1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/CodeGen/FastISel.h" 43 #include "llvm/ADT/APFloat.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/DenseMap.h" 46 #include "llvm/ADT/Optional.h" 47 #include "llvm/ADT/SmallPtrSet.h" 48 #include "llvm/ADT/SmallString.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/Statistic.h" 51 #include "llvm/Analysis/BranchProbabilityInfo.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/CodeGen/Analysis.h" 54 #include "llvm/CodeGen/FunctionLoweringInfo.h" 55 #include "llvm/CodeGen/ISDOpcodes.h" 56 #include "llvm/CodeGen/MachineBasicBlock.h" 57 #include "llvm/CodeGen/MachineFrameInfo.h" 58 #include "llvm/CodeGen/MachineInstr.h" 59 #include "llvm/CodeGen/MachineInstrBuilder.h" 60 #include "llvm/CodeGen/MachineMemOperand.h" 61 #include "llvm/CodeGen/MachineModuleInfo.h" 62 #include "llvm/CodeGen/MachineOperand.h" 63 #include "llvm/CodeGen/MachineRegisterInfo.h" 64 #include "llvm/CodeGen/StackMaps.h" 65 #include "llvm/CodeGen/TargetInstrInfo.h" 66 #include "llvm/CodeGen/TargetLowering.h" 67 #include "llvm/CodeGen/TargetSubtargetInfo.h" 68 #include "llvm/CodeGen/ValueTypes.h" 69 #include "llvm/IR/Argument.h" 70 #include "llvm/IR/Attributes.h" 71 #include "llvm/IR/BasicBlock.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DebugInfo.h" 78 #include "llvm/IR/DebugLoc.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Function.h" 81 #include "llvm/IR/GetElementPtrTypeIterator.h" 82 #include "llvm/IR/GlobalValue.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/LLVMContext.h" 89 #include "llvm/IR/Mangler.h" 90 #include "llvm/IR/Metadata.h" 91 #include "llvm/IR/Operator.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCInstrDesc.h" 97 #include "llvm/MC/MCRegisterInfo.h" 98 #include "llvm/Support/Casting.h" 99 #include "llvm/Support/Debug.h" 100 #include "llvm/Support/ErrorHandling.h" 101 #include "llvm/Support/MachineValueType.h" 102 #include "llvm/Support/MathExtras.h" 103 #include "llvm/Support/raw_ostream.h" 104 #include "llvm/Target/TargetMachine.h" 105 #include "llvm/Target/TargetOptions.h" 106 #include <algorithm> 107 #include <cassert> 108 #include <cstdint> 109 #include <iterator> 110 #include <utility> 111 112 using namespace llvm; 113 114 #define DEBUG_TYPE "isel" 115 116 // FIXME: Remove this after the feature has proven reliable. 117 static cl::opt<bool> SinkLocalValues("fast-isel-sink-local-values", 118 cl::init(true), cl::Hidden, 119 cl::desc("Sink local values in FastISel")); 120 121 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 122 "target-independent selector"); 123 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 124 "target-specific selector"); 125 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 126 127 /// Set the current block to which generated machine instructions will be 128 /// appended. 129 void FastISel::startNewBlock() { 130 assert(LocalValueMap.empty() && 131 "local values should be cleared after finishing a BB"); 132 133 // Instructions are appended to FuncInfo.MBB. If the basic block already 134 // contains labels or copies, use the last instruction as the last local 135 // value. 136 EmitStartPt = nullptr; 137 if (!FuncInfo.MBB->empty()) 138 EmitStartPt = &FuncInfo.MBB->back(); 139 LastLocalValue = EmitStartPt; 140 } 141 142 /// Flush the local CSE map and sink anything we can. 143 void FastISel::finishBasicBlock() { flushLocalValueMap(); } 144 145 bool FastISel::lowerArguments() { 146 if (!FuncInfo.CanLowerReturn) 147 // Fallback to SDISel argument lowering code to deal with sret pointer 148 // parameter. 149 return false; 150 151 if (!fastLowerArguments()) 152 return false; 153 154 // Enter arguments into ValueMap for uses in non-entry BBs. 155 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 156 E = FuncInfo.Fn->arg_end(); 157 I != E; ++I) { 158 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I); 159 assert(VI != LocalValueMap.end() && "Missed an argument?"); 160 FuncInfo.ValueMap[&*I] = VI->second; 161 } 162 return true; 163 } 164 165 /// Return the defined register if this instruction defines exactly one 166 /// virtual register and uses no other virtual registers. Otherwise return 0. 167 static unsigned findSinkableLocalRegDef(MachineInstr &MI) { 168 unsigned RegDef = 0; 169 for (const MachineOperand &MO : MI.operands()) { 170 if (!MO.isReg()) 171 continue; 172 if (MO.isDef()) { 173 if (RegDef) 174 return 0; 175 RegDef = MO.getReg(); 176 } else if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 177 // This is another use of a vreg. Don't try to sink it. 178 return 0; 179 } 180 } 181 return RegDef; 182 } 183 184 void FastISel::flushLocalValueMap() { 185 // Try to sink local values down to their first use so that we can give them a 186 // better debug location. This has the side effect of shrinking local value 187 // live ranges, which helps out fast regalloc. 188 if (SinkLocalValues && LastLocalValue != EmitStartPt) { 189 // Sink local value materialization instructions between EmitStartPt and 190 // LastLocalValue. Visit them bottom-up, starting from LastLocalValue, to 191 // avoid inserting into the range that we're iterating over. 192 MachineBasicBlock::reverse_iterator RE = 193 EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) 194 : FuncInfo.MBB->rend(); 195 MachineBasicBlock::reverse_iterator RI(LastLocalValue); 196 197 InstOrderMap OrderMap; 198 for (; RI != RE;) { 199 MachineInstr &LocalMI = *RI; 200 ++RI; 201 bool Store = true; 202 if (!LocalMI.isSafeToMove(nullptr, Store)) 203 continue; 204 unsigned DefReg = findSinkableLocalRegDef(LocalMI); 205 if (DefReg == 0) 206 continue; 207 208 sinkLocalValueMaterialization(LocalMI, DefReg, OrderMap); 209 } 210 } 211 212 LocalValueMap.clear(); 213 LastLocalValue = EmitStartPt; 214 recomputeInsertPt(); 215 SavedInsertPt = FuncInfo.InsertPt; 216 LastFlushPoint = FuncInfo.InsertPt; 217 } 218 219 static bool isRegUsedByPhiNodes(unsigned DefReg, 220 FunctionLoweringInfo &FuncInfo) { 221 for (auto &P : FuncInfo.PHINodesToUpdate) 222 if (P.second == DefReg) 223 return true; 224 return false; 225 } 226 227 /// Build a map of instruction orders. Return the first terminator and its 228 /// order. Consider EH_LABEL instructions to be terminators as well, since local 229 /// values for phis after invokes must be materialized before the call. 230 void FastISel::InstOrderMap::initialize( 231 MachineBasicBlock *MBB, MachineBasicBlock::iterator LastFlushPoint) { 232 unsigned Order = 0; 233 for (MachineInstr &I : *MBB) { 234 if (!FirstTerminator && 235 (I.isTerminator() || (I.isEHLabel() && &I != &MBB->front()))) { 236 FirstTerminator = &I; 237 FirstTerminatorOrder = Order; 238 } 239 Orders[&I] = Order++; 240 241 // We don't need to order instructions past the last flush point. 242 if (I.getIterator() == LastFlushPoint) 243 break; 244 } 245 } 246 247 void FastISel::sinkLocalValueMaterialization(MachineInstr &LocalMI, 248 unsigned DefReg, 249 InstOrderMap &OrderMap) { 250 // If this register is used by a register fixup, MRI will not contain all 251 // the uses until after register fixups, so don't attempt to sink or DCE 252 // this instruction. Register fixups typically come from no-op cast 253 // instructions, which replace the cast instruction vreg with the local 254 // value vreg. 255 if (FuncInfo.RegsWithFixups.count(DefReg)) 256 return; 257 258 // We can DCE this instruction if there are no uses and it wasn't a 259 // materialized for a successor PHI node. 260 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); 261 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) { 262 if (EmitStartPt == &LocalMI) 263 EmitStartPt = EmitStartPt->getPrevNode(); 264 LLVM_DEBUG(dbgs() << "removing dead local value materialization " 265 << LocalMI); 266 OrderMap.Orders.erase(&LocalMI); 267 LocalMI.eraseFromParent(); 268 return; 269 } 270 271 // Number the instructions if we haven't yet so we can efficiently find the 272 // earliest use. 273 if (OrderMap.Orders.empty()) 274 OrderMap.initialize(FuncInfo.MBB, LastFlushPoint); 275 276 // Find the first user in the BB. 277 MachineInstr *FirstUser = nullptr; 278 unsigned FirstOrder = std::numeric_limits<unsigned>::max(); 279 for (MachineInstr &UseInst : MRI.use_nodbg_instructions(DefReg)) { 280 auto I = OrderMap.Orders.find(&UseInst); 281 assert(I != OrderMap.Orders.end() && 282 "local value used by instruction outside local region"); 283 unsigned UseOrder = I->second; 284 if (UseOrder < FirstOrder) { 285 FirstOrder = UseOrder; 286 FirstUser = &UseInst; 287 } 288 } 289 290 // The insertion point will be the first terminator or the first user, 291 // whichever came first. If there was no terminator, this must be a 292 // fallthrough block and the insertion point is the end of the block. 293 MachineBasicBlock::instr_iterator SinkPos; 294 if (UsedByPHI && OrderMap.FirstTerminatorOrder < FirstOrder) { 295 FirstOrder = OrderMap.FirstTerminatorOrder; 296 SinkPos = OrderMap.FirstTerminator->getIterator(); 297 } else if (FirstUser) { 298 SinkPos = FirstUser->getIterator(); 299 } else { 300 assert(UsedByPHI && "must be users if not used by a phi"); 301 SinkPos = FuncInfo.MBB->instr_end(); 302 } 303 304 // Collect all DBG_VALUEs before the new insertion position so that we can 305 // sink them. 306 SmallVector<MachineInstr *, 1> DbgValues; 307 for (MachineInstr &DbgVal : MRI.use_instructions(DefReg)) { 308 if (!DbgVal.isDebugValue()) 309 continue; 310 unsigned UseOrder = OrderMap.Orders[&DbgVal]; 311 if (UseOrder < FirstOrder) 312 DbgValues.push_back(&DbgVal); 313 } 314 315 // Sink LocalMI before SinkPos and assign it the same DebugLoc. 316 LLVM_DEBUG(dbgs() << "sinking local value to first use " << LocalMI); 317 FuncInfo.MBB->remove(&LocalMI); 318 FuncInfo.MBB->insert(SinkPos, &LocalMI); 319 if (SinkPos != FuncInfo.MBB->end()) 320 LocalMI.setDebugLoc(SinkPos->getDebugLoc()); 321 322 // Sink any debug values that we've collected. 323 for (MachineInstr *DI : DbgValues) { 324 FuncInfo.MBB->remove(DI); 325 FuncInfo.MBB->insert(SinkPos, DI); 326 } 327 } 328 329 bool FastISel::hasTrivialKill(const Value *V) { 330 // Don't consider constants or arguments to have trivial kills. 331 const Instruction *I = dyn_cast<Instruction>(V); 332 if (!I) 333 return false; 334 335 // No-op casts are trivially coalesced by fast-isel. 336 if (const auto *Cast = dyn_cast<CastInst>(I)) 337 if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0))) 338 return false; 339 340 // Even the value might have only one use in the LLVM IR, it is possible that 341 // FastISel might fold the use into another instruction and now there is more 342 // than one use at the Machine Instruction level. 