1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #define DEBUG_TYPE "isel" 43 #include "llvm/CodeGen/FastISel.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Analysis/Loads.h" 46 #include "llvm/CodeGen/Analysis.h" 47 #include "llvm/CodeGen/FunctionLoweringInfo.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/DebugInfo.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/IntrinsicInst.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetLibraryInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetMachine.h" 64 using namespace llvm; 65 66 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 67 "target-independent selector"); 68 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 69 "target-specific selector"); 70 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 71 72 /// startNewBlock - Set the current block to which generated machine 73 /// instructions will be appended, and clear the local CSE map. 74 /// 75 void FastISel::startNewBlock() { 76 LocalValueMap.clear(); 77 78 EmitStartPt = 0; 79 80 // Advance the emit start point past any EH_LABEL instructions. 81 MachineBasicBlock::iterator 82 I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end(); 83 while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) { 84 EmitStartPt = I; 85 ++I; 86 } 87 LastLocalValue = EmitStartPt; 88 } 89 90 void FastISel::flushLocalValueMap() { 91 LocalValueMap.clear(); 92 LastLocalValue = EmitStartPt; 93 recomputeInsertPt(); 94 } 95 96 bool FastISel::hasTrivialKill(const Value *V) const { 97 // Don't consider constants or arguments to have trivial kills. 98 const Instruction *I = dyn_cast<Instruction>(V); 99 if (!I) 100 return false; 101 102 // No-op casts are trivially coalesced by fast-isel. 103 if (const CastInst *Cast = dyn_cast<CastInst>(I)) 104 if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) && 105 !hasTrivialKill(Cast->getOperand(0))) 106 return false; 107 108 // GEPs with all zero indices are trivially coalesced by fast-isel. 109 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 110 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 111 return false; 112 113 // Only instructions with a single use in the same basic block are considered 114 // to have trivial kills. 115 return I->hasOneUse() && 116 !(I->getOpcode() == Instruction::BitCast || 117 I->getOpcode() == Instruction::PtrToInt || 118 I->getOpcode() == Instruction::IntToPtr) && 119 cast<Instruction>(*I->use_begin())->getParent() == I->getParent(); 120 } 121 122 unsigned FastISel::getRegForValue(const Value *V) { 123 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); 124 // Don't handle non-simple values in FastISel. 125 if (!RealVT.isSimple()) 126 return 0; 127 128 // Ignore illegal types. We must do this before looking up the value 129 // in ValueMap because Arguments are given virtual registers regardless 130 // of whether FastISel can handle them. 131 MVT VT = RealVT.getSimpleVT(); 132 if (!TLI.isTypeLegal(VT)) { 133 // Handle integer promotions, though, because they're common and easy. 134 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 135 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 136 else 137 return 0; 138 } 139 140 // Look up the value to see if we already have a register for it. 141 unsigned Reg = lookUpRegForValue(V); 142 if (Reg != 0) 143 return Reg; 144 145 // In bottom-up mode, just create the virtual register which will be used 146 // to hold the value. It will be materialized later. 147 if (isa<Instruction>(V) && 148 (!isa<AllocaInst>(V) || 149 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 150 return FuncInfo.InitializeRegForValue(V); 151 152 SavePoint SaveInsertPt = enterLocalValueArea(); 153 154 // Materialize the value in a register. Emit any instructions in the 155 // local value area. 156 Reg = materializeRegForValue(V, VT); 157 158 leaveLocalValueArea(SaveInsertPt); 159 160 return Reg; 161 } 162 163 /// materializeRegForValue - Helper for getRegForValue. This function is 164 /// called when the value isn't already available in a register and must 165 /// be materialized with new instructions. 166 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 167 unsigned Reg = 0; 168 169 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 170 if (CI->getValue().getActiveBits() <= 64) 171 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 172 } else if (isa<AllocaInst>(V)) { 173 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V)); 174 } else if (isa<ConstantPointerNull>(V)) { 175 // Translate this as an integer zero so that it can be 176 // local-CSE'd with actual integer zeros. 177 Reg = 178 getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext()))); 179 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 180 if (CF->isNullValue()) { 181 Reg = TargetMaterializeFloatZero(CF); 182 } else { 183 // Try to emit the constant directly. 184 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); 185 } 186 187 if (!Reg) { 188 // Try to emit the constant by using an integer constant with a cast. 189 const APFloat &Flt = CF->getValueAPF(); 190 EVT IntVT = TLI.getPointerTy(); 191 192 uint64_t x[2]; 193 uint32_t IntBitWidth = IntVT.getSizeInBits(); 194 bool isExact; 195 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 196 APFloat::rmTowardZero, &isExact); 197 if (isExact) { 198 APInt IntVal(IntBitWidth, x); 199 200 unsigned IntegerReg = 201 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 202 if (IntegerReg != 0) 203 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 204 IntegerReg, /*Kill=*/false); 205 } 206 } 207 } else if (const Operator *Op = dyn_cast<Operator>(V)) { 208 if (!SelectOperator(Op, Op->getOpcode())) 209 if (!isa<Instruction>(Op) || 210 !TargetSelectInstruction(cast<Instruction>(Op))) 211 return 0; 212 Reg = lookUpRegForValue(Op); 213 } else if (isa<UndefValue>(V)) { 214 Reg = createResultReg(TLI.getRegClassFor(VT)); 215 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 216 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 217 } 218 219 // If target-independent code couldn't handle the value, give target-specific 220 // code a try. 221 if (!Reg && isa<Constant>(V)) 222 Reg = TargetMaterializeConstant(cast<Constant>(V)); 223 224 // Don't cache constant materializations in the general ValueMap. 