1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
11 //
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time.  For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
19 //
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support.  In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
24 //
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated.  Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time.  Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
33 //
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators.  More complicated operations currently require
38 // target-specific code.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/CodeGen/FastISel.h"
43 #include "llvm/ADT/APFloat.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/DenseMap.h"
46 #include "llvm/ADT/Optional.h"
47 #include "llvm/ADT/SmallPtrSet.h"
48 #include "llvm/ADT/SmallString.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/Analysis/BranchProbabilityInfo.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/CodeGen/Analysis.h"
54 #include "llvm/CodeGen/FunctionLoweringInfo.h"
55 #include "llvm/CodeGen/ISDOpcodes.h"
56 #include "llvm/CodeGen/MachineBasicBlock.h"
57 #include "llvm/CodeGen/MachineFrameInfo.h"
58 #include "llvm/CodeGen/MachineInstr.h"
59 #include "llvm/CodeGen/MachineInstrBuilder.h"
60 #include "llvm/CodeGen/MachineMemOperand.h"
61 #include "llvm/CodeGen/MachineModuleInfo.h"
62 #include "llvm/CodeGen/MachineOperand.h"
63 #include "llvm/CodeGen/MachineRegisterInfo.h"
64 #include "llvm/CodeGen/StackMaps.h"
65 #include "llvm/CodeGen/TargetInstrInfo.h"
66 #include "llvm/CodeGen/TargetLowering.h"
67 #include "llvm/CodeGen/TargetSubtargetInfo.h"
68 #include "llvm/CodeGen/ValueTypes.h"
69 #include "llvm/IR/Argument.h"
70 #include "llvm/IR/Attributes.h"
71 #include "llvm/IR/BasicBlock.h"
72 #include "llvm/IR/CallSite.h"
73 #include "llvm/IR/CallingConv.h"
74 #include "llvm/IR/Constant.h"
75 #include "llvm/IR/Constants.h"
76 #include "llvm/IR/DataLayout.h"
77 #include "llvm/IR/DebugInfo.h"
78 #include "llvm/IR/DebugLoc.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GetElementPtrTypeIterator.h"
82 #include "llvm/IR/GlobalValue.h"
83 #include "llvm/IR/InlineAsm.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/LLVMContext.h"
89 #include "llvm/IR/Mangler.h"
90 #include "llvm/IR/Metadata.h"
91 #include "llvm/IR/Operator.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCInstrDesc.h"
97 #include "llvm/MC/MCRegisterInfo.h"
98 #include "llvm/Support/Casting.h"
99 #include "llvm/Support/Debug.h"
100 #include "llvm/Support/ErrorHandling.h"
101 #include "llvm/Support/MachineValueType.h"
102 #include "llvm/Support/MathExtras.h"
103 #include "llvm/Support/raw_ostream.h"
104 #include "llvm/Target/TargetMachine.h"
105 #include "llvm/Target/TargetOptions.h"
106 #include <algorithm>
107 #include <cassert>
108 #include <cstdint>
109 #include <iterator>
110 #include <utility>
111 
112 using namespace llvm;
113 
114 #define DEBUG_TYPE "isel"
115 
116 // FIXME: Remove this after the feature has proven reliable.
117 static cl::opt<bool> SinkLocalValues("fast-isel-sink-local-values",
118                                      cl::init(true), cl::Hidden,
119                                      cl::desc("Sink local values in FastISel"));
120 
121 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
122                                          "target-independent selector");
123 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
124                                     "target-specific selector");
125 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
126 
127 /// Set the current block to which generated machine instructions will be
128 /// appended.
129 void FastISel::startNewBlock() {
130   assert(LocalValueMap.empty() &&
131          "local values should be cleared after finishing a BB");
132 
133   // Instructions are appended to FuncInfo.MBB. If the basic block already
134   // contains labels or copies, use the last instruction as the last local
135   // value.
136   EmitStartPt = nullptr;
137   if (!FuncInfo.MBB->empty())
138     EmitStartPt = &FuncInfo.MBB->back();
139   LastLocalValue = EmitStartPt;
140 }
141 
142 /// Flush the local CSE map and sink anything we can.
143 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
144 
145 bool FastISel::lowerArguments() {
146   if (!FuncInfo.CanLowerReturn)
147     // Fallback to SDISel argument lowering code to deal with sret pointer
148     // parameter.
149     return false;
150 
151   if (!fastLowerArguments())
152     return false;
153 
154   // Enter arguments into ValueMap for uses in non-entry BBs.
155   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
156                                     E = FuncInfo.Fn->arg_end();
157        I != E; ++I) {
158     DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I);
159     assert(VI != LocalValueMap.end() && "Missed an argument?");
160     FuncInfo.ValueMap[&*I] = VI->second;
161   }
162   return true;
163 }
164 
165 /// Return the defined register if this instruction defines exactly one
166 /// virtual register and uses no other virtual registers. Otherwise return 0.
167 static unsigned findSinkableLocalRegDef(MachineInstr &MI) {
168   unsigned RegDef = 0;
169   for (const MachineOperand &MO : MI.operands()) {
170     if (!MO.isReg())
171       continue;
172     if (MO.isDef()) {
173       if (RegDef)
174         return 0;
175       RegDef = MO.getReg();
176     } else if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
177       // This is another use of a vreg. Don't try to sink it.
178       return 0;
179     }
180   }
181   return RegDef;
182 }
183 
184 void FastISel::flushLocalValueMap() {
185   // Try to sink local values down to their first use so that we can give them a
186   // better debug location. This has the side effect of shrinking local value
187   // live ranges, which helps out fast regalloc.
188   if (SinkLocalValues && LastLocalValue != EmitStartPt) {
189     // Sink local value materialization instructions between EmitStartPt and
190     // LastLocalValue. Visit them bottom-up, starting from LastLocalValue, to
191     // avoid inserting into the range that we're iterating over.
192     MachineBasicBlock::reverse_iterator RE =
193         EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
194                     : FuncInfo.MBB->rend();
195     MachineBasicBlock::reverse_iterator RI(LastLocalValue);
196 
197     InstOrderMap OrderMap;
198     for (; RI != RE;) {
199       MachineInstr &LocalMI = *RI;
200       ++RI;
201       bool Store = true;
202       if (!LocalMI.isSafeToMove(nullptr, Store))
203         continue;
204       unsigned DefReg = findSinkableLocalRegDef(LocalMI);
205       if (DefReg == 0)
206         continue;
207 
208       sinkLocalValueMaterialization(LocalMI, DefReg, OrderMap);
209     }
210   }
211 
212   LocalValueMap.clear();
213   LastLocalValue = EmitStartPt;
214   recomputeInsertPt();
215   SavedInsertPt = FuncInfo.InsertPt;
216   LastFlushPoint = FuncInfo.InsertPt;
217 }
218 
219 static bool isRegUsedByPhiNodes(unsigned DefReg,
220                                 FunctionLoweringInfo &FuncInfo) {
221   for (auto &P : FuncInfo.PHINodesToUpdate)
222     if (P.second == DefReg)
223       return true;
224   return false;
225 }
226 
227 /// Build a map of instruction orders. Return the first terminator and its
228 /// order. Consider EH_LABEL instructions to be terminators as well, since local
229 /// values for phis after invokes must be materialized before the call.
230 void FastISel::InstOrderMap::initialize(
231     MachineBasicBlock *MBB, MachineBasicBlock::iterator LastFlushPoint) {
232   unsigned Order = 0;
233   for (MachineInstr &I : *MBB) {
234     if (!FirstTerminator &&
235         (I.isTerminator() || (I.isEHLabel() && &I != &MBB->front()))) {
236       FirstTerminator = &I;
237       FirstTerminatorOrder = Order;
238     }
239     Orders[&I] = Order++;
240 
241     // We don't need to order instructions past the last flush point.
242     if (I.getIterator() == LastFlushPoint)
243       break;
244   }
245 }
246 
247 void FastISel::sinkLocalValueMaterialization(MachineInstr &LocalMI,
248                                              unsigned DefReg,
249                                              InstOrderMap &OrderMap) {
250   // If this register is used by a register fixup, MRI will not contain all
251   // the uses until after register fixups, so don't attempt to sink or DCE
252   // this instruction. Register fixups typically come from no-op cast
253   // instructions, which replace the cast instruction vreg with the local
254   // value vreg.
255   if (FuncInfo.RegsWithFixups.count(DefReg))
256     return;
257 
258   // We can DCE this instruction if there are no uses and it wasn't a
259   // materialized for a successor PHI node.
260   bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
261   if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
262     if (EmitStartPt == &LocalMI)
263       EmitStartPt = EmitStartPt->getPrevNode();
264     LLVM_DEBUG(dbgs() << "removing dead local value materialization "
265                       << LocalMI);
266     OrderMap.Orders.erase(&LocalMI);
267     LocalMI.eraseFromParent();
268     return;
269   }
270 
271   // Number the instructions if we haven't yet so we can efficiently find the
272   // earliest use.
273   if (OrderMap.Orders.empty())
274     OrderMap.initialize(FuncInfo.MBB, LastFlushPoint);
275 
276   // Find the first user in the BB.
277   MachineInstr *FirstUser = nullptr;
278   unsigned FirstOrder = std::numeric_limits<unsigned>::max();
279   for (MachineInstr &UseInst : MRI.use_nodbg_instructions(DefReg)) {
280     auto I = OrderMap.Orders.find(&UseInst);
281     assert(I != OrderMap.Orders.end() &&
282            "local value used by instruction outside local region");
283     unsigned UseOrder = I->second;
284     if (UseOrder < FirstOrder) {
285       FirstOrder = UseOrder;
286       FirstUser = &UseInst;
287     }
288   }
289 
290   // The insertion point will be the first terminator or the first user,
291   // whichever came first. If there was no terminator, this must be a
292   // fallthrough block and the insertion point is the end of the block.