343 unsigned Reg = lookUpRegForValue(V); 344 if (Reg && !MRI.use_empty(Reg)) 345 return false; 346 347 // GEPs with all zero indices are trivially coalesced by fast-isel. 348 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 349 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 350 return false; 351 352 // Only instructions with a single use in the same basic block are considered 353 // to have trivial kills. 354 return I->hasOneUse() && 355 !(I->getOpcode() == Instruction::BitCast || 356 I->getOpcode() == Instruction::PtrToInt || 357 I->getOpcode() == Instruction::IntToPtr) && 358 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 359 } 360 361 unsigned FastISel::getRegForValue(const Value *V) { 362 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 363 // Don't handle non-simple values in FastISel. 364 if (!RealVT.isSimple()) 365 return 0; 366 367 // Ignore illegal types. We must do this before looking up the value 368 // in ValueMap because Arguments are given virtual registers regardless 369 // of whether FastISel can handle them. 370 MVT VT = RealVT.getSimpleVT(); 371 if (!TLI.isTypeLegal(VT)) { 372 // Handle integer promotions, though, because they're common and easy. 373 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 374 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 375 else 376 return 0; 377 } 378 379 // Look up the value to see if we already have a register for it. 380 unsigned Reg = lookUpRegForValue(V); 381 if (Reg) 382 return Reg; 383 384 // In bottom-up mode, just create the virtual register which will be used 385 // to hold the value. It will be materialized later. 386 if (isa<Instruction>(V) && 387 (!isa<AllocaInst>(V) || 388 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 389 return FuncInfo.InitializeRegForValue(V); 390 391 SavePoint SaveInsertPt = enterLocalValueArea(); 392 393 // Materialize the value in a register. Emit any instructions in the 394 // local value area. 395 Reg = materializeRegForValue(V, VT); 396 397 leaveLocalValueArea(SaveInsertPt); 398 399 return Reg; 400 } 401 402 unsigned FastISel::materializeConstant(const Value *V, MVT VT) { 403 unsigned Reg = 0; 404 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 405 if (CI->getValue().getActiveBits() <= 64) 406 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 407 } else if (isa<AllocaInst>(V)) 408 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 409 else if (isa<ConstantPointerNull>(V)) 410 // Translate this as an integer zero so that it can be 411 // local-CSE'd with actual integer zeros. 412 Reg = getRegForValue( 413 Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 414 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 415 if (CF->isNullValue()) 416 Reg = fastMaterializeFloatZero(CF); 417 else 418 // Try to emit the constant directly. 419 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 420 421 if (!Reg) { 422 // Try to emit the constant by using an integer constant with a cast. 423 const APFloat &Flt = CF->getValueAPF(); 424 EVT IntVT = TLI.getPointerTy(DL); 425 uint32_t IntBitWidth = IntVT.getSizeInBits(); 426 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); 427 bool isExact; 428 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); 429 if (isExact) { 430 unsigned IntegerReg = 431 getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); 432 if (IntegerReg != 0) 433 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 434 /*Kill=*/false); 435 } 436 } 437 } else if (const auto *Op = dyn_cast<Operator>(V)) { 438 if (!selectOperator(Op, Op->getOpcode())) 439 if (!isa<Instruction>(Op) || 440 !fastSelectInstruction(cast<Instruction>(Op))) 441 return 0; 442 Reg = lookUpRegForValue(Op); 443 } else if (isa<UndefValue>(V)) { 444 Reg = createResultReg(TLI.getRegClassFor(VT)); 445 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 446 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 447 } 448 return Reg; 449 } 450 451 /// Helper for getRegForValue. This function is called when the value isn't 452 /// already available in a register and must be materialized with new 453 /// instructions. 454 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 455 unsigned Reg = 0; 456 // Give the target-specific code a try first. 457 if (isa<Constant>(V)) 458 Reg = fastMaterializeConstant(cast<Constant>(V)); 459 460 // If target-specific code couldn't or didn't want to handle the value, then 461 // give target-independent code a try. 462 if (!Reg) 463 Reg = materializeConstant(V, VT); 464 465 // Don't cache constant materializations in the general ValueMap. 466 // To do so would require tracking what uses they dominate. 467 if (Reg) { 468 LocalValueMap[V] = Reg; 469 LastLocalValue = MRI.getVRegDef(Reg); 470 } 471 return Reg; 472 } 473 474 unsigned FastISel::lookUpRegForValue(const Value *V) { 475 // Look up the value to see if we already have a register for it. We 476 // cache values defined by Instructions across blocks, and other values 477 // only locally. This is because Instructions already have the SSA 478 // def-dominates-use requirement enforced. 479 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 480 if (I != FuncInfo.ValueMap.end()) 481 return I->second; 482 return LocalValueMap[V]; 483 } 484 485 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 486 if (!isa<Instruction>(I)) { 487 LocalValueMap[I] = Reg; 488 return; 489 } 490 491 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 492 if (AssignedReg == 0) 493 // Use the new register. 494 AssignedReg = Reg; 495 else if (Reg != AssignedReg) { 496 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 497 for (unsigned i = 0; i < NumRegs; i++) { 498 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 499 FuncInfo.RegsWithFixups.insert(Reg + i); 500 } 501 502 AssignedReg = Reg; 503 } 504 } 505 506 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 507 unsigned IdxN = getRegForValue(Idx); 508 if (IdxN == 0) 509 // Unhandled operand. Halt "fast" selection and bail. 510 return std::pair<unsigned, bool>(0, false); 511 512 bool IdxNIsKill = hasTrivialKill(Idx); 513 514 // If the index is smaller or larger than intptr_t, truncate or extend it. 515 MVT PtrVT = TLI.getPointerTy(DL); 516 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 517 if (IdxVT.bitsLT(PtrVT)) { 518 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 519 IdxNIsKill); 520 IdxNIsKill = true; 521 } else if (IdxVT.bitsGT(PtrVT)) { 522 IdxN = 523 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 524 IdxNIsKill = true; 525 } 526 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 527 } 528 529 void FastISel::recomputeInsertPt() { 530 if (getLastLocalValue()) { 531 FuncInfo.InsertPt = getLastLocalValue(); 532 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 533 ++FuncInfo.InsertPt; 534 } else 535 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 536 537 // Now skip past any EH_LABELs, which must remain at the beginning. 538 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 539 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 540 ++FuncInfo.InsertPt; 541 } 542 543 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 544 MachineBasicBlock::iterator E) { 545 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 546 "Invalid iterator!"); 547 while (I != E) { 548 MachineInstr *Dead = &*I; 549 ++I; 550 Dead->eraseFromParent(); 551 ++NumFastIselDead; 552 } 553 recomputeInsertPt(); 554 } 555 556 FastISel::SavePoint FastISel::enterLocalValueArea() { 557 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 558 DebugLoc OldDL = DbgLoc; 559 recomputeInsertPt(); 560 DbgLoc = DebugLoc(); 561 SavePoint SP = {OldInsertPt, OldDL}; 562 return SP; 563 } 564 565 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 566 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 567 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 568 569 // Restore the previous insert position. 570 FuncInfo.InsertPt = OldInsertPt.InsertPt; 571 DbgLoc = OldInsertPt.DL; 572 } 573 574 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 575 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 576 if (VT == MVT::Other || !VT.isSimple()) 577 // Unhandled type. Halt "fast" selection and bail. 578 return false; 579 580 // We only handle legal types. For example, on x86-32 the instruction 581 // selector contains all of the 64-bit instructions from x86-64, 582 // under the assumption that i64 won't be used if the target doesn't 583 // support it. 584 if (!TLI.isTypeLegal(VT)) { 585 // MVT::i1 is special. Allow AND, OR, or XOR because they 586 // don't require additional zeroing, which makes them easy. 587 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 588 ISDOpcode == ISD::XOR)) 589 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 590 else 591 return false; 592 } 593 594 // Check if the first operand is a constant, and handle it as "ri". At -O0, 595 // we don't have anything that canonicalizes operand order. 596 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 597 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 598 unsigned Op1 = getRegForValue(I->getOperand(1)); 599 if (!Op1) 600 return false; 601 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 602 603 unsigned ResultReg = 604 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 605 CI->getZExtValue(), VT.getSimpleVT()); 606 if (!ResultReg) 607 return false; 608 609 // We successfully emitted code for the given LLVM Instruction. 610 updateValueMap(I, ResultReg); 611 return true; 612 } 613 614 unsigned Op0 = getRegForValue(I->getOperand(0)); 615 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 616 return false; 617 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 618 619 // Check if the second operand is a constant and handle it appropriately. 620 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 621 uint64_t Imm = CI->getSExtValue(); 622 623 // Transform "sdiv exact X, 8" -> "sra X, 3". 624 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 625 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 626 Imm = Log2_64(Imm); 627 ISDOpcode = ISD::SRA; 628 } 629 630 // Transform "urem x, pow2" -> "and x, pow2-1". 631 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 632 isPowerOf2_64(Imm)) { 633 --Imm; 634 ISDOpcode = ISD::AND; 635 } 636 637 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 638 Op0IsKill, Imm, VT.getSimpleVT()); 639 if (!ResultReg) 640 return false; 641 642 // We successfully emitted code for the given LLVM Instruction. 643 updateValueMap(I, ResultReg); 644 return true; 645 } 646 647 unsigned Op1 = getRegForValue(I->getOperand(1)); 648 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 649 return false; 650 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 651 652 // Now we have both operands in registers. Emit the instruction. 