1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/CodeGen/Analysis.h" 43 #include "llvm/ADT/Optional.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Analysis/BranchProbabilityInfo.h" 46 #include "llvm/Analysis/Loads.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/CodeGen/Analysis.h" 49 #include "llvm/CodeGen/FastISel.h" 50 #include "llvm/CodeGen/FunctionLoweringInfo.h" 51 #include "llvm/CodeGen/MachineFrameInfo.h" 52 #include "llvm/CodeGen/MachineInstrBuilder.h" 53 #include "llvm/CodeGen/MachineModuleInfo.h" 54 #include "llvm/CodeGen/MachineRegisterInfo.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DebugInfo.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/GetElementPtrTypeIterator.h" 60 #include "llvm/IR/GlobalVariable.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Mangler.h" 64 #include "llvm/IR/Operator.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetInstrInfo.h" 69 #include "llvm/Target/TargetLowering.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetSubtargetInfo.h" 72 using namespace llvm; 73 74 #define DEBUG_TYPE "isel" 75 76 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 77 "target-independent selector"); 78 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 79 "target-specific selector"); 80 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 81 82 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS, 83 unsigned AttrIdx) { 84 IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 85 IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 86 IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 87 IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 88 IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 89 IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 90 IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 91 IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 92 IsSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); 93 IsSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); 94 Alignment = CS->getParamAlignment(AttrIdx); 95 } 96 97 /// Set the current block to which generated machine instructions will be 98 /// appended, and clear the local CSE map. 99 void FastISel::startNewBlock() { 100 LocalValueMap.clear(); 101 102 // Instructions are appended to FuncInfo.MBB. If the basic block already 103 // contains labels or copies, use the last instruction as the last local 104 // value. 105 EmitStartPt = nullptr; 106 if (!FuncInfo.MBB->empty()) 107 EmitStartPt = &FuncInfo.MBB->back(); 108 LastLocalValue = EmitStartPt; 109 } 110 111 bool FastISel::lowerArguments() { 112 if (!FuncInfo.CanLowerReturn) 113 // Fallback to SDISel argument lowering code to deal with sret pointer 114 // parameter. 115 return false; 116 117 if (!fastLowerArguments()) 118 return false; 119 120 // Enter arguments into ValueMap for uses in non-entry BBs. 121 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 122 E = FuncInfo.Fn->arg_end(); 123 I != E; ++I) { 124 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I); 125 assert(VI != LocalValueMap.end() && "Missed an argument?"); 126 FuncInfo.ValueMap[&*I] = VI->second; 127 } 128 return true; 129 } 130 131 void FastISel::flushLocalValueMap() { 132 LocalValueMap.clear(); 133 LastLocalValue = EmitStartPt; 134 recomputeInsertPt(); 135 SavedInsertPt = FuncInfo.InsertPt; 136 } 137 138 bool FastISel::hasTrivialKill(const Value *V) { 139 // Don't consider constants or arguments to have trivial kills. 140 const Instruction *I = dyn_cast<Instruction>(V); 141 if (!I) 142 return false; 143 144 // No-op casts are trivially coalesced by fast-isel. 145 if (const auto *Cast = dyn_cast<CastInst>(I)) 146 if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) && 147 !hasTrivialKill(Cast->getOperand(0))) 148 return false; 149 150 // Even the value might have only one use in the LLVM IR, it is possible that 151 // FastISel might fold the use into another instruction and now there is more 152 // than one use at the Machine Instruction level. 153 unsigned Reg = lookUpRegForValue(V); 154 if (Reg && !MRI.use_empty(Reg)) 155 return false; 156 157 // GEPs with all zero indices are trivially coalesced by fast-isel. 158 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 159 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 160 return false; 161 162 // Only instructions with a single use in the same basic block are considered 163 // to have trivial kills. 164 return I->hasOneUse() && 165 !(I->getOpcode() == Instruction::BitCast || 166 I->getOpcode() == Instruction::PtrToInt || 167 I->getOpcode() == Instruction::IntToPtr) && 168 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 169 } 170 171 unsigned FastISel::getRegForValue(const Value *V) { 172 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 173 // Don't handle non-simple values in FastISel. 