1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #define DEBUG_TYPE "isel" 43 #include "llvm/Function.h" 44 #include "llvm/GlobalVariable.h" 45 #include "llvm/Instructions.h" 46 #include "llvm/IntrinsicInst.h" 47 #include "llvm/Operator.h" 48 #include "llvm/CodeGen/Analysis.h" 49 #include "llvm/CodeGen/FastISel.h" 50 #include "llvm/CodeGen/FunctionLoweringInfo.h" 51 #include "llvm/CodeGen/MachineInstrBuilder.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/Analysis/DebugInfo.h" 55 #include "llvm/Analysis/Loads.h" 56 #include "llvm/Target/TargetData.h" 57 #include "llvm/Target/TargetInstrInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetMachine.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/ADT/Statistic.h" 63 using namespace llvm; 64 65 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 66 "target-independent selector"); 67 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 68 "target-specific selector"); 69 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 70 71 /// startNewBlock - Set the current block to which generated machine 72 /// instructions will be appended, and clear the local CSE map. 73 /// 74 void FastISel::startNewBlock() { 75 LocalValueMap.clear(); 76 77 EmitStartPt = 0; 78 79 // Advance the emit start point past any EH_LABEL instructions. 80 MachineBasicBlock::iterator 81 I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end(); 82 while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) { 83 EmitStartPt = I; 84 ++I; 85 } 86 LastLocalValue = EmitStartPt; 87 } 88 89 void FastISel::flushLocalValueMap() { 90 LocalValueMap.clear(); 91 LastLocalValue = EmitStartPt; 92 recomputeInsertPt(); 93 } 94 95 bool FastISel::hasTrivialKill(const Value *V) const { 96 // Don't consider constants or arguments to have trivial kills. 97 const Instruction *I = dyn_cast<Instruction>(V); 98 if (!I) 99 return false; 100 101 // No-op casts are trivially coalesced by fast-isel. 102 if (const CastInst *Cast = dyn_cast<CastInst>(I)) 103 if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) && 104 !hasTrivialKill(Cast->getOperand(0))) 105 return false; 106 107 // GEPs with all zero indices are trivially coalesced by fast-isel. 108 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 109 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 110 return false; 111 112 // Only instructions with a single use in the same basic block are considered 113 // to have trivial kills. 114 return I->hasOneUse() && 115 !(I->getOpcode() == Instruction::BitCast || 116 I->getOpcode() == Instruction::PtrToInt || 117 I->getOpcode() == Instruction::IntToPtr) && 118 cast<Instruction>(*I->use_begin())->getParent() == I->getParent(); 119 } 120 121 unsigned FastISel::getRegForValue(const Value *V) { 122 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); 123 // Don't handle non-simple values in FastISel. 124 if (!RealVT.isSimple()) 125 return 0; 126 127 // Ignore illegal types. We must do this before looking up the value 128 // in ValueMap because Arguments are given virtual registers regardless 129 // of whether FastISel can handle them. 130 MVT VT = RealVT.getSimpleVT(); 131 if (!TLI.isTypeLegal(VT)) { 132 // Handle integer promotions, though, because they're common and easy. 133 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 134 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 135 else 136 return 0; 137 } 138 139 // Look up the value to see if we already have a register for it. We 140 // cache values defined by Instructions across blocks, and other values 141 // only locally. This is because Instructions already have the SSA 142 // def-dominates-use requirement enforced. 143 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 144 if (I != FuncInfo.ValueMap.end()) 145 return I->second; 146 147 unsigned Reg = LocalValueMap[V]; 148 if (Reg != 0) 149 return Reg; 150 151 // In bottom-up mode, just create the virtual register which will be used 152 // to hold the value. It will be materialized later. 153 if (isa<Instruction>(V) && 154 (!isa<AllocaInst>(V) || 155 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 156 return FuncInfo.InitializeRegForValue(V); 157 158 SavePoint SaveInsertPt = enterLocalValueArea(); 159 160 // Materialize the value in a register. Emit any instructions in the 161 // local value area. 162 Reg = materializeRegForValue(V, VT); 163 164 leaveLocalValueArea(SaveInsertPt); 165 166 return Reg; 167 } 168 169 /// materializeRegForValue - Helper for getRegForValue. This function is 170 /// called when the value isn't already available in a register and must 171 /// be materialized with new instructions. 172 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 173 unsigned Reg = 0; 174 175 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 176 if (CI->getValue().getActiveBits() <= 64) 177 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 178 } else if (isa<AllocaInst>(V)) { 179 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V)); 180 } else if (isa<ConstantPointerNull>(V)) { 181 // Translate this as an integer zero so that it can be 182 // local-CSE'd with actual integer zeros. 183 Reg = 184 getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext()))); 185 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 186 if (CF->isNullValue()) { 187 Reg = TargetMaterializeFloatZero(CF); 188 } else { 189 // Try to emit the constant directly. 