293   MachineBasicBlock::instr_iterator SinkPos;
294   if (UsedByPHI && OrderMap.FirstTerminatorOrder < FirstOrder) {
295     FirstOrder = OrderMap.FirstTerminatorOrder;
296     SinkPos = OrderMap.FirstTerminator->getIterator();
297   } else if (FirstUser) {
298     SinkPos = FirstUser->getIterator();
299   } else {
300     assert(UsedByPHI && "must be users if not used by a phi");
301     SinkPos = FuncInfo.MBB->instr_end();
302   }
303 
304   // Collect all DBG_VALUEs before the new insertion position so that we can
305   // sink them.
306   SmallVector<MachineInstr *, 1> DbgValues;
307   for (MachineInstr &DbgVal : MRI.use_instructions(DefReg)) {
308     if (!DbgVal.isDebugValue())
309       continue;
310     unsigned UseOrder = OrderMap.Orders[&DbgVal];
311     if (UseOrder < FirstOrder)
312       DbgValues.push_back(&DbgVal);
313   }
314 
315   // Sink LocalMI before SinkPos and assign it the same DebugLoc.
316   LLVM_DEBUG(dbgs() << "sinking local value to first use " << LocalMI);
317   FuncInfo.MBB->remove(&LocalMI);
318   FuncInfo.MBB->insert(SinkPos, &LocalMI);
319   if (SinkPos != FuncInfo.MBB->end())
320     LocalMI.setDebugLoc(SinkPos->getDebugLoc());
321 
322   // Sink any debug values that we've collected.
323   for (MachineInstr *DI : DbgValues) {
324     FuncInfo.MBB->remove(DI);
325     FuncInfo.MBB->insert(SinkPos, DI);
326   }
327 }
328 
329 bool FastISel::hasTrivialKill(const Value *V) {
330   // Don't consider constants or arguments to have trivial kills.
331   const Instruction *I = dyn_cast<Instruction>(V);
332   if (!I)
333     return false;
334 
335   // No-op casts are trivially coalesced by fast-isel.
336   if (const auto *Cast = dyn_cast<CastInst>(I))
337     if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0)))
338       return false;
339 
340   // Even the value might have only one use in the LLVM IR, it is possible that
341   // FastISel might fold the use into another instruction and now there is more
342   // than one use at the Machine Instruction level.
343   unsigned Reg = lookUpRegForValue(V);
344   if (Reg && !MRI.use_empty(Reg))
345     return false;
346 
347   // GEPs with all zero indices are trivially coalesced by fast-isel.
348   if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
349     if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
350       return false;
351 
352   // Only instructions with a single use in the same basic block are considered
353   // to have trivial kills.
354   return I->hasOneUse() &&
355          !(I->getOpcode() == Instruction::BitCast ||
356            I->getOpcode() == Instruction::PtrToInt ||
357            I->getOpcode() == Instruction::IntToPtr) &&
358          cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
359 }
360 
361 unsigned FastISel::getRegForValue(const Value *V) {
362   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
363   // Don't handle non-simple values in FastISel.
364   if (!RealVT.isSimple())
365     return 0;
366 
367   // Ignore illegal types. We must do this before looking up the value
368   // in ValueMap because Arguments are given virtual registers regardless
369   // of whether FastISel can handle them.
370   MVT VT = RealVT.getSimpleVT();
371   if (!TLI.isTypeLegal(VT)) {
372     // Handle integer promotions, though, because they're common and easy.
373     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
374       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
375     else
376       return 0;
377   }
378 
379   // Look up the value to see if we already have a register for it.
380   unsigned Reg = lookUpRegForValue(V);
381   if (Reg)
382     return Reg;
383 
384   // In bottom-up mode, just create the virtual register which will be used
385   // to hold the value. It will be materialized later.
386   if (isa<Instruction>(V) &&
387       (!isa<AllocaInst>(V) ||
388        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
389     return FuncInfo.InitializeRegForValue(V);
390 
391   SavePoint SaveInsertPt = enterLocalValueArea();
392 
393   // Materialize the value in a register. Emit any instructions in the
394   // local value area.
395   Reg = materializeRegForValue(V, VT);
396 
397   leaveLocalValueArea(SaveInsertPt);
398 
399   return Reg;
400 }
401 
402 unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
403   unsigned Reg = 0;
404   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
405     if (CI->getValue().getActiveBits() <= 64)
406       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
407   } else if (isa<AllocaInst>(V))
408     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
409   else if (isa<ConstantPointerNull>(V))
410     // Translate this as an integer zero so that it can be
411     // local-CSE'd with actual integer zeros.
412     Reg = getRegForValue(
413         Constant::getNullValue(DL.getIntPtrType(V->getContext())));
414   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
415     if (CF->isNullValue())
416       Reg = fastMaterializeFloatZero(CF);
417     else
418       // Try to emit the constant directly.
419       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
420 
421     if (!Reg) {
422       // Try to emit the constant by using an integer constant with a cast.
423       const APFloat &Flt = CF->getValueAPF();
424       EVT IntVT = TLI.getPointerTy(DL);
425       uint32_t IntBitWidth = IntVT.getSizeInBits();
426       APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
427       bool isExact;
428       (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
429       if (isExact) {
430         unsigned IntegerReg =
431             getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
432         if (IntegerReg != 0)
433           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
434                            /*Kill=*/false);
435       }
436     }
437   } else if (const auto *Op = dyn_cast<Operator>(V)) {
438     if (!selectOperator(Op, Op->getOpcode()))
439       if (!isa<Instruction>(Op) ||
440           !fastSelectInstruction(cast<Instruction>(Op)))
441         return 0;
442     Reg = lookUpRegForValue(Op);
443   } else if (isa<UndefValue>(V)) {
444     Reg = createResultReg(TLI.getRegClassFor(VT));
445     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
446             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
447   }
448   return Reg;
449 }
450 
451 /// Helper for getRegForValue. This function is called when the value isn't
452 /// already available in a register and must be materialized with new
453 /// instructions.
454 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
455   unsigned Reg = 0;
456   // Give the target-specific code a try first.
457   if (isa<Constant>(V))
458     Reg = fastMaterializeConstant(cast<Constant>(V));
459 
460   // If target-specific code couldn't or didn't want to handle the value, then
461   // give target-independent code a try.
462   if (!Reg)
463     Reg = materializeConstant(V, VT);
464 
465   // Don't cache constant materializations in the general ValueMap.
466   // To do so would require tracking what uses they dominate.
467   if (Reg) {
468     LocalValueMap[V] = Reg;
469     LastLocalValue = MRI.getVRegDef(Reg);
470   }
471   return Reg;
472 }
473 
474 unsigned FastISel::lookUpRegForValue(const Value *V) {
475   // Look up the value to see if we already have a register for it. We
476   // cache values defined by Instructions across blocks, and other values
477   // only locally. This is because Instructions already have the SSA
478   // def-dominates-use requirement enforced.
479   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
480   if (I != FuncInfo.ValueMap.end())
481     return I->second;
482   return LocalValueMap[V];
483 }
484 
485 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
486   if (!isa<Instruction>(I)) {
487     LocalValueMap[I] = Reg;
488     return;
489   }
490 
491   unsigned &AssignedReg = FuncInfo.ValueMap[I];
492   if (AssignedReg == 0)
493     // Use the new register.
494     AssignedReg = Reg;
495   else if (Reg != AssignedReg) {
496     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
497     for (unsigned i = 0; i < NumRegs; i++) {
498       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
499       FuncInfo.RegsWithFixups.insert(Reg + i);
500     }
501 
502     AssignedReg = Reg;
503   }
504 }
505 
506 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
507   unsigned IdxN = getRegForValue(Idx);
508   if (IdxN == 0)
509     // Unhandled operand. Halt "fast" selection and bail.
510     return std::pair<unsigned, bool>(0, false);
511 
512   bool IdxNIsKill = hasTrivialKill(Idx);
513 
514   // If the index is smaller or larger than intptr_t, truncate or extend it.
515   MVT PtrVT = TLI.getPointerTy(DL);
516   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
517   if (IdxVT.bitsLT(PtrVT)) {
518     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
519                       IdxNIsKill);
520     IdxNIsKill = true;
521   } else if (IdxVT.bitsGT(PtrVT)) {
522     IdxN =
523         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
524     IdxNIsKill = true;
525   }
526   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
527 }
528 
529 void FastISel::recomputeInsertPt() {
530   if (getLastLocalValue()) {
531     FuncInfo.InsertPt = getLastLocalValue();
532     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
533     ++FuncInfo.InsertPt;
534   } else
535     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
536 
537   // Now skip past any EH_LABELs, which must remain at the beginning.
538   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
539          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
540     ++FuncInfo.InsertPt;
541 }
542 
543 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
544                               MachineBasicBlock::iterator E) {
545   assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
546          "Invalid iterator!");
547   while (I != E) {
548     MachineInstr *Dead = &*I;
549     ++I;
550     Dead->eraseFromParent();
551     ++NumFastIselDead;
552   }
553   recomputeInsertPt();
554 }
555 
556 FastISel::SavePoint FastISel::enterLocalValueArea() {
557   MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
558   DebugLoc OldDL = DbgLoc;
559   recomputeInsertPt();
560   DbgLoc = DebugLoc();
561   SavePoint SP = {OldInsertPt, OldDL};
562   return SP;
563 }
564 
565 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
566   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
567     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
568 
569   // Restore the previous insert position.