653 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 654 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 655 if (!ResultReg) 656 // Target-specific code wasn't able to find a machine opcode for 657 // the given ISD opcode and type. Halt "fast" selection and bail. 658 return false; 659 660 // We successfully emitted code for the given LLVM Instruction. 661 updateValueMap(I, ResultReg); 662 return true; 663 } 664 665 bool FastISel::selectGetElementPtr(const User *I) { 666 unsigned N = getRegForValue(I->getOperand(0)); 667 if (!N) // Unhandled operand. Halt "fast" selection and bail. 668 return false; 669 bool NIsKill = hasTrivialKill(I->getOperand(0)); 670 671 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 672 // into a single N = N + TotalOffset. 673 uint64_t TotalOffs = 0; 674 // FIXME: What's a good SWAG number for MaxOffs? 675 uint64_t MaxOffs = 2048; 676 MVT VT = TLI.getPointerTy(DL); 677 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 678 GTI != E; ++GTI) { 679 const Value *Idx = GTI.getOperand(); 680 if (StructType *StTy = GTI.getStructTypeOrNull()) { 681 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 682 if (Field) { 683 // N = N + Offset 684 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 685 if (TotalOffs >= MaxOffs) { 686 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 687 if (!N) // Unhandled operand. Halt "fast" selection and bail. 688 return false; 689 NIsKill = true; 690 TotalOffs = 0; 691 } 692 } 693 } else { 694 Type *Ty = GTI.getIndexedType(); 695 696 // If this is a constant subscript, handle it quickly. 697 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 698 if (CI->isZero()) 699 continue; 700 // N = N + Offset 701 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 702 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 703 if (TotalOffs >= MaxOffs) { 704 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 705 if (!N) // Unhandled operand. Halt "fast" selection and bail. 706 return false; 707 NIsKill = true; 708 TotalOffs = 0; 709 } 710 continue; 711 } 712 if (TotalOffs) { 713 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 714 if (!N) // Unhandled operand. Halt "fast" selection and bail. 715 return false; 716 NIsKill = true; 717 TotalOffs = 0; 718 } 719 720 // N = N + Idx * ElementSize; 721 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 722 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 723 unsigned IdxN = Pair.first; 724 bool IdxNIsKill = Pair.second; 725 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 726 return false; 727 728 if (ElementSize != 1) { 729 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 730 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 731 return false; 732 IdxNIsKill = true; 733 } 734 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 735 if (!N) // Unhandled operand. Halt "fast" selection and bail. 736 return false; 737 } 738 } 739 if (TotalOffs) { 740 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 741 if (!N) // Unhandled operand. Halt "fast" selection and bail. 742 return false; 743 } 744 745 // We successfully emitted code for the given LLVM Instruction. 746 updateValueMap(I, N); 747 return true; 748 } 749 750 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 751 const CallInst *CI, unsigned StartIdx) { 752 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 753 Value *Val = CI->getArgOperand(i); 754 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 755 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 756 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 757 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 758 } else if (isa<ConstantPointerNull>(Val)) { 759 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 760 Ops.push_back(MachineOperand::CreateImm(0)); 761 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 762 // Values coming from a stack location also require a special encoding, 763 // but that is added later on by the target specific frame index 764 // elimination implementation. 765 auto SI = FuncInfo.StaticAllocaMap.find(AI); 766 if (SI != FuncInfo.StaticAllocaMap.end()) 767 Ops.push_back(MachineOperand::CreateFI(SI->second)); 768 else 769 return false; 770 } else { 771 unsigned Reg = getRegForValue(Val); 772 if (!Reg) 773 return false; 774 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 775 } 776 } 777 return true; 778 } 779 780 bool FastISel::selectStackmap(const CallInst *I) { 781 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 782 // [live variables...]) 783 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 784 "Stackmap cannot return a value."); 785 786 // The stackmap intrinsic only records the live variables (the arguments 787 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 788 // intrinsic, this won't be lowered to a function call. This means we don't 789 // have to worry about calling conventions and target-specific lowering code. 790 // Instead we perform the call lowering right here. 791 // 792 // CALLSEQ_START(0, 0...) 793 // STACKMAP(id, nbytes, ...) 794 // CALLSEQ_END(0, 0) 795 // 796 SmallVector<MachineOperand, 32> Ops; 797 798 // Add the <id> and <numBytes> constants. 799 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 800 "Expected a constant integer."); 801 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 802 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 803 804 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 805 "Expected a constant integer."); 806 const auto *NumBytes = 807 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 808 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 809 810 // Push live variables for the stack map (skipping the first two arguments 811 // <id> and <numBytes>). 812 if (!addStackMapLiveVars(Ops, I, 2)) 813 return false; 814 815 // We are not adding any register mask info here, because the stackmap doesn't 816 // clobber anything. 817 818 // Add scratch registers as implicit def and early clobber. 819 CallingConv::ID CC = I->getCallingConv(); 820 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 821 for (unsigned i = 0; ScratchRegs[i]; ++i) 822 Ops.push_back(MachineOperand::CreateReg( 823 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 824 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 825 826 // Issue CALLSEQ_START 827 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 828 auto Builder = 829 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 830 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 831 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 832 Builder.addImm(0); 833 834 // Issue STACKMAP. 835 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 836 TII.get(TargetOpcode::STACKMAP)); 837 for (auto const &MO : Ops) 838 MIB.add(MO); 839 840 // Issue CALLSEQ_END 841 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 842 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 843 .addImm(0) 844 .addImm(0); 845 846 // Inform the Frame Information that we have a stackmap in this function. 847 FuncInfo.MF->getFrameInfo().setHasStackMap(); 848 849 return true; 850 } 851 852 /// Lower an argument list according to the target calling convention. 853 /// 854 /// This is a helper for lowering intrinsics that follow a target calling 855 /// convention or require stack pointer adjustment. Only a subset of the 856 /// intrinsic's operands need to participate in the calling convention. 857 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 858 unsigned NumArgs, const Value *Callee, 859 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 860 ArgListTy Args; 861 Args.reserve(NumArgs); 862 863 // Populate the argument list. 864 ImmutableCallSite CS(CI); 865 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { 866 Value *V = CI->getOperand(ArgI); 867 868 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 869 870 ArgListEntry Entry; 871 Entry.Val = V; 872 Entry.Ty = V->getType(); 873 Entry.setAttributes(&CS, ArgI); 874 Args.push_back(Entry); 875 } 876 877 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 878 : CI->getType(); 879 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 880 881 return lowerCallTo(CLI); 882 } 883 884 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 885 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 886 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 887 SmallString<32> MangledName; 888 Mangler::getNameWithPrefix(MangledName, Target, DL); 889 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 890 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 891 } 892 893 bool FastISel::selectPatchpoint(const CallInst *I) { 894 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 895 // i32 <numBytes>, 896 // i8* <target>, 897 // i32 <numArgs>, 898 // [Args...], 899 // [live variables...]) 900 CallingConv::ID CC = I->getCallingConv(); 901 bool IsAnyRegCC = CC == CallingConv::AnyReg; 902 bool HasDef = !I->getType()->isVoidTy(); 903 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 904 905 // Get the real number of arguments participating in the call <numArgs> 906 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 907 "Expected a constant integer."); 908 const auto *NumArgsVal = 909 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 910 unsigned NumArgs = NumArgsVal->getZExtValue(); 911 912 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 913 // This includes all meta-operands up to but not including CC. 914 unsigned NumMetaOpers = PatchPointOpers::CCPos; 915 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 916 "Not enough arguments provided to the patchpoint intrinsic"); 917 918 // For AnyRegCC the arguments are lowered later on manually. 919 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 920 CallLoweringInfo CLI; 921 CLI.setIsPatchPoint(); 922 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 923 return false; 924 925 assert(CLI.Call && "No call instruction specified."); 926 927 SmallVector<MachineOperand, 32> Ops; 928 929 // Add an explicit result reg if we use the anyreg calling convention. 930 if (IsAnyRegCC && HasDef) { 931 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 932 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 933 CLI.NumResultRegs = 1; 934 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 935 } 936 937 // Add the <id> and <numBytes> constants. 938 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 939 "Expected a constant integer."); 940 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 941 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 942 943 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 944 "Expected a constant integer."); 945 const auto *NumBytes = 946 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 947 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 948 949 // Add the call target. 