   }
2078   return ResultReg;
2079 }
2080 
2081 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2082                                   const TargetRegisterClass *RC,
2083                                   const ConstantFP *FPImm) {
2084   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2085 
2086   Register ResultReg = createResultReg(RC);
2087 
2088   if (II.getNumDefs() >= 1)
2089     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2090         .addFPImm(FPImm);
2091   else {
2092     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2093         .addFPImm(FPImm);
2094     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2095             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2096   }
2097   return ResultReg;
2098 }
2099 
2100 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2101                                     const TargetRegisterClass *RC, unsigned Op0,
2102                                     bool Op0IsKill, unsigned Op1,
2103                                     bool Op1IsKill, uint64_t Imm) {
2104   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2105 
2106   Register ResultReg = createResultReg(RC);
2107   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2108   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2109 
2110   if (II.getNumDefs() >= 1)
2111     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2112         .addReg(Op0, getKillRegState(Op0IsKill))
2113         .addReg(Op1, getKillRegState(Op1IsKill))
2114         .addImm(Imm);
2115   else {
2116     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2117         .addReg(Op0, getKillRegState(Op0IsKill))
2118         .addReg(Op1, getKillRegState(Op1IsKill))
2119         .addImm(Imm);
2120     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2121             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2122   }
2123   return ResultReg;
2124 }
2125 
2126 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2127                                   const TargetRegisterClass *RC, uint64_t Imm) {
2128   Register ResultReg = createResultReg(RC);
2129   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2130 
2131   if (II.getNumDefs() >= 1)
2132     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2133         .addImm(Imm);
2134   else {
2135     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
2136     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2137             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2138   }
2139   return ResultReg;
2140 }
2141 
2142 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2143                                               bool Op0IsKill, uint32_t Idx) {
2144   Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2145   assert(Register::isVirtualRegister(Op0) &&
2146          "Cannot yet extract from physregs");
2147   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2148   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2149   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
2150           ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
2151   return ResultReg;
2152 }
2153 
2154 /// Emit MachineInstrs to compute the value of Op with all but the least
2155 /// significant bit set to zero.
2156 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
2157   return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
2158 }
2159 
2160 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2161 /// Emit code to ensure constants are copied into registers when needed.
2162 /// Remember the virtual registers that need to be added to the Machine PHI
2163 /// nodes as input.  We cannot just directly add them, because expansion
2164 /// might result in multiple MBB's for one BB.  As such, the start of the
2165 /// BB might correspond to a different MBB than the end.
2166 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2167   const Instruction *TI = LLVMBB->getTerminator();
2168 
2169   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2170   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2171 
2172   // Check successor nodes' PHI nodes that expect a constant to be available
2173   // from this block.
2174   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2175     const BasicBlock *SuccBB = TI->getSuccessor(succ);
2176     if (!isa<PHINode>(SuccBB->begin()))
2177       continue;
2178     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2179 
2180     // If this terminator has multiple identical successors (common for
2181     // switches), only handle each succ once.
2182     if (!SuccsHandled.insert(SuccMBB).second)
2183       continue;
2184 
2185     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2186 
2187     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2188     // nodes and Machine PHI nodes, but the incoming operands have not been
2189     // emitted yet.
2190     for (const PHINode &PN : SuccBB->phis()) {
2191       // Ignore dead phi's.
2192       if (PN.use_empty())
2193         continue;
2194 
2195       // Only handle legal types. Two interesting things to note here. First,
2196       // by bailing out early, we may leave behind some dead instructions,
2197       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2198       // own moves. Second, this check is necessary because FastISel doesn't
2199       // use CreateRegs to create registers, so it always creates
2200       // exactly one register for each non-void instruction.
2201       EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2202       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2203         // Handle integer promotions, though, because they're common and easy.
2204         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2205           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2206           return false;
2207         }
2208       }
2209 
2210       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2211 
2212       // Set the DebugLoc for the copy. Prefer the location of the operand
2213       // if there is one; use the location of the PHI otherwise.
2214       DbgLoc = PN.getDebugLoc();
2215       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2216         DbgLoc = Inst->getDebugLoc();
2217 
2218       Register Reg = getRegForValue(PHIOp);
2219       if (!Reg) {
2220         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2221         return false;
2222       }
2223       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2224       DbgLoc = DebugLoc();
2225     }
2226   }
2227 
2228   return true;
2229 }
2230 
2231 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2232   assert(LI->hasOneUse() &&
2233          "tryToFoldLoad expected a LoadInst with a single use");
2234   // We know that the load has a single use, but don't know what it is.  If it
2235   // isn't one of the folded instructions, then we can't succeed here.  Handle
2236   // this by scanning the single-use users of the load until we get to FoldInst.