570   FuncInfo.InsertPt = OldInsertPt.InsertPt;
571   DbgLoc = OldInsertPt.DL;
572 }
573 
574 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
575   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
576   if (VT == MVT::Other || !VT.isSimple())
577     // Unhandled type. Halt "fast" selection and bail.
578     return false;
579 
580   // We only handle legal types. For example, on x86-32 the instruction
581   // selector contains all of the 64-bit instructions from x86-64,
582   // under the assumption that i64 won't be used if the target doesn't
583   // support it.
584   if (!TLI.isTypeLegal(VT)) {
585     // MVT::i1 is special. Allow AND, OR, or XOR because they
586     // don't require additional zeroing, which makes them easy.
587     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
588                           ISDOpcode == ISD::XOR))
589       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
590     else
591       return false;
592   }
593 
594   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
595   // we don't have anything that canonicalizes operand order.
596   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
597     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
598       unsigned Op1 = getRegForValue(I->getOperand(1));
599       if (!Op1)
600         return false;
601       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
602 
603       unsigned ResultReg =
604           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
605                        CI->getZExtValue(), VT.getSimpleVT());
606       if (!ResultReg)
607         return false;
608 
609       // We successfully emitted code for the given LLVM Instruction.
610       updateValueMap(I, ResultReg);
611       return true;
612     }
613 
614   unsigned Op0 = getRegForValue(I->getOperand(0));
615   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
616     return false;
617   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
618 
619   // Check if the second operand is a constant and handle it appropriately.
620   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
621     uint64_t Imm = CI->getSExtValue();
622 
623     // Transform "sdiv exact X, 8" -> "sra X, 3".
624     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
625         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
626       Imm = Log2_64(Imm);
627       ISDOpcode = ISD::SRA;
628     }
629 
630     // Transform "urem x, pow2" -> "and x, pow2-1".
631     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
632         isPowerOf2_64(Imm)) {
633       --Imm;
634       ISDOpcode = ISD::AND;
635     }
636 
637     unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
638                                       Op0IsKill, Imm, VT.getSimpleVT());
639     if (!ResultReg)
640       return false;
641 
642     // We successfully emitted code for the given LLVM Instruction.
643     updateValueMap(I, ResultReg);
644     return true;
645   }
646 
647   unsigned Op1 = getRegForValue(I->getOperand(1));
648   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
649     return false;
650   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
651 
652   // Now we have both operands in registers. Emit the instruction.
653   unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
654                                    ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
655   if (!ResultReg)
656     // Target-specific code wasn't able to find a machine opcode for
657     // the given ISD opcode and type. Halt "fast" selection and bail.
658     return false;
659 
660   // We successfully emitted code for the given LLVM Instruction.
661   updateValueMap(I, ResultReg);
662   return true;
663 }
664 
665 bool FastISel::selectGetElementPtr(const User *I) {
666   unsigned N = getRegForValue(I->getOperand(0));
667   if (!N) // Unhandled operand. Halt "fast" selection and bail.
668     return false;
669   bool NIsKill = hasTrivialKill(I->getOperand(0));
670 
671   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
672   // into a single N = N + TotalOffset.
673   uint64_t TotalOffs = 0;
674   // FIXME: What's a good SWAG number for MaxOffs?
675   uint64_t MaxOffs = 2048;
676   MVT VT = TLI.getPointerTy(DL);
677   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
678        GTI != E; ++GTI) {
679     const Value *Idx = GTI.getOperand();
680     if (StructType *StTy = GTI.getStructTypeOrNull()) {
681       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
682       if (Field) {
683         // N = N + Offset
684         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
685         if (TotalOffs >= MaxOffs) {
686           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
687           if (!N) // Unhandled operand. Halt "fast" selection and bail.
688             return false;
689           NIsKill = true;
690           TotalOffs = 0;
691         }
692       }
693     } else {
694       Type *Ty = GTI.getIndexedType();
695 
696       // If this is a constant subscript, handle it quickly.
697       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
698         if (CI->isZero())
699           continue;
700         // N = N + Offset
701         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
702         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
703         if (TotalOffs >= MaxOffs) {
704           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
705           if (!N) // Unhandled operand. Halt "fast" selection and bail.
706             return false;
707           NIsKill = true;
708           TotalOffs = 0;
709         }
710         continue;
711       }
712       if (TotalOffs) {
713         N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
714         if (!N) // Unhandled operand. Halt "fast" selection and bail.
715           return false;
716         NIsKill = true;
717         TotalOffs = 0;
718       }
719 
720       // N = N + Idx * ElementSize;
721       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
722       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
723       unsigned IdxN = Pair.first;
724       bool IdxNIsKill = Pair.second;
725       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
726         return false;
727 
728       if (ElementSize != 1) {
729         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
730         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
731           return false;
732         IdxNIsKill = true;
733       }
734       N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
735       if (!N) // Unhandled operand. Halt "fast" selection and bail.
736         return false;
737     }
738   }
739   if (TotalOffs) {
740     N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
741     if (!N) // Unhandled operand. Halt "fast" selection and bail.
742       return false;
743   }
744 
745   // We successfully emitted code for the given LLVM Instruction.
746   updateValueMap(I, N);
747   return true;
748 }
749 
750 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
751                                    const CallInst *CI, unsigned StartIdx) {
752   for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
753     Value *Val = CI->getArgOperand(i);
754     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
755     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
756       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
757       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
758     } else if (isa<ConstantPointerNull>(Val)) {
759       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
760       Ops.push_back(MachineOperand::CreateImm(0));
761     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
762       // Values coming from a stack location also require a special encoding,
763       // but that is added later on by the target specific frame index
764       // elimination implementation.
765       auto SI = FuncInfo.StaticAllocaMap.find(AI);
766       if (SI != FuncInfo.StaticAllocaMap.end())
767         Ops.push_back(MachineOperand::CreateFI(SI->second));
768       else
769         return false;
770     } else {
771       unsigned Reg = getRegForValue(Val);
772       if (!Reg)
773         return false;
774       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
775     }
776   }
777   return true;
778 }
779 
780 bool FastISel::selectStackmap(const CallInst *I) {
781   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
782   //                                  [live variables...])
783   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
784          "Stackmap cannot return a value.");
785 
786   // The stackmap intrinsic only records the live variables (the arguments
787   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
788   // intrinsic, this won't be lowered to a function call. This means we don't
789   // have to worry about calling conventions and target-specific lowering code.
790   // Instead we perform the call lowering right here.
791   //
792   // CALLSEQ_START(0, 0...)
793   // STACKMAP(id, nbytes, ...)
794   // CALLSEQ_END(0, 0)
795   //
796   SmallVector<MachineOperand, 32> Ops;
797 
798   // Add the <id> and <numBytes> constants.
799   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
800          "Expected a constant integer.");
801   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
802   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
803 
804   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
805          "Expected a constant integer.");
806   const auto *NumBytes =
807       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
808   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
809 
810   // Push live variables for the stack map (skipping the first two arguments
811   // <id> and <numBytes>).
812   if (!addStackMapLiveVars(Ops, I, 2))
813     return false;
814 
815   // We are not adding any register mask info here, because the stackmap doesn't
816   // clobber anything.
817 
818   // Add scratch registers as implicit def and early clobber.
819   CallingConv::ID CC = I->getCallingConv();
820   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
821   for (unsigned i = 0; ScratchRegs[i]; ++i)
822     Ops.push_back(MachineOperand::CreateReg(
823         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
824         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
825 
826   // Issue CALLSEQ_START
827   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
828   auto Builder =
829       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
830   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
831   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
832     Builder.addImm(0);
833 
834   // Issue STACKMAP.
835   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
836                                     TII.get(TargetOpcode::STACKMAP));
837   for (auto const &MO : Ops)
838     MIB.add(MO);
839 
840   // Issue CALLSEQ_END
841   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
842   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
843       .addImm(0)
844       .addImm(0);
845 
846   // Inform the Frame Information that we have a stackmap in this function.
847   FuncInfo.MF->getFrameInfo().setHasStackMap();
848 
849   return true;
850 }
851 
852 /// Lower an argument list according to the target calling convention.
853 ///
854 /// This is a helper for lowering intrinsics that follow a target calling
855 /// convention or require stack pointer adjustment. Only a subset of the
856 /// intrinsic's operands need to participate in the calling convention.
857 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
858                                  unsigned NumArgs, const Value *Callee,
859                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
860   ArgListTy Args;
861   Args.reserve(NumArgs);
862 
863   // Populate the argument list.
864   ImmutableCallSite CS(CI);
865   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
866     Value *V = CI->getOperand(ArgI);
867 
868     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
869 
870     ArgListEntry Entry;
871     Entry.Val = V;
872     Entry.Ty = V->getType();
873     Entry.setAttributes(&CS, ArgI);
874     Args.push_back(Entry);
875   }
876 
877   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
878                                : CI->getType();
879   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
880 
881   return lowerCallTo(CLI);
882 }
883 
884 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
885     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
886     StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
887   SmallString<32> MangledName;
888   Mangler::getNameWithPrefix(MangledName, Target, DL);
889   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
890   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
891 }
892 
893 bool FastISel::selectPatchpoint(const CallInst *I) {
894   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
895   //                                                 i32 <numBytes>,
896   //                                                 i8* <target>,
897   //                                                 i32 <numArgs>,
898   //                                                 [Args...],
899   //                                                 [live variables...])
900   CallingConv::ID CC = I->getCallingConv();
901   bool IsAnyRegCC = CC == CallingConv::AnyReg;
902   bool HasDef = !I->getType()->isVoidTy();
903   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
904 
905   // Get the real number of arguments participating in the call <numArgs>
906   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
907          "Expected a constant integer.");
908   const auto *NumArgsVal =
909       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
910   unsigned NumArgs = NumArgsVal->getZExtValue();
911 
912   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
913   // This includes all meta-operands up to but not including CC.