950 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 951 uint64_t CalleeConstAddr = 952 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 953 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 954 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 955 if (C->getOpcode() == Instruction::IntToPtr) { 956 uint64_t CalleeConstAddr = 957 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 958 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 959 } else 960 llvm_unreachable("Unsupported ConstantExpr."); 961 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 962 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 963 } else if (isa<ConstantPointerNull>(Callee)) 964 Ops.push_back(MachineOperand::CreateImm(0)); 965 else 966 llvm_unreachable("Unsupported callee address."); 967 968 // Adjust <numArgs> to account for any arguments that have been passed on 969 // the stack instead. 970 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 971 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 972 973 // Add the calling convention 974 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 975 976 // Add the arguments we omitted previously. The register allocator should 977 // place these in any free register. 978 if (IsAnyRegCC) { 979 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 980 unsigned Reg = getRegForValue(I->getArgOperand(i)); 981 if (!Reg) 982 return false; 983 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 984 } 985 } 986 987 // Push the arguments from the call instruction. 988 for (auto Reg : CLI.OutRegs) 989 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 990 991 // Push live variables for the stack map. 992 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 993 return false; 994 995 // Push the register mask info. 996 Ops.push_back(MachineOperand::CreateRegMask( 997 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 998 999 // Add scratch registers as implicit def and early clobber. 1000 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 1001 for (unsigned i = 0; ScratchRegs[i]; ++i) 1002 Ops.push_back(MachineOperand::CreateReg( 1003 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 1004 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 1005 1006 // Add implicit defs (return values). 1007 for (auto Reg : CLI.InRegs) 1008 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 1009 /*IsImpl=*/true)); 1010 1011 // Insert the patchpoint instruction before the call generated by the target. 1012 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 1013 TII.get(TargetOpcode::PATCHPOINT)); 1014 1015 for (auto &MO : Ops) 1016 MIB.add(MO); 1017 1018 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1019 1020 // Delete the original call instruction. 1021 CLI.Call->eraseFromParent(); 1022 1023 // Inform the Frame Information that we have a patchpoint in this function. 1024 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 1025 1026 if (CLI.NumResultRegs) 1027 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 1028 return true; 1029 } 1030 1031 bool FastISel::selectXRayCustomEvent(const CallInst *I) { 1032 const auto &Triple = TM.getTargetTriple(); 1033 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 1034 return true; // don't do anything to this instruction. 1035 SmallVector<MachineOperand, 8> Ops; 1036 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 1037 /*IsDef=*/false)); 1038 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 1039 /*IsDef=*/false)); 1040 MachineInstrBuilder MIB = 1041 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1042 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); 1043 for (auto &MO : Ops) 1044 MIB.add(MO); 1045 1046 // Insert the Patchable Event Call instruction, that gets lowered properly. 1047 return true; 1048 } 1049 1050 bool FastISel::selectXRayTypedEvent(const CallInst *I) { 1051 const auto &Triple = TM.getTargetTriple(); 1052 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 1053 return true; // don't do anything to this instruction. 1054 SmallVector<MachineOperand, 8> Ops; 1055 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 1056 /*IsDef=*/false)); 1057 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 1058 /*IsDef=*/false)); 1059 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)), 1060 /*IsDef=*/false)); 1061 MachineInstrBuilder MIB = 1062 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1063 TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL)); 1064 for (auto &MO : Ops) 1065 MIB.add(MO); 1066 1067 // Insert the Patchable Typed Event Call instruction, that gets lowered properly. 1068 return true; 1069 } 1070 1071 /// Returns an AttributeList representing the attributes applied to the return 1072 /// value of the given call. 1073 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 1074 SmallVector<Attribute::AttrKind, 2> Attrs; 1075 if (CLI.RetSExt) 1076 Attrs.push_back(Attribute::SExt); 1077 if (CLI.RetZExt) 1078 Attrs.push_back(Attribute::ZExt); 1079 if (CLI.IsInReg) 1080 Attrs.push_back(Attribute::InReg); 1081 1082 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 1083 Attrs); 1084 } 1085 1086 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 1087 unsigned NumArgs) { 1088 MCContext &Ctx = MF->getContext(); 1089 SmallString<32> MangledName; 1090 Mangler::getNameWithPrefix(MangledName, SymName, DL); 1091 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 1092 return lowerCallTo(CI, Sym, NumArgs); 1093 } 1094 1095 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 1096 unsigned NumArgs) { 1097 ImmutableCallSite CS(CI); 1098 1099 FunctionType *FTy = CS.getFunctionType(); 1100 Type *RetTy = CS.getType(); 1101 1102 ArgListTy Args; 1103 Args.reserve(NumArgs); 1104 1105 // Populate the argument list. 1106 // Attributes for args start at offset 1, after the return attribute. 1107 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 1108 Value *V = CI->getOperand(ArgI); 1109 1110 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 1111 1112 ArgListEntry Entry; 1113 Entry.Val = V; 1114 Entry.Ty = V->getType(); 1115 Entry.setAttributes(&CS, ArgI); 1116 Args.push_back(Entry); 1117 } 1118 TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args); 1119 1120 CallLoweringInfo CLI; 1121 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs); 1122 1123 return lowerCallTo(CLI); 1124 } 1125 1126 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 1127 // Handle the incoming return values from the call. 1128 CLI.clearIns(); 1129 SmallVector<EVT, 4> RetTys; 1130 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 1131 1132 SmallVector<ISD::OutputArg, 4> Outs; 1133 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 1134 1135 bool CanLowerReturn = TLI.CanLowerReturn( 1136 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 1137 1138 // FIXME: sret demotion isn't supported yet - bail out. 1139 if (!CanLowerReturn) 1140 return false; 1141 1142 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 1143 EVT VT = RetTys[I]; 1144 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 1145 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 1146 for (unsigned i = 0; i != NumRegs; ++i) { 1147 ISD::InputArg MyFlags; 1148 MyFlags.VT = RegisterVT; 1149 MyFlags.ArgVT = VT; 1150 MyFlags.Used = CLI.IsReturnValueUsed; 1151 if (CLI.RetSExt) 1152 MyFlags.Flags.setSExt(); 1153 if (CLI.RetZExt) 1154 MyFlags.Flags.setZExt(); 1155 if (CLI.IsInReg) 1156 MyFlags.Flags.setInReg(); 1157 CLI.Ins.push_back(MyFlags); 1158 } 1159 } 1160 1161 // Handle all of the outgoing arguments. 1162 CLI.clearOuts(); 1163 for (auto &Arg : CLI.getArgs()) { 1164 Type *FinalType = Arg.Ty; 1165 if (Arg.IsByVal) 1166 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 1167 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1168 FinalType, CLI.CallConv, CLI.IsVarArg); 1169 1170 ISD::ArgFlagsTy Flags; 1171 if (Arg.IsZExt) 1172 Flags.setZExt(); 1173 if (Arg.IsSExt) 1174 Flags.setSExt(); 1175 if (Arg.IsInReg) 1176 Flags.setInReg(); 1177 if (Arg.IsSRet) 1178 Flags.setSRet(); 1179 if (Arg.IsSwiftSelf) 1180 Flags.setSwiftSelf(); 1181 if (Arg.IsSwiftError) 1182 Flags.setSwiftError(); 1183 if (Arg.IsByVal) 1184 Flags.setByVal(); 1185 if (Arg.IsInAlloca) { 1186 Flags.setInAlloca(); 1187 // Set the byval flag for CCAssignFn callbacks that don't know about 1188 // inalloca. This way we can know how many bytes we should've allocated 1189 // and how many bytes a callee cleanup function will pop. If we port 1190 // inalloca to more targets, we'll have to add custom inalloca handling in 1191 // the various CC lowering callbacks. 1192 Flags.setByVal(); 1193 } 1194 if (Arg.IsByVal || Arg.IsInAlloca) { 1195 PointerType *Ty = cast<PointerType>(Arg.Ty); 1196 Type *ElementTy = Ty->getElementType(); 1197 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 1198 // For ByVal, alignment should come from FE. BE will guess if this info is 1199 // not there, but there are cases it cannot get right. 1200 unsigned FrameAlign = Arg.Alignment; 1201 if (!FrameAlign) 1202 FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL); 1203 Flags.setByValSize(FrameSize); 1204 Flags.setByValAlign(FrameAlign); 1205 } 1206 if (Arg.IsNest) 1207 Flags.setNest(); 1208 if (NeedsRegBlock) 1209 Flags.setInConsecutiveRegs(); 1210 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 1211 Flags.setOrigAlign(OriginalAlignment); 1212 1213 CLI.OutVals.push_back(Arg.Val); 1214 CLI.OutFlags.push_back(Flags); 1215 } 1216 1217 if (!fastLowerCall(CLI)) 1218 return false; 1219 1220 // Set all unused physreg defs as dead. 1221 assert(CLI.Call && "No call instruction specified."); 1222 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1223 1224 if (CLI.NumResultRegs && CLI.CS) 1225 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 1226 1227 return true; 1228 } 1229 1230 bool FastISel::lowerCall(const CallInst *CI) { 1231 ImmutableCallSite CS(CI); 1232 1233 FunctionType *FuncTy = CS.getFunctionType(); 1234 Type *RetTy = CS.getType(); 1235 1236 ArgListTy Args; 1237 ArgListEntry Entry; 1238 Args.reserve(CS.arg_size()); 1239 1240 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1241 i != e; ++i) { 1242 Value *V = *i; 1243 1244 // Skip empty types 1245 if (V->getType()->isEmptyTy()) 1246 continue; 1247 1248 Entry.Val = V; 1249 Entry.Ty = V->getType(); 1250 1251 // Skip the first return-type Attribute to get to params. 1252 Entry.setAttributes(&CS, i - CS.arg_begin()); 1253 Args.push_back(Entry); 1254 } 1255 1256 // Check if target-independent constraints permit a tail call here. 1257 // Target-dependent constraints are checked within fastLowerCall. 