1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the FastISel class.
10 //
11 // "Fast" instruction selection is designed to emit very poor code quickly.
12 // Also, it is not designed to be able to do much lowering, so most illegal
13 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
14 // also not intended to be able to do much optimization, except in a few cases
15 // where doing optimizations reduces overall compile time.  For example, folding
16 // constants into immediate fields is often done, because it's cheap and it
17 // reduces the number of instructions later phases have to examine.
18 //
19 // "Fast" instruction selection is able to fail gracefully and transfer
20 // control to the SelectionDAG selector for operations that it doesn't
21 // support.  In many cases, this allows us to avoid duplicating a lot of
22 // the complicated lowering logic that SelectionDAG currently has.
23 //
24 // The intended use for "fast" instruction selection is "-O0" mode
25 // compilation, where the quality of the generated code is irrelevant when
26 // weighed against the speed at which the code can be generated.  Also,
27 // at -O0, the LLVM optimizers are not running, and this makes the
28 // compile time of codegen a much higher portion of the overall compile
29 // time.  Despite its limitations, "fast" instruction selection is able to
30 // handle enough code on its own to provide noticeable overall speedups
31 // in -O0 compiles.
32 //
33 // Basic operations are supported in a target-independent way, by reading
34 // the same instruction descriptions that the SelectionDAG selector reads,
35 // and identifying simple arithmetic operations that can be directly selected
36 // from simple operators.  More complicated operations currently require
37 // target-specific code.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "llvm/CodeGen/FastISel.h"
42 #include "llvm/ADT/APFloat.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/Optional.h"
46 #include "llvm/ADT/SmallPtrSet.h"
47 #include "llvm/ADT/SmallString.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/Analysis/BranchProbabilityInfo.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/CodeGen/Analysis.h"
53 #include "llvm/CodeGen/FunctionLoweringInfo.h"
54 #include "llvm/CodeGen/ISDOpcodes.h"
55 #include "llvm/CodeGen/MachineBasicBlock.h"
56 #include "llvm/CodeGen/MachineFrameInfo.h"
57 #include "llvm/CodeGen/MachineInstr.h"
58 #include "llvm/CodeGen/MachineInstrBuilder.h"
59 #include "llvm/CodeGen/MachineMemOperand.h"
60 #include "llvm/CodeGen/MachineModuleInfo.h"
61 #include "llvm/CodeGen/MachineOperand.h"
62 #include "llvm/CodeGen/MachineRegisterInfo.h"
63 #include "llvm/CodeGen/StackMaps.h"
64 #include "llvm/CodeGen/TargetInstrInfo.h"
65 #include "llvm/CodeGen/TargetLowering.h"
66 #include "llvm/CodeGen/TargetSubtargetInfo.h"
67 #include "llvm/CodeGen/ValueTypes.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfo.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/DiagnosticInfo.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/GlobalValue.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstrTypes.h"
84 #include "llvm/IR/Instruction.h"
85 #include "llvm/IR/Instructions.h"
86 #include "llvm/IR/IntrinsicInst.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Mangler.h"
89 #include "llvm/IR/Metadata.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCInstrDesc.h"
97 #include "llvm/MC/MCRegisterInfo.h"
98 #include "llvm/Support/Casting.h"
99 #include "llvm/Support/Debug.h"
100 #include "llvm/Support/ErrorHandling.h"
101 #include "llvm/Support/MachineValueType.h"
102 #include "llvm/Support/MathExtras.h"
103 #include "llvm/Support/raw_ostream.h"
104 #include "llvm/Target/TargetMachine.h"
105 #include "llvm/Target/TargetOptions.h"
106 #include <algorithm>
107 #include <cassert>
108 #include <cstdint>
109 #include <iterator>
110 #include <utility>
111 
112 using namespace llvm;
113 using namespace PatternMatch;
114 
115 #define DEBUG_TYPE "isel"
116 
117 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
118                                          "target-independent selector");
119 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
120                                     "target-specific selector");
121 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
122 
123 /// Set the current block to which generated machine instructions will be
124 /// appended.
125 void FastISel::startNewBlock() {
126   assert(LocalValueMap.empty() &&
127          "local values should be cleared after finishing a BB");
128 
129   // Instructions are appended to FuncInfo.MBB. If the basic block already
130   // contains labels or copies, use the last instruction as the last local
131   // value.
132   EmitStartPt = nullptr;
133   if (!FuncInfo.MBB->empty())
134     EmitStartPt = &FuncInfo.MBB->back();
135   LastLocalValue = EmitStartPt;
136 }
137 
138 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
139 
140 bool FastISel::lowerArguments() {
141   if (!FuncInfo.CanLowerReturn)
142     // Fallback to SDISel argument lowering code to deal with sret pointer
143     // parameter.
144     return false;
145 
146   if (!fastLowerArguments())
147     return false;
148 
149   // Enter arguments into ValueMap for uses in non-entry BBs.
150   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
151                                     E = FuncInfo.Fn->arg_end();
152        I != E; ++I) {
153     DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I);
154     assert(VI != LocalValueMap.end() && "Missed an argument?");
155     FuncInfo.ValueMap[&*I] = VI->second;
156   }
157   return true;
158 }
159 
160 /// Return the defined register if this instruction defines exactly one
161 /// virtual register and uses no other virtual registers. Otherwise return 0.
162 static Register findLocalRegDef(MachineInstr &MI) {
163   Register RegDef;
164   for (const MachineOperand &MO : MI.operands()) {
165     if (!MO.isReg())
166       continue;
167     if (MO.isDef()) {
168       if (RegDef)
169         return Register();
170       RegDef = MO.getReg();
171     } else if (MO.getReg().isVirtual()) {
172       // This is another use of a vreg. Don't delete it.
173       return Register();
174     }
175   }
176   return RegDef;
177 }
178 
179 static bool isRegUsedByPhiNodes(Register DefReg,
180                                 FunctionLoweringInfo &FuncInfo) {
181   for (auto &P : FuncInfo.PHINodesToUpdate)
182     if (P.second == DefReg)
183       return true;
184   return false;
185 }
186 
187 void FastISel::flushLocalValueMap() {
188   // If FastISel bails out, it could leave local value instructions behind
189   // that aren't used for anything.  Detect and erase those.
190   if (LastLocalValue != EmitStartPt) {
191     // Save the first instruction after local values, for later.
192     MachineBasicBlock::iterator FirstNonValue(LastLocalValue);
193     ++FirstNonValue;
194 
195     MachineBasicBlock::reverse_iterator RE =
196         EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
197                     : FuncInfo.MBB->rend();
198     MachineBasicBlock::reverse_iterator RI(LastLocalValue);
199     for (; RI != RE;) {
200       MachineInstr &LocalMI = *RI;
201       // Increment before erasing what it points to.
202       ++RI;
203       Register DefReg = findLocalRegDef(LocalMI);
204       if (!DefReg)
205         continue;
206       if (FuncInfo.RegsWithFixups.count(DefReg))
207         continue;
208       bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
209       if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
210         if (EmitStartPt == &LocalMI)
211           EmitStartPt = EmitStartPt->getPrevNode();
212         LLVM_DEBUG(dbgs() << "removing dead local value materialization"
213                           << LocalMI);
214         LocalMI.eraseFromParent();
215       }
216     }
217 
218     if (FirstNonValue != FuncInfo.MBB->end()) {
219       // See if there are any local value instructions left.  If so, we want to
220       // make sure the first one has a debug location; if it doesn't, use the
221       // first non-value instruction's debug location.
222 
223       // If EmitStartPt is non-null, this block had copies at the top before
224       // FastISel started doing anything; it points to the last one, so the
225       // first local value instruction is the one after EmitStartPt.
226       // If EmitStartPt is null, the first local value instruction is at the
227       // top of the block.
228       MachineBasicBlock::iterator FirstLocalValue =
229           EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt)
230                       : FuncInfo.MBB->begin();
231       if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc())
232         FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc());
233     }
234   }
235 
236   LocalValueMap.clear();
237   LastLocalValue = EmitStartPt;
238   recomputeInsertPt();
239   SavedInsertPt = FuncInfo.InsertPt;
240 }
241 
242 Register FastISel::getRegForValue(const Value *V) {
243   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
244   // Don't handle non-simple values in FastISel.
245   if (!RealVT.isSimple())
246     return Register();
247 
248   // Ignore illegal types. We must do this before looking up the value
249   // in ValueMap because Arguments are given virtual registers regardless
250   // of whether FastISel can handle them.
251   MVT VT = RealVT.getSimpleVT();
252   if (!TLI.isTypeLegal(VT)) {
253     // Handle integer promotions, though, because they're common and easy.
254     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
255       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
256     else
257       return Register();
258   }
259 
260   // Look up the value to see if we already have a register for it.
261   Register Reg = lookUpRegForValue(V);
262   if (Reg)
263     return Reg;
264 
265   // In bottom-up mode, just create the virtual register which will be used
266   // to hold the value. It will be materialized later.
267   if (isa<Instruction>(V) &&
268       (!isa<AllocaInst>(V) ||
269        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
270     return FuncInfo.InitializeRegForValue(V);
271 
272   SavePoint SaveInsertPt = enterLocalValueArea();
273 
274   // Materialize the value in a register. Emit any instructions in the
275   // local value area.