174 if (!RealVT.isSimple()) 175 return 0; 176 177 // Ignore illegal types. We must do this before looking up the value 178 // in ValueMap because Arguments are given virtual registers regardless 179 // of whether FastISel can handle them. 180 MVT VT = RealVT.getSimpleVT(); 181 if (!TLI.isTypeLegal(VT)) { 182 // Handle integer promotions, though, because they're common and easy. 183 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 184 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 185 else 186 return 0; 187 } 188 189 // Look up the value to see if we already have a register for it. 190 unsigned Reg = lookUpRegForValue(V); 191 if (Reg) 192 return Reg; 193 194 // In bottom-up mode, just create the virtual register which will be used 195 // to hold the value. It will be materialized later. 196 if (isa<Instruction>(V) && 197 (!isa<AllocaInst>(V) || 198 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 199 return FuncInfo.InitializeRegForValue(V); 200 201 SavePoint SaveInsertPt = enterLocalValueArea(); 202 203 // Materialize the value in a register. Emit any instructions in the 204 // local value area. 205 Reg = materializeRegForValue(V, VT); 206 207 leaveLocalValueArea(SaveInsertPt); 208 209 return Reg; 210 } 211 212 unsigned FastISel::materializeConstant(const Value *V, MVT VT) { 213 unsigned Reg = 0; 214 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 215 if (CI->getValue().getActiveBits() <= 64) 216 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 217 } else if (isa<AllocaInst>(V)) 218 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 219 else if (isa<ConstantPointerNull>(V)) 220 // Translate this as an integer zero so that it can be 221 // local-CSE'd with actual integer zeros. 222 Reg = getRegForValue( 223 Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 224 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 225 if (CF->isNullValue()) 226 Reg = fastMaterializeFloatZero(CF); 227 else 228 // Try to emit the constant directly. 229 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 230 231 if (!Reg) { 232 // Try to emit the constant by using an integer constant with a cast. 233 const APFloat &Flt = CF->getValueAPF(); 234 EVT IntVT = TLI.getPointerTy(DL); 235 236 uint64_t x[2]; 237 uint32_t IntBitWidth = IntVT.getSizeInBits(); 238 bool isExact; 239 (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 240 APFloat::rmTowardZero, &isExact); 241 if (isExact) { 242 APInt IntVal(IntBitWidth, x); 243 244 unsigned IntegerReg = 245 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 246 if (IntegerReg != 0) 247 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 248 /*Kill=*/false); 249 } 250 } 251 } else if (const auto *Op = dyn_cast<Operator>(V)) { 252 if (!selectOperator(Op, Op->getOpcode())) 253 if (!isa<Instruction>(Op) || 254 !fastSelectInstruction(cast<Instruction>(Op))) 255 return 0; 256 Reg = lookUpRegForValue(Op); 257 } else if (isa<UndefValue>(V)) { 258 Reg = createResultReg(TLI.getRegClassFor(VT)); 259 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 260 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 261 } 262 return Reg; 263 } 264 265 /// Helper for getRegForValue. This function is called when the value isn't 266 /// already available in a register and must be materialized with new 267 /// instructions. 268 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 269 unsigned Reg = 0; 270 // Give the target-specific code a try first. 271 if (isa<Constant>(V)) 272 Reg = fastMaterializeConstant(cast<Constant>(V)); 273 274 // If target-specific code couldn't or didn't want to handle the value, then 275 // give target-independent code a try. 276 if (!Reg) 277 Reg = materializeConstant(V, VT); 278 279 // Don't cache constant materializations in the general ValueMap. 280 // To do so would require tracking what uses they dominate. 281 if (Reg) { 282 LocalValueMap[V] = Reg; 283 LastLocalValue = MRI.getVRegDef(Reg); 284 } 285 return Reg; 286 } 287 288 unsigned FastISel::lookUpRegForValue(const Value *V) { 289 // Look up the value to see if we already have a register for it. We 290 // cache values defined by Instructions across blocks, and other values 291 // only locally. This is because Instructions already have the SSA 292 // def-dominates-use requirement enforced. 293 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 294 if (I != FuncInfo.ValueMap.end()) 295 return I->second; 296 return LocalValueMap[V]; 297 } 298 299 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 300 if (!isa<Instruction>(I)) { 301 LocalValueMap[I] = Reg; 302 return; 303 } 304 305 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 306 if (AssignedReg == 0) 307 // Use the new register. 