914   unsigned NumMetaOpers = PatchPointOpers::CCPos;
915   assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
916          "Not enough arguments provided to the patchpoint intrinsic");
917 
918   // For AnyRegCC the arguments are lowered later on manually.
919   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
920   CallLoweringInfo CLI;
921   CLI.setIsPatchPoint();
922   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
923     return false;
924 
925   assert(CLI.Call && "No call instruction specified.");
926 
927   SmallVector<MachineOperand, 32> Ops;
928 
929   // Add an explicit result reg if we use the anyreg calling convention.
930   if (IsAnyRegCC && HasDef) {
931     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
932     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
933     CLI.NumResultRegs = 1;
934     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true));
935   }
936 
937   // Add the <id> and <numBytes> constants.
938   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
939          "Expected a constant integer.");
940   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
941   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
942 
943   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
944          "Expected a constant integer.");
945   const auto *NumBytes =
946       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
947   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
948 
949   // Add the call target.
950   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
951     uint64_t CalleeConstAddr =
952       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
953     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
954   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
955     if (C->getOpcode() == Instruction::IntToPtr) {
956       uint64_t CalleeConstAddr =
957         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
958       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
959     } else
960       llvm_unreachable("Unsupported ConstantExpr.");
961   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
962     Ops.push_back(MachineOperand::CreateGA(GV, 0));
963   } else if (isa<ConstantPointerNull>(Callee))
964     Ops.push_back(MachineOperand::CreateImm(0));
965   else
966     llvm_unreachable("Unsupported callee address.");
967 
968   // Adjust <numArgs> to account for any arguments that have been passed on
969   // the stack instead.
970   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
971   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
972 
973   // Add the calling convention
974   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
975 
976   // Add the arguments we omitted previously. The register allocator should
977   // place these in any free register.
978   if (IsAnyRegCC) {
979     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
980       unsigned Reg = getRegForValue(I->getArgOperand(i));
981       if (!Reg)
982         return false;
983       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
984     }
985   }
986 
987   // Push the arguments from the call instruction.
988   for (auto Reg : CLI.OutRegs)
989     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
990 
991   // Push live variables for the stack map.
992   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
993     return false;
994 
995   // Push the register mask info.
996   Ops.push_back(MachineOperand::CreateRegMask(
997       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
998 
999   // Add scratch registers as implicit def and early clobber.
1000   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
1001   for (unsigned i = 0; ScratchRegs[i]; ++i)
1002     Ops.push_back(MachineOperand::CreateReg(
1003         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
1004         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
1005 
1006   // Add implicit defs (return values).
1007   for (auto Reg : CLI.InRegs)
1008     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true,
1009                                             /*IsImpl=*/true));
1010 
1011   // Insert the patchpoint instruction before the call generated by the target.
1012   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
1013                                     TII.get(TargetOpcode::PATCHPOINT));
1014 
1015   for (auto &MO : Ops)
1016     MIB.add(MO);
1017 
1018   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1019 
1020   // Delete the original call instruction.
1021   CLI.Call->eraseFromParent();
1022 
1023   // Inform the Frame Information that we have a patchpoint in this function.
1024   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
1025 
1026   if (CLI.NumResultRegs)
1027     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
1028   return true;
1029 }
1030 
1031 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
1032   const auto &Triple = TM.getTargetTriple();
1033   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
1034     return true; // don't do anything to this instruction.
1035   SmallVector<MachineOperand, 8> Ops;
1036   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
1037                                           /*IsDef=*/false));
1038   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
1039                                           /*IsDef=*/false));
1040   MachineInstrBuilder MIB =
1041       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1042               TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
1043   for (auto &MO : Ops)
1044     MIB.add(MO);
1045 
1046   // Insert the Patchable Event Call instruction, that gets lowered properly.
1047   return true;
1048 }
1049 
1050 bool FastISel::selectXRayTypedEvent(const CallInst *I) {
1051   const auto &Triple = TM.getTargetTriple();
1052   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
1053     return true; // don't do anything to this instruction.
1054   SmallVector<MachineOperand, 8> Ops;
1055   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
1056                                           /*IsDef=*/false));
1057   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
1058                                           /*IsDef=*/false));
1059   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
1060                                           /*IsDef=*/false));
1061   MachineInstrBuilder MIB =
1062       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1063               TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
1064   for (auto &MO : Ops)
1065     MIB.add(MO);
1066 
1067   // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
1068   return true;
1069 }
1070 
1071 /// Returns an AttributeList representing the attributes applied to the return
1072 /// value of the given call.
1073 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
1074   SmallVector<Attribute::AttrKind, 2> Attrs;
1075   if (CLI.RetSExt)
1076     Attrs.push_back(Attribute::SExt);
1077   if (CLI.RetZExt)
1078     Attrs.push_back(Attribute::ZExt);
1079   if (CLI.IsInReg)
1080     Attrs.push_back(Attribute::InReg);
1081 
1082   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
1083                             Attrs);
1084 }
1085 
1086 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
1087                            unsigned NumArgs) {
1088   MCContext &Ctx = MF->getContext();
1089   SmallString<32> MangledName;
1090   Mangler::getNameWithPrefix(MangledName, SymName, DL);
1091   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
1092   return lowerCallTo(CI, Sym, NumArgs);
1093 }
1094 
1095 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
1096                            unsigned NumArgs) {
1097   ImmutableCallSite CS(CI);
1098 
1099   FunctionType *FTy = CS.getFunctionType();
1100   Type *RetTy = CS.getType();
1101 
1102   ArgListTy Args;
1103   Args.reserve(NumArgs);
1104 
1105   // Populate the argument list.
1106   // Attributes for args start at offset 1, after the return attribute.
1107   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
1108     Value *V = CI->getOperand(ArgI);
1109 
1110     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
1111 
1112     ArgListEntry Entry;
1113     Entry.Val = V;
1114     Entry.Ty = V->getType();
1115     Entry.setAttributes(&CS, ArgI);
1116     Args.push_back(Entry);
1117   }
1118   TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args);
1119 
1120   CallLoweringInfo CLI;
1121   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs);
1122 
1123   return lowerCallTo(CLI);
1124 }
1125 
1126 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
1127   // Handle the incoming return values from the call.
1128   CLI.clearIns();
1129   SmallVector<EVT, 4> RetTys;
1130   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
1131 
1132   SmallVector<ISD::OutputArg, 4> Outs;
1133   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1134 
1135   bool CanLowerReturn = TLI.CanLowerReturn(
1136       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
1137 
1138   // FIXME: sret demotion isn't supported yet - bail out.
1139   if (!CanLowerReturn)
1140     return false;
1141 
1142   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
1143     EVT VT = RetTys[I];
1144     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1145     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1146     for (unsigned i = 0; i != NumRegs; ++i) {
1147       ISD::InputArg MyFlags;
1148       MyFlags.VT = RegisterVT;
1149       MyFlags.ArgVT = VT;
1150       MyFlags.Used = CLI.IsReturnValueUsed;
1151       if (CLI.RetSExt)
1152         MyFlags.Flags.setSExt();
1153       if (CLI.RetZExt)
1154         MyFlags.Flags.setZExt();
1155       if (CLI.IsInReg)
1156         MyFlags.Flags.setInReg();
1157       CLI.Ins.push_back(MyFlags);
1158     }
1159   }
1160 
1161   // Handle all of the outgoing arguments.
1162   CLI.clearOuts();
1163   for (auto &Arg : CLI.getArgs()) {
1164     Type *FinalType = Arg.Ty;
1165     if (Arg.IsByVal)
1166       FinalType = cast<PointerType>(Arg.Ty)->getElementType();
1167     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1168         FinalType, CLI.CallConv, CLI.IsVarArg);
1169 
1170     ISD::ArgFlagsTy Flags;
1171     if (Arg.IsZExt)
1172       Flags.setZExt();
1173     if (Arg.IsSExt)
1174       Flags.setSExt();
1175     if (Arg.IsInReg)
1176       Flags.setInReg();
1177     if (Arg.IsSRet)
1178       Flags.setSRet();
1179     if (Arg.IsSwiftSelf)
1180       Flags.setSwiftSelf();
1181     if (Arg.IsSwiftError)
1182       Flags.setSwiftError();
1183     if (Arg.IsByVal)
1184       Flags.setByVal();
1185     if (Arg.IsInAlloca) {
1186       Flags.setInAlloca();
1187       // Set the byval flag for CCAssignFn callbacks that don't know about
1188       // inalloca. This way we can know how many bytes we should've allocated
1189       // and how many bytes a callee cleanup function will pop.  If we port
1190       // inalloca to more targets, we'll have to add custom inalloca handling in
1191       // the various CC lowering callbacks.
1192       Flags.setByVal();
1193     }
1194     if (Arg.IsByVal || Arg.IsInAlloca) {
1195       PointerType *Ty = cast<PointerType>(Arg.Ty);
1196       Type *ElementTy = Ty->getElementType();
1197       unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
1198       // For ByVal, alignment should come from FE. BE will guess if this info is
1199       // not there, but there are cases it cannot get right.
1200       unsigned FrameAlign = Arg.Alignment;
1201       if (!FrameAlign)
1202         FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL);
1203       Flags.setByValSize(FrameSize);
1204       Flags.setByValAlign(FrameAlign);
1205     }
1206     if (Arg.IsNest)
1207       Flags.setNest();
1208     if (NeedsRegBlock)
1209       Flags.setInConsecutiveRegs();
1210     unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty);
1211     Flags.setOrigAlign(OriginalAlignment);
1212 
1213     CLI.OutVals.push_back(Arg.Val);
1214     CLI.OutFlags.push_back(Flags);
1215   }
1216 
1217   if (!fastLowerCall(CLI))
1218     return false;
1219 
1220   // Set all unused physreg defs as dead.