276   Reg = materializeRegForValue(V, VT);
277 
278   leaveLocalValueArea(SaveInsertPt);
279 
280   return Reg;
281 }
282 
283 Register FastISel::materializeConstant(const Value *V, MVT VT) {
284   Register Reg;
285   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
286     if (CI->getValue().getActiveBits() <= 64)
287       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
288   } else if (isa<AllocaInst>(V))
289     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
290   else if (isa<ConstantPointerNull>(V))
291     // Translate this as an integer zero so that it can be
292     // local-CSE'd with actual integer zeros.
293     Reg =
294         getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType())));
295   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
296     if (CF->isNullValue())
297       Reg = fastMaterializeFloatZero(CF);
298     else
299       // Try to emit the constant directly.
300       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
301 
302     if (!Reg) {
303       // Try to emit the constant by using an integer constant with a cast.
304       const APFloat &Flt = CF->getValueAPF();
305       EVT IntVT = TLI.getPointerTy(DL);
306       uint32_t IntBitWidth = IntVT.getSizeInBits();
307       APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
308       bool isExact;
309       (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
310       if (isExact) {
311         Register IntegerReg =
312             getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
313         if (IntegerReg)
314           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
315                            IntegerReg);
316       }
317     }
318   } else if (const auto *Op = dyn_cast<Operator>(V)) {
319     if (!selectOperator(Op, Op->getOpcode()))
320       if (!isa<Instruction>(Op) ||
321           !fastSelectInstruction(cast<Instruction>(Op)))
322         return 0;
323     Reg = lookUpRegForValue(Op);
324   } else if (isa<UndefValue>(V)) {
325     Reg = createResultReg(TLI.getRegClassFor(VT));
326     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
327             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
328   }
329   return Reg;
330 }
331 
332 /// Helper for getRegForValue. This function is called when the value isn't
333 /// already available in a register and must be materialized with new
334 /// instructions.
335 Register FastISel::materializeRegForValue(const Value *V, MVT VT) {
336   Register Reg;
337   // Give the target-specific code a try first.
338   if (isa<Constant>(V))
339     Reg = fastMaterializeConstant(cast<Constant>(V));
340 
341   // If target-specific code couldn't or didn't want to handle the value, then
342   // give target-independent code a try.
343   if (!Reg)
344     Reg = materializeConstant(V, VT);
345 
346   // Don't cache constant materializations in the general ValueMap.
347   // To do so would require tracking what uses they dominate.
348   if (Reg) {
349     LocalValueMap[V] = Reg;
350     LastLocalValue = MRI.getVRegDef(Reg);
351   }
352   return Reg;
353 }
354 
355 Register FastISel::lookUpRegForValue(const Value *V) {
356   // Look up the value to see if we already have a register for it. We
357   // cache values defined by Instructions across blocks, and other values
358   // only locally. This is because Instructions already have the SSA
359   // def-dominates-use requirement enforced.
360   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V);
361   if (I != FuncInfo.ValueMap.end())
362     return I->second;
363   return LocalValueMap[V];
364 }
365 
366 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) {
367   if (!isa<Instruction>(I)) {
368     LocalValueMap[I] = Reg;
369     return;
370   }
371 
372   Register &AssignedReg = FuncInfo.ValueMap[I];
373   if (!AssignedReg)
374     // Use the new register.
375     AssignedReg = Reg;
376   else if (Reg != AssignedReg) {
377     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
378     for (unsigned i = 0; i < NumRegs; i++) {
379       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
380       FuncInfo.RegsWithFixups.insert(Reg + i);
381     }
382 
383     AssignedReg = Reg;
384   }
385 }
386 
387 Register FastISel::getRegForGEPIndex(const Value *Idx) {
388   Register IdxN = getRegForValue(Idx);
389   if (!IdxN)
390     // Unhandled operand. Halt "fast" selection and bail.
391     return Register();
392 
393   // If the index is smaller or larger than intptr_t, truncate or extend it.
394   MVT PtrVT = TLI.getPointerTy(DL);
395   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
396   if (IdxVT.bitsLT(PtrVT)) {
397     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
398   } else if (IdxVT.bitsGT(PtrVT)) {
399     IdxN =
400         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
401   }
402   return IdxN;
403 }
404 
405 void FastISel::recomputeInsertPt() {
406   if (getLastLocalValue()) {
407     FuncInfo.InsertPt = getLastLocalValue();
408     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
409     ++FuncInfo.InsertPt;
410   } else
411     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
412 
413   // Now skip past any EH_LABELs, which must remain at the beginning.
414   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
415          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
416     ++FuncInfo.InsertPt;
417 }
418 
419 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
420                               MachineBasicBlock::iterator E) {
421   assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
422          "Invalid iterator!");
423   while (I != E) {
424     if (SavedInsertPt == I)
425       SavedInsertPt = E;
426     if (EmitStartPt == I)
427       EmitStartPt = E.isValid() ? &*E : nullptr;
428     if (LastLocalValue == I)
429       LastLocalValue = E.isValid() ? &*E : nullptr;
430 
431     MachineInstr *Dead = &*I;
432     ++I;
433     Dead->eraseFromParent();
434     ++NumFastIselDead;
435   }
436   recomputeInsertPt();
437 }
438 
439 FastISel::SavePoint FastISel::enterLocalValueArea() {
440   SavePoint OldInsertPt = FuncInfo.InsertPt;
441   recomputeInsertPt();
442   return OldInsertPt;
443 }
444 
445 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
446   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
447     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
448 
449   // Restore the previous insert position.
450   FuncInfo.InsertPt = OldInsertPt;
451 }
452 
453 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
454   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
455   if (VT == MVT::Other || !VT.isSimple())
456     // Unhandled type. Halt "fast" selection and bail.
457     return false;
458 
459   // We only handle legal types. For example, on x86-32 the instruction
460   // selector contains all of the 64-bit instructions from x86-64,
461   // under the assumption that i64 won't be used if the target doesn't
462   // support it.
463   if (!TLI.isTypeLegal(VT)) {
464     // MVT::i1 is special. Allow AND, OR, or XOR because they
465     // don't require additional zeroing, which makes them easy.
466     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
467                           ISDOpcode == ISD::XOR))
468       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
469     else
470       return false;
471   }
472 
473   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
474   // we don't have anything that canonicalizes operand order.
475   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
476     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
477       Register Op1 = getRegForValue(I->getOperand(1));
478       if (!Op1)
479         return false;
480 
481       Register ResultReg =
482           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(),
483                        VT.getSimpleVT());
484       if (!ResultReg)
485         return false;
486 
487       // We successfully emitted code for the given LLVM Instruction.
488       updateValueMap(I, ResultReg);
489       return true;
490     }
491 
492   Register Op0 = getRegForValue(I->getOperand(0));
493   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
494     return false;
495 
496   // Check if the second operand is a constant and handle it appropriately.
497   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
498     uint64_t Imm = CI->getSExtValue();
499 
500     // Transform "sdiv exact X, 8" -> "sra X, 3".
501     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
502         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
503       Imm = Log2_64(Imm);
504       ISDOpcode = ISD::SRA;
505     }
506 
507     // Transform "urem x, pow2" -> "and x, pow2-1".
508     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
509         isPowerOf2_64(Imm)) {
510       --Imm;
511       ISDOpcode = ISD::AND;
512     }
513 
514     Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm,
515                                       VT.getSimpleVT());
516     if (!ResultReg)
517       return false;
518 
519     // We successfully emitted code for the given LLVM Instruction.
520     updateValueMap(I, ResultReg);
521     return true;
522   }
523 
524   Register Op1 = getRegForValue(I->getOperand(1));
525   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
526     return false;
527 
528   // Now we have both operands in registers. Emit the instruction.
529   Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
530                                    ISDOpcode, Op0, Op1);
531   if (!ResultReg)
532     // Target-specific code wasn't able to find a machine opcode for
533     // the given ISD opcode and type. Halt "fast" selection and bail.
534     return false;
535 
536   // We successfully emitted code for the given LLVM Instruction.
537   updateValueMap(I, ResultReg);
538   return true;
539 }
540 
541 bool FastISel::selectGetElementPtr(const User *I) {
542   Register N = getRegForValue(I->getOperand(0));
543   if (!N) // Unhandled operand. Halt "fast" selection and bail.
544     return false;
545 
546   // FIXME: The code below does not handle vector GEPs. Halt "fast" selection
547   // and bail.
548   if (isa<VectorType>(I->getType()))
549     return false;
550 
551   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
552   // into a single N = N + TotalOffset.
553   uint64_t TotalOffs = 0;
554   // FIXME: What's a good SWAG number for MaxOffs?
555   uint64_t MaxOffs = 2048;
556   MVT VT = TLI.getPointerTy(DL);
557   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
558        GTI != E; ++GTI) {
559     const Value *Idx = GTI.getOperand();
560     if (StructType *StTy = GTI.getStructTypeOrNull()) {
561       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
562       if (Field) {
563         // N = N + Offset
564         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
565         if (TotalOffs >= MaxOffs) {
566           N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
567           if (!N) // Unhandled operand. Halt "fast" selection and bail.