190 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); 191 } 192 193 if (!Reg) { 194 // Try to emit the constant by using an integer constant with a cast. 195 const APFloat &Flt = CF->getValueAPF(); 196 EVT IntVT = TLI.getPointerTy(); 197 198 uint64_t x[2]; 199 uint32_t IntBitWidth = IntVT.getSizeInBits(); 200 bool isExact; 201 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 202 APFloat::rmTowardZero, &isExact); 203 if (isExact) { 204 APInt IntVal(IntBitWidth, x); 205 206 unsigned IntegerReg = 207 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 208 if (IntegerReg != 0) 209 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 210 IntegerReg, /*Kill=*/false); 211 } 212 } 213 } else if (const Operator *Op = dyn_cast<Operator>(V)) { 214 if (!SelectOperator(Op, Op->getOpcode())) 215 if (!isa<Instruction>(Op) || 216 !TargetSelectInstruction(cast<Instruction>(Op))) 217 return 0; 218 Reg = lookUpRegForValue(Op); 219 } else if (isa<UndefValue>(V)) { 220 Reg = createResultReg(TLI.getRegClassFor(VT)); 221 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 222 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 223 } 224 225 // If target-independent code couldn't handle the value, give target-specific 226 // code a try. 227 if (!Reg && isa<Constant>(V)) 228 Reg = TargetMaterializeConstant(cast<Constant>(V)); 229 230 // Don't cache constant materializations in the general ValueMap. 231 // To do so would require tracking what uses they dominate. 232 if (Reg != 0) { 233 LocalValueMap[V] = Reg; 234 LastLocalValue = MRI.getVRegDef(Reg); 235 } 236 return Reg; 237 } 238 239 unsigned FastISel::lookUpRegForValue(const Value *V) { 240 // Look up the value to see if we already have a register for it. We 241 // cache values defined by Instructions across blocks, and other values 242 // only locally. This is because Instructions already have the SSA 243 // def-dominates-use requirement enforced. 244 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 245 if (I != FuncInfo.ValueMap.end()) 246 return I->second; 247 return LocalValueMap[V]; 248 } 249 250 /// UpdateValueMap - Update the value map to include the new mapping for this 251 /// instruction, or insert an extra copy to get the result in a previous 252 /// determined register. 253 /// NOTE: This is only necessary because we might select a block that uses 254 /// a value before we select the block that defines the value. It might be 255 /// possible to fix this by selecting blocks in reverse postorder. 256 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 257 if (!isa<Instruction>(I)) { 258 LocalValueMap[I] = Reg; 259 return; 260 } 261 262 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 263 if (AssignedReg == 0) 264 // Use the new register. 265 AssignedReg = Reg; 266 else if (Reg != AssignedReg) { 267 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 268 for (unsigned i = 0; i < NumRegs; i++) 269 FuncInfo.RegFixups[AssignedReg+i] = Reg+i; 270 271 AssignedReg = Reg; 272 } 273 } 274 275 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 276 unsigned IdxN = getRegForValue(Idx); 277 if (IdxN == 0) 278 // Unhandled operand. Halt "fast" selection and bail. 279 return std::pair<unsigned, bool>(0, false); 280 281 bool IdxNIsKill = hasTrivialKill(Idx); 282 283 // If the index is smaller or larger than intptr_t, truncate or extend it. 284 MVT PtrVT = TLI.getPointerTy(); 285 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 286 if (IdxVT.bitsLT(PtrVT)) { 287 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, 288 IdxN, IdxNIsKill); 289 IdxNIsKill = true; 290 } 291 else if (IdxVT.bitsGT(PtrVT)) { 292 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, 293 IdxN, IdxNIsKill); 294 IdxNIsKill = true; 295 } 296 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 297 } 298 299 void FastISel::recomputeInsertPt() { 300 if (getLastLocalValue()) { 301 FuncInfo.InsertPt = getLastLocalValue(); 302 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 303 ++FuncInfo.InsertPt; 304 } else 305 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 306 307 // Now skip past any EH_LABELs, which must remain at the beginning. 308 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 309 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 310 ++FuncInfo.InsertPt; 311 } 312 313 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 314 MachineBasicBlock::iterator E) { 315 assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!"); 316 while (I != E) { 317 MachineInstr *Dead = &*I; 318 ++I; 319 Dead->eraseFromParent(); 320 ++NumFastIselDead; 321 } 322 recomputeInsertPt(); 323 } 324 325 FastISel::SavePoint FastISel::enterLocalValueArea() { 326 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 327 DebugLoc OldDL = DL; 328 recomputeInsertPt(); 329 DL = DebugLoc(); 330 SavePoint SP = { OldInsertPt, OldDL }; 331 return SP; 332 } 333 334 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 335 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 336 LastLocalValue = llvm::prior(FuncInfo.InsertPt); 337 338 // Restore the previous insert position. 339 FuncInfo.InsertPt = OldInsertPt.InsertPt; 340 DL = OldInsertPt.DL; 341 } 342 343 /// SelectBinaryOp - Select and emit code for a binary operator instruction, 344 /// which has an opcode which directly corresponds to the given ISD opcode. 345 /// 346 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) { 347 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 348 if (VT == MVT::Other || !VT.isSimple()) 349 // Unhandled type. Halt "fast" selection and bail. 350 return false; 351 352 // We only handle legal types. For example, on x86-32 the instruction 353 // selector contains all of the 64-bit instructions from x86-64, 354 // under the assumption that i64 won't be used if the target doesn't 355 // support it. 356 if (!TLI.isTypeLegal(VT)) { 357 // MVT::i1 is special. Allow AND, OR, or XOR because they 358 // don't require additional zeroing, which makes them easy. 359 if (VT == MVT::i1 && 360 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 361 ISDOpcode == ISD::XOR)) 362 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 363 else 364 return false; 365 } 366 367 // Check if the first operand is a constant, and handle it as "ri". At -O0, 368 // we don't have anything that canonicalizes operand order. 369 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 370 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 371 unsigned Op1 = getRegForValue(I->getOperand(1)); 372 if (Op1 == 0) return false; 373 374 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 375 376 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, 377 Op1IsKill, CI->getZExtValue(), 378 VT.getSimpleVT()); 379 if (ResultReg == 0) return false; 380 381 // We successfully emitted code for the given LLVM Instruction. 