1221   assert(CLI.Call && "No call instruction specified.");
1222   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1223 
1224   if (CLI.NumResultRegs && CLI.CS)
1225     updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
1226 
1227   return true;
1228 }
1229 
1230 bool FastISel::lowerCall(const CallInst *CI) {
1231   ImmutableCallSite CS(CI);
1232 
1233   FunctionType *FuncTy = CS.getFunctionType();
1234   Type *RetTy = CS.getType();
1235 
1236   ArgListTy Args;
1237   ArgListEntry Entry;
1238   Args.reserve(CS.arg_size());
1239 
1240   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1241        i != e; ++i) {
1242     Value *V = *i;
1243 
1244     // Skip empty types
1245     if (V->getType()->isEmptyTy())
1246       continue;
1247 
1248     Entry.Val = V;
1249     Entry.Ty = V->getType();
1250 
1251     // Skip the first return-type Attribute to get to params.
1252     Entry.setAttributes(&CS, i - CS.arg_begin());
1253     Args.push_back(Entry);
1254   }
1255 
1256   // Check if target-independent constraints permit a tail call here.
1257   // Target-dependent constraints are checked within fastLowerCall.
1258   bool IsTailCall = CI->isTailCall();
1259   if (IsTailCall && !isInTailCallPosition(CS, TM))
1260     IsTailCall = false;
1261 
1262   CallLoweringInfo CLI;
1263   CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
1264       .setTailCall(IsTailCall);
1265 
1266   return lowerCallTo(CLI);
1267 }
1268 
1269 bool FastISel::selectCall(const User *I) {
1270   const CallInst *Call = cast<CallInst>(I);
1271 
1272   // Handle simple inline asms.
1273   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
1274     // If the inline asm has side effects, then make sure that no local value
1275     // lives across by flushing the local value map.
1276     if (IA->hasSideEffects())
1277       flushLocalValueMap();
1278 
1279     // Don't attempt to handle constraints.
1280     if (!IA->getConstraintString().empty())
1281       return false;
1282 
1283     unsigned ExtraInfo = 0;
1284     if (IA->hasSideEffects())
1285       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1286     if (IA->isAlignStack())
1287       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1288 
1289     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1290             TII.get(TargetOpcode::INLINEASM))
1291         .addExternalSymbol(IA->getAsmString().c_str())
1292         .addImm(ExtraInfo);
1293     return true;
1294   }
1295 
1296   MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
1297   computeUsesVAFloatArgument(*Call, MMI);
1298 
1299   // Handle intrinsic function calls.
1300   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1301     return selectIntrinsicCall(II);
1302 
1303   // Usually, it does not make sense to initialize a value,
1304   // make an unrelated function call and use the value, because
1305   // it tends to be spilled on the stack. So, we move the pointer
1306   // to the last local value to the beginning of the block, so that
1307   // all the values which have already been materialized,
1308   // appear after the call. It also makes sense to skip intrinsics
1309   // since they tend to be inlined.
1310   flushLocalValueMap();
1311 
1312   return lowerCall(Call);
1313 }
1314 
1315 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1316   switch (II->getIntrinsicID()) {
1317   default:
1318     break;
1319   // At -O0 we don't care about the lifetime intrinsics.
1320   case Intrinsic::lifetime_start:
1321   case Intrinsic::lifetime_end:
1322   // The donothing intrinsic does, well, nothing.
1323   case Intrinsic::donothing:
1324   // Neither does the sideeffect intrinsic.
1325   case Intrinsic::sideeffect:
1326   // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1327   case Intrinsic::assume:
1328     return true;
1329   case Intrinsic::dbg_declare: {
1330     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1331     assert(DI->getVariable() && "Missing variable");
1332     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1333       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1334       return true;
1335     }
1336 
1337     const Value *Address = DI->getAddress();
1338     if (!Address || isa<UndefValue>(Address)) {
1339       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1340       return true;
1341     }
1342 
1343     // Byval arguments with frame indices were already handled after argument
1344     // lowering and before isel.
1345     const auto *Arg =
1346         dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
1347     if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
1348       return true;
1349 
1350     Optional<MachineOperand> Op;
1351     if (unsigned Reg = lookUpRegForValue(Address))
1352       Op = MachineOperand::CreateReg(Reg, false);
1353 
1354     // If we have a VLA that has a "use" in a metadata node that's then used
1355     // here but it has no other uses, then we have a problem. E.g.,
1356     //
1357     //   int foo (const int *x) {
1358     //     char a[*x];
1359     //     return 0;
1360     //   }
1361     //
1362     // If we assign 'a' a vreg and fast isel later on has to use the selection
1363     // DAG isel, it will want to copy the value to the vreg. However, there are
1364     // no uses, which goes counter to what selection DAG isel expects.
1365     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1366         (!isa<AllocaInst>(Address) ||
1367          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1368       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1369                                      false);
1370 
1371     if (Op) {
1372       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1373              "Expected inlined-at fields to agree");
1374       if (Op->isReg()) {
1375         Op->setIsDebug(true);
1376         // A dbg.declare describes the address of a source variable, so lower it
1377         // into an indirect DBG_VALUE.
1378         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1379                 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true,
1380                 Op->getReg(), DI->getVariable(), DI->getExpression());
1381       } else
1382         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1383                 TII.get(TargetOpcode::DBG_VALUE))
1384             .add(*Op)
1385             .addImm(0)
1386             .addMetadata(DI->getVariable())
1387             .addMetadata(DI->getExpression());
1388     } else {
1389       // We can't yet handle anything else here because it would require
1390       // generating code, thus altering codegen because of debug info.
1391       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1392     }
1393     return true;
1394   }
1395   case Intrinsic::dbg_value: {
1396     // This form of DBG_VALUE is target-independent.
1397     const DbgValueInst *DI = cast<DbgValueInst>(II);
1398     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1399     const Value *V = DI->getValue();
1400     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1401            "Expected inlined-at fields to agree");
1402     if (!V) {
1403       // Currently the optimizer can produce this; insert an undef to
1404       // help debugging.  Probably the optimizer should not do this.
1405       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
1406               DI->getVariable(), DI->getExpression());
1407     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1408       if (CI->getBitWidth() > 64)
1409         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1410             .addCImm(CI)
1411             .addImm(0U)
1412             .addMetadata(DI->getVariable())
1413             .addMetadata(DI->getExpression());
1414       else
1415         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1416             .addImm(CI->getZExtValue())
1417             .addImm(0U)
1418             .addMetadata(DI->getVariable())
1419             .addMetadata(DI->getExpression());
1420     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1421       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1422           .addFPImm(CF)
1423           .addImm(0U)
1424           .addMetadata(DI->getVariable())
1425           .addMetadata(DI->getExpression());
1426     } else if (unsigned Reg = lookUpRegForValue(V)) {
1427       // FIXME: This does not handle register-indirect values at offset 0.
1428       bool IsIndirect = false;
1429       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1430               DI->getVariable(), DI->getExpression());
1431     } else {
1432       // We can't yet handle anything else here because it would require
1433       // generating code, thus altering codegen because of debug info.
1434       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1435     }
1436     return true;
1437   }
1438   case Intrinsic::objectsize: {
1439     ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1440     unsigned long long Res = CI->isZero() ? -1ULL : 0;
1441     Constant *ResCI = ConstantInt::get(II->getType(), Res);
1442     unsigned ResultReg = getRegForValue(ResCI);
1443     if (!ResultReg)
1444       return false;
1445     updateValueMap(II, ResultReg);
1446     return true;
1447   }
1448   case Intrinsic::launder_invariant_group:
1449   case Intrinsic::expect: {
1450     unsigned ResultReg = getRegForValue(II->getArgOperand(0));
1451     if (!ResultReg)
1452       return false;
1453     updateValueMap(II, ResultReg);
1454     return true;
1455   }
1456   case Intrinsic::experimental_stackmap:
1457     return selectStackmap(II);
1458   case Intrinsic::experimental_patchpoint_void:
1459   case Intrinsic::experimental_patchpoint_i64:
1460     return selectPatchpoint(II);
1461 
1462   case Intrinsic::xray_customevent:
1463     return selectXRayCustomEvent(II);
1464   case Intrinsic::xray_typedevent:
1465     return selectXRayTypedEvent(II);
1466   }
1467 
1468   return fastLowerIntrinsicCall(II);
1469 }
1470 
1471 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1472   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1473   EVT DstVT = TLI.getValueType(DL, I->getType());
1474 
1475   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1476       !DstVT.isSimple())
1477     // Unhandled type. Halt "fast" selection and bail.
1478     return false;
1479 
1480   // Check if the destination type is legal.
1481   if (!TLI.isTypeLegal(DstVT))
1482     return false;
1483 
1484   // Check if the source operand is legal.
1485   if (!TLI.isTypeLegal(SrcVT))
1486     return false;
1487 
1488   unsigned InputReg = getRegForValue(I->getOperand(0));
1489   if (!InputReg)
1490     // Unhandled operand.  Halt "fast" selection and bail.
1491     return false;
1492 
1493   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
1494 
1495   unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1496                                   Opcode, InputReg, InputRegIsKill);
1497   if (!ResultReg)
1498     return false;
1499 
1500   updateValueMap(I, ResultReg);
1501   return true;
1502 }
1503 
1504 bool FastISel::selectBitCast(const User *I) {
1505   // If the bitcast doesn't change the type, just use the operand value.