308 AssignedReg = Reg; 309 else if (Reg != AssignedReg) { 310 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 311 for (unsigned i = 0; i < NumRegs; i++) 312 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 313 314 AssignedReg = Reg; 315 } 316 } 317 318 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 319 unsigned IdxN = getRegForValue(Idx); 320 if (IdxN == 0) 321 // Unhandled operand. Halt "fast" selection and bail. 322 return std::pair<unsigned, bool>(0, false); 323 324 bool IdxNIsKill = hasTrivialKill(Idx); 325 326 // If the index is smaller or larger than intptr_t, truncate or extend it. 327 MVT PtrVT = TLI.getPointerTy(DL); 328 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 329 if (IdxVT.bitsLT(PtrVT)) { 330 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 331 IdxNIsKill); 332 IdxNIsKill = true; 333 } else if (IdxVT.bitsGT(PtrVT)) { 334 IdxN = 335 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 336 IdxNIsKill = true; 337 } 338 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 339 } 340 341 void FastISel::recomputeInsertPt() { 342 if (getLastLocalValue()) { 343 FuncInfo.InsertPt = getLastLocalValue(); 344 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 345 ++FuncInfo.InsertPt; 346 } else 347 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 348 349 // Now skip past any EH_LABELs, which must remain at the beginning. 350 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 351 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 352 ++FuncInfo.InsertPt; 353 } 354 355 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 356 MachineBasicBlock::iterator E) { 357 assert(I && E && std::distance(I, E) > 0 && "Invalid iterator!"); 358 while (I != E) { 359 MachineInstr *Dead = &*I; 360 ++I; 361 Dead->eraseFromParent(); 362 ++NumFastIselDead; 363 } 364 recomputeInsertPt(); 365 } 366 367 FastISel::SavePoint FastISel::enterLocalValueArea() { 368 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 369 DebugLoc OldDL = DbgLoc; 370 recomputeInsertPt(); 371 DbgLoc = DebugLoc(); 372 SavePoint SP = {OldInsertPt, OldDL}; 373 return SP; 374 } 375 376 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 377 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 378 LastLocalValue = std::prev(FuncInfo.InsertPt); 379 380 // Restore the previous insert position. 381 FuncInfo.InsertPt = OldInsertPt.InsertPt; 382 DbgLoc = OldInsertPt.DL; 383 } 384 385 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 386 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 387 if (VT == MVT::Other || !VT.isSimple()) 388 // Unhandled type. Halt "fast" selection and bail. 389 return false; 390 391 // We only handle legal types. For example, on x86-32 the instruction 392 // selector contains all of the 64-bit instructions from x86-64, 393 // under the assumption that i64 won't be used if the target doesn't 394 // support it. 395 if (!TLI.isTypeLegal(VT)) { 396 // MVT::i1 is special. Allow AND, OR, or XOR because they 397 // don't require additional zeroing, which makes them easy. 398 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 399 ISDOpcode == ISD::XOR)) 400 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 401 else 402 return false; 403 } 404 405 // Check if the first operand is a constant, and handle it as "ri". At -O0, 406 // we don't have anything that canonicalizes operand order. 407 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 408 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 409 unsigned Op1 = getRegForValue(I->getOperand(1)); 410 if (!Op1) 411 return false; 412 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 413 414 unsigned ResultReg = 415 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 416 CI->getZExtValue(), VT.getSimpleVT()); 417 if (!ResultReg) 418 return false; 419 420 // We successfully emitted code for the given LLVM Instruction. 421 updateValueMap(I, ResultReg); 422 return true; 423 } 424 425 unsigned Op0 = getRegForValue(I->getOperand(0)); 426 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 427 return false; 428 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 429 430 // Check if the second operand is a constant and handle it appropriately. 431 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 432 uint64_t Imm = CI->getSExtValue(); 433 434 // Transform "sdiv exact X, 8" -> "sra X, 3". 435 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 436 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 437 Imm = Log2_64(Imm); 438 ISDOpcode = ISD::SRA; 439 } 440 441 // Transform "urem x, pow2" -> "and x, pow2-1". 442 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 443 isPowerOf2_64(Imm)) { 444 --Imm; 445 ISDOpcode = ISD::AND; 446 } 447 448 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 449 Op0IsKill, Imm, VT.getSimpleVT()); 450 if (!ResultReg) 451 return false; 452 453 // We successfully emitted code for the given LLVM Instruction. 