382 UpdateValueMap(I, ResultReg); 383 return true; 384 } 385 386 387 unsigned Op0 = getRegForValue(I->getOperand(0)); 388 if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. 389 return false; 390 391 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 392 393 // Check if the second operand is a constant and handle it appropriately. 394 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 395 uint64_t Imm = CI->getZExtValue(); 396 397 // Transform "sdiv exact X, 8" -> "sra X, 3". 398 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 399 cast<BinaryOperator>(I)->isExact() && 400 isPowerOf2_64(Imm)) { 401 Imm = Log2_64(Imm); 402 ISDOpcode = ISD::SRA; 403 } 404 405 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 406 Op0IsKill, Imm, VT.getSimpleVT()); 407 if (ResultReg == 0) return false; 408 409 // We successfully emitted code for the given LLVM Instruction. 410 UpdateValueMap(I, ResultReg); 411 return true; 412 } 413 414 // Check if the second operand is a constant float. 415 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 416 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 417 ISDOpcode, Op0, Op0IsKill, CF); 418 if (ResultReg != 0) { 419 // We successfully emitted code for the given LLVM Instruction. 420 UpdateValueMap(I, ResultReg); 421 return true; 422 } 423 } 424 425 unsigned Op1 = getRegForValue(I->getOperand(1)); 426 if (Op1 == 0) 427 // Unhandled operand. Halt "fast" selection and bail. 428 return false; 429 430 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 431 432 // Now we have both operands in registers. Emit the instruction. 433 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 434 ISDOpcode, 435 Op0, Op0IsKill, 436 Op1, Op1IsKill); 437 if (ResultReg == 0) 438 // Target-specific code wasn't able to find a machine opcode for 439 // the given ISD opcode and type. Halt "fast" selection and bail. 440 return false; 441 442 // We successfully emitted code for the given LLVM Instruction. 443 UpdateValueMap(I, ResultReg); 444 return true; 445 } 446 447 bool FastISel::SelectGetElementPtr(const User *I) { 448 unsigned N = getRegForValue(I->getOperand(0)); 449 if (N == 0) 450 // Unhandled operand. Halt "fast" selection and bail. 451 return false; 452 453 bool NIsKill = hasTrivialKill(I->getOperand(0)); 454 455 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 456 // into a single N = N + TotalOffset. 457 uint64_t TotalOffs = 0; 458 // FIXME: What's a good SWAG number for MaxOffs? 459 uint64_t MaxOffs = 2048; 460 Type *Ty = I->getOperand(0)->getType(); 461 MVT VT = TLI.getPointerTy(); 462 for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1, 463 E = I->op_end(); OI != E; ++OI) { 464 const Value *Idx = *OI; 465 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 466 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 467 if (Field) { 468 // N = N + Offset 469 TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field); 470 if (TotalOffs >= MaxOffs) { 471 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 472 if (N == 0) 473 // Unhandled operand. Halt "fast" selection and bail. 474 return false; 475 NIsKill = true; 476 TotalOffs = 0; 477 } 478 } 479 Ty = StTy->getElementType(Field); 480 } else { 481 Ty = cast<SequentialType>(Ty)->getElementType(); 482 483 // If this is a constant subscript, handle it quickly. 484 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 485 if (CI->isZero()) continue; 486 // N = N + Offset 487 TotalOffs += 488 TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 489 if (TotalOffs >= MaxOffs) { 490 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 491 if (N == 0) 492 // Unhandled operand. Halt "fast" selection and bail. 493 return false; 494 NIsKill = true; 495 TotalOffs = 0; 496 } 497 continue; 498 } 499 if (TotalOffs) { 500 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 501 if (N == 0) 502 // Unhandled operand. Halt "fast" selection and bail. 503 return false; 504 NIsKill = true; 505 TotalOffs = 0; 506 } 507 508 // N = N + Idx * ElementSize; 509 uint64_t ElementSize = TD.getTypeAllocSize(Ty); 510 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 511 unsigned IdxN = Pair.first; 512 bool IdxNIsKill = Pair.second; 513 if (IdxN == 0) 514 // Unhandled operand. Halt "fast" selection and bail. 515 return false; 516 517 if (ElementSize != 1) { 518 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 519 if (IdxN == 0) 520 // Unhandled operand. Halt "fast" selection and bail. 521 return false; 522 IdxNIsKill = true; 523 } 524 N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 525 if (N == 0) 526 // Unhandled operand. Halt "fast" selection and bail. 527 return false; 528 } 529 } 530 if (TotalOffs) { 531 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 532 if (N == 0) 533 // Unhandled operand. Halt "fast" selection and bail. 534 return false; 535 } 536 537 // We successfully emitted code for the given LLVM Instruction. 538 UpdateValueMap(I, N); 539 return true; 540 } 541 542 bool FastISel::SelectCall(const User *I) { 543 const CallInst *Call = cast<CallInst>(I); 544 545 // Handle simple inline asms. 546 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 547 // Don't attempt to handle constraints. 548 if (!IA->getConstraintString().empty()) 549 return false; 550 551 unsigned ExtraInfo = 0; 552 if (IA->hasSideEffects()) 553 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 554 if (IA->isAlignStack()) 555 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 556 557 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 558 TII.get(TargetOpcode::INLINEASM)) 559 .addExternalSymbol(IA->getAsmString().c_str()) 560 .addImm(ExtraInfo); 561 return true; 562 } 563 564 const Function *F = Call->getCalledFunction(); 565 if (!F) return false; 566 567 // Handle selected intrinsic function calls. 