1506   if (I->getType() == I->getOperand(0)->getType()) {
1507     unsigned Reg = getRegForValue(I->getOperand(0));
1508     if (!Reg)
1509       return false;
1510     updateValueMap(I, Reg);
1511     return true;
1512   }
1513 
1514   // Bitcasts of other values become reg-reg copies or BITCAST operators.
1515   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1516   EVT DstEVT = TLI.getValueType(DL, I->getType());
1517   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1518       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1519     // Unhandled type. Halt "fast" selection and bail.
1520     return false;
1521 
1522   MVT SrcVT = SrcEVT.getSimpleVT();
1523   MVT DstVT = DstEVT.getSimpleVT();
1524   unsigned Op0 = getRegForValue(I->getOperand(0));
1525   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1526     return false;
1527   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
1528 
1529   // First, try to perform the bitcast by inserting a reg-reg copy.
1530   unsigned ResultReg = 0;
1531   if (SrcVT == DstVT) {
1532     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1533     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1534     // Don't attempt a cross-class copy. It will likely fail.
1535     if (SrcClass == DstClass) {
1536       ResultReg = createResultReg(DstClass);
1537       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1538               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1539     }
1540   }
1541 
1542   // If the reg-reg copy failed, select a BITCAST opcode.
1543   if (!ResultReg)
1544     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
1545 
1546   if (!ResultReg)
1547     return false;
1548 
1549   updateValueMap(I, ResultReg);
1550   return true;
1551 }
1552 
1553 // Remove local value instructions starting from the instruction after
1554 // SavedLastLocalValue to the current function insert point.
1555 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1556 {
1557   MachineInstr *CurLastLocalValue = getLastLocalValue();
1558   if (CurLastLocalValue != SavedLastLocalValue) {
1559     // Find the first local value instruction to be deleted.
1560     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1561     // Otherwise it's the first instruction in the block.
1562     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1563     if (SavedLastLocalValue)
1564       ++FirstDeadInst;
1565     else
1566       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1567     setLastLocalValue(SavedLastLocalValue);
1568     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1569   }
1570 }
1571 
1572 bool FastISel::selectInstruction(const Instruction *I) {
1573   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1574   // Just before the terminator instruction, insert instructions to
1575   // feed PHI nodes in successor blocks.
1576   if (isa<TerminatorInst>(I)) {
1577     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1578       // PHI node handling may have generated local value instructions,
1579       // even though it failed to handle all PHI nodes.
1580       // We remove these instructions because SelectionDAGISel will generate
1581       // them again.
1582       removeDeadLocalValueCode(SavedLastLocalValue);
1583       return false;
1584     }
1585   }
1586 
1587   // FastISel does not handle any operand bundles except OB_funclet.
1588   if (ImmutableCallSite CS = ImmutableCallSite(I))
1589     for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i)
1590       if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1591         return false;
1592 
1593   DbgLoc = I->getDebugLoc();
1594 
1595   SavedInsertPt = FuncInfo.InsertPt;
1596 
1597   if (const auto *Call = dyn_cast<CallInst>(I)) {
1598     const Function *F = Call->getCalledFunction();
1599     LibFunc Func;
1600 
1601     // As a special case, don't handle calls to builtin library functions that
1602     // may be translated directly to target instructions.
1603     if (F && !F->hasLocalLinkage() && F->hasName() &&
1604         LibInfo->getLibFunc(F->getName(), Func) &&
1605         LibInfo->hasOptimizedCodeGen(Func))
1606       return false;
1607 
1608     // Don't handle Intrinsic::trap if a trap function is specified.
1609     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1610         Call->hasFnAttr("trap-func-name"))
1611       return false;
1612   }
1613 
1614   // First, try doing target-independent selection.
1615   if (!SkipTargetIndependentISel) {
1616     if (selectOperator(I, I->getOpcode())) {
1617       ++NumFastIselSuccessIndependent;
1618       DbgLoc = DebugLoc();
1619       return true;
1620     }
1621     // Remove dead code.
1622     recomputeInsertPt();
1623     if (SavedInsertPt != FuncInfo.InsertPt)
1624       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1625     SavedInsertPt = FuncInfo.InsertPt;
1626   }
1627   // Next, try calling the target to attempt to handle the instruction.
1628   if (fastSelectInstruction(I)) {
1629     ++NumFastIselSuccessTarget;
1630     DbgLoc = DebugLoc();
1631     return true;
1632   }
1633   // Remove dead code.
1634   recomputeInsertPt();
1635   if (SavedInsertPt != FuncInfo.InsertPt)
1636     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1637 
1638   DbgLoc = DebugLoc();
1639   // Undo phi node updates, because they will be added again by SelectionDAG.
1640   if (isa<TerminatorInst>(I)) {
1641     // PHI node handling may have generated local value instructions.
1642     // We remove them because SelectionDAGISel will generate them again.
1643     removeDeadLocalValueCode(SavedLastLocalValue);
1644     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1645   }
1646   return false;
1647 }
1648 
1649 /// Emit an unconditional branch to the given block, unless it is the immediate
1650 /// (fall-through) successor, and update the CFG.
1651 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1652                               const DebugLoc &DbgLoc) {
1653   if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
1654       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1655     // For more accurate line information if this is the only instruction
1656     // in the block then emit it, otherwise we have the unconditional
1657     // fall-through case, which needs no instructions.
1658   } else {
1659     // The unconditional branch case.
1660     TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1661                      SmallVector<MachineOperand, 0>(), DbgLoc);
1662   }
1663   if (FuncInfo.BPI) {
1664     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1665         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1666     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1667   } else
1668     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1669 }
1670 
1671 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1672                                 MachineBasicBlock *TrueMBB,
1673                                 MachineBasicBlock *FalseMBB) {
1674   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1675   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1676   // successor/predecessor lists.
1677   if (TrueMBB != FalseMBB) {
1678     if (FuncInfo.BPI) {
1679       auto BranchProbability =
1680           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1681       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1682     } else
1683       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1684   }
1685 
1686   fastEmitBranch(FalseMBB, DbgLoc);
1687 }
1688 
1689 /// Emit an FNeg operation.
1690 bool FastISel::selectFNeg(const User *I) {
1691   unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
1692   if (!OpReg)
1693     return false;
1694   bool OpRegIsKill = hasTrivialKill(I);
1695 
1696   // If the target has ISD::FNEG, use it.
1697   EVT VT = TLI.getValueType(DL, I->getType());
1698   unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1699                                   OpReg, OpRegIsKill);
1700   if (ResultReg) {
1701     updateValueMap(I, ResultReg);
1702     return true;
1703   }
1704 
1705   // Bitcast the value to integer, twiddle the sign bit with xor,
1706   // and then bitcast it back to floating-point.
1707   if (VT.getSizeInBits() > 64)
1708     return false;
1709   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1710   if (!TLI.isTypeLegal(IntVT))
1711     return false;
1712 
1713   unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1714                                ISD::BITCAST, OpReg, OpRegIsKill);
1715   if (!IntReg)
1716     return false;
1717 
1718   unsigned IntResultReg = fastEmit_ri_(
1719       IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
1720       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1721   if (!IntResultReg)
1722     return false;
1723 
1724   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1725                          IntResultReg, /*IsKill=*/true);
1726   if (!ResultReg)
1727     return false;
1728 
1729   updateValueMap(I, ResultReg);
1730   return true;
1731 }
1732 
1733 bool FastISel::selectExtractValue(const User *U) {
1734   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1735   if (!EVI)
1736     return false;
1737 
1738   // Make sure we only try to handle extracts with a legal result.  But also
1739   // allow i1 because it's easy.
1740   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1741   if (!RealVT.isSimple())
1742     return false;
1743   MVT VT = RealVT.getSimpleVT();
1744   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1745     return false;
1746 
1747   const Value *Op0 = EVI->getOperand(0);
1748   Type *AggTy = Op0->getType();
1749 
1750   // Get the base result register.
1751   unsigned ResultReg;
1752   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
1753   if (I != FuncInfo.ValueMap.end())
1754     ResultReg = I->second;
1755   else if (isa<Instruction>(Op0))
1756     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1757   else
1758     return false; // fast-isel can't handle aggregate constants at the moment
1759 
1760   // Get the actual result register, which is an offset from the base register.
1761   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1762 
1763   SmallVector<EVT, 4> AggValueVTs;
1764   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1765 
1766   for (unsigned i = 0; i < VTIndex; i++)
1767     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1768 
1769   updateValueMap(EVI, ResultReg);
1770   return true;
1771 }
1772 
1773 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1774   switch (Opcode) {
1775   case Instruction::Add:
1776     return selectBinaryOp(I, ISD::ADD);
1777   case Instruction::FAdd:
1778     return selectBinaryOp(I, ISD::FADD);
1779   case Instruction::Sub:
1780     return selectBinaryOp(I, ISD::SUB);
1781   case Instruction::FSub:
1782     // FNeg is currently represented in LLVM IR as a special case of FSub.