225 // To do so would require tracking what uses they dominate. 226 if (Reg != 0) { 227 LocalValueMap[V] = Reg; 228 LastLocalValue = MRI.getVRegDef(Reg); 229 } 230 return Reg; 231 } 232 233 unsigned FastISel::lookUpRegForValue(const Value *V) { 234 // Look up the value to see if we already have a register for it. We 235 // cache values defined by Instructions across blocks, and other values 236 // only locally. This is because Instructions already have the SSA 237 // def-dominates-use requirement enforced. 238 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 239 if (I != FuncInfo.ValueMap.end()) 240 return I->second; 241 return LocalValueMap[V]; 242 } 243 244 /// UpdateValueMap - Update the value map to include the new mapping for this 245 /// instruction, or insert an extra copy to get the result in a previous 246 /// determined register. 247 /// NOTE: This is only necessary because we might select a block that uses 248 /// a value before we select the block that defines the value. It might be 249 /// possible to fix this by selecting blocks in reverse postorder. 250 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 251 if (!isa<Instruction>(I)) { 252 LocalValueMap[I] = Reg; 253 return; 254 } 255 256 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 257 if (AssignedReg == 0) 258 // Use the new register. 259 AssignedReg = Reg; 260 else if (Reg != AssignedReg) { 261 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 262 for (unsigned i = 0; i < NumRegs; i++) 263 FuncInfo.RegFixups[AssignedReg+i] = Reg+i; 264 265 AssignedReg = Reg; 266 } 267 } 268 269 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 270 unsigned IdxN = getRegForValue(Idx); 271 if (IdxN == 0) 272 // Unhandled operand. Halt "fast" selection and bail. 273 return std::pair<unsigned, bool>(0, false); 274 275 bool IdxNIsKill = hasTrivialKill(Idx); 276 277 // If the index is smaller or larger than intptr_t, truncate or extend it. 278 MVT PtrVT = TLI.getPointerTy(); 279 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 280 if (IdxVT.bitsLT(PtrVT)) { 281 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, 282 IdxN, IdxNIsKill); 283 IdxNIsKill = true; 284 } 285 else if (IdxVT.bitsGT(PtrVT)) { 286 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, 287 IdxN, IdxNIsKill); 288 IdxNIsKill = true; 289 } 290 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 291 } 292 293 void FastISel::recomputeInsertPt() { 294 if (getLastLocalValue()) { 295 FuncInfo.InsertPt = getLastLocalValue(); 296 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 297 ++FuncInfo.InsertPt; 298 } else 299 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 300 301 // Now skip past any EH_LABELs, which must remain at the beginning. 302 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 303 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 304 ++FuncInfo.InsertPt; 305 } 306 307 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 308 MachineBasicBlock::iterator E) { 309 assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!"); 310 while (I != E) { 311 MachineInstr *Dead = &*I; 312 ++I; 313 Dead->eraseFromParent(); 314 ++NumFastIselDead; 315 } 316 recomputeInsertPt(); 317 } 318 319 FastISel::SavePoint FastISel::enterLocalValueArea() { 320 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 321 DebugLoc OldDL = DL; 322 recomputeInsertPt(); 323 DL = DebugLoc(); 324 SavePoint SP = { OldInsertPt, OldDL }; 325 return SP; 326 } 327 328 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 329 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 330 LastLocalValue = llvm::prior(FuncInfo.InsertPt); 331 332 // Restore the previous insert position. 333 FuncInfo.InsertPt = OldInsertPt.InsertPt; 334 DL = OldInsertPt.DL; 335 } 336 337 /// SelectBinaryOp - Select and emit code for a binary operator instruction, 338 /// which has an opcode which directly corresponds to the given ISD opcode. 339 /// 340 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) { 341 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 342 if (VT == MVT::Other || !VT.isSimple()) 343 // Unhandled type. Halt "fast" selection and bail. 344 return false; 345 346 // We only handle legal types. For example, on x86-32 the instruction 347 // selector contains all of the 64-bit instructions from x86-64, 348 // under the assumption that i64 won't be used if the target doesn't 349 // support it. 350 if (!TLI.isTypeLegal(VT)) { 351 // MVT::i1 is special. Allow AND, OR, or XOR because they 352 // don't require additional zeroing, which makes them easy. 353 if (VT == MVT::i1 && 354 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 355 ISDOpcode == ISD::XOR)) 356 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 357 else 358 return false; 359 } 360 361 // Check if the first operand is a constant, and handle it as "ri". At -O0, 362 // we don't have anything that canonicalizes operand order. 363 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 364 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 365 unsigned Op1 = getRegForValue(I->getOperand(1)); 366 if (Op1 == 0) return false; 367 368 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 369 370 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, 371 Op1IsKill, CI->getZExtValue(), 372 VT.getSimpleVT()); 373 if (ResultReg == 0) return false; 374 375 // We successfully emitted code for the given LLVM Instruction. 376 UpdateValueMap(I, ResultReg); 377 return true; 378 } 379 380 381 unsigned Op0 = getRegForValue(I->getOperand(0)); 382 if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. 383 return false; 384 385 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 386 387 // Check if the second operand is a constant and handle it appropriately. 388 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 389 uint64_t Imm = CI->getZExtValue(); 390 391 // Transform "sdiv exact X, 8" -> "sra X, 3". 