568             return false;
569           TotalOffs = 0;
570         }
571       }
572     } else {
573       Type *Ty = GTI.getIndexedType();
574 
575       // If this is a constant subscript, handle it quickly.
576       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
577         if (CI->isZero())
578           continue;
579         // N = N + Offset
580         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
581         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
582         if (TotalOffs >= MaxOffs) {
583           N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
584           if (!N) // Unhandled operand. Halt "fast" selection and bail.
585             return false;
586           TotalOffs = 0;
587         }
588         continue;
589       }
590       if (TotalOffs) {
591         N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
592         if (!N) // Unhandled operand. Halt "fast" selection and bail.
593           return false;
594         TotalOffs = 0;
595       }
596 
597       // N = N + Idx * ElementSize;
598       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
599       Register IdxN = getRegForGEPIndex(Idx);
600       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
601         return false;
602 
603       if (ElementSize != 1) {
604         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
605         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
606           return false;
607       }
608       N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
609       if (!N) // Unhandled operand. Halt "fast" selection and bail.
610         return false;
611     }
612   }
613   if (TotalOffs) {
614     N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
615     if (!N) // Unhandled operand. Halt "fast" selection and bail.
616       return false;
617   }
618 
619   // We successfully emitted code for the given LLVM Instruction.
620   updateValueMap(I, N);
621   return true;
622 }
623 
624 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
625                                    const CallInst *CI, unsigned StartIdx) {
626   for (unsigned i = StartIdx, e = CI->arg_size(); i != e; ++i) {
627     Value *Val = CI->getArgOperand(i);
628     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
629     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
630       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
631       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
632     } else if (isa<ConstantPointerNull>(Val)) {
633       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
634       Ops.push_back(MachineOperand::CreateImm(0));
635     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
636       // Values coming from a stack location also require a special encoding,
637       // but that is added later on by the target specific frame index
638       // elimination implementation.
639       auto SI = FuncInfo.StaticAllocaMap.find(AI);
640       if (SI != FuncInfo.StaticAllocaMap.end())
641         Ops.push_back(MachineOperand::CreateFI(SI->second));
642       else
643         return false;
644     } else {
645       Register Reg = getRegForValue(Val);
646       if (!Reg)
647         return false;
648       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
649     }
650   }
651   return true;
652 }
653 
654 bool FastISel::selectStackmap(const CallInst *I) {
655   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
656   //                                  [live variables...])
657   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
658          "Stackmap cannot return a value.");
659 
660   // The stackmap intrinsic only records the live variables (the arguments
661   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
662   // intrinsic, this won't be lowered to a function call. This means we don't
663   // have to worry about calling conventions and target-specific lowering code.
664   // Instead we perform the call lowering right here.
665   //
666   // CALLSEQ_START(0, 0...)
667   // STACKMAP(id, nbytes, ...)
668   // CALLSEQ_END(0, 0)
669   //
670   SmallVector<MachineOperand, 32> Ops;
671 
672   // Add the <id> and <numBytes> constants.
673   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
674          "Expected a constant integer.");
675   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
676   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
677 
678   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
679          "Expected a constant integer.");
680   const auto *NumBytes =
681       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
682   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
683 
684   // Push live variables for the stack map (skipping the first two arguments
685   // <id> and <numBytes>).
686   if (!addStackMapLiveVars(Ops, I, 2))
687     return false;
688 
689   // We are not adding any register mask info here, because the stackmap doesn't
690   // clobber anything.
691 
692   // Add scratch registers as implicit def and early clobber.
693   CallingConv::ID CC = I->getCallingConv();
694   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
695   for (unsigned i = 0; ScratchRegs[i]; ++i)
696     Ops.push_back(MachineOperand::CreateReg(
697         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
698         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
699 
700   // Issue CALLSEQ_START
701   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
702   auto Builder =
703       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
704   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
705   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
706     Builder.addImm(0);
707 
708   // Issue STACKMAP.
709   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
710                                     TII.get(TargetOpcode::STACKMAP));
711   for (auto const &MO : Ops)
712     MIB.add(MO);
713 
714   // Issue CALLSEQ_END
715   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
716   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
717       .addImm(0)
718       .addImm(0);
719 
720   // Inform the Frame Information that we have a stackmap in this function.
721   FuncInfo.MF->getFrameInfo().setHasStackMap();
722 
723   return true;
724 }
725 
726 /// Lower an argument list according to the target calling convention.
727 ///
728 /// This is a helper for lowering intrinsics that follow a target calling
729 /// convention or require stack pointer adjustment. Only a subset of the
730 /// intrinsic's operands need to participate in the calling convention.
731 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
732                                  unsigned NumArgs, const Value *Callee,
733                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
734   ArgListTy Args;
735   Args.reserve(NumArgs);
736 
737   // Populate the argument list.
738   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
739     Value *V = CI->getOperand(ArgI);
740 
741     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
742 
743     ArgListEntry Entry;
744     Entry.Val = V;
745     Entry.Ty = V->getType();
746     Entry.setAttributes(CI, ArgI);
747     Args.push_back(Entry);
748   }
749 
750   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
751                                : CI->getType();
752   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
753 
754   return lowerCallTo(CLI);
755 }
756 
757 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
758     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
759     StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
760   SmallString<32> MangledName;
761   Mangler::getNameWithPrefix(MangledName, Target, DL);
762   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
763   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
764 }
765 
766 bool FastISel::selectPatchpoint(const CallInst *I) {
767   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
768   //                                                 i32 <numBytes>,
769   //                                                 i8* <target>,
770   //                                                 i32 <numArgs>,
771   //                                                 [Args...],
772   //                                                 [live variables...])
773   CallingConv::ID CC = I->getCallingConv();
774   bool IsAnyRegCC = CC == CallingConv::AnyReg;
775   bool HasDef = !I->getType()->isVoidTy();
776   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
777 
778   // Get the real number of arguments participating in the call <numArgs>
779   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
780          "Expected a constant integer.");
781   const auto *NumArgsVal =
782       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
783   unsigned NumArgs = NumArgsVal->getZExtValue();
784 
785   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
786   // This includes all meta-operands up to but not including CC.
787   unsigned NumMetaOpers = PatchPointOpers::CCPos;
788   assert(I->arg_size() >= NumMetaOpers + NumArgs &&
789          "Not enough arguments provided to the patchpoint intrinsic");
790 
791   // For AnyRegCC the arguments are lowered later on manually.
792   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
793   CallLoweringInfo CLI;
794   CLI.setIsPatchPoint();
795   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
796     return false;
797 
798   assert(CLI.Call && "No call instruction specified.");
799 
800   SmallVector<MachineOperand, 32> Ops;
801 
802   // Add an explicit result reg if we use the anyreg calling convention.
803   if (IsAnyRegCC && HasDef) {
804     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
805     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
806     CLI.NumResultRegs = 1;
807     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
808   }
809 
810   // Add the <id> and <numBytes> constants.
811   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
812          "Expected a constant integer.");
813   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
814   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
815 
816   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
817          "Expected a constant integer.");
818   const auto *NumBytes =
819       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
820   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
821 
822   // Add the call target.
823   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
824     uint64_t CalleeConstAddr =
825       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
826     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
827   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
828     if (C->getOpcode() == Instruction::IntToPtr) {
829       uint64_t CalleeConstAddr =
830         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
831       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
832     } else
833       llvm_unreachable("Unsupported ConstantExpr.");
834   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
835     Ops.push_back(MachineOperand::CreateGA(GV, 0));
836   } else if (isa<ConstantPointerNull>(Callee))
837     Ops.push_back(MachineOperand::CreateImm(0));
838   else
839     llvm_unreachable("Unsupported callee address.");
840 
841   // Adjust <numArgs> to account for any arguments that have been passed on
842   // the stack instead.
843   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
844   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
845 
846   // Add the calling convention
847   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
848 
849   // Add the arguments we omitted previously. The register allocator should
850   // place these in any free register.
851   if (IsAnyRegCC) {
852     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
853       Register Reg = getRegForValue(I->getArgOperand(i));
854       if (!Reg)
855         return false;
856       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
857     }
858   }
859 
860   // Push the arguments from the call instruction.
861   for (auto Reg : CLI.OutRegs)
862     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
863 
864   // Push live variables for the stack map.
865   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
866     return false;
867 
868   // Push the register mask info.
869   Ops.push_back(MachineOperand::CreateRegMask(
870       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
871 
872   // Add scratch registers as implicit def and early clobber.
873   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
874   for (unsigned i = 0; ScratchRegs[i]; ++i)
875     Ops.push_back(MachineOperand::CreateReg(
876         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
877         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
878 
879   // Add implicit defs (return values).
880   for (auto Reg : CLI.InRegs)
881     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
882                                             /*isImp=*/true));
883 
884   // Insert the patchpoint instruction before the call generated by the target.
885   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
886                                     TII.get(TargetOpcode::PATCHPOINT));
887 
888   for (auto &MO : Ops)
889     MIB.add(MO);
890 
891   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
892 
893   // Delete the original call instruction.
894   CLI.Call->eraseFromParent();
895 
896   // Inform the Frame Information that we have a patchpoint in this function.
897   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
898 
899   if (CLI.NumResultRegs)
900     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
901   return true;
902 }
903 
904 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
905   const auto &Triple = TM.getTargetTriple();
906   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
907     return true; // don't do anything to this instruction.