454 updateValueMap(I, ResultReg); 455 return true; 456 } 457 458 // Check if the second operand is a constant float. 459 if (const auto *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 460 unsigned ResultReg = fastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 461 ISDOpcode, Op0, Op0IsKill, CF); 462 if (ResultReg) { 463 // We successfully emitted code for the given LLVM Instruction. 464 updateValueMap(I, ResultReg); 465 return true; 466 } 467 } 468 469 unsigned Op1 = getRegForValue(I->getOperand(1)); 470 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 471 return false; 472 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 473 474 // Now we have both operands in registers. Emit the instruction. 475 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 476 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 477 if (!ResultReg) 478 // Target-specific code wasn't able to find a machine opcode for 479 // the given ISD opcode and type. Halt "fast" selection and bail. 480 return false; 481 482 // We successfully emitted code for the given LLVM Instruction. 483 updateValueMap(I, ResultReg); 484 return true; 485 } 486 487 bool FastISel::selectGetElementPtr(const User *I) { 488 unsigned N = getRegForValue(I->getOperand(0)); 489 if (!N) // Unhandled operand. Halt "fast" selection and bail. 490 return false; 491 bool NIsKill = hasTrivialKill(I->getOperand(0)); 492 493 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 494 // into a single N = N + TotalOffset. 495 uint64_t TotalOffs = 0; 496 // FIXME: What's a good SWAG number for MaxOffs? 497 uint64_t MaxOffs = 2048; 498 MVT VT = TLI.getPointerTy(DL); 499 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 500 GTI != E; ++GTI) { 501 const Value *Idx = GTI.getOperand(); 502 if (auto *StTy = dyn_cast<StructType>(*GTI)) { 503 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 504 if (Field) { 505 // N = N + Offset 506 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 507 if (TotalOffs >= MaxOffs) { 508 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 509 if (!N) // Unhandled operand. Halt "fast" selection and bail. 510 return false; 511 NIsKill = true; 512 TotalOffs = 0; 513 } 514 } 515 } else { 516 Type *Ty = GTI.getIndexedType(); 517 518 // If this is a constant subscript, handle it quickly. 519 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 520 if (CI->isZero()) 521 continue; 522 // N = N + Offset 523 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 524 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 525 if (TotalOffs >= MaxOffs) { 526 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 527 if (!N) // Unhandled operand. Halt "fast" selection and bail. 528 return false; 529 NIsKill = true; 530 TotalOffs = 0; 531 } 532 continue; 533 } 534 if (TotalOffs) { 535 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 536 if (!N) // Unhandled operand. Halt "fast" selection and bail. 537 return false; 538 NIsKill = true; 539 TotalOffs = 0; 540 } 541 542 // N = N + Idx * ElementSize; 543 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 544 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 545 unsigned IdxN = Pair.first; 546 bool IdxNIsKill = Pair.second; 547 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 548 return false; 549 550 if (ElementSize != 1) { 551 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 552 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 553 return false; 554 IdxNIsKill = true; 555 } 556 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 557 if (!N) // Unhandled operand. Halt "fast" selection and bail. 558 return false; 559 } 560 } 561 if (TotalOffs) { 562 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 563 if (!N) // Unhandled operand. Halt "fast" selection and bail. 564 return false; 565 } 566 567 // We successfully emitted code for the given LLVM Instruction. 568 updateValueMap(I, N); 569 return true; 570 } 571 572 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 573 const CallInst *CI, unsigned StartIdx) { 574 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 575 Value *Val = CI->getArgOperand(i); 576 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 577 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 578 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 579 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 580 } else if (isa<ConstantPointerNull>(Val)) { 581 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 582 Ops.push_back(MachineOperand::CreateImm(0)); 583 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 584 // Values coming from a stack location also require a sepcial encoding, 585 // but that is added later on by the target specific frame index 586 // elimination implementation. 