392 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 393 cast<BinaryOperator>(I)->isExact() && 394 isPowerOf2_64(Imm)) { 395 Imm = Log2_64(Imm); 396 ISDOpcode = ISD::SRA; 397 } 398 399 // Transform "urem x, pow2" -> "and x, pow2-1". 400 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 401 isPowerOf2_64(Imm)) { 402 --Imm; 403 ISDOpcode = ISD::AND; 404 } 405 406 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 407 Op0IsKill, Imm, VT.getSimpleVT()); 408 if (ResultReg == 0) return false; 409 410 // We successfully emitted code for the given LLVM Instruction. 411 UpdateValueMap(I, ResultReg); 412 return true; 413 } 414 415 // Check if the second operand is a constant float. 416 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 417 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 418 ISDOpcode, Op0, Op0IsKill, CF); 419 if (ResultReg != 0) { 420 // We successfully emitted code for the given LLVM Instruction. 421 UpdateValueMap(I, ResultReg); 422 return true; 423 } 424 } 425 426 unsigned Op1 = getRegForValue(I->getOperand(1)); 427 if (Op1 == 0) 428 // Unhandled operand. Halt "fast" selection and bail. 429 return false; 430 431 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 432 433 // Now we have both operands in registers. Emit the instruction. 434 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 435 ISDOpcode, 436 Op0, Op0IsKill, 437 Op1, Op1IsKill); 438 if (ResultReg == 0) 439 // Target-specific code wasn't able to find a machine opcode for 440 // the given ISD opcode and type. Halt "fast" selection and bail. 441 return false; 442 443 // We successfully emitted code for the given LLVM Instruction. 444 UpdateValueMap(I, ResultReg); 445 return true; 446 } 447 448 bool FastISel::SelectGetElementPtr(const User *I) { 449 unsigned N = getRegForValue(I->getOperand(0)); 450 if (N == 0) 451 // Unhandled operand. Halt "fast" selection and bail. 452 return false; 453 454 bool NIsKill = hasTrivialKill(I->getOperand(0)); 455 456 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 457 // into a single N = N + TotalOffset. 458 uint64_t TotalOffs = 0; 459 // FIXME: What's a good SWAG number for MaxOffs? 460 uint64_t MaxOffs = 2048; 461 Type *Ty = I->getOperand(0)->getType(); 462 MVT VT = TLI.getPointerTy(); 463 for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1, 464 E = I->op_end(); OI != E; ++OI) { 465 const Value *Idx = *OI; 466 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 467 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 468 if (Field) { 469 // N = N + Offset 470 TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field); 471 if (TotalOffs >= MaxOffs) { 472 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 473 if (N == 0) 474 // Unhandled operand. Halt "fast" selection and bail. 475 return false; 476 NIsKill = true; 477 TotalOffs = 0; 478 } 479 } 480 Ty = StTy->getElementType(Field); 481 } else { 482 Ty = cast<SequentialType>(Ty)->getElementType(); 483 484 // If this is a constant subscript, handle it quickly. 485 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 486 if (CI->isZero()) continue; 487 // N = N + Offset 488 TotalOffs += 489 TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 490 if (TotalOffs >= MaxOffs) { 491 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 492 if (N == 0) 493 // Unhandled operand. Halt "fast" selection and bail. 494 return false; 495 NIsKill = true; 496 TotalOffs = 0; 497 } 498 continue; 499 } 500 if (TotalOffs) { 501 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 502 if (N == 0) 503 // Unhandled operand. Halt "fast" selection and bail. 504 return false; 505 NIsKill = true; 506 TotalOffs = 0; 507 } 508 509 // N = N + Idx * ElementSize; 510 uint64_t ElementSize = TD.getTypeAllocSize(Ty); 511 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 512 unsigned IdxN = Pair.first; 513 bool IdxNIsKill = Pair.second; 514 if (IdxN == 0) 515 // Unhandled operand. Halt "fast" selection and bail. 516 return false; 517 518 if (ElementSize != 1) { 519 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 520 if (IdxN == 0) 521 // Unhandled operand. Halt "fast" selection and bail. 522 return false; 523 IdxNIsKill = true; 524 } 525 N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 526 if (N == 0) 527 // Unhandled operand. Halt "fast" selection and bail. 528 return false; 529 } 530 } 531 if (TotalOffs) { 532 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 533 if (N == 0) 534 // Unhandled operand. Halt "fast" selection and bail. 535 return false; 536 } 537 538 // We successfully emitted code for the given LLVM Instruction. 539 UpdateValueMap(I, N); 540 return true; 541 } 542 543 bool FastISel::SelectCall(const User *I) { 544 const CallInst *Call = cast<CallInst>(I); 545 546 // Handle simple inline asms. 547 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 548 // Don't attempt to handle constraints. 549 if (!IA->getConstraintString().empty()) 550 return false; 551 552 unsigned ExtraInfo = 0; 553 if (IA->hasSideEffects()) 554 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 555 if (IA->isAlignStack()) 556 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 557 558 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 559 TII.get(TargetOpcode::INLINEASM)) 560 .addExternalSymbol(IA->getAsmString().c_str()) 561 .addImm(ExtraInfo); 562 return true; 563 } 564 565 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 566 ComputeUsesVAFloatArgument(*Call, &MMI); 567 568 const Function *F = Call->getCalledFunction(); 569 if (!F) return false; 570 571 // Handle selected intrinsic function calls. 572 switch (F->getIntrinsicID()) { 573 default: break; 574 // At -O0 we don't care about the lifetime intrinsics. 575 case Intrinsic::lifetime_start: 576 case Intrinsic::lifetime_end: 577 // The donothing intrinsic does, well, nothing. 