908   SmallVector<MachineOperand, 8> Ops;
909   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
910                                           /*isDef=*/false));
911   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
912                                           /*isDef=*/false));
913   MachineInstrBuilder MIB =
914       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
915               TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
916   for (auto &MO : Ops)
917     MIB.add(MO);
918 
919   // Insert the Patchable Event Call instruction, that gets lowered properly.
920   return true;
921 }
922 
923 bool FastISel::selectXRayTypedEvent(const CallInst *I) {
924   const auto &Triple = TM.getTargetTriple();
925   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
926     return true; // don't do anything to this instruction.
927   SmallVector<MachineOperand, 8> Ops;
928   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
929                                           /*isDef=*/false));
930   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
931                                           /*isDef=*/false));
932   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
933                                           /*isDef=*/false));
934   MachineInstrBuilder MIB =
935       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
936               TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
937   for (auto &MO : Ops)
938     MIB.add(MO);
939 
940   // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
941   return true;
942 }
943 
944 /// Returns an AttributeList representing the attributes applied to the return
945 /// value of the given call.
946 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
947   SmallVector<Attribute::AttrKind, 2> Attrs;
948   if (CLI.RetSExt)
949     Attrs.push_back(Attribute::SExt);
950   if (CLI.RetZExt)
951     Attrs.push_back(Attribute::ZExt);
952   if (CLI.IsInReg)
953     Attrs.push_back(Attribute::InReg);
954 
955   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
956                             Attrs);
957 }
958 
959 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
960                            unsigned NumArgs) {
961   MCContext &Ctx = MF->getContext();
962   SmallString<32> MangledName;
963   Mangler::getNameWithPrefix(MangledName, SymName, DL);
964   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
965   return lowerCallTo(CI, Sym, NumArgs);
966 }
967 
968 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
969                            unsigned NumArgs) {
970   FunctionType *FTy = CI->getFunctionType();
971   Type *RetTy = CI->getType();
972 
973   ArgListTy Args;
974   Args.reserve(NumArgs);
975 
976   // Populate the argument list.
977   // Attributes for args start at offset 1, after the return attribute.
978   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
979     Value *V = CI->getOperand(ArgI);
980 
981     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
982 
983     ArgListEntry Entry;
984     Entry.Val = V;
985     Entry.Ty = V->getType();
986     Entry.setAttributes(CI, ArgI);
987     Args.push_back(Entry);
988   }
989   TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args);
990 
991   CallLoweringInfo CLI;
992   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs);
993 
994   return lowerCallTo(CLI);
995 }
996 
997 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
998   // Handle the incoming return values from the call.
999   CLI.clearIns();
1000   SmallVector<EVT, 4> RetTys;
1001   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
1002 
1003   SmallVector<ISD::OutputArg, 4> Outs;
1004   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1005 
1006   bool CanLowerReturn = TLI.CanLowerReturn(
1007       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
1008 
1009   // FIXME: sret demotion isn't supported yet - bail out.
1010   if (!CanLowerReturn)
1011     return false;
1012 
1013   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
1014     EVT VT = RetTys[I];
1015     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1016     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1017     for (unsigned i = 0; i != NumRegs; ++i) {
1018       ISD::InputArg MyFlags;
1019       MyFlags.VT = RegisterVT;
1020       MyFlags.ArgVT = VT;
1021       MyFlags.Used = CLI.IsReturnValueUsed;
1022       if (CLI.RetSExt)
1023         MyFlags.Flags.setSExt();
1024       if (CLI.RetZExt)
1025         MyFlags.Flags.setZExt();
1026       if (CLI.IsInReg)
1027         MyFlags.Flags.setInReg();
1028       CLI.Ins.push_back(MyFlags);
1029     }
1030   }
1031 
1032   // Handle all of the outgoing arguments.
1033   CLI.clearOuts();
1034   for (auto &Arg : CLI.getArgs()) {
1035     Type *FinalType = Arg.Ty;
1036     if (Arg.IsByVal)
1037       FinalType = Arg.IndirectType;
1038     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1039         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
1040 
1041     ISD::ArgFlagsTy Flags;
1042     if (Arg.IsZExt)
1043       Flags.setZExt();
1044     if (Arg.IsSExt)
1045       Flags.setSExt();
1046     if (Arg.IsInReg)
1047       Flags.setInReg();
1048     if (Arg.IsSRet)
1049       Flags.setSRet();
1050     if (Arg.IsSwiftSelf)
1051       Flags.setSwiftSelf();
1052     if (Arg.IsSwiftAsync)
1053       Flags.setSwiftAsync();
1054     if (Arg.IsSwiftError)
1055       Flags.setSwiftError();
1056     if (Arg.IsCFGuardTarget)
1057       Flags.setCFGuardTarget();
1058     if (Arg.IsByVal)
1059       Flags.setByVal();
1060     if (Arg.IsInAlloca) {
1061       Flags.setInAlloca();
1062       // Set the byval flag for CCAssignFn callbacks that don't know about
1063       // inalloca. This way we can know how many bytes we should've allocated
1064       // and how many bytes a callee cleanup function will pop.  If we port
1065       // inalloca to more targets, we'll have to add custom inalloca handling in
1066       // the various CC lowering callbacks.
1067       Flags.setByVal();
1068     }
1069     if (Arg.IsPreallocated) {
1070       Flags.setPreallocated();
1071       // Set the byval flag for CCAssignFn callbacks that don't know about
1072       // preallocated. This way we can know how many bytes we should've
1073       // allocated and how many bytes a callee cleanup function will pop.  If we
1074       // port preallocated to more targets, we'll have to add custom
1075       // preallocated handling in the various CC lowering callbacks.
1076       Flags.setByVal();
1077     }
1078     MaybeAlign MemAlign = Arg.Alignment;
1079     if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) {
1080       unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType);
1081 
1082       // For ByVal, alignment should come from FE. BE will guess if this info
1083       // is not there, but there are cases it cannot get right.
1084       if (!MemAlign)
1085         MemAlign = Align(TLI.getByValTypeAlignment(Arg.IndirectType, DL));
1086       Flags.setByValSize(FrameSize);
1087     } else if (!MemAlign) {
1088       MemAlign = DL.getABITypeAlign(Arg.Ty);
1089     }
1090     Flags.setMemAlign(*MemAlign);
1091     if (Arg.IsNest)
1092       Flags.setNest();
1093     if (NeedsRegBlock)
1094       Flags.setInConsecutiveRegs();
1095     Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
1096     CLI.OutVals.push_back(Arg.Val);
1097     CLI.OutFlags.push_back(Flags);
1098   }
1099 
1100   if (!fastLowerCall(CLI))
1101     return false;
1102 
1103   // Set all unused physreg defs as dead.
1104   assert(CLI.Call && "No call instruction specified.");
1105   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1106 
1107   if (CLI.NumResultRegs && CLI.CB)
1108     updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs);
1109 
1110   // Set labels for heapallocsite call.
1111   if (CLI.CB)
1112     if (MDNode *MD = CLI.CB->getMetadata("heapallocsite"))
1113       CLI.Call->setHeapAllocMarker(*MF, MD);
1114 
1115   return true;
1116 }
1117 
1118 bool FastISel::lowerCall(const CallInst *CI) {
1119   FunctionType *FuncTy = CI->getFunctionType();
1120   Type *RetTy = CI->getType();
1121 
1122   ArgListTy Args;
1123   ArgListEntry Entry;
1124   Args.reserve(CI->arg_size());
1125 
1126   for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) {
1127     Value *V = *i;
1128 
1129     // Skip empty types
1130     if (V->getType()->isEmptyTy())
1131       continue;
1132 
1133     Entry.Val = V;
1134     Entry.Ty = V->getType();
1135 
1136     // Skip the first return-type Attribute to get to params.
1137     Entry.setAttributes(CI, i - CI->arg_begin());
1138     Args.push_back(Entry);
1139   }
1140 
1141   // Check if target-independent constraints permit a tail call here.
1142   // Target-dependent constraints are checked within fastLowerCall.
1143   bool IsTailCall = CI->isTailCall();
1144   if (IsTailCall && !isInTailCallPosition(*CI, TM))
1145     IsTailCall = false;
1146   if (IsTailCall && MF->getFunction()
1147                             .getFnAttribute("disable-tail-calls")
1148                             .getValueAsBool())
1149     IsTailCall = false;
1150 
1151   CallLoweringInfo CLI;
1152   CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI)
1153       .setTailCall(IsTailCall);
1154 
1155   diagnoseDontCall(*CI);
1156 
1157   return lowerCallTo(CLI);
1158 }
1159 
1160 bool FastISel::selectCall(const User *I) {
1161   const CallInst *Call = cast<CallInst>(I);
1162 
1163   // Handle simple inline asms.
1164   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) {
1165     // Don't attempt to handle constraints.