568 switch (F->getIntrinsicID()) { 569 default: break; 570 case Intrinsic::dbg_declare: { 571 const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call); 572 if (!DIVariable(DI->getVariable()).Verify() || 573 !FuncInfo.MF->getMMI().hasDebugInfo()) 574 return true; 575 576 const Value *Address = DI->getAddress(); 577 if (!Address || isa<UndefValue>(Address) || isa<AllocaInst>(Address)) 578 return true; 579 580 unsigned Reg = 0; 581 unsigned Offset = 0; 582 if (const Argument *Arg = dyn_cast<Argument>(Address)) { 583 // Some arguments' frame index is recorded during argument lowering. 584 Offset = FuncInfo.getArgumentFrameIndex(Arg); 585 if (Offset) 586 Reg = TRI.getFrameRegister(*FuncInfo.MF); 587 } 588 if (!Reg) 589 Reg = getRegForValue(Address); 590 591 if (Reg) 592 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 593 TII.get(TargetOpcode::DBG_VALUE)) 594 .addReg(Reg, RegState::Debug).addImm(Offset) 595 .addMetadata(DI->getVariable()); 596 return true; 597 } 598 case Intrinsic::dbg_value: { 599 // This form of DBG_VALUE is target-independent. 600 const DbgValueInst *DI = cast<DbgValueInst>(Call); 601 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 602 const Value *V = DI->getValue(); 603 if (!V) { 604 // Currently the optimizer can produce this; insert an undef to 605 // help debugging. Probably the optimizer should not do this. 606 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 607 .addReg(0U).addImm(DI->getOffset()) 608 .addMetadata(DI->getVariable()); 609 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 610 if (CI->getBitWidth() > 64) 611 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 612 .addCImm(CI).addImm(DI->getOffset()) 613 .addMetadata(DI->getVariable()); 614 else 615 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 616 .addImm(CI->getZExtValue()).addImm(DI->getOffset()) 617 .addMetadata(DI->getVariable()); 618 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 619 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 620 .addFPImm(CF).addImm(DI->getOffset()) 621 .addMetadata(DI->getVariable()); 622 } else if (unsigned Reg = lookUpRegForValue(V)) { 623 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 624 .addReg(Reg, RegState::Debug).addImm(DI->getOffset()) 625 .addMetadata(DI->getVariable()); 626 } else { 627 // We can't yet handle anything else here because it would require 628 // generating code, thus altering codegen because of debug info. 629 DEBUG(dbgs() << "Dropping debug info for " << DI); 630 } 631 return true; 632 } 633 case Intrinsic::eh_exception: { 634 EVT VT = TLI.getValueType(Call->getType()); 635 if (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)!=TargetLowering::Expand) 636 break; 637 638 assert(FuncInfo.MBB->isLandingPad() && 639 "Call to eh.exception not in landing pad!"); 640 unsigned Reg = TLI.getExceptionAddressRegister(); 641 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 642 unsigned ResultReg = createResultReg(RC); 643 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 644 ResultReg).addReg(Reg); 645 UpdateValueMap(Call, ResultReg); 646 return true; 647 } 648 case Intrinsic::eh_selector: { 649 EVT VT = TLI.getValueType(Call->getType()); 650 if (TLI.getOperationAction(ISD::EHSELECTION, VT) != TargetLowering::Expand) 651 break; 652 if (FuncInfo.MBB->isLandingPad()) 653 AddCatchInfo(*Call, &FuncInfo.MF->getMMI(), FuncInfo.MBB); 654 else { 655 #ifndef NDEBUG 656 FuncInfo.CatchInfoLost.insert(Call); 657 #endif 658 // FIXME: Mark exception selector register as live in. Hack for PR1508. 659 unsigned Reg = TLI.getExceptionSelectorRegister(); 660 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 661 } 662 663 unsigned Reg = TLI.getExceptionSelectorRegister(); 664 EVT SrcVT = TLI.getPointerTy(); 665 const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT); 666 unsigned ResultReg = createResultReg(RC); 667 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 668 ResultReg).addReg(Reg); 669 670 bool ResultRegIsKill = hasTrivialKill(Call); 671 672 // Cast the register to the type of the selector. 673 if (SrcVT.bitsGT(MVT::i32)) 674 ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE, 675 ResultReg, ResultRegIsKill); 676 else if (SrcVT.bitsLT(MVT::i32)) 677 ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, 678 ISD::SIGN_EXTEND, ResultReg, ResultRegIsKill); 679 if (ResultReg == 0) 680 // Unhandled operand. Halt "fast" selection and bail. 681 return false; 682 683 UpdateValueMap(Call, ResultReg); 684 685 return true; 686 } 687 case Intrinsic::objectsize: { 688 ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1)); 689 unsigned long long Res = CI->isZero() ? -1ULL : 0; 690 Constant *ResCI = ConstantInt::get(Call->getType(), Res); 691 unsigned ResultReg = getRegForValue(ResCI); 692 if (ResultReg == 0) 693 return false; 694 UpdateValueMap(Call, ResultReg); 695 return true; 696 } 697 } 698 699 // Usually, it does not make sense to initialize a value, 700 // make an unrelated function call and use the value, because 701 // it tends to be spilled on the stack. So, we move the pointer 702 // to the last local value to the beginning of the block, so that 703 // all the values which have already been materialized, 704 // appear after the call. It also makes sense to skip intrinsics 705 // since they tend to be inlined. 706 if (!isa<IntrinsicInst>(F)) 707 flushLocalValueMap(); 708 709 // An arbitrary call. Bail. 710 return false; 711 } 712 713 bool FastISel::SelectCast(const User *I, unsigned Opcode) { 714 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 715 EVT DstVT = TLI.getValueType(I->getType()); 716 717 if (SrcVT == MVT::Other || !SrcVT.isSimple() || 718 DstVT == MVT::Other || !DstVT.isSimple()) 719 // Unhandled type. Halt "fast" selection and bail. 720 return false; 721 722 // Check if the destination type is legal. 723 if (!TLI.isTypeLegal(DstVT)) 724 return false; 725 726 // Check if the source operand is legal. 