587 auto SI = FuncInfo.StaticAllocaMap.find(AI); 588 if (SI != FuncInfo.StaticAllocaMap.end()) 589 Ops.push_back(MachineOperand::CreateFI(SI->second)); 590 else 591 return false; 592 } else { 593 unsigned Reg = getRegForValue(Val); 594 if (!Reg) 595 return false; 596 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 597 } 598 } 599 return true; 600 } 601 602 bool FastISel::selectStackmap(const CallInst *I) { 603 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 604 // [live variables...]) 605 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 606 "Stackmap cannot return a value."); 607 608 // The stackmap intrinsic only records the live variables (the arguments 609 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 610 // intrinsic, this won't be lowered to a function call. This means we don't 611 // have to worry about calling conventions and target-specific lowering code. 612 // Instead we perform the call lowering right here. 613 // 614 // CALLSEQ_START(0...) 615 // STACKMAP(id, nbytes, ...) 616 // CALLSEQ_END(0, 0) 617 // 618 SmallVector<MachineOperand, 32> Ops; 619 620 // Add the <id> and <numBytes> constants. 621 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 622 "Expected a constant integer."); 623 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 624 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 625 626 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 627 "Expected a constant integer."); 628 const auto *NumBytes = 629 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 630 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 631 632 // Push live variables for the stack map (skipping the first two arguments 633 // <id> and <numBytes>). 634 if (!addStackMapLiveVars(Ops, I, 2)) 635 return false; 636 637 // We are not adding any register mask info here, because the stackmap doesn't 638 // clobber anything. 639 640 // Add scratch registers as implicit def and early clobber. 641 CallingConv::ID CC = I->getCallingConv(); 642 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 643 for (unsigned i = 0; ScratchRegs[i]; ++i) 644 Ops.push_back(MachineOperand::CreateReg( 645 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 646 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 647 648 // Issue CALLSEQ_START 649 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 650 auto Builder = 651 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 652 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 653 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 654 Builder.addImm(0); 655 656 // Issue STACKMAP. 657 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 658 TII.get(TargetOpcode::STACKMAP)); 659 for (auto const &MO : Ops) 660 MIB.addOperand(MO); 661 662 // Issue CALLSEQ_END 663 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 664 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 665 .addImm(0) 666 .addImm(0); 667 668 // Inform the Frame Information that we have a stackmap in this function. 669 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 670 671 return true; 672 } 673 674 /// \brief Lower an argument list according to the target calling convention. 675 /// 676 /// This is a helper for lowering intrinsics that follow a target calling 677 /// convention or require stack pointer adjustment. Only a subset of the 678 /// intrinsic's operands need to participate in the calling convention. 679 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 680 unsigned NumArgs, const Value *Callee, 681 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 682 ArgListTy Args; 683 Args.reserve(NumArgs); 684 685 // Populate the argument list. 686 // Attributes for args start at offset 1, after the return attribute. 687 ImmutableCallSite CS(CI); 688 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 689 ArgI != ArgE; ++ArgI) { 690 Value *V = CI->getOperand(ArgI); 691 692 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 693 694 ArgListEntry Entry; 695 Entry.Val = V; 696 Entry.Ty = V->getType(); 697 Entry.setAttributes(&CS, AttrI); 698 Args.push_back(Entry); 699 } 700 701 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 702 : CI->getType(); 703 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 704 705 return lowerCallTo(CLI); 706 } 707 708 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 709 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 710 const char *Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 711 SmallString<32> MangledName; 712 Mangler::getNameWithPrefix(MangledName, Target, DL); 713 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 714 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 715 } 716 717 bool FastISel::selectPatchpoint(const CallInst *I) { 718 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 719 // i32 <numBytes>, 720 // i8* <target>, 721 // i32 <numArgs>, 722 // [Args...], 723 // [live variables...]) 