578 case Intrinsic::donothing: 579 return true; 580 581 case Intrinsic::dbg_declare: { 582 const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call); 583 if (!DIVariable(DI->getVariable()).Verify() || 584 !FuncInfo.MF->getMMI().hasDebugInfo()) { 585 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 586 return true; 587 } 588 589 const Value *Address = DI->getAddress(); 590 if (!Address || isa<UndefValue>(Address)) { 591 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 592 return true; 593 } 594 595 unsigned Reg = 0; 596 unsigned Offset = 0; 597 if (const Argument *Arg = dyn_cast<Argument>(Address)) { 598 // Some arguments' frame index is recorded during argument lowering. 599 Offset = FuncInfo.getArgumentFrameIndex(Arg); 600 if (Offset) 601 Reg = TRI.getFrameRegister(*FuncInfo.MF); 602 } 603 if (!Reg) 604 Reg = lookUpRegForValue(Address); 605 606 // If we have a VLA that has a "use" in a metadata node that's then used 607 // here but it has no other uses, then we have a problem. E.g., 608 // 609 // int foo (const int *x) { 610 // char a[*x]; 611 // return 0; 612 // } 613 // 614 // If we assign 'a' a vreg and fast isel later on has to use the selection 615 // DAG isel, it will want to copy the value to the vreg. However, there are 616 // no uses, which goes counter to what selection DAG isel expects. 617 if (!Reg && !Address->use_empty() && isa<Instruction>(Address) && 618 (!isa<AllocaInst>(Address) || 619 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 620 Reg = FuncInfo.InitializeRegForValue(Address); 621 622 if (Reg) 623 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 624 TII.get(TargetOpcode::DBG_VALUE)) 625 .addReg(Reg, RegState::Debug).addImm(Offset) 626 .addMetadata(DI->getVariable()); 627 else 628 // We can't yet handle anything else here because it would require 629 // generating code, thus altering codegen because of debug info. 630 DEBUG(dbgs() << "Dropping debug info for " << DI); 631 return true; 632 } 633 case Intrinsic::dbg_value: { 634 // This form of DBG_VALUE is target-independent. 635 const DbgValueInst *DI = cast<DbgValueInst>(Call); 636 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 637 const Value *V = DI->getValue(); 638 if (!V) { 639 // Currently the optimizer can produce this; insert an undef to 640 // help debugging. Probably the optimizer should not do this. 641 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 642 .addReg(0U).addImm(DI->getOffset()) 643 .addMetadata(DI->getVariable()); 644 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 645 if (CI->getBitWidth() > 64) 646 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 647 .addCImm(CI).addImm(DI->getOffset()) 648 .addMetadata(DI->getVariable()); 649 else 650 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 651 .addImm(CI->getZExtValue()).addImm(DI->getOffset()) 652 .addMetadata(DI->getVariable()); 653 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 654 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 655 .addFPImm(CF).addImm(DI->getOffset()) 656 .addMetadata(DI->getVariable()); 657 } else if (unsigned Reg = lookUpRegForValue(V)) { 658 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 659 .addReg(Reg, RegState::Debug).addImm(DI->getOffset()) 660 .addMetadata(DI->getVariable()); 661 } else { 662 // We can't yet handle anything else here because it would require 663 // generating code, thus altering codegen because of debug info. 664 DEBUG(dbgs() << "Dropping debug info for " << DI); 665 } 666 return true; 667 } 668 case Intrinsic::objectsize: { 669 ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1)); 670 unsigned long long Res = CI->isZero() ? -1ULL : 0; 671 Constant *ResCI = ConstantInt::get(Call->getType(), Res); 672 unsigned ResultReg = getRegForValue(ResCI); 673 if (ResultReg == 0) 674 return false; 675 UpdateValueMap(Call, ResultReg); 676 return true; 677 } 678 } 679 680 // Usually, it does not make sense to initialize a value, 681 // make an unrelated function call and use the value, because 682 // it tends to be spilled on the stack. So, we move the pointer 683 // to the last local value to the beginning of the block, so that 684 // all the values which have already been materialized, 685 // appear after the call. It also makes sense to skip intrinsics 686 // since they tend to be inlined. 687 if (!isa<IntrinsicInst>(F)) 688 flushLocalValueMap(); 689 690 // An arbitrary call. Bail. 691 return false; 692 } 693 694 bool FastISel::SelectCast(const User *I, unsigned Opcode) { 695 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 696 EVT DstVT = TLI.getValueType(I->getType()); 697 698 if (SrcVT == MVT::Other || !SrcVT.isSimple() || 699 DstVT == MVT::Other || !DstVT.isSimple()) 700 // Unhandled type. Halt "fast" selection and bail. 701 return false; 702 703 // Check if the destination type is legal. 704 if (!TLI.isTypeLegal(DstVT)) 705 return false; 706 707 // Check if the source operand is legal. 708 if (!TLI.isTypeLegal(SrcVT)) 709 return false; 710 711 unsigned InputReg = getRegForValue(I->getOperand(0)); 712 if (!InputReg) 713 // Unhandled operand. Halt "fast" selection and bail. 714 return false; 715 716 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 717 718 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), 719 DstVT.getSimpleVT(), 720 Opcode, 721 InputReg, InputRegIsKill); 722 if (!ResultReg) 723 return false; 724 725 UpdateValueMap(I, ResultReg); 726 return true; 727 } 728 729 bool FastISel::SelectBitCast(const User *I) { 730 // If the bitcast doesn't change the type, just use the operand value. 731 if (I->getType() == I->getOperand(0)->getType()) { 732 unsigned Reg = getRegForValue(I->getOperand(0)); 733 if (Reg == 0) 734 return false; 735 UpdateValueMap(I, Reg); 736 return true; 737 } 738 739 // Bitcasts of other values become reg-reg copies or BITCAST operators. 