727 if (!TLI.isTypeLegal(SrcVT)) 728 return false; 729 730 unsigned InputReg = getRegForValue(I->getOperand(0)); 731 if (!InputReg) 732 // Unhandled operand. Halt "fast" selection and bail. 733 return false; 734 735 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 736 737 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), 738 DstVT.getSimpleVT(), 739 Opcode, 740 InputReg, InputRegIsKill); 741 if (!ResultReg) 742 return false; 743 744 UpdateValueMap(I, ResultReg); 745 return true; 746 } 747 748 bool FastISel::SelectBitCast(const User *I) { 749 // If the bitcast doesn't change the type, just use the operand value. 750 if (I->getType() == I->getOperand(0)->getType()) { 751 unsigned Reg = getRegForValue(I->getOperand(0)); 752 if (Reg == 0) 753 return false; 754 UpdateValueMap(I, Reg); 755 return true; 756 } 757 758 // Bitcasts of other values become reg-reg copies or BITCAST operators. 759 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 760 EVT DstVT = TLI.getValueType(I->getType()); 761 762 if (SrcVT == MVT::Other || !SrcVT.isSimple() || 763 DstVT == MVT::Other || !DstVT.isSimple() || 764 !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT)) 765 // Unhandled type. Halt "fast" selection and bail. 766 return false; 767 768 unsigned Op0 = getRegForValue(I->getOperand(0)); 769 if (Op0 == 0) 770 // Unhandled operand. Halt "fast" selection and bail. 771 return false; 772 773 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 774 775 // First, try to perform the bitcast by inserting a reg-reg copy. 776 unsigned ResultReg = 0; 777 if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) { 778 TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); 779 TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); 780 // Don't attempt a cross-class copy. It will likely fail. 781 if (SrcClass == DstClass) { 782 ResultReg = createResultReg(DstClass); 783 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 784 ResultReg).addReg(Op0); 785 } 786 } 787 788 // If the reg-reg copy failed, select a BITCAST opcode. 789 if (!ResultReg) 790 ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 791 ISD::BITCAST, Op0, Op0IsKill); 792 793 if (!ResultReg) 794 return false; 795 796 UpdateValueMap(I, ResultReg); 797 return true; 798 } 799 800 bool 801 FastISel::SelectInstruction(const Instruction *I) { 802 // Just before the terminator instruction, insert instructions to 803 // feed PHI nodes in successor blocks. 804 if (isa<TerminatorInst>(I)) 805 if (!HandlePHINodesInSuccessorBlocks(I->getParent())) 806 return false; 807 808 DL = I->getDebugLoc(); 809 810 MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt; 811 812 // First, try doing target-independent selection. 813 if (SelectOperator(I, I->getOpcode())) { 814 ++NumFastIselSuccessIndependent; 815 DL = DebugLoc(); 816 return true; 817 } 818 // Remove dead code. However, ignore call instructions since we've flushed 819 // the local value map and recomputed the insert point. 820 if (!isa<CallInst>(I)) { 821 recomputeInsertPt(); 822 if (SavedInsertPt != FuncInfo.InsertPt) 823 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 824 } 825 826 // Next, try calling the target to attempt to handle the instruction. 827 SavedInsertPt = FuncInfo.InsertPt; 828 if (TargetSelectInstruction(I)) { 829 ++NumFastIselSuccessTarget; 830 DL = DebugLoc(); 831 return true; 832 } 833 // Check for dead code and remove as necessary. 834 recomputeInsertPt(); 835 if (SavedInsertPt != FuncInfo.InsertPt) 836 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 837 838 DL = DebugLoc(); 839 return false; 840 } 841 842 /// FastEmitBranch - Emit an unconditional branch to the given block, 843 /// unless it is the immediate (fall-through) successor, and update 844 /// the CFG. 845 void 846 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) { 847 if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 848 // The unconditional fall-through case, which needs no instructions. 849 } else { 850 // The unconditional branch case. 851 TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL, 852 SmallVector<MachineOperand, 0>(), DL); 853 } 854 FuncInfo.MBB->addSuccessor(MSucc); 855 } 856 857 /// SelectFNeg - Emit an FNeg operation. 858 /// 859 bool 860 FastISel::SelectFNeg(const User *I) { 861 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 862 if (OpReg == 0) return false; 863 864 bool OpRegIsKill = hasTrivialKill(I); 865 866 // If the target has ISD::FNEG, use it. 867 EVT VT = TLI.getValueType(I->getType()); 868 unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), 869 ISD::FNEG, OpReg, OpRegIsKill); 870 if (ResultReg != 0) { 871 UpdateValueMap(I, ResultReg); 872 return true; 873 } 874 875 // Bitcast the value to integer, twiddle the sign bit with xor, 876 // and then bitcast it back to floating-point. 877 if (VT.getSizeInBits() > 64) return false; 878 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 879 if (!TLI.isTypeLegal(IntVT)) 880 return false; 881 882 unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 883 ISD::BITCAST, OpReg, OpRegIsKill); 884 if (IntReg == 0) 885 return false; 886 887 unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, 888 IntReg, /*Kill=*/true, 889 UINT64_C(1) << (VT.getSizeInBits()-1), 890 IntVT.getSimpleVT()); 891 if (IntResultReg == 0) 892 return false; 893 894 ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), 895 ISD::BITCAST, IntResultReg, /*Kill=*/true); 896 if (ResultReg == 0) 897 return false; 898 899 UpdateValueMap(I, ResultReg); 900 return true; 901 } 902 903 bool 904 FastISel::SelectExtractValue(const User *U) { 905 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 906 if (!EVI) 907 return false; 908 909 // Make sure we only try to handle extracts with a legal result. But also 910 // allow i1 because it's easy. 911 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true); 912 if (!RealVT.isSimple()) 913 return false; 914 MVT VT = RealVT.getSimpleVT(); 915 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 916 return false; 917 918 const Value *Op0 = EVI->getOperand(0); 919 Type *AggTy = Op0->getType(); 920 921 // Get the base result register. 