1166     if (!IA->getConstraintString().empty())
1167       return false;
1168 
1169     unsigned ExtraInfo = 0;
1170     if (IA->hasSideEffects())
1171       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1172     if (IA->isAlignStack())
1173       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1174     if (Call->isConvergent())
1175       ExtraInfo |= InlineAsm::Extra_IsConvergent;
1176     ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
1177 
1178     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1179                                       TII.get(TargetOpcode::INLINEASM));
1180     MIB.addExternalSymbol(IA->getAsmString().c_str());
1181     MIB.addImm(ExtraInfo);
1182 
1183     const MDNode *SrcLoc = Call->getMetadata("srcloc");
1184     if (SrcLoc)
1185       MIB.addMetadata(SrcLoc);
1186 
1187     return true;
1188   }
1189 
1190   // Handle intrinsic function calls.
1191   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1192     return selectIntrinsicCall(II);
1193 
1194   return lowerCall(Call);
1195 }
1196 
1197 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1198   switch (II->getIntrinsicID()) {
1199   default:
1200     break;
1201   // At -O0 we don't care about the lifetime intrinsics.
1202   case Intrinsic::lifetime_start:
1203   case Intrinsic::lifetime_end:
1204   // The donothing intrinsic does, well, nothing.
1205   case Intrinsic::donothing:
1206   // Neither does the sideeffect intrinsic.
1207   case Intrinsic::sideeffect:
1208   // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1209   case Intrinsic::assume:
1210   // Neither does the llvm.experimental.noalias.scope.decl intrinsic
1211   case Intrinsic::experimental_noalias_scope_decl:
1212     return true;
1213   case Intrinsic::dbg_declare: {
1214     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1215     assert(DI->getVariable() && "Missing variable");
1216     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1217       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1218                         << " (!hasDebugInfo)\n");
1219       return true;
1220     }
1221 
1222     const Value *Address = DI->getAddress();
1223     if (!Address || isa<UndefValue>(Address)) {
1224       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1225                         << " (bad/undef address)\n");
1226       return true;
1227     }
1228 
1229     // Byval arguments with frame indices were already handled after argument
1230     // lowering and before isel.
1231     const auto *Arg =
1232         dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
1233     if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
1234       return true;
1235 
1236     Optional<MachineOperand> Op;
1237     if (Register Reg = lookUpRegForValue(Address))
1238       Op = MachineOperand::CreateReg(Reg, false);
1239 
1240     // If we have a VLA that has a "use" in a metadata node that's then used
1241     // here but it has no other uses, then we have a problem. E.g.,
1242     //
1243     //   int foo (const int *x) {
1244     //     char a[*x];
1245     //     return 0;
1246     //   }
1247     //
1248     // If we assign 'a' a vreg and fast isel later on has to use the selection
1249     // DAG isel, it will want to copy the value to the vreg. However, there are
1250     // no uses, which goes counter to what selection DAG isel expects.
1251     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1252         (!isa<AllocaInst>(Address) ||
1253          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1254       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1255                                      false);
1256 
1257     if (Op) {
1258       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1259              "Expected inlined-at fields to agree");
1260       // A dbg.declare describes the address of a source variable, so lower it
1261       // into an indirect DBG_VALUE.
1262       auto Builder =
1263           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1264                   TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op,
1265                   DI->getVariable(), DI->getExpression());
1266 
1267       // If using instruction referencing, mutate this into a DBG_INSTR_REF,
1268       // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto
1269       // the expression, we don't have an "indirect" flag in DBG_INSTR_REF.
1270       if (FuncInfo.MF->useDebugInstrRef() && Op->isReg()) {
1271         Builder->setDesc(TII.get(TargetOpcode::DBG_INSTR_REF));
1272         Builder->getOperand(1).ChangeToImmediate(0);
1273         auto *NewExpr =
1274            DIExpression::prepend(DI->getExpression(), DIExpression::DerefBefore);
1275         Builder->getOperand(3).setMetadata(NewExpr);
1276       }
1277     } else {
1278       // We can't yet handle anything else here because it would require
1279       // generating code, thus altering codegen because of debug info.
1280       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1281                         << " (no materialized reg for address)\n");
1282     }
1283     return true;
1284   }
1285   case Intrinsic::dbg_value: {
1286     // This form of DBG_VALUE is target-independent.
1287     const DbgValueInst *DI = cast<DbgValueInst>(II);
1288     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1289     const Value *V = DI->getValue();
1290     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1291            "Expected inlined-at fields to agree");
1292     if (!V || isa<UndefValue>(V) || DI->hasArgList()) {
1293       // DI is either undef or cannot produce a valid DBG_VALUE, so produce an
1294       // undef DBG_VALUE to terminate any prior location.
1295       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
1296               DI->getVariable(), DI->getExpression());
1297     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1298       // See if there's an expression to constant-fold.
1299       DIExpression *Expr = DI->getExpression();
1300       if (Expr)
1301         std::tie(Expr, CI) = Expr->constantFold(CI);
1302       if (CI->getBitWidth() > 64)
1303         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1304             .addCImm(CI)
1305             .addImm(0U)
1306             .addMetadata(DI->getVariable())
1307             .addMetadata(Expr);
1308       else
1309         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1310             .addImm(CI->getZExtValue())
1311             .addImm(0U)
1312             .addMetadata(DI->getVariable())
1313             .addMetadata(Expr);
1314     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1315       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1316           .addFPImm(CF)
1317           .addImm(0U)
1318           .addMetadata(DI->getVariable())
1319           .addMetadata(DI->getExpression());
1320     } else if (Register Reg = lookUpRegForValue(V)) {
1321       // FIXME: This does not handle register-indirect values at offset 0.
1322       bool IsIndirect = false;
1323       auto Builder =
1324           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1325                   DI->getVariable(), DI->getExpression());
1326 
1327       // If using instruction referencing, mutate this into a DBG_INSTR_REF,
1328       // to be later patched up by finalizeDebugInstrRefs.
1329       if (FuncInfo.MF->useDebugInstrRef()) {
1330         Builder->setDesc(TII.get(TargetOpcode::DBG_INSTR_REF));
1331         Builder->getOperand(1).ChangeToImmediate(0);
1332       }
1333     } else {
1334       // We don't know how to handle other cases, so we drop.
1335       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1336     }
1337     return true;
1338   }
1339   case Intrinsic::dbg_label: {
1340     const DbgLabelInst *DI = cast<DbgLabelInst>(II);
1341     assert(DI->getLabel() && "Missing label");
1342     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1343       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1344       return true;
1345     }
1346 
1347     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1348             TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
1349     return true;
1350   }
1351   case Intrinsic::objectsize:
1352     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1353 
1354   case Intrinsic::is_constant:
1355     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1356 
1357   case Intrinsic::launder_invariant_group:
1358   case Intrinsic::strip_invariant_group:
1359   case Intrinsic::expect: {
1360     Register ResultReg = getRegForValue(II->getArgOperand(0));
1361     if (!ResultReg)
1362       return false;
1363     updateValueMap(II, ResultReg);
1364     return true;
1365   }
1366   case Intrinsic::experimental_stackmap:
1367     return selectStackmap(II);
1368   case Intrinsic::experimental_patchpoint_void:
1369   case Intrinsic::experimental_patchpoint_i64:
1370     return selectPatchpoint(II);
1371 
1372   case Intrinsic::xray_customevent:
1373     return selectXRayCustomEvent(II);
1374   case Intrinsic::xray_typedevent:
1375     return selectXRayTypedEvent(II);
1376   }
1377 
1378   return fastLowerIntrinsicCall(II);
1379 }
1380 
1381 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1382   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1383   EVT DstVT = TLI.getValueType(DL, I->getType());
1384 
1385   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1386       !DstVT.isSimple())
1387     // Unhandled type. Halt "fast" selection and bail.
1388     return false;
1389 
1390   // Check if the destination type is legal.
1391   if (!TLI.isTypeLegal(DstVT))
1392     return false;
1393 
1394   // Check if the source operand is legal.
1395   if (!TLI.isTypeLegal(SrcVT))
1396     return false;
1397 
1398   Register InputReg = getRegForValue(I->getOperand(0));
1399   if (!InputReg)
1400     // Unhandled operand.  Halt "fast" selection and bail.
1401     return false;
1402 
1403   Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1404                                   Opcode, InputReg);
1405   if (!ResultReg)
1406     return false;
1407 
1408   updateValueMap(I, ResultReg);
1409   return true;
1410 }
1411 
1412 bool FastISel::selectBitCast(const User *I) {
1413   // If the bitcast doesn't change the type, just use the operand value.
1414   if (I->getType() == I->getOperand(0)->getType()) {
1415     Register Reg = getRegForValue(I->getOperand(0));
1416     if (!Reg)
1417       return false;
1418     updateValueMap(I, Reg);
1419     return true;
1420   }
1421 
1422   // Bitcasts of other values become reg-reg copies or BITCAST operators.
1423   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1424   EVT DstEVT = TLI.getValueType(DL, I->getType());
1425   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1426       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1427     // Unhandled type. Halt "fast" selection and bail.
1428     return false;
1429 
1430   MVT SrcVT = SrcEVT.getSimpleVT();
1431   MVT DstVT = DstEVT.getSimpleVT();
1432   Register Op0 = getRegForValue(I->getOperand(0));
1433   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1434     return false;
1435 
1436   // First, try to perform the bitcast by inserting a reg-reg copy.
1437   Register ResultReg;
1438   if (SrcVT == DstVT) {
1439     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1440     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1441     // Don't attempt a cross-class copy. It will likely fail.