740 EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType()); 741 EVT DstEVT = TLI.getValueType(I->getType()); 742 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 743 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 744 // Unhandled type. Halt "fast" selection and bail. 745 return false; 746 747 MVT SrcVT = SrcEVT.getSimpleVT(); 748 MVT DstVT = DstEVT.getSimpleVT(); 749 unsigned Op0 = getRegForValue(I->getOperand(0)); 750 if (Op0 == 0) 751 // Unhandled operand. Halt "fast" selection and bail. 752 return false; 753 754 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 755 756 // First, try to perform the bitcast by inserting a reg-reg copy. 757 unsigned ResultReg = 0; 758 if (SrcVT == DstVT) { 759 const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); 760 const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); 761 // Don't attempt a cross-class copy. It will likely fail. 762 if (SrcClass == DstClass) { 763 ResultReg = createResultReg(DstClass); 764 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 765 ResultReg).addReg(Op0); 766 } 767 } 768 769 // If the reg-reg copy failed, select a BITCAST opcode. 770 if (!ResultReg) 771 ResultReg = FastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 772 773 if (!ResultReg) 774 return false; 775 776 UpdateValueMap(I, ResultReg); 777 return true; 778 } 779 780 bool 781 FastISel::SelectInstruction(const Instruction *I) { 782 // Just before the terminator instruction, insert instructions to 783 // feed PHI nodes in successor blocks. 784 if (isa<TerminatorInst>(I)) 785 if (!HandlePHINodesInSuccessorBlocks(I->getParent())) 786 return false; 787 788 DL = I->getDebugLoc(); 789 790 MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt; 791 792 // As a special case, don't handle calls to builtin library functions that 793 // may be translated directly to target instructions. 794 if (const CallInst *Call = dyn_cast<CallInst>(I)) { 795 const Function *F = Call->getCalledFunction(); 796 LibFunc::Func Func; 797 if (F && !F->hasLocalLinkage() && F->hasName() && 798 LibInfo->getLibFunc(F->getName(), Func) && 799 LibInfo->hasOptimizedCodeGen(Func)) 800 return false; 801 } 802 803 // First, try doing target-independent selection. 804 if (SelectOperator(I, I->getOpcode())) { 805 ++NumFastIselSuccessIndependent; 806 DL = DebugLoc(); 807 return true; 808 } 809 // Remove dead code. However, ignore call instructions since we've flushed 810 // the local value map and recomputed the insert point. 811 if (!isa<CallInst>(I)) { 812 recomputeInsertPt(); 813 if (SavedInsertPt != FuncInfo.InsertPt) 814 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 815 } 816 817 // Next, try calling the target to attempt to handle the instruction. 818 SavedInsertPt = FuncInfo.InsertPt; 819 if (TargetSelectInstruction(I)) { 820 ++NumFastIselSuccessTarget; 821 DL = DebugLoc(); 822 return true; 823 } 824 // Check for dead code and remove as necessary. 825 recomputeInsertPt(); 826 if (SavedInsertPt != FuncInfo.InsertPt) 827 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 828 829 DL = DebugLoc(); 830 return false; 831 } 832 833 /// FastEmitBranch - Emit an unconditional branch to the given block, 834 /// unless it is the immediate (fall-through) successor, and update 835 /// the CFG. 836 void 837 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) { 838 839 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 840 // For more accurate line information if this is the only instruction 841 // in the block then emit it, otherwise we have the unconditional 842 // fall-through case, which needs no instructions. 843 } else { 844 // The unconditional branch case. 845 TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL, 846 SmallVector<MachineOperand, 0>(), DL); 847 } 848 FuncInfo.MBB->addSuccessor(MSucc); 849 } 850 851 /// SelectFNeg - Emit an FNeg operation. 852 /// 853 bool 854 FastISel::SelectFNeg(const User *I) { 855 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 856 if (OpReg == 0) return false; 857 858 bool OpRegIsKill = hasTrivialKill(I); 859 860 // If the target has ISD::FNEG, use it. 861 EVT VT = TLI.getValueType(I->getType()); 862 unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), 863 ISD::FNEG, OpReg, OpRegIsKill); 864 if (ResultReg != 0) { 865 UpdateValueMap(I, ResultReg); 866 return true; 867 } 868 869 // Bitcast the value to integer, twiddle the sign bit with xor, 870 // and then bitcast it back to floating-point. 871 if (VT.getSizeInBits() > 64) return false; 872 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 873 if (!TLI.isTypeLegal(IntVT)) 874 return false; 875 876 unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 877 ISD::BITCAST, OpReg, OpRegIsKill); 878 if (IntReg == 0) 879 return false; 880 881 unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, 882 IntReg, /*Kill=*/true, 883 UINT64_C(1) << (VT.getSizeInBits()-1), 884 IntVT.getSimpleVT()); 885 if (IntResultReg == 0) 886 return false; 887 888 ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), 889 ISD::BITCAST, IntResultReg, /*Kill=*/true); 890 if (ResultReg == 0) 891 return false; 892 893 UpdateValueMap(I, ResultReg); 894 return true; 895 } 896 897 bool 898 FastISel::SelectExtractValue(const User *U) { 899 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 900 if (!EVI) 901 return false; 902 903 // Make sure we only try to handle extracts with a legal result. But also 904 // allow i1 because it's easy. 905 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true); 906 if (!RealVT.isSimple()) 907 return false; 908 MVT VT = RealVT.getSimpleVT(); 909 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 910 return false; 911 912 const Value *Op0 = EVI->getOperand(0); 913 Type *AggTy = Op0->getType(); 914 915 // Get the base result register. 916 unsigned ResultReg; 917 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 918 if (I != FuncInfo.ValueMap.end()) 919 ResultReg = I->second; 920 else if (isa<Instruction>(Op0)) 921 ResultReg = FuncInfo.InitializeRegForValue(Op0); 922 else 923 return false; // fast-isel can't handle aggregate constants at the moment 924 925 // Get the actual result register, which is an offset from the base register. 