2237   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2238 
2239   const Instruction *TheUser = LI->user_back();
2240   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2241          // Stay in the right block.
2242          TheUser->getParent() == FoldInst->getParent() &&
2243          --MaxUsers) { // Don't scan too far.
2244     // If there are multiple or no uses of this instruction, then bail out.
2245     if (!TheUser->hasOneUse())
2246       return false;
2247 
2248     TheUser = TheUser->user_back();
2249   }
2250 
2251   // If we didn't find the fold instruction, then we failed to collapse the
2252   // sequence.
2253   if (TheUser != FoldInst)
2254     return false;
2255 
2256   // Don't try to fold volatile loads.  Target has to deal with alignment
2257   // constraints.
2258   if (LI->isVolatile())
2259     return false;
2260 
2261   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2262   // then there actually was no reference to it.  Perhaps the load is referenced
2263   // by a dead instruction.
2264   Register LoadReg = getRegForValue(LI);
2265   if (!LoadReg)
2266     return false;
2267 
2268   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2269   // may mean that the instruction got lowered to multiple MIs, or the use of
2270   // the loaded value ended up being multiple operands of the result.
2271   if (!MRI.hasOneUse(LoadReg))
2272     return false;
2273 
2274   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2275   MachineInstr *User = RI->getParent();
2276 
2277   // Set the insertion point properly.  Folding the load can cause generation of
2278   // other random instructions (like sign extends) for addressing modes; make
2279   // sure they get inserted in a logical place before the new instruction.
2280   FuncInfo.InsertPt = User;
2281   FuncInfo.MBB = User->getParent();
2282 
2283   // Ask the target to try folding the load.
2284   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2285 }
2286 
2287 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2288   // Must be an add.
2289   if (!isa<AddOperator>(Add))
2290     return false;
2291   // Type size needs to match.
2292   if (DL.getTypeSizeInBits(GEP->getType()) !=
2293       DL.getTypeSizeInBits(Add->getType()))
2294     return false;
2295   // Must be in the same basic block.
2296   if (isa<Instruction>(Add) &&
2297       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2298     return false;
2299   // Must have a constant operand.
2300   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2301 }
2302 
2303 MachineMemOperand *
2304 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2305   const Value *Ptr;
2306   Type *ValTy;
2307   MaybeAlign Alignment;
2308   MachineMemOperand::Flags Flags;
2309   bool IsVolatile;
2310 
2311   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2312     Alignment = LI->getAlign();
2313     IsVolatile = LI->isVolatile();
2314     Flags = MachineMemOperand::MOLoad;
2315     Ptr = LI->getPointerOperand();
2316     ValTy = LI->getType();
2317   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2318     Alignment = SI->getAlign();
2319     IsVolatile = SI->isVolatile();
2320     Flags = MachineMemOperand::MOStore;
2321     Ptr = SI->getPointerOperand();
2322     ValTy = SI->getValueOperand()->getType();
2323   } else
2324     return nullptr;
2325 
2326   bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
2327   bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
2328   bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
2329   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2330 
2331   AAMDNodes AAInfo;
2332   I->getAAMetadata(AAInfo);
2333 
2334   if (!Alignment) // Ensure that codegen never sees alignment 0.
2335     Alignment = DL.getABITypeAlign(ValTy);
2336 
2337   unsigned Size = DL.getTypeStoreSize(ValTy);
2338 
2339   if (IsVolatile)
2340     Flags |= MachineMemOperand::MOVolatile;
2341   if (IsNonTemporal)
2342     Flags |= MachineMemOperand::MONonTemporal;
2343   if (IsDereferenceable)
2344     Flags |= MachineMemOperand::MODereferenceable;
2345   if (IsInvariant)
2346     Flags |= MachineMemOperand::MOInvariant;
2347 
2348   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2349                                            *Alignment, AAInfo, Ranges);
2350 }
2351 
2352 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2353   // If both operands are the same, then try to optimize or fold the cmp.
2354   CmpInst::Predicate Predicate = CI->getPredicate();
2355   if (CI->getOperand(0) != CI->getOperand(1))
2356     return Predicate;
2357 
2358   switch (Predicate) {
2359   default: llvm_unreachable("Invalid predicate!");
2360   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2361   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2362   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2363   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2364   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2365   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2366   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2367   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2368   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2369   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2370   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2371   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2372   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2373   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2374   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2375   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2376 
2377   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2378   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2379   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2380   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2381   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2382   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2383   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2384   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2385   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2386   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2387   }
2388 
2389   return Predicate;
2390 }
2391