1442     if (SrcClass == DstClass) {
1443       ResultReg = createResultReg(DstClass);
1444       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1445               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1446     }
1447   }
1448 
1449   // If the reg-reg copy failed, select a BITCAST opcode.
1450   if (!ResultReg)
1451     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0);
1452 
1453   if (!ResultReg)
1454     return false;
1455 
1456   updateValueMap(I, ResultReg);
1457   return true;
1458 }
1459 
1460 bool FastISel::selectFreeze(const User *I) {
1461   Register Reg = getRegForValue(I->getOperand(0));
1462   if (!Reg)
1463     // Unhandled operand.
1464     return false;
1465 
1466   EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType());
1467   if (ETy == MVT::Other || !TLI.isTypeLegal(ETy))
1468     // Unhandled type, bail out.
1469     return false;
1470 
1471   MVT Ty = ETy.getSimpleVT();
1472   const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty);
1473   Register ResultReg = createResultReg(TyRegClass);
1474   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1475           TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
1476 
1477   updateValueMap(I, ResultReg);
1478   return true;
1479 }
1480 
1481 // Remove local value instructions starting from the instruction after
1482 // SavedLastLocalValue to the current function insert point.
1483 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1484 {
1485   MachineInstr *CurLastLocalValue = getLastLocalValue();
1486   if (CurLastLocalValue != SavedLastLocalValue) {
1487     // Find the first local value instruction to be deleted.
1488     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1489     // Otherwise it's the first instruction in the block.
1490     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1491     if (SavedLastLocalValue)
1492       ++FirstDeadInst;
1493     else
1494       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1495     setLastLocalValue(SavedLastLocalValue);
1496     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1497   }
1498 }
1499 
1500 bool FastISel::selectInstruction(const Instruction *I) {
1501   // Flush the local value map before starting each instruction.
1502   // This improves locality and debugging, and can reduce spills.
1503   // Reuse of values across IR instructions is relatively uncommon.
1504   flushLocalValueMap();
1505 
1506   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1507   // Just before the terminator instruction, insert instructions to
1508   // feed PHI nodes in successor blocks.
1509   if (I->isTerminator()) {
1510     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1511       // PHI node handling may have generated local value instructions,
1512       // even though it failed to handle all PHI nodes.
1513       // We remove these instructions because SelectionDAGISel will generate
1514       // them again.
1515       removeDeadLocalValueCode(SavedLastLocalValue);
1516       return false;
1517     }
1518   }
1519 
1520   // FastISel does not handle any operand bundles except OB_funclet.
1521   if (auto *Call = dyn_cast<CallBase>(I))
1522     for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i)
1523       if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1524         return false;
1525 
1526   DbgLoc = I->getDebugLoc();
1527 
1528   SavedInsertPt = FuncInfo.InsertPt;
1529 
1530   if (const auto *Call = dyn_cast<CallInst>(I)) {
1531     const Function *F = Call->getCalledFunction();
1532     LibFunc Func;
1533 
1534     // As a special case, don't handle calls to builtin library functions that
1535     // may be translated directly to target instructions.
1536     if (F && !F->hasLocalLinkage() && F->hasName() &&
1537         LibInfo->getLibFunc(F->getName(), Func) &&
1538         LibInfo->hasOptimizedCodeGen(Func))
1539       return false;
1540 
1541     // Don't handle Intrinsic::trap if a trap function is specified.
1542     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1543         Call->hasFnAttr("trap-func-name"))
1544       return false;
1545   }
1546 
1547   // First, try doing target-independent selection.
1548   if (!SkipTargetIndependentISel) {
1549     if (selectOperator(I, I->getOpcode())) {
1550       ++NumFastIselSuccessIndependent;
1551       DbgLoc = DebugLoc();
1552       return true;
1553     }
1554     // Remove dead code.
1555     recomputeInsertPt();
1556     if (SavedInsertPt != FuncInfo.InsertPt)
1557       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1558     SavedInsertPt = FuncInfo.InsertPt;
1559   }
1560   // Next, try calling the target to attempt to handle the instruction.
1561   if (fastSelectInstruction(I)) {
1562     ++NumFastIselSuccessTarget;
1563     DbgLoc = DebugLoc();
1564     return true;
1565   }
1566   // Remove dead code.
1567   recomputeInsertPt();
1568   if (SavedInsertPt != FuncInfo.InsertPt)
1569     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1570 
1571   DbgLoc = DebugLoc();
1572   // Undo phi node updates, because they will be added again by SelectionDAG.
1573   if (I->isTerminator()) {
1574     // PHI node handling may have generated local value instructions.
1575     // We remove them because SelectionDAGISel will generate them again.
1576     removeDeadLocalValueCode(SavedLastLocalValue);
1577     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1578   }
1579   return false;
1580 }
1581 
1582 /// Emit an unconditional branch to the given block, unless it is the immediate
1583 /// (fall-through) successor, and update the CFG.
1584 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1585                               const DebugLoc &DbgLoc) {
1586   if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 &&
1587       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1588     // For more accurate line information if this is the only non-debug
1589     // instruction in the block then emit it, otherwise we have the
1590     // unconditional fall-through case, which needs no instructions.
1591   } else {
1592     // The unconditional branch case.
1593     TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1594                      SmallVector<MachineOperand, 0>(), DbgLoc);
1595   }
1596   if (FuncInfo.BPI) {
1597     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1598         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1599     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1600   } else
1601     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1602 }
1603 
1604 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1605                                 MachineBasicBlock *TrueMBB,
1606                                 MachineBasicBlock *FalseMBB) {
1607   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1608   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1609   // successor/predecessor lists.
1610   if (TrueMBB != FalseMBB) {
1611     if (FuncInfo.BPI) {
1612       auto BranchProbability =
1613           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1614       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1615     } else
1616       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1617   }
1618 
1619   fastEmitBranch(FalseMBB, DbgLoc);
1620 }
1621 
1622 /// Emit an FNeg operation.
1623 bool FastISel::selectFNeg(const User *I, const Value *In) {
1624   Register OpReg = getRegForValue(In);
1625   if (!OpReg)
1626     return false;
1627 
1628   // If the target has ISD::FNEG, use it.
1629   EVT VT = TLI.getValueType(DL, I->getType());
1630   Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1631                                   OpReg);
1632   if (ResultReg) {
1633     updateValueMap(I, ResultReg);
1634     return true;
1635   }
1636 
1637   // Bitcast the value to integer, twiddle the sign bit with xor,
1638   // and then bitcast it back to floating-point.
1639   if (VT.getSizeInBits() > 64)
1640     return false;
1641   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1642   if (!TLI.isTypeLegal(IntVT))
1643     return false;
1644 
1645   Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1646                                ISD::BITCAST, OpReg);
1647   if (!IntReg)
1648     return false;
1649 
1650   Register IntResultReg = fastEmit_ri_(
1651       IntVT.getSimpleVT(), ISD::XOR, IntReg,
1652       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1653   if (!IntResultReg)
1654     return false;
1655 
1656   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1657                          IntResultReg);
1658   if (!ResultReg)
1659     return false;
1660 
1661   updateValueMap(I, ResultReg);
1662   return true;
1663 }
1664 
1665 bool FastISel::selectExtractValue(const User *U) {
1666   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1667   if (!EVI)
1668     return false;
1669 
1670   // Make sure we only try to handle extracts with a legal result.  But also
1671   // allow i1 because it's easy.
1672   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1673   if (!RealVT.isSimple())
1674     return false;
1675   MVT VT = RealVT.getSimpleVT();
1676   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1677     return false;
1678 
1679   const Value *Op0 = EVI->getOperand(0);
1680   Type *AggTy = Op0->getType();
1681 
1682   // Get the base result register.
1683   unsigned ResultReg;
1684   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0);
1685   if (I != FuncInfo.ValueMap.end())
1686     ResultReg = I->second;
1687   else if (isa<Instruction>(Op0))
1688     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1689   else
1690     return false; // fast-isel can't handle aggregate constants at the moment
1691 
1692   // Get the actual result register, which is an offset from the base register.