1258 bool IsTailCall = CI->isTailCall(); 1259 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1260 IsTailCall = false; 1261 1262 CallLoweringInfo CLI; 1263 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1264 .setTailCall(IsTailCall); 1265 1266 return lowerCallTo(CLI); 1267 } 1268 1269 bool FastISel::selectCall(const User *I) { 1270 const CallInst *Call = cast<CallInst>(I); 1271 1272 // Handle simple inline asms. 1273 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1274 // If the inline asm has side effects, then make sure that no local value 1275 // lives across by flushing the local value map. 1276 if (IA->hasSideEffects()) 1277 flushLocalValueMap(); 1278 1279 // Don't attempt to handle constraints. 1280 if (!IA->getConstraintString().empty()) 1281 return false; 1282 1283 unsigned ExtraInfo = 0; 1284 if (IA->hasSideEffects()) 1285 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1286 if (IA->isAlignStack()) 1287 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1288 1289 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1290 TII.get(TargetOpcode::INLINEASM)) 1291 .addExternalSymbol(IA->getAsmString().c_str()) 1292 .addImm(ExtraInfo); 1293 return true; 1294 } 1295 1296 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1297 computeUsesVAFloatArgument(*Call, MMI); 1298 1299 // Handle intrinsic function calls. 1300 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1301 return selectIntrinsicCall(II); 1302 1303 // Usually, it does not make sense to initialize a value, 1304 // make an unrelated function call and use the value, because 1305 // it tends to be spilled on the stack. So, we move the pointer 1306 // to the last local value to the beginning of the block, so that 1307 // all the values which have already been materialized, 1308 // appear after the call. It also makes sense to skip intrinsics 1309 // since they tend to be inlined. 1310 flushLocalValueMap(); 1311 1312 return lowerCall(Call); 1313 } 1314 1315 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1316 switch (II->getIntrinsicID()) { 1317 default: 1318 break; 1319 // At -O0 we don't care about the lifetime intrinsics. 1320 case Intrinsic::lifetime_start: 1321 case Intrinsic::lifetime_end: 1322 // The donothing intrinsic does, well, nothing. 1323 case Intrinsic::donothing: 1324 // Neither does the sideeffect intrinsic. 1325 case Intrinsic::sideeffect: 1326 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1327 case Intrinsic::assume: 1328 return true; 1329 case Intrinsic::dbg_declare: { 1330 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1331 assert(DI->getVariable() && "Missing variable"); 1332 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1333 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1334 return true; 1335 } 1336 1337 const Value *Address = DI->getAddress(); 1338 if (!Address || isa<UndefValue>(Address)) { 1339 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1340 return true; 1341 } 1342 1343 // Byval arguments with frame indices were already handled after argument 1344 // lowering and before isel. 1345 const auto *Arg = 1346 dyn_cast<Argument>(Address->stripInBoundsConstantOffsets()); 1347 if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX) 1348 return true; 1349 1350 Optional<MachineOperand> Op; 1351 if (unsigned Reg = lookUpRegForValue(Address)) 1352 Op = MachineOperand::CreateReg(Reg, false); 1353 1354 // If we have a VLA that has a "use" in a metadata node that's then used 1355 // here but it has no other uses, then we have a problem. E.g., 1356 // 1357 // int foo (const int *x) { 1358 // char a[*x]; 1359 // return 0; 1360 // } 1361 // 1362 // If we assign 'a' a vreg and fast isel later on has to use the selection 1363 // DAG isel, it will want to copy the value to the vreg. However, there are 1364 // no uses, which goes counter to what selection DAG isel expects. 1365 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1366 (!isa<AllocaInst>(Address) || 1367 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1368 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1369 false); 1370 1371 if (Op) { 1372 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1373 "Expected inlined-at fields to agree"); 1374 if (Op->isReg()) { 1375 Op->setIsDebug(true); 1376 // A dbg.declare describes the address of a source variable, so lower it 1377 // into an indirect DBG_VALUE. 1378 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1379 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, 1380 Op->getReg(), DI->getVariable(), DI->getExpression()); 1381 } else 1382 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1383 TII.get(TargetOpcode::DBG_VALUE)) 1384 .add(*Op) 1385 .addImm(0) 1386 .addMetadata(DI->getVariable()) 1387 .addMetadata(DI->getExpression()); 1388 } else { 1389 // We can't yet handle anything else here because it would require 1390 // generating code, thus altering codegen because of debug info. 1391 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1392 } 1393 return true; 1394 } 1395 case Intrinsic::dbg_value: { 1396 // This form of DBG_VALUE is target-independent. 1397 const DbgValueInst *DI = cast<DbgValueInst>(II); 1398 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1399 const Value *V = DI->getValue(); 1400 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1401 "Expected inlined-at fields to agree"); 1402 if (!V) { 1403 // Currently the optimizer can produce this; insert an undef to 1404 // help debugging. Probably the optimizer should not do this. 1405 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U, 1406 DI->getVariable(), DI->getExpression()); 1407 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1408 if (CI->getBitWidth() > 64) 1409 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1410 .addCImm(CI) 1411 .addImm(0U) 1412 .addMetadata(DI->getVariable()) 1413 .addMetadata(DI->getExpression()); 1414 else 1415 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1416 .addImm(CI->getZExtValue()) 1417 .addImm(0U) 1418 .addMetadata(DI->getVariable()) 1419 .addMetadata(DI->getExpression()); 1420 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1421 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1422 .addFPImm(CF) 1423 .addImm(0U) 1424 .addMetadata(DI->getVariable()) 1425 .addMetadata(DI->getExpression()); 1426 } else if (unsigned Reg = lookUpRegForValue(V)) { 1427 // FIXME: This does not handle register-indirect values at offset 0. 1428 bool IsIndirect = false; 1429 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1430 DI->getVariable(), DI->getExpression()); 1431 } else { 1432 // We can't yet handle anything else here because it would require 1433 // generating code, thus altering codegen because of debug info. 1434 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1435 } 1436 return true; 1437 } 1438 case Intrinsic::objectsize: { 1439 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1440 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1441 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1442 unsigned ResultReg = getRegForValue(ResCI); 1443 if (!ResultReg) 1444 return false; 1445 updateValueMap(II, ResultReg); 1446 return true; 1447 } 1448 case Intrinsic::launder_invariant_group: 1449 case Intrinsic::expect: { 1450 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1451 if (!ResultReg) 1452 return false; 1453 updateValueMap(II, ResultReg); 1454 return true; 1455 } 1456 case Intrinsic::experimental_stackmap: 1457 return selectStackmap(II); 1458 case Intrinsic::experimental_patchpoint_void: 1459 case Intrinsic::experimental_patchpoint_i64: 1460 return selectPatchpoint(II); 1461 1462 case Intrinsic::xray_customevent: 1463 return selectXRayCustomEvent(II); 1464 case Intrinsic::xray_typedevent: 1465 return selectXRayTypedEvent(II); 1466 } 1467 1468 return fastLowerIntrinsicCall(II); 1469 } 1470 1471 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1472 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1473 EVT DstVT = TLI.getValueType(DL, I->getType()); 1474 1475 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1476 !DstVT.isSimple()) 1477 // Unhandled type. Halt "fast" selection and bail. 1478 return false; 1479 1480 // Check if the destination type is legal. 1481 if (!TLI.isTypeLegal(DstVT)) 1482 return false; 1483 1484 // Check if the source operand is legal. 1485 if (!TLI.isTypeLegal(SrcVT)) 1486 return false; 1487 1488 unsigned InputReg = getRegForValue(I->getOperand(0)); 1489 if (!InputReg) 1490 // Unhandled operand. Halt "fast" selection and bail. 1491 return false; 1492 1493 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1494 1495 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1496 Opcode, InputReg, InputRegIsKill); 1497 if (!ResultReg) 1498 return false; 1499 1500 updateValueMap(I, ResultReg); 1501 return true; 1502 } 1503 1504 bool FastISel::selectBitCast(const User *I) { 1505 // If the bitcast doesn't change the type, just use the operand value. 1506 if (I->getType() == I->getOperand(0)->getType()) { 1507 unsigned Reg = getRegForValue(I->getOperand(0)); 1508 if (!Reg) 1509 return false; 1510 updateValueMap(I, Reg); 1511 return true; 1512 } 1513 1514 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1515 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1516 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1517 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1518 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1519 // Unhandled type. Halt "fast" selection and bail. 1520 return false; 1521 1522 MVT SrcVT = SrcEVT.getSimpleVT(); 1523 MVT DstVT = DstEVT.getSimpleVT(); 1524 unsigned Op0 = getRegForValue(I->getOperand(0)); 1525 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1526 return false; 1527 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1528 1529 // First, try to perform the bitcast by inserting a reg-reg copy. 1530 unsigned ResultReg = 0; 1531 if (SrcVT == DstVT) { 1532 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1533 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1534 // Don't attempt a cross-class copy. It will likely fail. 1535 if (SrcClass == DstClass) { 1536 ResultReg = createResultReg(DstClass); 1537 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1538 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1539 } 1540 } 1541 1542 // If the reg-reg copy failed, select a BITCAST opcode. 1543 if (!ResultReg) 1544 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1545 1546 if (!ResultReg) 1547 return false; 1548 1549 updateValueMap(I, ResultReg); 1550 return true; 1551 } 1552 1553 // Remove local value instructions starting from the instruction after 1554 // SavedLastLocalValue to the current function insert point. 1555 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1556 { 1557 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1558 if (CurLastLocalValue != SavedLastLocalValue) { 1559 // Find the first local value instruction to be deleted. 