922 unsigned ResultReg; 923 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 924 if (I != FuncInfo.ValueMap.end()) 925 ResultReg = I->second; 926 else if (isa<Instruction>(Op0)) 927 ResultReg = FuncInfo.InitializeRegForValue(Op0); 928 else 929 return false; // fast-isel can't handle aggregate constants at the moment 930 931 // Get the actual result register, which is an offset from the base register. 932 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 933 934 SmallVector<EVT, 4> AggValueVTs; 935 ComputeValueVTs(TLI, AggTy, AggValueVTs); 936 937 for (unsigned i = 0; i < VTIndex; i++) 938 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 939 940 UpdateValueMap(EVI, ResultReg); 941 return true; 942 } 943 944 bool 945 FastISel::SelectOperator(const User *I, unsigned Opcode) { 946 switch (Opcode) { 947 case Instruction::Add: 948 return SelectBinaryOp(I, ISD::ADD); 949 case Instruction::FAdd: 950 return SelectBinaryOp(I, ISD::FADD); 951 case Instruction::Sub: 952 return SelectBinaryOp(I, ISD::SUB); 953 case Instruction::FSub: 954 // FNeg is currently represented in LLVM IR as a special case of FSub. 955 if (BinaryOperator::isFNeg(I)) 956 return SelectFNeg(I); 957 return SelectBinaryOp(I, ISD::FSUB); 958 case Instruction::Mul: 959 return SelectBinaryOp(I, ISD::MUL); 960 case Instruction::FMul: 961 return SelectBinaryOp(I, ISD::FMUL); 962 case Instruction::SDiv: 963 return SelectBinaryOp(I, ISD::SDIV); 964 case Instruction::UDiv: 965 return SelectBinaryOp(I, ISD::UDIV); 966 case Instruction::FDiv: 967 return SelectBinaryOp(I, ISD::FDIV); 968 case Instruction::SRem: 969 return SelectBinaryOp(I, ISD::SREM); 970 case Instruction::URem: 971 return SelectBinaryOp(I, ISD::UREM); 972 case Instruction::FRem: 973 return SelectBinaryOp(I, ISD::FREM); 974 case Instruction::Shl: 975 return SelectBinaryOp(I, ISD::SHL); 976 case Instruction::LShr: 977 return SelectBinaryOp(I, ISD::SRL); 978 case Instruction::AShr: 979 return SelectBinaryOp(I, ISD::SRA); 980 case Instruction::And: 981 return SelectBinaryOp(I, ISD::AND); 982 case Instruction::Or: 983 return SelectBinaryOp(I, ISD::OR); 984 case Instruction::Xor: 985 return SelectBinaryOp(I, ISD::XOR); 986 987 case Instruction::GetElementPtr: 988 return SelectGetElementPtr(I); 989 990 case Instruction::Br: { 991 const BranchInst *BI = cast<BranchInst>(I); 992 993 if (BI->isUnconditional()) { 994 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 995 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 996 FastEmitBranch(MSucc, BI->getDebugLoc()); 997 return true; 998 } 999 1000 // Conditional branches are not handed yet. 1001 // Halt "fast" selection and bail. 1002 return false; 1003 } 1004 1005 case Instruction::Unreachable: 1006 // Nothing to emit. 1007 return true; 1008 1009 case Instruction::Alloca: 1010 // FunctionLowering has the static-sized case covered. 1011 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1012 return true; 1013 1014 // Dynamic-sized alloca is not handled yet. 1015 return false; 1016 1017 case Instruction::Call: 1018 return SelectCall(I); 1019 1020 case Instruction::BitCast: 1021 return SelectBitCast(I); 1022 1023 case Instruction::FPToSI: 1024 return SelectCast(I, ISD::FP_TO_SINT); 1025 case Instruction::ZExt: 1026 return SelectCast(I, ISD::ZERO_EXTEND); 1027 case Instruction::SExt: 1028 return SelectCast(I, ISD::SIGN_EXTEND); 1029 case Instruction::Trunc: 1030 return SelectCast(I, ISD::TRUNCATE); 1031 case Instruction::SIToFP: 1032 return SelectCast(I, ISD::SINT_TO_FP); 1033 1034 case Instruction::IntToPtr: // Deliberate fall-through. 1035 case Instruction::PtrToInt: { 1036 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1037 EVT DstVT = TLI.getValueType(I->getType()); 1038 if (DstVT.bitsGT(SrcVT)) 1039 return SelectCast(I, ISD::ZERO_EXTEND); 1040 if (DstVT.bitsLT(SrcVT)) 1041 return SelectCast(I, ISD::TRUNCATE); 1042 unsigned Reg = getRegForValue(I->getOperand(0)); 1043 if (Reg == 0) return false; 1044 UpdateValueMap(I, Reg); 1045 return true; 1046 } 1047 1048 case Instruction::ExtractValue: 1049 return SelectExtractValue(I); 1050 1051 case Instruction::PHI: 1052 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1053 1054 default: 1055 // Unhandled instruction. Halt "fast" selection and bail. 1056 return false; 1057 } 1058 } 1059 1060 FastISel::FastISel(FunctionLoweringInfo &funcInfo) 1061 : FuncInfo(funcInfo), 1062 MRI(FuncInfo.MF->getRegInfo()), 1063 MFI(*FuncInfo.MF->getFrameInfo()), 1064 MCP(*FuncInfo.MF->getConstantPool()), 1065 TM(FuncInfo.MF->getTarget()), 1066 TD(*TM.getTargetData()), 1067 TII(*TM.getInstrInfo()), 1068 TLI(*TM.getTargetLowering()), 1069 TRI(*TM.getRegisterInfo()) { 1070 } 1071 1072 FastISel::~FastISel() {} 1073 1074 unsigned FastISel::FastEmit_(MVT, MVT, 1075 unsigned) { 1076 return 0; 1077 } 1078 1079 unsigned FastISel::FastEmit_r(MVT, MVT, 1080 unsigned, 1081 unsigned /*Op0*/, bool /*Op0IsKill*/) { 1082 return 0; 1083 } 1084 1085 unsigned FastISel::FastEmit_rr(MVT, MVT, 1086 unsigned, 1087 unsigned /*Op0*/, bool /*Op0IsKill*/, 1088 unsigned /*Op1*/, bool /*Op1IsKill*/) { 1089 return 0; 1090 } 1091 1092 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1093 return 0; 1094 } 1095 1096 unsigned FastISel::FastEmit_f(MVT, MVT, 1097 unsigned, const ConstantFP * /*FPImm*/) { 1098 return 0; 1099 } 1100 1101 unsigned FastISel::FastEmit_ri(MVT, MVT, 1102 unsigned, 1103 unsigned /*Op0*/, bool /*Op0IsKill*/, 1104 uint64_t /*Imm*/) { 1105 return 0; 1106 } 1107 1108 unsigned FastISel::FastEmit_rf(MVT, MVT, 1109 unsigned, 1110 unsigned /*Op0*/, bool /*Op0IsKill*/, 1111 const ConstantFP * /*FPImm*/) { 1112 return 0; 1113 } 1114 1115 unsigned FastISel::FastEmit_rri(MVT, MVT, 1116 unsigned, 1117 unsigned /*Op0*/, bool /*Op0IsKill*/, 1118 unsigned /*Op1*/, bool /*Op1IsKill*/, 1119 uint64_t /*Imm*/) { 1120 return 0; 1121 } 1122 1123 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries 1124 /// to emit an instruction with an immediate operand using FastEmit_ri. 1125 /// If that fails, it materializes the immediate into a register and try 1126 /// FastEmit_rr instead. 