724 CallingConv::ID CC = I->getCallingConv(); 725 bool IsAnyRegCC = CC == CallingConv::AnyReg; 726 bool HasDef = !I->getType()->isVoidTy(); 727 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 728 729 // Get the real number of arguments participating in the call <numArgs> 730 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 731 "Expected a constant integer."); 732 const auto *NumArgsVal = 733 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 734 unsigned NumArgs = NumArgsVal->getZExtValue(); 735 736 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 737 // This includes all meta-operands up to but not including CC. 738 unsigned NumMetaOpers = PatchPointOpers::CCPos; 739 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 740 "Not enough arguments provided to the patchpoint intrinsic"); 741 742 // For AnyRegCC the arguments are lowered later on manually. 743 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 744 CallLoweringInfo CLI; 745 CLI.setIsPatchPoint(); 746 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 747 return false; 748 749 assert(CLI.Call && "No call instruction specified."); 750 751 SmallVector<MachineOperand, 32> Ops; 752 753 // Add an explicit result reg if we use the anyreg calling convention. 754 if (IsAnyRegCC && HasDef) { 755 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 756 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 757 CLI.NumResultRegs = 1; 758 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 759 } 760 761 // Add the <id> and <numBytes> constants. 762 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 763 "Expected a constant integer."); 764 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 765 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 766 767 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 768 "Expected a constant integer."); 769 const auto *NumBytes = 770 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 771 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 772 773 // Add the call target. 774 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 775 uint64_t CalleeConstAddr = 776 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 777 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 778 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 779 if (C->getOpcode() == Instruction::IntToPtr) { 780 uint64_t CalleeConstAddr = 781 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 782 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 783 } else 784 llvm_unreachable("Unsupported ConstantExpr."); 785 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 786 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 787 } else if (isa<ConstantPointerNull>(Callee)) 788 Ops.push_back(MachineOperand::CreateImm(0)); 789 else 790 llvm_unreachable("Unsupported callee address."); 791 792 // Adjust <numArgs> to account for any arguments that have been passed on 793 // the stack instead. 794 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 795 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 796 797 // Add the calling convention 798 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 799 800 // Add the arguments we omitted previously. The register allocator should 801 // place these in any free register. 802 if (IsAnyRegCC) { 803 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 804 unsigned Reg = getRegForValue(I->getArgOperand(i)); 805 if (!Reg) 806 return false; 807 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 808 } 809 } 810 811 // Push the arguments from the call instruction. 812 for (auto Reg : CLI.OutRegs) 813 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 814 815 // Push live variables for the stack map. 816 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 817 return false; 818 819 // Push the register mask info. 820 Ops.push_back(MachineOperand::CreateRegMask( 821 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 822 823 // Add scratch registers as implicit def and early clobber. 824 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 825 for (unsigned i = 0; ScratchRegs[i]; ++i) 826 Ops.push_back(MachineOperand::CreateReg( 827 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 828 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 829 830 // Add implicit defs (return values). 831 for (auto Reg : CLI.InRegs) 832 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 833 /*IsImpl=*/true)); 834 835 // Insert the patchpoint instruction before the call generated by the target. 836 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 837 TII.get(TargetOpcode::PATCHPOINT)); 838 839 for (auto &MO : Ops) 840 MIB.addOperand(MO); 841 842 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 843 844 // Delete the original call instruction. 845 CLI.Call->eraseFromParent(); 846 847 // Inform the Frame Information that we have a patchpoint in this function. 