1560 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1561 // Otherwise it's the first instruction in the block. 1562 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1563 if (SavedLastLocalValue) 1564 ++FirstDeadInst; 1565 else 1566 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1567 setLastLocalValue(SavedLastLocalValue); 1568 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1569 } 1570 } 1571 1572 bool FastISel::selectInstruction(const Instruction *I) { 1573 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1574 // Just before the terminator instruction, insert instructions to 1575 // feed PHI nodes in successor blocks. 1576 if (isa<TerminatorInst>(I)) { 1577 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1578 // PHI node handling may have generated local value instructions, 1579 // even though it failed to handle all PHI nodes. 1580 // We remove these instructions because SelectionDAGISel will generate 1581 // them again. 1582 removeDeadLocalValueCode(SavedLastLocalValue); 1583 return false; 1584 } 1585 } 1586 1587 // FastISel does not handle any operand bundles except OB_funclet. 1588 if (ImmutableCallSite CS = ImmutableCallSite(I)) 1589 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) 1590 if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1591 return false; 1592 1593 DbgLoc = I->getDebugLoc(); 1594 1595 SavedInsertPt = FuncInfo.InsertPt; 1596 1597 if (const auto *Call = dyn_cast<CallInst>(I)) { 1598 const Function *F = Call->getCalledFunction(); 1599 LibFunc Func; 1600 1601 // As a special case, don't handle calls to builtin library functions that 1602 // may be translated directly to target instructions. 1603 if (F && !F->hasLocalLinkage() && F->hasName() && 1604 LibInfo->getLibFunc(F->getName(), Func) && 1605 LibInfo->hasOptimizedCodeGen(Func)) 1606 return false; 1607 1608 // Don't handle Intrinsic::trap if a trap function is specified. 1609 if (F && F->getIntrinsicID() == Intrinsic::trap && 1610 Call->hasFnAttr("trap-func-name")) 1611 return false; 1612 } 1613 1614 // First, try doing target-independent selection. 1615 if (!SkipTargetIndependentISel) { 1616 if (selectOperator(I, I->getOpcode())) { 1617 ++NumFastIselSuccessIndependent; 1618 DbgLoc = DebugLoc(); 1619 return true; 1620 } 1621 // Remove dead code. 1622 recomputeInsertPt(); 1623 if (SavedInsertPt != FuncInfo.InsertPt) 1624 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1625 SavedInsertPt = FuncInfo.InsertPt; 1626 } 1627 // Next, try calling the target to attempt to handle the instruction. 1628 if (fastSelectInstruction(I)) { 1629 ++NumFastIselSuccessTarget; 1630 DbgLoc = DebugLoc(); 1631 return true; 1632 } 1633 // Remove dead code. 1634 recomputeInsertPt(); 1635 if (SavedInsertPt != FuncInfo.InsertPt) 1636 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1637 1638 DbgLoc = DebugLoc(); 1639 // Undo phi node updates, because they will be added again by SelectionDAG. 1640 if (isa<TerminatorInst>(I)) { 1641 // PHI node handling may have generated local value instructions. 1642 // We remove them because SelectionDAGISel will generate them again. 1643 removeDeadLocalValueCode(SavedLastLocalValue); 1644 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1645 } 1646 return false; 1647 } 1648 1649 /// Emit an unconditional branch to the given block, unless it is the immediate 1650 /// (fall-through) successor, and update the CFG. 1651 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1652 const DebugLoc &DbgLoc) { 1653 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1654 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1655 // For more accurate line information if this is the only instruction 1656 // in the block then emit it, otherwise we have the unconditional 1657 // fall-through case, which needs no instructions. 1658 } else { 1659 // The unconditional branch case. 1660 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1661 SmallVector<MachineOperand, 0>(), DbgLoc); 1662 } 1663 if (FuncInfo.BPI) { 1664 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1665 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1666 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1667 } else 1668 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1669 } 1670 1671 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1672 MachineBasicBlock *TrueMBB, 1673 MachineBasicBlock *FalseMBB) { 1674 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1675 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1676 // successor/predecessor lists. 1677 if (TrueMBB != FalseMBB) { 1678 if (FuncInfo.BPI) { 1679 auto BranchProbability = 1680 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1681 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1682 } else 1683 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1684 } 1685 1686 fastEmitBranch(FalseMBB, DbgLoc); 1687 } 1688 1689 /// Emit an FNeg operation. 1690 bool FastISel::selectFNeg(const User *I) { 1691 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1692 if (!OpReg) 1693 return false; 1694 bool OpRegIsKill = hasTrivialKill(I); 1695 1696 // If the target has ISD::FNEG, use it. 1697 EVT VT = TLI.getValueType(DL, I->getType()); 1698 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1699 OpReg, OpRegIsKill); 1700 if (ResultReg) { 1701 updateValueMap(I, ResultReg); 1702 return true; 1703 } 1704 1705 // Bitcast the value to integer, twiddle the sign bit with xor, 1706 // and then bitcast it back to floating-point. 1707 if (VT.getSizeInBits() > 64) 1708 return false; 1709 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1710 if (!TLI.isTypeLegal(IntVT)) 1711 return false; 1712 1713 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1714 ISD::BITCAST, OpReg, OpRegIsKill); 1715 if (!IntReg) 1716 return false; 1717 1718 unsigned IntResultReg = fastEmit_ri_( 1719 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1720 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1721 if (!IntResultReg) 1722 return false; 1723 1724 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1725 IntResultReg, /*IsKill=*/true); 1726 if (!ResultReg) 1727 return false; 1728 1729 updateValueMap(I, ResultReg); 1730 return true; 1731 } 1732 1733 bool FastISel::selectExtractValue(const User *U) { 1734 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1735 if (!EVI) 1736 return false; 1737 1738 // Make sure we only try to handle extracts with a legal result. But also 1739 // allow i1 because it's easy. 1740 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1741 if (!RealVT.isSimple()) 1742 return false; 1743 MVT VT = RealVT.getSimpleVT(); 1744 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1745 return false; 1746 1747 const Value *Op0 = EVI->getOperand(0); 1748 Type *AggTy = Op0->getType(); 1749 1750 // Get the base result register. 1751 unsigned ResultReg; 1752 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1753 if (I != FuncInfo.ValueMap.end()) 1754 ResultReg = I->second; 1755 else if (isa<Instruction>(Op0)) 1756 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1757 else 1758 return false; // fast-isel can't handle aggregate constants at the moment 1759 1760 // Get the actual result register, which is an offset from the base register. 1761 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1762 1763 SmallVector<EVT, 4> AggValueVTs; 1764 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1765 1766 for (unsigned i = 0; i < VTIndex; i++) 1767 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1768 1769 updateValueMap(EVI, ResultReg); 1770 return true; 1771 } 1772 1773 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1774 switch (Opcode) { 1775 case Instruction::Add: 1776 return selectBinaryOp(I, ISD::ADD); 1777 case Instruction::FAdd: 1778 return selectBinaryOp(I, ISD::FADD); 1779 case Instruction::Sub: 1780 return selectBinaryOp(I, ISD::SUB); 1781 case Instruction::FSub: 1782 // FNeg is currently represented in LLVM IR as a special case of FSub. 1783 if (BinaryOperator::isFNeg(I)) 1784 return selectFNeg(I); 1785 return selectBinaryOp(I, ISD::FSUB); 1786 case Instruction::Mul: 1787 return selectBinaryOp(I, ISD::MUL); 1788 case Instruction::FMul: 1789 return selectBinaryOp(I, ISD::FMUL); 1790 case Instruction::SDiv: 1791 return selectBinaryOp(I, ISD::SDIV); 1792 case Instruction::UDiv: 1793 return selectBinaryOp(I, ISD::UDIV); 1794 case Instruction::FDiv: 1795 return selectBinaryOp(I, ISD::FDIV); 1796 case Instruction::SRem: 1797 return selectBinaryOp(I, ISD::SREM); 1798 case Instruction::URem: 1799 return selectBinaryOp(I, ISD::UREM); 1800 case Instruction::FRem: 1801 return selectBinaryOp(I, ISD::FREM); 1802 case Instruction::Shl: 1803 return selectBinaryOp(I, ISD::SHL); 1804 case Instruction::LShr: 1805 return selectBinaryOp(I, ISD::SRL); 1806 case Instruction::AShr: 1807 return selectBinaryOp(I, ISD::SRA); 1808 case Instruction::And: 1809 return selectBinaryOp(I, ISD::AND); 1810 case Instruction::Or: 1811 return selectBinaryOp(I, ISD::OR); 1812 case Instruction::Xor: 1813 return selectBinaryOp(I, ISD::XOR); 1814 1815 case Instruction::GetElementPtr: 1816 return selectGetElementPtr(I); 1817 1818 case Instruction::Br: { 1819 const BranchInst *BI = cast<BranchInst>(I); 1820 1821 if (BI->isUnconditional()) { 1822 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1823 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1824 fastEmitBranch(MSucc, BI->getDebugLoc()); 1825 return true; 1826 } 1827 1828 // Conditional branches are not handed yet. 1829 // Halt "fast" selection and bail. 1830 return false; 1831 } 1832 1833 case Instruction::Unreachable: 1834 if (TM.Options.TrapUnreachable) 1835 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1836 else 1837 return true; 1838 1839 case Instruction::Alloca: 1840 // FunctionLowering has the static-sized case covered. 1841 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1842 return true; 1843 1844 // Dynamic-sized alloca is not handled yet. 1845 return false; 1846 1847 case Instruction::Call: 1848 return selectCall(I); 1849 1850 case Instruction::BitCast: 1851 return selectBitCast(I); 1852 1853 case Instruction::FPToSI: 1854 return selectCast(I, ISD::FP_TO_SINT); 1855 case Instruction::ZExt: 1856 return selectCast(I, ISD::ZERO_EXTEND); 1857 case Instruction::SExt: 1858 return selectCast(I, ISD::SIGN_EXTEND); 1859 case Instruction::Trunc: 1860 return selectCast(I, ISD::TRUNCATE); 1861 case Instruction::SIToFP: 1862 return selectCast(I, ISD::SINT_TO_FP); 1863 1864 case Instruction::IntToPtr: // Deliberate fall-through. 