1693   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1694 
1695   SmallVector<EVT, 4> AggValueVTs;
1696   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1697 
1698   for (unsigned i = 0; i < VTIndex; i++)
1699     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1700 
1701   updateValueMap(EVI, ResultReg);
1702   return true;
1703 }
1704 
1705 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1706   switch (Opcode) {
1707   case Instruction::Add:
1708     return selectBinaryOp(I, ISD::ADD);
1709   case Instruction::FAdd:
1710     return selectBinaryOp(I, ISD::FADD);
1711   case Instruction::Sub:
1712     return selectBinaryOp(I, ISD::SUB);
1713   case Instruction::FSub:
1714     return selectBinaryOp(I, ISD::FSUB);
1715   case Instruction::Mul:
1716     return selectBinaryOp(I, ISD::MUL);
1717   case Instruction::FMul:
1718     return selectBinaryOp(I, ISD::FMUL);
1719   case Instruction::SDiv:
1720     return selectBinaryOp(I, ISD::SDIV);
1721   case Instruction::UDiv:
1722     return selectBinaryOp(I, ISD::UDIV);
1723   case Instruction::FDiv:
1724     return selectBinaryOp(I, ISD::FDIV);
1725   case Instruction::SRem:
1726     return selectBinaryOp(I, ISD::SREM);
1727   case Instruction::URem:
1728     return selectBinaryOp(I, ISD::UREM);
1729   case Instruction::FRem:
1730     return selectBinaryOp(I, ISD::FREM);
1731   case Instruction::Shl:
1732     return selectBinaryOp(I, ISD::SHL);
1733   case Instruction::LShr:
1734     return selectBinaryOp(I, ISD::SRL);
1735   case Instruction::AShr:
1736     return selectBinaryOp(I, ISD::SRA);
1737   case Instruction::And:
1738     return selectBinaryOp(I, ISD::AND);
1739   case Instruction::Or:
1740     return selectBinaryOp(I, ISD::OR);
1741   case Instruction::Xor:
1742     return selectBinaryOp(I, ISD::XOR);
1743 
1744   case Instruction::FNeg:
1745     return selectFNeg(I, I->getOperand(0));
1746 
1747   case Instruction::GetElementPtr:
1748     return selectGetElementPtr(I);
1749 
1750   case Instruction::Br: {
1751     const BranchInst *BI = cast<BranchInst>(I);
1752 
1753     if (BI->isUnconditional()) {
1754       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1755       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1756       fastEmitBranch(MSucc, BI->getDebugLoc());
1757       return true;
1758     }
1759 
1760     // Conditional branches are not handed yet.
1761     // Halt "fast" selection and bail.
1762     return false;
1763   }
1764 
1765   case Instruction::Unreachable:
1766     if (TM.Options.TrapUnreachable)
1767       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1768     else
1769       return true;
1770 
1771   case Instruction::Alloca:
1772     // FunctionLowering has the static-sized case covered.
1773     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1774       return true;
1775 
1776     // Dynamic-sized alloca is not handled yet.
1777     return false;
1778 
1779   case Instruction::Call:
1780     // On AIX, call lowering uses the DAG-ISEL path currently so that the
1781     // callee of the direct function call instruction will be mapped to the
1782     // symbol for the function's entry point, which is distinct from the
1783     // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1784     // name is the C-linkage name of the source level function.
1785     if (TM.getTargetTriple().isOSAIX())
1786       return false;
1787     return selectCall(I);
1788 
1789   case Instruction::BitCast:
1790     return selectBitCast(I);
1791 
1792   case Instruction::FPToSI:
1793     return selectCast(I, ISD::FP_TO_SINT);
1794   case Instruction::ZExt:
1795     return selectCast(I, ISD::ZERO_EXTEND);
1796   case Instruction::SExt:
1797     return selectCast(I, ISD::SIGN_EXTEND);
1798   case Instruction::Trunc:
1799     return selectCast(I, ISD::TRUNCATE);
1800   case Instruction::SIToFP:
1801     return selectCast(I, ISD::SINT_TO_FP);
1802 
1803   case Instruction::IntToPtr: // Deliberate fall-through.
1804   case Instruction::PtrToInt: {
1805     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1806     EVT DstVT = TLI.getValueType(DL, I->getType());
1807     if (DstVT.bitsGT(SrcVT))
1808       return selectCast(I, ISD::ZERO_EXTEND);
1809     if (DstVT.bitsLT(SrcVT))
1810       return selectCast(I, ISD::TRUNCATE);
1811     Register Reg = getRegForValue(I->getOperand(0));
1812     if (!Reg)
1813       return false;
1814     updateValueMap(I, Reg);
1815     return true;
1816   }
1817 
1818   case Instruction::ExtractValue:
1819     return selectExtractValue(I);
1820 
1821   case Instruction::Freeze:
1822     return selectFreeze(I);
1823 
1824   case Instruction::PHI:
1825     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1826 
1827   default:
1828     // Unhandled instruction. Halt "fast" selection and bail.
1829     return false;
1830   }
1831 }
1832 
1833 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1834                    const TargetLibraryInfo *LibInfo,
1835                    bool SkipTargetIndependentISel)
1836     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1837       MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1838       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1839       TII(*MF->getSubtarget().getInstrInfo()),
1840       TLI(*MF->getSubtarget().getTargetLowering()),
1841       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1842       SkipTargetIndependentISel(SkipTargetIndependentISel),
1843       LastLocalValue(nullptr), EmitStartPt(nullptr) {}
1844 
1845 FastISel::~FastISel() = default;
1846 
1847 bool FastISel::fastLowerArguments() { return false; }
1848 
1849 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1850 
1851 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1852   return false;
1853 }
1854 
1855 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1856 
1857 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) {
1858   return 0;
1859 }
1860 
1861 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1862                                unsigned /*Op1*/) {
1863   return 0;
1864 }
1865 
1866 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1867   return 0;
1868 }
1869 
1870 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1871                               const ConstantFP * /*FPImm*/) {
1872   return 0;
1873 }
1874 
1875 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1876                                uint64_t /*Imm*/) {
1877   return 0;
1878 }
1879 
1880 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1881 /// instruction with an immediate operand using fastEmit_ri.
1882 /// If that fails, it materializes the immediate into a register and try
1883 /// fastEmit_rr instead.
1884 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1885                                 uint64_t Imm, MVT ImmType) {
1886   // If this is a multiply by a power of two, emit this as a shift left.
1887   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1888     Opcode = ISD::SHL;
1889     Imm = Log2_64(Imm);
1890   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1891     // div x, 8 -> srl x, 3
1892     Opcode = ISD::SRL;
1893     Imm = Log2_64(Imm);
1894   }
1895 
1896   // Horrible hack (to be removed), check to make sure shift amounts are
1897   // in-range.
1898   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1899       Imm >= VT.getSizeInBits())
1900     return 0;
1901 
1902   // First check if immediate type is legal. If not, we can't use the ri form.
1903   Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm);
1904   if (ResultReg)
1905     return ResultReg;
1906   Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1907   if (!MaterialReg) {
1908     // This is a bit ugly/slow, but failing here means falling out of
1909     // fast-isel, which would be very slow.
1910     IntegerType *ITy =
1911         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1912     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1913     if (!MaterialReg)
1914       return 0;
1915   }
1916   return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
1917 }
1918 
1919 Register FastISel::createResultReg(const TargetRegisterClass *RC) {
1920   return MRI.createVirtualRegister(RC);
1921 }
1922 
1923 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op,
1924                                             unsigned OpNum) {
1925   if (Op.isVirtual()) {
1926     const TargetRegisterClass *RegClass =
1927         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1928     if (!MRI.constrainRegClass(Op, RegClass)) {
1929       // If it's not legal to COPY between the register classes, something
1930       // has gone very wrong before we got here.
1931       Register NewOp = createResultReg(RegClass);
1932       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1933               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1934       return NewOp;
1935     }
1936   }
1937   return Op;
1938 }
1939 
1940 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode,
1941                                  const TargetRegisterClass *RC) {
1942   Register ResultReg = createResultReg(RC);
1943   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1944 
1945   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
1946   return ResultReg;
1947 }
1948 
1949 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
1950                                   const TargetRegisterClass *RC, unsigned Op0) {
1951   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1952 
1953   Register ResultReg = createResultReg(RC);
1954   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1955 
1956   if (II.getNumDefs() >= 1)
1957     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1958         .addReg(Op0);
1959   else {
1960     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1961         .addReg(Op0);
1962     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1963             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1964   }
1965 
1966   return ResultReg;
1967 }
1968 
1969 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
1970                                    const TargetRegisterClass *RC, unsigned Op0,
1971                                    unsigned Op1) {
1972   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1973 
1974   Register ResultReg = createResultReg(RC);
1975   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1976   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1977 
1978   if (II.getNumDefs() >= 1)
1979     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1980         .addReg(Op0)
1981         .addReg(Op1);
1982   else {
1983     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1984         .addReg(Op0)
1985         .addReg(Op1);
1986     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1987             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1988   }
1989   return ResultReg;
1990 }
1991 
1992 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
1993                                     const TargetRegisterClass *RC, unsigned Op0,
1994                                     unsigned Op1, unsigned Op2) {
1995   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1996 
1997   Register ResultReg = createResultReg(RC);
1998   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1999   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2000   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
2001 
2002   if (II.getNumDefs() >= 1)
2003     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2004         .addReg(Op0)
2005         .addReg(Op1)
2006         .addReg(Op2);
2007   else {
2008     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2009         .addReg(Op0)
2010         .addReg(Op1)
2011         .addReg(Op2);
2012     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2013             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2014   }
2015   return ResultReg;
2016 }
2017 
2018 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2019                                    const TargetRegisterClass *RC, unsigned Op0,
2020                                    uint64_t Imm) {
2021   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2022 
2023   Register ResultReg = createResultReg(RC);
2024   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2025 
2026   if (II.getNumDefs() >= 1)
2027     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2028         .addReg(Op0)
2029         .addImm(Imm);
2030   else {
2031     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2032         .addReg(Op0)
2033         .addImm(Imm);
2034     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2035             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2036   }
2037   return ResultReg;
2038 }
2039 
2040 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2041                                     const TargetRegisterClass *RC, unsigned Op0,
2042                                     uint64_t Imm1, uint64_t Imm2) {
2043   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2044 
2045   Register ResultReg = createResultReg(RC);
2046   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2047 
2048   if (II.getNumDefs() >= 1)
2049     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2050         .addReg(Op0)
2051         .addImm(Imm1)
2052         .addImm(Imm2);
2053   else {
2054     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2055         .addReg(Op0)
2056         .addImm(Imm1)
2057         .addImm(Imm2);
2058     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2059             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2060   }
2061   return ResultReg;
2062 }
2063 
2064 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2065                                   const TargetRegisterClass *RC,
2066                                   const ConstantFP *FPImm) {
2067   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2068 
2069   Register ResultReg = createResultReg(RC);
2070 
2071   if (II.getNumDefs() >= 1)
2072     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2073         .addFPImm(FPImm);
2074   else {
2075     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2076         .addFPImm(FPImm);
2077     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2078             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2079   }
2080   return ResultReg;
2081 }
2082 
2083 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2084                                     const TargetRegisterClass *RC, unsigned Op0,
2085                                     unsigned Op1, uint64_t Imm) {
2086   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2087 
2088   Register ResultReg = createResultReg(RC);
2089   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2090   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2091 
2092   if (II.getNumDefs() >= 1)
2093     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2094         .addReg(Op0)
2095         .addReg(Op1)
2096         .addImm(Imm);
2097   else {
2098     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2099         .addReg(Op0)
2100         .addReg(Op1)
2101         .addImm(Imm);
2102     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2103             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2104   }
2105   return ResultReg;
2106 }
2107 
2108 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2109                                   const TargetRegisterClass *RC, uint64_t Imm) {
2110   Register ResultReg = createResultReg(RC);
2111   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2112 
2113   if (II.getNumDefs() >= 1)
2114     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2115         .addImm(Imm);
2116   else {
2117     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
2118     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2119             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2120   }
2121   return ResultReg;
2122 }
2123 
2124 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2125                                               uint32_t Idx) {
2126   Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2127   assert(Register::isVirtualRegister(Op0) &&
2128          "Cannot yet extract from physregs");
2129   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2130   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2131   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
2132           ResultReg).addReg(Op0, 0, Idx);
2133   return ResultReg;
2134 }
2135 
2136 /// Emit MachineInstrs to compute the value of Op with all but the least
2137 /// significant bit set to zero.