1783     if (BinaryOperator::isFNeg(I))
1784       return selectFNeg(I);
1785     return selectBinaryOp(I, ISD::FSUB);
1786   case Instruction::Mul:
1787     return selectBinaryOp(I, ISD::MUL);
1788   case Instruction::FMul:
1789     return selectBinaryOp(I, ISD::FMUL);
1790   case Instruction::SDiv:
1791     return selectBinaryOp(I, ISD::SDIV);
1792   case Instruction::UDiv:
1793     return selectBinaryOp(I, ISD::UDIV);
1794   case Instruction::FDiv:
1795     return selectBinaryOp(I, ISD::FDIV);
1796   case Instruction::SRem:
1797     return selectBinaryOp(I, ISD::SREM);
1798   case Instruction::URem:
1799     return selectBinaryOp(I, ISD::UREM);
1800   case Instruction::FRem:
1801     return selectBinaryOp(I, ISD::FREM);
1802   case Instruction::Shl:
1803     return selectBinaryOp(I, ISD::SHL);
1804   case Instruction::LShr:
1805     return selectBinaryOp(I, ISD::SRL);
1806   case Instruction::AShr:
1807     return selectBinaryOp(I, ISD::SRA);
1808   case Instruction::And:
1809     return selectBinaryOp(I, ISD::AND);
1810   case Instruction::Or:
1811     return selectBinaryOp(I, ISD::OR);
1812   case Instruction::Xor:
1813     return selectBinaryOp(I, ISD::XOR);
1814 
1815   case Instruction::GetElementPtr:
1816     return selectGetElementPtr(I);
1817 
1818   case Instruction::Br: {
1819     const BranchInst *BI = cast<BranchInst>(I);
1820 
1821     if (BI->isUnconditional()) {
1822       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1823       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1824       fastEmitBranch(MSucc, BI->getDebugLoc());
1825       return true;
1826     }
1827 
1828     // Conditional branches are not handed yet.
1829     // Halt "fast" selection and bail.
1830     return false;
1831   }
1832 
1833   case Instruction::Unreachable:
1834     if (TM.Options.TrapUnreachable)
1835       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1836     else
1837       return true;
1838 
1839   case Instruction::Alloca:
1840     // FunctionLowering has the static-sized case covered.
1841     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1842       return true;
1843 
1844     // Dynamic-sized alloca is not handled yet.
1845     return false;
1846 
1847   case Instruction::Call:
1848     return selectCall(I);
1849 
1850   case Instruction::BitCast:
1851     return selectBitCast(I);
1852 
1853   case Instruction::FPToSI:
1854     return selectCast(I, ISD::FP_TO_SINT);
1855   case Instruction::ZExt:
1856     return selectCast(I, ISD::ZERO_EXTEND);
1857   case Instruction::SExt:
1858     return selectCast(I, ISD::SIGN_EXTEND);
1859   case Instruction::Trunc:
1860     return selectCast(I, ISD::TRUNCATE);
1861   case Instruction::SIToFP:
1862     return selectCast(I, ISD::SINT_TO_FP);
1863 
1864   case Instruction::IntToPtr: // Deliberate fall-through.
1865   case Instruction::PtrToInt: {
1866     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1867     EVT DstVT = TLI.getValueType(DL, I->getType());
1868     if (DstVT.bitsGT(SrcVT))
1869       return selectCast(I, ISD::ZERO_EXTEND);
1870     if (DstVT.bitsLT(SrcVT))
1871       return selectCast(I, ISD::TRUNCATE);
1872     unsigned Reg = getRegForValue(I->getOperand(0));
1873     if (!Reg)
1874       return false;
1875     updateValueMap(I, Reg);
1876     return true;
1877   }
1878 
1879   case Instruction::ExtractValue:
1880     return selectExtractValue(I);
1881 
1882   case Instruction::PHI:
1883     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1884 
1885   default:
1886     // Unhandled instruction. Halt "fast" selection and bail.
1887     return false;
1888   }
1889 }
1890 
1891 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1892                    const TargetLibraryInfo *LibInfo,
1893                    bool SkipTargetIndependentISel)
1894     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1895       MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1896       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1897       TII(*MF->getSubtarget().getInstrInfo()),
1898       TLI(*MF->getSubtarget().getTargetLowering()),
1899       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1900       SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1901 
1902 FastISel::~FastISel() = default;
1903 
1904 bool FastISel::fastLowerArguments() { return false; }
1905 
1906 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1907 
1908 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1909   return false;
1910 }
1911 
1912 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1913 
1914 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
1915                               bool /*Op0IsKill*/) {
1916   return 0;
1917 }
1918 
1919 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1920                                bool /*Op0IsKill*/, unsigned /*Op1*/,
1921                                bool /*Op1IsKill*/) {
1922   return 0;
1923 }
1924 
1925 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1926   return 0;
1927 }
1928 
1929 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1930                               const ConstantFP * /*FPImm*/) {
1931   return 0;
1932 }
1933 
1934 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1935                                bool /*Op0IsKill*/, uint64_t /*Imm*/) {
1936   return 0;
1937 }
1938 
1939 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1940 /// instruction with an immediate operand using fastEmit_ri.
1941 /// If that fails, it materializes the immediate into a register and try
1942 /// fastEmit_rr instead.
1943 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1944                                 bool Op0IsKill, uint64_t Imm, MVT ImmType) {
1945   // If this is a multiply by a power of two, emit this as a shift left.
1946   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1947     Opcode = ISD::SHL;
1948     Imm = Log2_64(Imm);
1949   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1950     // div x, 8 -> srl x, 3
1951     Opcode = ISD::SRL;
1952     Imm = Log2_64(Imm);
1953   }
1954 
1955   // Horrible hack (to be removed), check to make sure shift amounts are
1956   // in-range.
1957   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1958       Imm >= VT.getSizeInBits())
1959     return 0;
1960 
1961   // First check if immediate type is legal. If not, we can't use the ri form.
1962   unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1963   if (ResultReg)
1964     return ResultReg;
1965   unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1966   bool IsImmKill = true;
1967   if (!MaterialReg) {
1968     // This is a bit ugly/slow, but failing here means falling out of
1969     // fast-isel, which would be very slow.
1970     IntegerType *ITy =
1971         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1972     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1973     if (!MaterialReg)
1974       return 0;
1975     // FIXME: If the materialized register here has no uses yet then this
1976     // will be the first use and we should be able to mark it as killed.
1977     // However, the local value area for materialising constant expressions
1978     // grows down, not up, which means that any constant expressions we generate
1979     // later which also use 'Imm' could be after this instruction and therefore
1980     // after this kill.
1981     IsImmKill = false;
1982   }
1983   return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill);
1984 }
1985 
1986 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
1987   return MRI.createVirtualRegister(RC);
1988 }
1989 
1990 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
1991                                             unsigned OpNum) {
1992   if (TargetRegisterInfo::isVirtualRegister(Op)) {
1993     const TargetRegisterClass *RegClass =
1994         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1995     if (!MRI.constrainRegClass(Op, RegClass)) {
1996       // If it's not legal to COPY between the register classes, something
1997       // has gone very wrong before we got here.
1998       unsigned NewOp = createResultReg(RegClass);
1999       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2000               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
2001       return NewOp;
2002     }
2003   }
2004   return Op;
2005 }
2006 
2007 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
2008                                  const TargetRegisterClass *RC) {
2009   unsigned ResultReg = createResultReg(RC);
2010   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2011 
2012   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
2013   return ResultReg;
2014 }
2015 
2016 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2017                                   const TargetRegisterClass *RC, unsigned Op0,
2018                                   bool Op0IsKill) {
2019   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2020 
2021   unsigned ResultReg = createResultReg(RC);
2022   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2023 
2024   if (II.getNumDefs() >= 1)
2025     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2026         .addReg(Op0, getKillRegState(Op0IsKill));
2027   else {
2028     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2029         .addReg(Op0, getKillRegState(Op0IsKill));
2030     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2031             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2032   }
2033 
2034   return ResultReg;
2035 }
2036 
2037 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2038                                    const TargetRegisterClass *RC, unsigned Op0,
2039                                    bool Op0IsKill, unsigned Op1,
2040                                    bool Op1IsKill) {
2041   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2042 
2043   unsigned ResultReg = createResultReg(RC);
2044   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2045   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2046 
2047   if (II.getNumDefs() >= 1)
2048     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2049         .addReg(Op0, getKillRegState(Op0IsKill))
2050         .addReg(Op1, getKillRegState(Op1IsKill));
2051   else {
2052     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2053         .addReg(Op0, getKillRegState(Op0IsKill))
2054         .addReg(Op1, getKillRegState(Op1IsKill));
2055     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2056             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2057   }
2058   return ResultReg;
2059 }
2060 
2061 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
2062                                     const TargetRegisterClass *RC, unsigned Op0,
2063                                     bool Op0IsKill, unsigned Op1,
2064                                     bool Op1IsKill, unsigned Op2,
2065                                     bool Op2IsKill) {
2066   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2067 
2068   unsigned ResultReg = createResultReg(RC);
2069   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2070   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2071   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
2072 
2073   if (II.getNumDefs() >= 1)
2074     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2075         .addReg(Op0, getKillRegState(Op0IsKill))
2076         .addReg(Op1, getKillRegState(Op1IsKill))
2077         .addReg(Op2, getKillRegState(Op2IsKill));
2078   else {
2079     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2080         .addReg(Op0, getKillRegState(Op0IsKill))
2081         .addReg(Op1, getKillRegState(Op1IsKill))
2082         .addReg(Op2, getKillRegState(Op2IsKill));
2083     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2084             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2085   }
2086   return ResultReg;
2087 }
2088 
2089 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2090                                    const TargetRegisterClass *RC, unsigned Op0,
2091                                    bool Op0IsKill, uint64_t Imm) {
2092   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2093 
2094   unsigned ResultReg = createResultReg(RC);
2095   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2096 
2097   if (II.getNumDefs() >= 1)
2098     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2099         .addReg(Op0, getKillRegState(Op0IsKill))
2100         .addImm(Imm);
2101   else {
2102     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2103         .addReg(Op0, getKillRegState(Op0IsKill))
2104         .addImm(Imm);
2105     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2106             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2107   }
2108   return ResultReg;
2109 }
2110 
2111 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2112                                     const TargetRegisterClass *RC, unsigned Op0,
2113                                     bool Op0IsKill, uint64_t Imm1,
2114                                     uint64_t Imm2) {
2115   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2116 
2117   unsigned ResultReg = createResultReg(RC);
2118   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2119 
2120   if (II.getNumDefs() >= 1)
2121     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2122         .addReg(Op0, getKillRegState(Op0IsKill))
2123         .addImm(Imm1)
2124         .addImm(Imm2);
2125   else {
2126     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2127         .addReg(Op0, getKillRegState(Op0IsKill))
2128         .addImm(Imm1)
2129         .addImm(Imm2);
2130     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2131             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2132   }
2133   return ResultReg;
2134 }
2135 
2136 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2137                                   const TargetRegisterClass *RC,
2138                                   const ConstantFP *FPImm) {
2139   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2140 
2141   unsigned ResultReg = createResultReg(RC);
2142 
2143   if (II.getNumDefs() >= 1)
2144     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2145         .addFPImm(FPImm);
2146   else {
2147     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2148         .addFPImm(FPImm);
2149     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2150             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2151   }
2152   return ResultReg;
2153 }
2154 
2155 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2156                                     const TargetRegisterClass *RC, unsigned Op0,
2157                                     bool Op0IsKill, unsigned Op1,
2158                                     bool Op1IsKill, uint64_t Imm) {
2159   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2160 
2161   unsigned ResultReg = createResultReg(RC);
2162   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2163   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2164 
2165   if (II.getNumDefs() >= 1)
2166     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2167         .addReg(Op0, getKillRegState(Op0IsKill))
2168         .addReg(Op1, getKillRegState(Op1IsKill))
2169         .addImm(Imm);
2170   else {
2171     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2172         .addReg(Op0, getKillRegState(Op0IsKill))
2173         .addReg(Op1, getKillRegState(Op1IsKill))
2174         .addImm(Imm);
2175     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2176             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2177   }
2178   return ResultReg;
2179 }
2180 
2181 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2182                                   const TargetRegisterClass *RC, uint64_t Imm) {
2183   unsigned ResultReg = createResultReg(RC);
2184   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2185 
2186   if (II.getNumDefs() >= 1)
2187     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2188         .addImm(Imm);
2189   else {
2190     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
2191     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2192             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2193   }
2194   return ResultReg;
2195 }
2196 
2197 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2198                                               bool Op0IsKill, uint32_t Idx) {
2199   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2200   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
2201          "Cannot yet extract from physregs");
2202   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2203   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2204   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
2205           ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
2206   return ResultReg;
2207 }
2208 
2209 /// Emit MachineInstrs to compute the value of Op with all but the least
2210 /// significant bit set to zero.