1127 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode, 1128 unsigned Op0, bool Op0IsKill, 1129 uint64_t Imm, MVT ImmType) { 1130 // If this is a multiply by a power of two, emit this as a shift left. 1131 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1132 Opcode = ISD::SHL; 1133 Imm = Log2_64(Imm); 1134 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1135 // div x, 8 -> srl x, 3 1136 Opcode = ISD::SRL; 1137 Imm = Log2_64(Imm); 1138 } 1139 1140 // Horrible hack (to be removed), check to make sure shift amounts are 1141 // in-range. 1142 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1143 Imm >= VT.getSizeInBits()) 1144 return 0; 1145 1146 // First check if immediate type is legal. If not, we can't use the ri form. 1147 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1148 if (ResultReg != 0) 1149 return ResultReg; 1150 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1151 if (MaterialReg == 0) { 1152 // This is a bit ugly/slow, but failing here means falling out of 1153 // fast-isel, which would be very slow. 1154 IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(), 1155 VT.getSizeInBits()); 1156 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1157 } 1158 return FastEmit_rr(VT, VT, Opcode, 1159 Op0, Op0IsKill, 1160 MaterialReg, /*Kill=*/true); 1161 } 1162 1163 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { 1164 return MRI.createVirtualRegister(RC); 1165 } 1166 1167 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, 1168 const TargetRegisterClass* RC) { 1169 unsigned ResultReg = createResultReg(RC); 1170 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1171 1172 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg); 1173 return ResultReg; 1174 } 1175 1176 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, 1177 const TargetRegisterClass *RC, 1178 unsigned Op0, bool Op0IsKill) { 1179 unsigned ResultReg = createResultReg(RC); 1180 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1181 1182 if (II.getNumDefs() >= 1) 1183 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1184 .addReg(Op0, Op0IsKill * RegState::Kill); 1185 else { 1186 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1187 .addReg(Op0, Op0IsKill * RegState::Kill); 1188 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1189 ResultReg).addReg(II.ImplicitDefs[0]); 1190 } 1191 1192 return ResultReg; 1193 } 1194 1195 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 1196 const TargetRegisterClass *RC, 1197 unsigned Op0, bool Op0IsKill, 1198 unsigned Op1, bool Op1IsKill) { 1199 unsigned ResultReg = createResultReg(RC); 1200 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1201 1202 if (II.getNumDefs() >= 1) 1203 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1204 .addReg(Op0, Op0IsKill * RegState::Kill) 1205 .addReg(Op1, Op1IsKill * RegState::Kill); 1206 else { 1207 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1208 .addReg(Op0, Op0IsKill * RegState::Kill) 1209 .addReg(Op1, Op1IsKill * RegState::Kill); 1210 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1211 ResultReg).addReg(II.ImplicitDefs[0]); 1212 } 1213 return ResultReg; 1214 } 1215 1216 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 1217 const TargetRegisterClass *RC, 1218 unsigned Op0, bool Op0IsKill, 1219 unsigned Op1, bool Op1IsKill, 1220 unsigned Op2, bool Op2IsKill) { 1221 unsigned ResultReg = createResultReg(RC); 1222 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1223 1224 if (II.getNumDefs() >= 1) 1225 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1226 .addReg(Op0, Op0IsKill * RegState::Kill) 1227 .addReg(Op1, Op1IsKill * RegState::Kill) 1228 .addReg(Op2, Op2IsKill * RegState::Kill); 1229 else { 1230 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1231 .addReg(Op0, Op0IsKill * RegState::Kill) 1232 .addReg(Op1, Op1IsKill * RegState::Kill) 1233 .addReg(Op2, Op2IsKill * RegState::Kill); 1234 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1235 ResultReg).addReg(II.ImplicitDefs[0]); 1236 } 1237 return ResultReg; 1238 } 1239 1240 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 1241 const TargetRegisterClass *RC, 1242 unsigned Op0, bool Op0IsKill, 1243 uint64_t Imm) { 1244 unsigned ResultReg = createResultReg(RC); 1245 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1246 1247 if (II.getNumDefs() >= 1) 1248 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1249 .addReg(Op0, Op0IsKill * RegState::Kill) 1250 .addImm(Imm); 1251 else { 1252 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1253 .addReg(Op0, Op0IsKill * RegState::Kill) 1254 .addImm(Imm); 1255 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1256 ResultReg).addReg(II.ImplicitDefs[0]); 1257 } 1258 return ResultReg; 1259 } 1260 1261 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode, 1262 const TargetRegisterClass *RC, 1263 unsigned Op0, bool Op0IsKill, 1264 uint64_t Imm1, uint64_t Imm2) { 1265 unsigned ResultReg = createResultReg(RC); 1266 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1267 1268 if (II.getNumDefs() >= 1) 1269 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1270 .addReg(Op0, Op0IsKill * RegState::Kill) 1271 .addImm(Imm1) 1272 .addImm(Imm2); 1273 else { 1274 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1275 .addReg(Op0, Op0IsKill * RegState::Kill) 1276 .addImm(Imm1) 1277 .addImm(Imm2); 1278 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1279 ResultReg).addReg(II.ImplicitDefs[0]); 1280 } 1281 return ResultReg; 1282 } 1283 1284 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 1285 const TargetRegisterClass *RC, 1286 unsigned Op0, bool Op0IsKill, 1287 const ConstantFP *FPImm) { 1288 unsigned ResultReg = createResultReg(RC); 1289 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1290 1291 if (II.getNumDefs() >= 1) 1292 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1293 .addReg(Op0, Op0IsKill * RegState::Kill) 1294 .addFPImm(FPImm); 1295 else { 1296 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1297 .addReg(Op0, Op0IsKill * RegState::Kill) 1298 .addFPImm(FPImm); 1299 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1300 ResultReg).addReg(II.ImplicitDefs[0]); 1301 } 1302 return ResultReg; 1303 } 1304 1305 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 1306 const TargetRegisterClass *RC, 1307 unsigned Op0, bool Op0IsKill, 1308 unsigned Op1, bool Op1IsKill, 1309 uint64_t Imm) { 1310 unsigned ResultReg = createResultReg(RC); 1311 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1312 1313 if (II.getNumDefs() >= 1) 1314 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1315 .addReg(Op0, Op0IsKill * RegState::Kill) 1316 .addReg(Op1, Op1IsKill * RegState::Kill) 1317 .addImm(Imm); 1318 else { 1319 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1320 .addReg(Op0, Op0IsKill * RegState::Kill) 1321 .addReg(Op1, Op1IsKill * RegState::Kill) 1322 .addImm(Imm); 1323 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1324 ResultReg).addReg(II.ImplicitDefs[0]); 1325 } 1326 return ResultReg; 1327 } 1328 1329 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, 1330 const TargetRegisterClass *RC, 1331 uint64_t Imm) { 1332 unsigned ResultReg = createResultReg(RC); 1333 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1334 1335 if (II.getNumDefs() >= 1) 1336 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm); 1337 else { 1338 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm); 1339 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1340 ResultReg).addReg(II.ImplicitDefs[0]); 1341 } 1342 return ResultReg; 1343 } 1344 1345 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 1346 const TargetRegisterClass *RC, 1347 uint64_t Imm1, uint64_t Imm2) { 1348 unsigned ResultReg = createResultReg(RC); 1349 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1350 1351 if (II.getNumDefs() >= 1) 1352 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1353 .addImm(Imm1).addImm(Imm2); 1354 else { 1355 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2); 1356 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1357 ResultReg).addReg(II.ImplicitDefs[0]); 1358 } 1359 return ResultReg; 1360 } 1361 1362 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT, 1363 unsigned Op0, bool Op0IsKill, 1364 uint32_t Idx) { 1365 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1366 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1367 "Cannot yet extract from physregs"); 1368 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 1369 DL, TII.get(TargetOpcode::COPY), ResultReg) 1370 .addReg(Op0, getKillRegState(Op0IsKill), Idx); 1371 return ResultReg; 1372 } 1373 1374 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op 1375 /// with all but the least significant bit set to zero. 1376 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 1377 return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 1378 } 1379 1380 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 1381 /// Emit code to ensure constants are copied into registers when needed. 1382 /// Remember the virtual registers that need to be added to the Machine PHI 1383 /// nodes as input. We cannot just directly add them, because expansion 1384 /// might result in multiple MBB's for one BB. As such, the start of the 1385 /// BB might correspond to a different MBB than the end. 1386 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 1387 const TerminatorInst *TI = LLVMBB->getTerminator(); 1388 1389 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 1390 unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 1391 1392 // Check successor nodes' PHI nodes that expect a constant to be available 1393 // from this block. 1394 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 1395 const BasicBlock *SuccBB = TI->getSuccessor(succ); 1396 if (!isa<PHINode>(SuccBB->begin())) continue; 1397 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 1398 1399 // If this terminator has multiple identical successors (common for 1400 // switches), only handle each succ once. 1401 if (!SuccsHandled.insert(SuccMBB)) continue; 1402 1403 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 1404 1405 // At this point we know that there is a 1-1 correspondence between LLVM PHI 1406 // nodes and Machine PHI nodes, but the incoming operands have not been 1407 // emitted yet. 1408 for (BasicBlock::const_iterator I = SuccBB->begin(); 1409 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1410 1411 // Ignore dead phi's. 1412 if (PN->use_empty()) continue; 1413 1414 // Only handle legal types. Two interesting things to note here. First, 1415 // by bailing out early, we may leave behind some dead instructions, 1416 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 1417 // own moves. Second, this check is necessary because FastISel doesn't 1418 // use CreateRegs to create registers, so it always creates 1419 // exactly one register for each non-void instruction. 1420 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 1421 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 1422 // Promote MVT::i1. 1423 if (VT == MVT::i1) 1424 VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT); 1425 else { 1426 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 1427 return false; 1428 } 1429 } 1430 1431 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 1432 1433 // Set the DebugLoc for the copy. Prefer the location of the operand 1434 // if there is one; use the location of the PHI otherwise. 1435 DL = PN->getDebugLoc(); 1436 if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp)) 1437 DL = Inst->getDebugLoc(); 1438 1439 unsigned Reg = getRegForValue(PHIOp); 1440 if (Reg == 0) { 1441 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 1442 return false; 1443 } 1444 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 1445 DL = DebugLoc(); 1446 } 1447 } 1448 1449 return true; 1450 } 1451