1865 case Instruction::PtrToInt: { 1866 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1867 EVT DstVT = TLI.getValueType(DL, I->getType()); 1868 if (DstVT.bitsGT(SrcVT)) 1869 return selectCast(I, ISD::ZERO_EXTEND); 1870 if (DstVT.bitsLT(SrcVT)) 1871 return selectCast(I, ISD::TRUNCATE); 1872 unsigned Reg = getRegForValue(I->getOperand(0)); 1873 if (!Reg) 1874 return false; 1875 updateValueMap(I, Reg); 1876 return true; 1877 } 1878 1879 case Instruction::ExtractValue: 1880 return selectExtractValue(I); 1881 1882 case Instruction::PHI: 1883 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1884 1885 default: 1886 // Unhandled instruction. Halt "fast" selection and bail. 1887 return false; 1888 } 1889 } 1890 1891 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1892 const TargetLibraryInfo *LibInfo, 1893 bool SkipTargetIndependentISel) 1894 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1895 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1896 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1897 TII(*MF->getSubtarget().getInstrInfo()), 1898 TLI(*MF->getSubtarget().getTargetLowering()), 1899 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1900 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1901 1902 FastISel::~FastISel() = default; 1903 1904 bool FastISel::fastLowerArguments() { return false; } 1905 1906 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1907 1908 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1909 return false; 1910 } 1911 1912 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1913 1914 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1915 bool /*Op0IsKill*/) { 1916 return 0; 1917 } 1918 1919 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1920 bool /*Op0IsKill*/, unsigned /*Op1*/, 1921 bool /*Op1IsKill*/) { 1922 return 0; 1923 } 1924 1925 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1926 return 0; 1927 } 1928 1929 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1930 const ConstantFP * /*FPImm*/) { 1931 return 0; 1932 } 1933 1934 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1935 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1936 return 0; 1937 } 1938 1939 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1940 /// instruction with an immediate operand using fastEmit_ri. 1941 /// If that fails, it materializes the immediate into a register and try 1942 /// fastEmit_rr instead. 1943 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1944 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1945 // If this is a multiply by a power of two, emit this as a shift left. 1946 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1947 Opcode = ISD::SHL; 1948 Imm = Log2_64(Imm); 1949 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1950 // div x, 8 -> srl x, 3 1951 Opcode = ISD::SRL; 1952 Imm = Log2_64(Imm); 1953 } 1954 1955 // Horrible hack (to be removed), check to make sure shift amounts are 1956 // in-range. 1957 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1958 Imm >= VT.getSizeInBits()) 1959 return 0; 1960 1961 // First check if immediate type is legal. If not, we can't use the ri form. 1962 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1963 if (ResultReg) 1964 return ResultReg; 1965 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1966 bool IsImmKill = true; 1967 if (!MaterialReg) { 1968 // This is a bit ugly/slow, but failing here means falling out of 1969 // fast-isel, which would be very slow. 1970 IntegerType *ITy = 1971 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1972 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1973 if (!MaterialReg) 1974 return 0; 1975 // FIXME: If the materialized register here has no uses yet then this 1976 // will be the first use and we should be able to mark it as killed. 1977 // However, the local value area for materialising constant expressions 1978 // grows down, not up, which means that any constant expressions we generate 1979 // later which also use 'Imm' could be after this instruction and therefore 1980 // after this kill. 1981 IsImmKill = false; 1982 } 1983 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); 1984 } 1985 1986 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { 1987 return MRI.createVirtualRegister(RC); 1988 } 1989 1990 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 1991 unsigned OpNum) { 1992 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1993 const TargetRegisterClass *RegClass = 1994 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1995 if (!MRI.constrainRegClass(Op, RegClass)) { 1996 // If it's not legal to COPY between the register classes, something 1997 // has gone very wrong before we got here. 1998 unsigned NewOp = createResultReg(RegClass); 1999 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2000 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 2001 return NewOp; 2002 } 2003 } 2004 return Op; 2005 } 2006 2007 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, 2008 const TargetRegisterClass *RC) { 2009 unsigned ResultReg = createResultReg(RC); 2010 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2011 2012 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 2013 return ResultReg; 2014 } 2015 2016 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2017 const TargetRegisterClass *RC, unsigned Op0, 2018 bool Op0IsKill) { 2019 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2020 2021 unsigned ResultReg = createResultReg(RC); 2022 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2023 2024 if (II.getNumDefs() >= 1) 2025 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2026 .addReg(Op0, getKillRegState(Op0IsKill)); 2027 else { 2028 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2029 .addReg(Op0, getKillRegState(Op0IsKill)); 2030 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2031 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2032 } 2033 2034 return ResultReg; 2035 } 2036 2037 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2038 const TargetRegisterClass *RC, unsigned Op0, 2039 bool Op0IsKill, unsigned Op1, 2040 bool Op1IsKill) { 2041 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2042 2043 unsigned ResultReg = createResultReg(RC); 2044 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2045 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2046 2047 if (II.getNumDefs() >= 1) 2048 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2049 .addReg(Op0, getKillRegState(Op0IsKill)) 2050 .addReg(Op1, getKillRegState(Op1IsKill)); 2051 else { 2052 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2053 .addReg(Op0, getKillRegState(Op0IsKill)) 2054 .addReg(Op1, getKillRegState(Op1IsKill)); 2055 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2056 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2057 } 2058 return ResultReg; 2059 } 2060 2061 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 2062 const TargetRegisterClass *RC, unsigned Op0, 2063 bool Op0IsKill, unsigned Op1, 2064 bool Op1IsKill, unsigned Op2, 2065 bool Op2IsKill) { 2066 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2067 2068 unsigned ResultReg = createResultReg(RC); 2069 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2070 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2071 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 2072 2073 if (II.getNumDefs() >= 1) 2074 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2075 .addReg(Op0, getKillRegState(Op0IsKill)) 2076 .addReg(Op1, getKillRegState(Op1IsKill)) 2077 .addReg(Op2, getKillRegState(Op2IsKill)); 2078 else { 2079 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2080 .addReg(Op0, getKillRegState(Op0IsKill)) 2081 .addReg(Op1, getKillRegState(Op1IsKill)) 2082 .addReg(Op2, getKillRegState(Op2IsKill)); 2083 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2084 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2085 } 2086 return ResultReg; 2087 } 2088 2089 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2090 const TargetRegisterClass *RC, unsigned Op0, 2091 bool Op0IsKill, uint64_t Imm) { 2092 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2093 2094 unsigned ResultReg = createResultReg(RC); 2095 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2096 2097 if (II.getNumDefs() >= 1) 2098 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2099 .addReg(Op0, getKillRegState(Op0IsKill)) 2100 .addImm(Imm); 2101 else { 2102 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2103 .addReg(Op0, getKillRegState(Op0IsKill)) 2104 .addImm(Imm); 2105 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2106 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2107 } 2108 return ResultReg; 2109 } 2110 2111 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 2112 const TargetRegisterClass *RC, unsigned Op0, 2113 bool Op0IsKill, uint64_t Imm1, 2114 uint64_t Imm2) { 2115 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2116 2117 unsigned ResultReg = createResultReg(RC); 2118 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2119 2120 if (II.getNumDefs() >= 1) 2121 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2122 .addReg(Op0, getKillRegState(Op0IsKill)) 2123 .addImm(Imm1) 2124 .addImm(Imm2); 2125 else { 2126 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2127 .addReg(Op0, getKillRegState(Op0IsKill)) 2128 .addImm(Imm1) 2129 .addImm(Imm2); 2130 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2131 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2132 } 2133 return ResultReg; 2134 } 2135 2136 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 2137 const TargetRegisterClass *RC, 2138 const ConstantFP *FPImm) { 2139 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2140 2141 unsigned ResultReg = createResultReg(RC); 2142 2143 if (II.getNumDefs() >= 1) 2144 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2145 .addFPImm(FPImm); 2146 else { 2147 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2148 .addFPImm(FPImm); 2149 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2150 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2151 } 2152 return ResultReg; 2153 } 2154 2155 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 2156 const TargetRegisterClass *RC, unsigned Op0, 2157 bool Op0IsKill, unsigned Op1, 2158 bool Op1IsKill, uint64_t Imm) { 2159 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2160 2161 unsigned ResultReg = createResultReg(RC); 2162 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2163 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2164 2165 if (II.getNumDefs() >= 1) 2166 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2167 .addReg(Op0, getKillRegState(Op0IsKill)) 2168 .addReg(Op1, getKillRegState(Op1IsKill)) 2169 .addImm(Imm); 2170 else { 2171 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2172 .addReg(Op0, getKillRegState(Op0IsKill)) 2173 .addReg(Op1, getKillRegState(Op1IsKill)) 2174 .addImm(Imm); 2175 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2176 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2177 } 2178 return ResultReg; 2179 } 2180 2181 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 2182 const TargetRegisterClass *RC, uint64_t Imm) { 2183 unsigned ResultReg = createResultReg(RC); 2184 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2185 2186 if (II.getNumDefs() >= 1) 2187 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2188 .addImm(Imm); 2189 else { 2190 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 2191 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2192 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2193 } 2194 return ResultReg; 2195 } 2196 2197 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 2198 bool Op0IsKill, uint32_t Idx) { 2199 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 2200 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 2201 "Cannot yet extract from physregs"); 2202 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2203 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2204 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 2205 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 2206 return ResultReg; 2207 } 2208 2209 /// Emit MachineInstrs to compute the value of Op with all but the least 2210 /// significant bit set to zero. 2211 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 2212 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 2213 } 2214 2215 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2216 /// Emit code to ensure constants are copied into registers when needed. 2217 /// Remember the virtual registers that need to be added to the Machine PHI 2218 /// nodes as input. We cannot just directly add them, because expansion 2219 /// might result in multiple MBB's for one BB. As such, the start of the 2220 /// BB might correspond to a different MBB than the end. 2221 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2222 const TerminatorInst *TI = LLVMBB->getTerminator(); 2223 2224 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2225 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2226 2227 // Check successor nodes' PHI nodes that expect a constant to be available 2228 // from this block. 2229 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2230 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2231 if (!isa<PHINode>(SuccBB->begin())) 2232 continue; 2233 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2234 2235 // If this terminator has multiple identical successors (common for 2236 // switches), only handle each succ once. 2237 if (!SuccsHandled.insert(SuccMBB).second) 2238 continue; 2239 2240 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2241 2242 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2243 // nodes and Machine PHI nodes, but the incoming operands have not been 2244 // emitted yet. 2245 for (const PHINode &PN : SuccBB->phis()) { 2246 // Ignore dead phi's. 2247 if (PN.use_empty()) 2248 continue; 2249 2250 // Only handle legal types. Two interesting things to note here. First, 2251 // by bailing out early, we may leave behind some dead instructions, 2252 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2253 // own moves. Second, this check is necessary because FastISel doesn't 2254 // use CreateRegs to create registers, so it always creates 2255 // exactly one register for each non-void instruction. 2256 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); 2257 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2258 // Handle integer promotions, though, because they're common and easy. 2259 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2260 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2261 return false; 2262 } 2263 } 2264 2265 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 2266 2267 // Set the DebugLoc for the copy. Prefer the location of the operand 2268 // if there is one; use the location of the PHI otherwise. 2269 DbgLoc = PN.getDebugLoc(); 2270 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2271 DbgLoc = Inst->getDebugLoc(); 2272 2273 unsigned Reg = getRegForValue(PHIOp); 2274 if (!Reg) { 2275 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2276 return false; 2277 } 2278 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2279 DbgLoc = DebugLoc(); 2280 } 2281 } 2282 2283 return true; 2284 } 2285 2286 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2287 assert(LI->hasOneUse() && 2288 "tryToFoldLoad expected a LoadInst with a single use"); 2289 // We know that the load has a single use, but don't know what it is. If it 2290 // isn't one of the folded instructions, then we can't succeed here. Handle 2291 // this by scanning the single-use users of the load until we get to FoldInst. 2292 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2293 2294 const Instruction *TheUser = LI->user_back(); 2295 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2296 // Stay in the right block. 2297 TheUser->getParent() == FoldInst->getParent() && 2298 --MaxUsers) { // Don't scan too far. 2299 // If there are multiple or no uses of this instruction, then bail out. 2300 if (!TheUser->hasOneUse()) 2301 return false; 2302 2303 TheUser = TheUser->user_back(); 2304 } 2305 2306 // If we didn't find the fold instruction, then we failed to collapse the 2307 // sequence. 2308 if (TheUser != FoldInst) 2309 return false; 2310 2311 // Don't try to fold volatile loads. Target has to deal with alignment 2312 // constraints. 2313 if (LI->isVolatile()) 2314 return false; 2315 2316 // Figure out which vreg this is going into. If there is no assigned vreg yet 2317 // then there actually was no reference to it. Perhaps the load is referenced 2318 // by a dead instruction. 2319 unsigned LoadReg = getRegForValue(LI); 2320 if (!LoadReg) 2321 return false; 2322 2323 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2324 // may mean that the instruction got lowered to multiple MIs, or the use of 2325 // the loaded value ended up being multiple operands of the result. 2326 if (!MRI.hasOneUse(LoadReg)) 2327 return false; 2328 2329 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2330 MachineInstr *User = RI->getParent(); 2331 2332 // Set the insertion point properly. Folding the load can cause generation of 2333 // other random instructions (like sign extends) for addressing modes; make 2334 // sure they get inserted in a logical place before the new instruction. 2335 FuncInfo.InsertPt = User; 2336 FuncInfo.MBB = User->getParent(); 2337 2338 // Ask the target to try folding the load. 2339 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2340 } 2341 2342 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2343 // Must be an add. 2344 if (!isa<AddOperator>(Add)) 2345 return false; 2346 // Type size needs to match. 2347 if (DL.getTypeSizeInBits(GEP->getType()) != 2348 DL.getTypeSizeInBits(Add->getType())) 2349 return false; 2350 // Must be in the same basic block. 2351 if (isa<Instruction>(Add) && 2352 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2353 return false; 2354 // Must have a constant operand. 2355 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2356 } 2357 2358 MachineMemOperand * 2359 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2360 const Value *Ptr; 2361 Type *ValTy; 2362 unsigned Alignment; 2363 MachineMemOperand::Flags Flags; 2364 bool IsVolatile; 2365 2366 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2367 Alignment = LI->getAlignment(); 2368 IsVolatile = LI->isVolatile(); 2369 Flags = MachineMemOperand::MOLoad; 2370 Ptr = LI->getPointerOperand(); 2371 ValTy = LI->getType(); 2372 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2373 Alignment = SI->getAlignment(); 2374 IsVolatile = SI->isVolatile(); 2375 Flags = MachineMemOperand::MOStore; 2376 Ptr = SI->getPointerOperand(); 2377 ValTy = SI->getValueOperand()->getType(); 2378 } else 2379 return nullptr; 2380 2381 bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2382 bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2383 bool IsDereferenceable = 2384 I->getMetadata(LLVMContext::MD_dereferenceable) != nullptr; 2385 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2386 2387 AAMDNodes AAInfo; 2388 I->getAAMetadata(AAInfo); 2389 2390 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2391 Alignment = DL.getABITypeAlignment(ValTy); 2392 2393 unsigned Size = DL.getTypeStoreSize(ValTy); 2394 2395 if (IsVolatile) 2396 Flags |= MachineMemOperand::MOVolatile; 2397 if (IsNonTemporal) 2398 Flags |= MachineMemOperand::MONonTemporal; 2399 if (IsDereferenceable) 2400 Flags |= MachineMemOperand::MODereferenceable; 2401 if (IsInvariant) 2402 Flags |= MachineMemOperand::MOInvariant; 2403 2404 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2405 Alignment, AAInfo, Ranges); 2406 } 2407 2408 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2409 // If both operands are the same, then try to optimize or fold the cmp. 2410 CmpInst::Predicate Predicate = CI->getPredicate(); 2411 if (CI->getOperand(0) != CI->getOperand(1)) 2412 return Predicate; 2413 2414 switch (Predicate) { 2415 default: llvm_unreachable("Invalid predicate!"); 2416 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2417 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2418 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2419 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2420 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2421 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2422 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2423 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2424 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2425 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2426 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2427 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2428 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2429 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2430 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2431 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2432 2433 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2434 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2435 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2436 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2437 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2438 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2439 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2440 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2441 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2442 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2443 } 2444 2445 return Predicate; 2446 } 2447