848 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 849 850 if (CLI.NumResultRegs) 851 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 852 return true; 853 } 854 855 /// Returns an AttributeSet representing the attributes applied to the return 856 /// value of the given call. 857 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 858 SmallVector<Attribute::AttrKind, 2> Attrs; 859 if (CLI.RetSExt) 860 Attrs.push_back(Attribute::SExt); 861 if (CLI.RetZExt) 862 Attrs.push_back(Attribute::ZExt); 863 if (CLI.IsInReg) 864 Attrs.push_back(Attribute::InReg); 865 866 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 867 Attrs); 868 } 869 870 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 871 unsigned NumArgs) { 872 MCContext &Ctx = MF->getContext(); 873 SmallString<32> MangledName; 874 Mangler::getNameWithPrefix(MangledName, SymName, DL); 875 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 876 return lowerCallTo(CI, Sym, NumArgs); 877 } 878 879 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 880 unsigned NumArgs) { 881 ImmutableCallSite CS(CI); 882 883 FunctionType *FTy = CS.getFunctionType(); 884 Type *RetTy = CS.getType(); 885 886 ArgListTy Args; 887 Args.reserve(NumArgs); 888 889 // Populate the argument list. 890 // Attributes for args start at offset 1, after the return attribute. 891 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 892 Value *V = CI->getOperand(ArgI); 893 894 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 895 896 ArgListEntry Entry; 897 Entry.Val = V; 898 Entry.Ty = V->getType(); 899 Entry.setAttributes(&CS, ArgI + 1); 900 Args.push_back(Entry); 901 } 902 903 CallLoweringInfo CLI; 904 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs); 905 906 return lowerCallTo(CLI); 907 } 908 909 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 910 // Handle the incoming return values from the call. 911 CLI.clearIns(); 912 SmallVector<EVT, 4> RetTys; 913 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 914 915 SmallVector<ISD::OutputArg, 4> Outs; 916 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 917 918 bool CanLowerReturn = TLI.CanLowerReturn( 919 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 920 921 // FIXME: sret demotion isn't supported yet - bail out. 922 if (!CanLowerReturn) 923 return false; 924 925 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 926 EVT VT = RetTys[I]; 927 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 928 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 929 for (unsigned i = 0; i != NumRegs; ++i) { 930 ISD::InputArg MyFlags; 931 MyFlags.VT = RegisterVT; 932 MyFlags.ArgVT = VT; 933 MyFlags.Used = CLI.IsReturnValueUsed; 934 if (CLI.RetSExt) 935 MyFlags.Flags.setSExt(); 936 if (CLI.RetZExt) 937 MyFlags.Flags.setZExt(); 938 if (CLI.IsInReg) 939 MyFlags.Flags.setInReg(); 940 CLI.Ins.push_back(MyFlags); 941 } 942 } 943 944 // Handle all of the outgoing arguments. 945 CLI.clearOuts(); 946 for (auto &Arg : CLI.getArgs()) { 947 Type *FinalType = Arg.Ty; 948 if (Arg.IsByVal) 949 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 950 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 951 FinalType, CLI.CallConv, CLI.IsVarArg); 952 953 ISD::ArgFlagsTy Flags; 954 if (Arg.IsZExt) 955 Flags.setZExt(); 956 if (Arg.IsSExt) 957 Flags.setSExt(); 958 if (Arg.IsInReg) 959 Flags.setInReg(); 960 if (Arg.IsSRet) 961 Flags.setSRet(); 962 if (Arg.IsSwiftSelf) 963 Flags.setSwiftSelf(); 964 if (Arg.IsSwiftError) 965 Flags.setSwiftError(); 966 if (Arg.IsByVal) 967 Flags.setByVal(); 968 if (Arg.IsInAlloca) { 969 Flags.setInAlloca(); 970 // Set the byval flag for CCAssignFn callbacks that don't know about 971 // inalloca. This way we can know how many bytes we should've allocated 972 // and how many bytes a callee cleanup function will pop. If we port 973 // inalloca to more targets, we'll have to add custom inalloca handling in 974 // the various CC lowering callbacks. 975 Flags.setByVal(); 976 } 977 if (Arg.IsByVal || Arg.IsInAlloca) { 978 PointerType *Ty = cast<PointerType>(Arg.Ty); 979 Type *ElementTy = Ty->getElementType(); 980 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 981 // For ByVal, alignment should come from FE. BE will guess if this info is 982 // not there, but there are cases it cannot get right. 