2138 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) {
2139   return fastEmit_ri(VT, VT, ISD::AND, Op0, 1);
2140 }
2141 
2142 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2143 /// Emit code to ensure constants are copied into registers when needed.
2144 /// Remember the virtual registers that need to be added to the Machine PHI
2145 /// nodes as input.  We cannot just directly add them, because expansion
2146 /// might result in multiple MBB's for one BB.  As such, the start of the
2147 /// BB might correspond to a different MBB than the end.
2148 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2149   const Instruction *TI = LLVMBB->getTerminator();
2150 
2151   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2152   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2153 
2154   // Check successor nodes' PHI nodes that expect a constant to be available
2155   // from this block.
2156   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2157     const BasicBlock *SuccBB = TI->getSuccessor(succ);
2158     if (!isa<PHINode>(SuccBB->begin()))
2159       continue;
2160     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2161 
2162     // If this terminator has multiple identical successors (common for
2163     // switches), only handle each succ once.
2164     if (!SuccsHandled.insert(SuccMBB).second)
2165       continue;
2166 
2167     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2168 
2169     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2170     // nodes and Machine PHI nodes, but the incoming operands have not been
2171     // emitted yet.
2172     for (const PHINode &PN : SuccBB->phis()) {
2173       // Ignore dead phi's.
2174       if (PN.use_empty())
2175         continue;
2176 
2177       // Only handle legal types. Two interesting things to note here. First,
2178       // by bailing out early, we may leave behind some dead instructions,
2179       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2180       // own moves. Second, this check is necessary because FastISel doesn't
2181       // use CreateRegs to create registers, so it always creates
2182       // exactly one register for each non-void instruction.
2183       EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2184       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2185         // Handle integer promotions, though, because they're common and easy.
2186         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2187           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2188           return false;
2189         }
2190       }
2191 
2192       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2193 
2194       // Set the DebugLoc for the copy. Use the location of the operand if
2195       // there is one; otherwise no location, flushLocalValueMap will fix it.
2196       DbgLoc = DebugLoc();
2197       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2198         DbgLoc = Inst->getDebugLoc();
2199 
2200       Register Reg = getRegForValue(PHIOp);
2201       if (!Reg) {
2202         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2203         return false;
2204       }
2205       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2206       DbgLoc = DebugLoc();
2207     }
2208   }
2209 
2210   return true;
2211 }
2212 
2213 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2214   assert(LI->hasOneUse() &&
2215          "tryToFoldLoad expected a LoadInst with a single use");
2216   // We know that the load has a single use, but don't know what it is.  If it
2217   // isn't one of the folded instructions, then we can't succeed here.  Handle
2218   // this by scanning the single-use users of the load until we get to FoldInst.
2219   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2220 
2221   const Instruction *TheUser = LI->user_back();
2222   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2223          // Stay in the right block.
2224          TheUser->getParent() == FoldInst->getParent() &&
2225          --MaxUsers) { // Don't scan too far.
2226     // If there are multiple or no uses of this instruction, then bail out.
2227     if (!TheUser->hasOneUse())
2228       return false;
2229 
2230     TheUser = TheUser->user_back();
2231   }
2232 
2233   // If we didn't find the fold instruction, then we failed to collapse the
2234   // sequence.
2235   if (TheUser != FoldInst)
2236     return false;
2237 
2238   // Don't try to fold volatile loads.  Target has to deal with alignment
2239   // constraints.
2240   if (LI->isVolatile())
2241     return false;
2242 
2243   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2244   // then there actually was no reference to it.  Perhaps the load is referenced
2245   // by a dead instruction.
2246   Register LoadReg = getRegForValue(LI);
2247   if (!LoadReg)
2248     return false;
2249 
2250   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2251   // may mean that the instruction got lowered to multiple MIs, or the use of
2252   // the loaded value ended up being multiple operands of the result.
2253   if (!MRI.hasOneUse(LoadReg))
2254     return false;
2255 
2256   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2257   MachineInstr *User = RI->getParent();
2258 
2259   // Set the insertion point properly.  Folding the load can cause generation of
2260   // other random instructions (like sign extends) for addressing modes; make
2261   // sure they get inserted in a logical place before the new instruction.
2262   FuncInfo.InsertPt = User;
2263   FuncInfo.MBB = User->getParent();
2264 
2265   // Ask the target to try folding the load.
2266   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2267 }
2268 
2269 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2270   // Must be an add.
2271   if (!isa<AddOperator>(Add))
2272     return false;
2273   // Type size needs to match.
2274   if (DL.getTypeSizeInBits(GEP->getType()) !=
2275       DL.getTypeSizeInBits(Add->getType()))
2276     return false;
2277   // Must be in the same basic block.
2278   if (isa<Instruction>(Add) &&
2279       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2280     return false;
2281   // Must have a constant operand.
2282   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2283 }
2284 
2285 MachineMemOperand *
2286 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2287   const Value *Ptr;
2288   Type *ValTy;
2289   MaybeAlign Alignment;
2290   MachineMemOperand::Flags Flags;
2291   bool IsVolatile;
2292 
2293   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2294     Alignment = LI->getAlign();
2295     IsVolatile = LI->isVolatile();
2296     Flags = MachineMemOperand::MOLoad;
2297     Ptr = LI->getPointerOperand();
2298     ValTy = LI->getType();
2299   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2300     Alignment = SI->getAlign();
2301     IsVolatile = SI->isVolatile();
2302     Flags = MachineMemOperand::MOStore;
2303     Ptr = SI->getPointerOperand();
2304     ValTy = SI->getValueOperand()->getType();
2305   } else
2306     return nullptr;
2307 
2308   bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
2309   bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
2310   bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
2311   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2312 
2313   AAMDNodes AAInfo = I->getAAMetadata();
2314 
2315   if (!Alignment) // Ensure that codegen never sees alignment 0.
2316     Alignment = DL.getABITypeAlign(ValTy);
2317 
2318   unsigned Size = DL.getTypeStoreSize(ValTy);
2319 
2320   if (IsVolatile)
2321     Flags |= MachineMemOperand::MOVolatile;
2322   if (IsNonTemporal)
2323     Flags |= MachineMemOperand::MONonTemporal;
2324   if (IsDereferenceable)
2325     Flags |= MachineMemOperand::MODereferenceable;
2326   if (IsInvariant)
2327     Flags |= MachineMemOperand::MOInvariant;
2328 
2329   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2330                                            *Alignment, AAInfo, Ranges);
2331 }
2332 
2333 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2334   // If both operands are the same, then try to optimize or fold the cmp.
2335   CmpInst::Predicate Predicate = CI->getPredicate();
2336   if (CI->getOperand(0) != CI->getOperand(1))
2337     return Predicate;
2338 
2339   switch (Predicate) {
2340   default: llvm_unreachable("Invalid predicate!");
2341   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2342   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2343   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2344   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2345   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2346   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2347   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2348   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2349   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2350   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2351   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2352   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2353   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2354   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2355   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2356   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2357 
2358   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2359   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2360   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2361   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2362   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2363   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2364   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2365   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2366   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2367   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2368   }
2369 
2370   return Predicate;
2371 }
2372