926 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 927 928 SmallVector<EVT, 4> AggValueVTs; 929 ComputeValueVTs(TLI, AggTy, AggValueVTs); 930 931 for (unsigned i = 0; i < VTIndex; i++) 932 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 933 934 UpdateValueMap(EVI, ResultReg); 935 return true; 936 } 937 938 bool 939 FastISel::SelectOperator(const User *I, unsigned Opcode) { 940 switch (Opcode) { 941 case Instruction::Add: 942 return SelectBinaryOp(I, ISD::ADD); 943 case Instruction::FAdd: 944 return SelectBinaryOp(I, ISD::FADD); 945 case Instruction::Sub: 946 return SelectBinaryOp(I, ISD::SUB); 947 case Instruction::FSub: 948 // FNeg is currently represented in LLVM IR as a special case of FSub. 949 if (BinaryOperator::isFNeg(I)) 950 return SelectFNeg(I); 951 return SelectBinaryOp(I, ISD::FSUB); 952 case Instruction::Mul: 953 return SelectBinaryOp(I, ISD::MUL); 954 case Instruction::FMul: 955 return SelectBinaryOp(I, ISD::FMUL); 956 case Instruction::SDiv: 957 return SelectBinaryOp(I, ISD::SDIV); 958 case Instruction::UDiv: 959 return SelectBinaryOp(I, ISD::UDIV); 960 case Instruction::FDiv: 961 return SelectBinaryOp(I, ISD::FDIV); 962 case Instruction::SRem: 963 return SelectBinaryOp(I, ISD::SREM); 964 case Instruction::URem: 965 return SelectBinaryOp(I, ISD::UREM); 966 case Instruction::FRem: 967 return SelectBinaryOp(I, ISD::FREM); 968 case Instruction::Shl: 969 return SelectBinaryOp(I, ISD::SHL); 970 case Instruction::LShr: 971 return SelectBinaryOp(I, ISD::SRL); 972 case Instruction::AShr: 973 return SelectBinaryOp(I, ISD::SRA); 974 case Instruction::And: 975 return SelectBinaryOp(I, ISD::AND); 976 case Instruction::Or: 977 return SelectBinaryOp(I, ISD::OR); 978 case Instruction::Xor: 979 return SelectBinaryOp(I, ISD::XOR); 980 981 case Instruction::GetElementPtr: 982 return SelectGetElementPtr(I); 983 984 case Instruction::Br: { 985 const BranchInst *BI = cast<BranchInst>(I); 986 987 if (BI->isUnconditional()) { 988 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 989 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 990 FastEmitBranch(MSucc, BI->getDebugLoc()); 991 return true; 992 } 993 994 // Conditional branches are not handed yet. 995 // Halt "fast" selection and bail. 996 return false; 997 } 998 999 case Instruction::Unreachable: 1000 // Nothing to emit. 1001 return true; 1002 1003 case Instruction::Alloca: 1004 // FunctionLowering has the static-sized case covered. 1005 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1006 return true; 1007 1008 // Dynamic-sized alloca is not handled yet. 1009 return false; 1010 1011 case Instruction::Call: 1012 return SelectCall(I); 1013 1014 case Instruction::BitCast: 1015 return SelectBitCast(I); 1016 1017 case Instruction::FPToSI: 1018 return SelectCast(I, ISD::FP_TO_SINT); 1019 case Instruction::ZExt: 1020 return SelectCast(I, ISD::ZERO_EXTEND); 1021 case Instruction::SExt: 1022 return SelectCast(I, ISD::SIGN_EXTEND); 1023 case Instruction::Trunc: 1024 return SelectCast(I, ISD::TRUNCATE); 1025 case Instruction::SIToFP: 1026 return SelectCast(I, ISD::SINT_TO_FP); 1027 1028 case Instruction::IntToPtr: // Deliberate fall-through. 1029 case Instruction::PtrToInt: { 1030 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1031 EVT DstVT = TLI.getValueType(I->getType()); 1032 if (DstVT.bitsGT(SrcVT)) 1033 return SelectCast(I, ISD::ZERO_EXTEND); 1034 if (DstVT.bitsLT(SrcVT)) 1035 return SelectCast(I, ISD::TRUNCATE); 1036 unsigned Reg = getRegForValue(I->getOperand(0)); 1037 if (Reg == 0) return false; 1038 UpdateValueMap(I, Reg); 1039 return true; 1040 } 1041 1042 case Instruction::ExtractValue: 1043 return SelectExtractValue(I); 1044 1045 case Instruction::PHI: 1046 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1047 1048 default: 1049 // Unhandled instruction. Halt "fast" selection and bail. 1050 return false; 1051 } 1052 } 1053 1054 FastISel::FastISel(FunctionLoweringInfo &funcInfo, 1055 const TargetLibraryInfo *libInfo) 1056 : FuncInfo(funcInfo), 1057 MRI(FuncInfo.MF->getRegInfo()), 1058 MFI(*FuncInfo.MF->getFrameInfo()), 1059 MCP(*FuncInfo.MF->getConstantPool()), 1060 TM(FuncInfo.MF->getTarget()), 1061 TD(*TM.getDataLayout()), 1062 TII(*TM.getInstrInfo()), 1063 TLI(*TM.getTargetLowering()), 1064 TRI(*TM.getRegisterInfo()), 1065 LibInfo(libInfo) { 1066 } 1067 1068 FastISel::~FastISel() {} 1069 1070 unsigned FastISel::FastEmit_(MVT, MVT, 1071 unsigned) { 1072 return 0; 1073 } 1074 1075 unsigned FastISel::FastEmit_r(MVT, MVT, 1076 unsigned, 1077 unsigned /*Op0*/, bool /*Op0IsKill*/) { 1078 return 0; 1079 } 1080 1081 unsigned FastISel::FastEmit_rr(MVT, MVT, 1082 unsigned, 1083 unsigned /*Op0*/, bool /*Op0IsKill*/, 1084 unsigned /*Op1*/, bool /*Op1IsKill*/) { 1085 return 0; 1086 } 1087 1088 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1089 return 0; 1090 } 1091 1092 unsigned FastISel::FastEmit_f(MVT, MVT, 1093 unsigned, const ConstantFP * /*FPImm*/) { 1094 return 0; 1095 } 1096 1097 unsigned FastISel::FastEmit_ri(MVT, MVT, 1098 unsigned, 1099 unsigned /*Op0*/, bool /*Op0IsKill*/, 1100 uint64_t /*Imm*/) { 1101 return 0; 1102 } 1103 1104 unsigned FastISel::FastEmit_rf(MVT, MVT, 1105 unsigned, 1106 unsigned /*Op0*/, bool /*Op0IsKill*/, 1107 const ConstantFP * /*FPImm*/) { 1108 return 0; 1109 } 1110 1111 unsigned FastISel::FastEmit_rri(MVT, MVT, 1112 unsigned, 1113 unsigned /*Op0*/, bool /*Op0IsKill*/, 1114 unsigned /*Op1*/, bool /*Op1IsKill*/, 1115 uint64_t /*Imm*/) { 1116 return 0; 1117 } 1118 1119 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries 1120 /// to emit an instruction with an immediate operand using FastEmit_ri. 1121 /// If that fails, it materializes the immediate into a register and try 1122 /// FastEmit_rr instead. 1123 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode, 1124 unsigned Op0, bool Op0IsKill, 1125 uint64_t Imm, MVT ImmType) { 1126 // If this is a multiply by a power of two, emit this as a shift left. 1127 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1128 Opcode = ISD::SHL; 1129 Imm = Log2_64(Imm); 1130 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1131 // div x, 8 -> srl x, 3 1132 Opcode = ISD::SRL; 1133 Imm = Log2_64(Imm); 1134 } 1135 1136 // Horrible hack (to be removed), check to make sure shift amounts are 1137 // in-range. 