2211 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
2212   return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
2213 }
2214 
2215 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2216 /// Emit code to ensure constants are copied into registers when needed.
2217 /// Remember the virtual registers that need to be added to the Machine PHI
2218 /// nodes as input.  We cannot just directly add them, because expansion
2219 /// might result in multiple MBB's for one BB.  As such, the start of the
2220 /// BB might correspond to a different MBB than the end.
2221 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2222   const TerminatorInst *TI = LLVMBB->getTerminator();
2223 
2224   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2225   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2226 
2227   // Check successor nodes' PHI nodes that expect a constant to be available
2228   // from this block.
2229   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2230     const BasicBlock *SuccBB = TI->getSuccessor(succ);
2231     if (!isa<PHINode>(SuccBB->begin()))
2232       continue;
2233     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2234 
2235     // If this terminator has multiple identical successors (common for
2236     // switches), only handle each succ once.
2237     if (!SuccsHandled.insert(SuccMBB).second)
2238       continue;
2239 
2240     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2241 
2242     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2243     // nodes and Machine PHI nodes, but the incoming operands have not been
2244     // emitted yet.
2245     for (const PHINode &PN : SuccBB->phis()) {
2246       // Ignore dead phi's.
2247       if (PN.use_empty())
2248         continue;
2249 
2250       // Only handle legal types. Two interesting things to note here. First,
2251       // by bailing out early, we may leave behind some dead instructions,
2252       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2253       // own moves. Second, this check is necessary because FastISel doesn't
2254       // use CreateRegs to create registers, so it always creates
2255       // exactly one register for each non-void instruction.
2256       EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2257       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2258         // Handle integer promotions, though, because they're common and easy.
2259         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2260           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2261           return false;
2262         }
2263       }
2264 
2265       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2266 
2267       // Set the DebugLoc for the copy. Prefer the location of the operand
2268       // if there is one; use the location of the PHI otherwise.
2269       DbgLoc = PN.getDebugLoc();
2270       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2271         DbgLoc = Inst->getDebugLoc();
2272 
2273       unsigned Reg = getRegForValue(PHIOp);
2274       if (!Reg) {
2275         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2276         return false;
2277       }
2278       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2279       DbgLoc = DebugLoc();
2280     }
2281   }
2282 
2283   return true;
2284 }
2285 
2286 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2287   assert(LI->hasOneUse() &&
2288          "tryToFoldLoad expected a LoadInst with a single use");
2289   // We know that the load has a single use, but don't know what it is.  If it
2290   // isn't one of the folded instructions, then we can't succeed here.  Handle
2291   // this by scanning the single-use users of the load until we get to FoldInst.
2292   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2293 
2294   const Instruction *TheUser = LI->user_back();
2295   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2296          // Stay in the right block.
2297          TheUser->getParent() == FoldInst->getParent() &&
2298          --MaxUsers) { // Don't scan too far.
2299     // If there are multiple or no uses of this instruction, then bail out.
2300     if (!TheUser->hasOneUse())
2301       return false;
2302 
2303     TheUser = TheUser->user_back();
2304   }
2305 
2306   // If we didn't find the fold instruction, then we failed to collapse the
2307   // sequence.
2308   if (TheUser != FoldInst)
2309     return false;
2310 
2311   // Don't try to fold volatile loads.  Target has to deal with alignment
2312   // constraints.
2313   if (LI->isVolatile())
2314     return false;
2315 
2316   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2317   // then there actually was no reference to it.  Perhaps the load is referenced
2318   // by a dead instruction.
2319   unsigned LoadReg = getRegForValue(LI);
2320   if (!LoadReg)
2321     return false;
2322 
2323   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2324   // may mean that the instruction got lowered to multiple MIs, or the use of
2325   // the loaded value ended up being multiple operands of the result.
2326   if (!MRI.hasOneUse(LoadReg))
2327     return false;
2328 
2329   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2330   MachineInstr *User = RI->getParent();
2331 
2332   // Set the insertion point properly.  Folding the load can cause generation of
2333   // other random instructions (like sign extends) for addressing modes; make
2334   // sure they get inserted in a logical place before the new instruction.
2335   FuncInfo.InsertPt = User;
2336   FuncInfo.MBB = User->getParent();
2337 
2338   // Ask the target to try folding the load.
2339   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2340 }
2341 
2342 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2343   // Must be an add.
2344   if (!isa<AddOperator>(Add))
2345     return false;
2346   // Type size needs to match.
2347   if (DL.getTypeSizeInBits(GEP->getType()) !=
2348       DL.getTypeSizeInBits(Add->getType()))
2349     return false;
2350   // Must be in the same basic block.
2351   if (isa<Instruction>(Add) &&
2352       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2353     return false;
2354   // Must have a constant operand.
2355   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2356 }
2357 
2358 MachineMemOperand *
2359 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2360   const Value *Ptr;
2361   Type *ValTy;
2362   unsigned Alignment;
2363   MachineMemOperand::Flags Flags;
2364   bool IsVolatile;
2365 
2366   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2367     Alignment = LI->getAlignment();
2368     IsVolatile = LI->isVolatile();
2369     Flags = MachineMemOperand::MOLoad;
2370     Ptr = LI->getPointerOperand();
2371     ValTy = LI->getType();
2372   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2373     Alignment = SI->getAlignment();
2374     IsVolatile = SI->isVolatile();
2375     Flags = MachineMemOperand::MOStore;
2376     Ptr = SI->getPointerOperand();
2377     ValTy = SI->getValueOperand()->getType();
2378   } else
2379     return nullptr;
2380 
2381   bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr;
2382   bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
2383   bool IsDereferenceable =
2384       I->getMetadata(LLVMContext::MD_dereferenceable) != nullptr;
2385   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2386 
2387   AAMDNodes AAInfo;
2388   I->getAAMetadata(AAInfo);
2389 
2390   if (Alignment == 0) // Ensure that codegen never sees alignment 0.
2391     Alignment = DL.getABITypeAlignment(ValTy);
2392 
2393   unsigned Size = DL.getTypeStoreSize(ValTy);
2394 
2395   if (IsVolatile)
2396     Flags |= MachineMemOperand::MOVolatile;
2397   if (IsNonTemporal)
2398     Flags |= MachineMemOperand::MONonTemporal;
2399   if (IsDereferenceable)
2400     Flags |= MachineMemOperand::MODereferenceable;
2401   if (IsInvariant)
2402     Flags |= MachineMemOperand::MOInvariant;
2403 
2404   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2405                                            Alignment, AAInfo, Ranges);
2406 }
2407 
2408 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2409   // If both operands are the same, then try to optimize or fold the cmp.
2410   CmpInst::Predicate Predicate = CI->getPredicate();
2411   if (CI->getOperand(0) != CI->getOperand(1))
2412     return Predicate;
2413 
2414   switch (Predicate) {
2415   default: llvm_unreachable("Invalid predicate!");
2416   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2417   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2418   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2419   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2420   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2421   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2422   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2423   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2424   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2425   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2426   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2427   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2428   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2429   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2430   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2431   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2432 
2433   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2434   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2435   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2436   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2437   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2438   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2439   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2440   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2441   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2442   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2443   }
2444 
2445   return Predicate;
2446 }
2447