1138 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1139 Imm >= VT.getSizeInBits()) 1140 return 0; 1141 1142 // First check if immediate type is legal. If not, we can't use the ri form. 1143 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1144 if (ResultReg != 0) 1145 return ResultReg; 1146 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1147 if (MaterialReg == 0) { 1148 // This is a bit ugly/slow, but failing here means falling out of 1149 // fast-isel, which would be very slow. 1150 IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(), 1151 VT.getSizeInBits()); 1152 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1153 } 1154 return FastEmit_rr(VT, VT, Opcode, 1155 Op0, Op0IsKill, 1156 MaterialReg, /*Kill=*/true); 1157 } 1158 1159 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { 1160 return MRI.createVirtualRegister(RC); 1161 } 1162 1163 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, 1164 const TargetRegisterClass* RC) { 1165 unsigned ResultReg = createResultReg(RC); 1166 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1167 1168 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg); 1169 return ResultReg; 1170 } 1171 1172 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, 1173 const TargetRegisterClass *RC, 1174 unsigned Op0, bool Op0IsKill) { 1175 unsigned ResultReg = createResultReg(RC); 1176 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1177 1178 if (II.getNumDefs() >= 1) 1179 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1180 .addReg(Op0, Op0IsKill * RegState::Kill); 1181 else { 1182 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1183 .addReg(Op0, Op0IsKill * RegState::Kill); 1184 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1185 ResultReg).addReg(II.ImplicitDefs[0]); 1186 } 1187 1188 return ResultReg; 1189 } 1190 1191 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 1192 const TargetRegisterClass *RC, 1193 unsigned Op0, bool Op0IsKill, 1194 unsigned Op1, bool Op1IsKill) { 1195 unsigned ResultReg = createResultReg(RC); 1196 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1197 1198 if (II.getNumDefs() >= 1) 1199 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1200 .addReg(Op0, Op0IsKill * RegState::Kill) 1201 .addReg(Op1, Op1IsKill * RegState::Kill); 1202 else { 1203 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1204 .addReg(Op0, Op0IsKill * RegState::Kill) 1205 .addReg(Op1, Op1IsKill * RegState::Kill); 1206 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1207 ResultReg).addReg(II.ImplicitDefs[0]); 1208 } 1209 return ResultReg; 1210 } 1211 1212 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 1213 const TargetRegisterClass *RC, 1214 unsigned Op0, bool Op0IsKill, 1215 unsigned Op1, bool Op1IsKill, 1216 unsigned Op2, bool Op2IsKill) { 1217 unsigned ResultReg = createResultReg(RC); 1218 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1219 1220 if (II.getNumDefs() >= 1) 1221 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1222 .addReg(Op0, Op0IsKill * RegState::Kill) 1223 .addReg(Op1, Op1IsKill * RegState::Kill) 1224 .addReg(Op2, Op2IsKill * RegState::Kill); 1225 else { 1226 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1227 .addReg(Op0, Op0IsKill * RegState::Kill) 1228 .addReg(Op1, Op1IsKill * RegState::Kill) 1229 .addReg(Op2, Op2IsKill * RegState::Kill); 1230 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1231 ResultReg).addReg(II.ImplicitDefs[0]); 1232 } 1233 return ResultReg; 1234 } 1235 1236 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 1237 const TargetRegisterClass *RC, 1238 unsigned Op0, bool Op0IsKill, 1239 uint64_t Imm) { 1240 unsigned ResultReg = createResultReg(RC); 1241 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1242 1243 if (II.getNumDefs() >= 1) 1244 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1245 .addReg(Op0, Op0IsKill * RegState::Kill) 1246 .addImm(Imm); 1247 else { 1248 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1249 .addReg(Op0, Op0IsKill * RegState::Kill) 1250 .addImm(Imm); 1251 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1252 ResultReg).addReg(II.ImplicitDefs[0]); 1253 } 1254 return ResultReg; 1255 } 1256 1257 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode, 1258 const TargetRegisterClass *RC, 1259 unsigned Op0, bool Op0IsKill, 1260 uint64_t Imm1, uint64_t Imm2) { 1261 unsigned ResultReg = createResultReg(RC); 1262 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1263 1264 if (II.getNumDefs() >= 1) 1265 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1266 .addReg(Op0, Op0IsKill * RegState::Kill) 1267 .addImm(Imm1) 1268 .addImm(Imm2); 1269 else { 1270 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1271 .addReg(Op0, Op0IsKill * RegState::Kill) 1272 .addImm(Imm1) 1273 .addImm(Imm2); 1274 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1275 ResultReg).addReg(II.ImplicitDefs[0]); 1276 } 1277 return ResultReg; 1278 } 1279 1280 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 1281 const TargetRegisterClass *RC, 1282 unsigned Op0, bool Op0IsKill, 1283 const ConstantFP *FPImm) { 1284 unsigned ResultReg = createResultReg(RC); 1285 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1286 1287 if (II.getNumDefs() >= 1) 1288 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1289 .addReg(Op0, Op0IsKill * RegState::Kill) 1290 .addFPImm(FPImm); 1291 else { 1292 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1293 .addReg(Op0, Op0IsKill * RegState::Kill) 1294 .addFPImm(FPImm); 1295 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1296 ResultReg).addReg(II.ImplicitDefs[0]); 1297 } 1298 return ResultReg; 1299 } 1300 1301 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 1302 const TargetRegisterClass *RC, 1303 unsigned Op0, bool Op0IsKill, 1304 unsigned Op1, bool Op1IsKill, 1305 uint64_t Imm) { 1306 unsigned ResultReg = createResultReg(RC); 1307 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1308 1309 if (II.getNumDefs() >= 1) 1310 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1311 .addReg(Op0, Op0IsKill * RegState::Kill) 1312 .addReg(Op1, Op1IsKill * RegState::Kill) 1313 .addImm(Imm); 1314 else { 1315 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1316 .addReg(Op0, Op0IsKill * RegState::Kill) 1317 .addReg(Op1, Op1IsKill * RegState::Kill) 1318 .addImm(Imm); 1319 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1320 ResultReg).addReg(II.ImplicitDefs[0]); 1321 } 1322 return ResultReg; 1323 } 1324 1325 unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode, 1326 const TargetRegisterClass *RC, 1327 unsigned Op0, bool Op0IsKill, 1328 unsigned Op1, bool Op1IsKill, 1329 uint64_t Imm1, uint64_t Imm2) { 1330 unsigned ResultReg = createResultReg(RC); 1331 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1332 1333 if (II.getNumDefs() >= 1) 1334 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1335 .addReg(Op0, Op0IsKill * RegState::Kill) 1336 .addReg(Op1, Op1IsKill * RegState::Kill) 1337 .addImm(Imm1).addImm(Imm2); 1338 else { 1339 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1340 .addReg(Op0, Op0IsKill * RegState::Kill) 1341 .addReg(Op1, Op1IsKill * RegState::Kill) 1342 .addImm(Imm1).addImm(Imm2); 1343 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1344 ResultReg).addReg(II.ImplicitDefs[0]); 1345 } 1346 return ResultReg; 1347 } 1348 1349 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, 1350 const TargetRegisterClass *RC, 1351 uint64_t Imm) { 1352 unsigned ResultReg = createResultReg(RC); 1353 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1354 1355 if (II.getNumDefs() >= 1) 1356 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm); 1357 else { 1358 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm); 1359 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1360 ResultReg).addReg(II.ImplicitDefs[0]); 1361 } 1362 return ResultReg; 1363 } 1364 1365 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 1366 const TargetRegisterClass *RC, 1367 uint64_t Imm1, uint64_t Imm2) { 1368 unsigned ResultReg = createResultReg(RC); 1369 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1370 1371 if (II.getNumDefs() >= 1) 1372 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1373 .addImm(Imm1).addImm(Imm2); 1374 else { 1375 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2); 1376 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1377 ResultReg).addReg(II.ImplicitDefs[0]); 1378 } 1379 return ResultReg; 1380 } 1381 1382 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT, 1383 unsigned Op0, bool Op0IsKill, 1384 uint32_t Idx) { 1385 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1386 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1387 "Cannot yet extract from physregs"); 1388 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 1389 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 1390 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 1391 DL, TII.get(TargetOpcode::COPY), ResultReg) 1392 .addReg(Op0, getKillRegState(Op0IsKill), Idx); 1393 return ResultReg; 1394 } 1395 1396 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op 1397 /// with all but the least significant bit set to zero. 1398 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 1399 return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 1400 } 1401 1402 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 1403 /// Emit code to ensure constants are copied into registers when needed. 1404 /// Remember the virtual registers that need to be added to the Machine PHI 1405 /// nodes as input. We cannot just directly add them, because expansion 1406 /// might result in multiple MBB's for one BB. As such, the start of the 1407 /// BB might correspond to a different MBB than the end. 1408 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 1409 const TerminatorInst *TI = LLVMBB->getTerminator(); 1410 1411 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 1412 unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 1413 1414 // Check successor nodes' PHI nodes that expect a constant to be available 1415 // from this block. 1416 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 1417 const BasicBlock *SuccBB = TI->getSuccessor(succ); 1418 if (!isa<PHINode>(SuccBB->begin())) continue; 1419 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 1420 1421 // If this terminator has multiple identical successors (common for 1422 // switches), only handle each succ once. 1423 if (!SuccsHandled.insert(SuccMBB)) continue; 1424 1425 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 1426 1427 // At this point we know that there is a 1-1 correspondence between LLVM PHI 1428 // nodes and Machine PHI nodes, but the incoming operands have not been 1429 // emitted yet. 1430 for (BasicBlock::const_iterator I = SuccBB->begin(); 1431 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1432 1433 // Ignore dead phi's. 1434 if (PN->use_empty()) continue; 1435 1436 // Only handle legal types. Two interesting things to note here. First, 1437 // by bailing out early, we may leave behind some dead instructions, 1438 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 1439 // own moves. Second, this check is necessary because FastISel doesn't 1440 // use CreateRegs to create registers, so it always creates 1441 // exactly one register for each non-void instruction. 1442 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 1443 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 1444 // Handle integer promotions, though, because they're common and easy. 1445 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 1446 VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT); 1447 else { 1448 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 1449 return false; 1450 } 1451 } 1452 1453 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 1454 1455 // Set the DebugLoc for the copy. Prefer the location of the operand 1456 // if there is one; use the location of the PHI otherwise. 1457 DL = PN->getDebugLoc(); 1458 if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp)) 1459 DL = Inst->getDebugLoc(); 1460 1461 unsigned Reg = getRegForValue(PHIOp); 1462 if (Reg == 0) { 1463 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 1464 return false; 1465 } 1466 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 1467 DL = DebugLoc(); 1468 } 1469 } 1470 1471 return true; 1472 } 1473