983 unsigned FrameAlign = Arg.Alignment; 984 if (!FrameAlign) 985 FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL); 986 Flags.setByValSize(FrameSize); 987 Flags.setByValAlign(FrameAlign); 988 } 989 if (Arg.IsNest) 990 Flags.setNest(); 991 if (NeedsRegBlock) 992 Flags.setInConsecutiveRegs(); 993 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 994 Flags.setOrigAlign(OriginalAlignment); 995 996 CLI.OutVals.push_back(Arg.Val); 997 CLI.OutFlags.push_back(Flags); 998 } 999 1000 if (!fastLowerCall(CLI)) 1001 return false; 1002 1003 // Set all unused physreg defs as dead. 1004 assert(CLI.Call && "No call instruction specified."); 1005 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1006 1007 if (CLI.NumResultRegs && CLI.CS) 1008 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 1009 1010 return true; 1011 } 1012 1013 bool FastISel::lowerCall(const CallInst *CI) { 1014 ImmutableCallSite CS(CI); 1015 1016 FunctionType *FuncTy = CS.getFunctionType(); 1017 Type *RetTy = CS.getType(); 1018 1019 ArgListTy Args; 1020 ArgListEntry Entry; 1021 Args.reserve(CS.arg_size()); 1022 1023 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1024 i != e; ++i) { 1025 Value *V = *i; 1026 1027 // Skip empty types 1028 if (V->getType()->isEmptyTy()) 1029 continue; 1030 1031 Entry.Val = V; 1032 Entry.Ty = V->getType(); 1033 1034 // Skip the first return-type Attribute to get to params. 1035 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 1036 Args.push_back(Entry); 1037 } 1038 1039 // Check if target-independent constraints permit a tail call here. 1040 // Target-dependent constraints are checked within fastLowerCall. 1041 bool IsTailCall = CI->isTailCall(); 1042 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1043 IsTailCall = false; 1044 1045 CallLoweringInfo CLI; 1046 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1047 .setTailCall(IsTailCall); 1048 1049 return lowerCallTo(CLI); 1050 } 1051 1052 bool FastISel::selectCall(const User *I) { 1053 const CallInst *Call = cast<CallInst>(I); 1054 1055 // Handle simple inline asms. 1056 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1057 // If the inline asm has side effects, then make sure that no local value 1058 // lives across by flushing the local value map. 1059 if (IA->hasSideEffects()) 1060 flushLocalValueMap(); 1061 1062 // Don't attempt to handle constraints. 1063 if (!IA->getConstraintString().empty()) 1064 return false; 1065 1066 unsigned ExtraInfo = 0; 1067 if (IA->hasSideEffects()) 1068 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1069 if (IA->isAlignStack()) 1070 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1071 1072 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1073 TII.get(TargetOpcode::INLINEASM)) 1074 .addExternalSymbol(IA->getAsmString().c_str()) 1075 .addImm(ExtraInfo); 1076 return true; 1077 } 1078 1079 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1080 ComputeUsesVAFloatArgument(*Call, &MMI); 1081 1082 // Handle intrinsic function calls. 1083 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1084 return selectIntrinsicCall(II); 1085 1086 // Usually, it does not make sense to initialize a value, 1087 // make an unrelated function call and use the value, because 1088 // it tends to be spilled on the stack. So, we move the pointer 1089 // to the last local value to the beginning of the block, so that 1090 // all the values which have already been materialized, 1091 // appear after the call. It also makes sense to skip intrinsics 1092 // since they tend to be inlined. 1093 flushLocalValueMap(); 1094 1095 return lowerCall(Call); 1096 } 1097 1098 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1099 switch (II->getIntrinsicID()) { 1100 default: 1101 break; 1102 // At -O0 we don't care about the lifetime intrinsics. 1103 case Intrinsic::lifetime_start: 1104 case Intrinsic::lifetime_end: 1105 // The donothing intrinsic does, well, nothing. 1106 case Intrinsic::donothing: 1107 return true; 1108 case Intrinsic::dbg_declare: { 1109 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1110 assert(DI->getVariable() && "Missing variable"); 1111 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1112 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1113 return true; 1114 } 1115 1116 const Value *Address = DI->getAddress(); 1117 if (!Address || isa<UndefValue>(Address)) { 1118 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1119 return true; 1120 } 1121 1122 unsigned Offset = 0; 1123 Optional<MachineOperand> Op; 1124 if (const auto *Arg = dyn_cast<Argument>(Address)) 1125 // Some arguments' frame index is recorded during argument lowering. 1126 Offset = FuncInfo.getArgumentFrameIndex(Arg); 1127 if (Offset) 1128 Op = MachineOperand::CreateFI(Offset); 1129 if (!Op) 1130 if (unsigned Reg = lookUpRegForValue(Address)) 1131 Op = MachineOperand::CreateReg(Reg, false); 1132 1133 // If we have a VLA that has a "use" in a metadata node that's then used 1134 // here but it has no other uses, then we have a problem. E.g., 1135 // 1136 // int foo (const int *x) { 1137 // char a[*x]; 1138 // return 0; 1139 // } 1140 // 1141 // If we assign 'a' a vreg and fast isel later on has to use the selection 1142 // DAG isel, it will want to copy the value to the vreg. However, there are 1143 // no uses, which goes counter to what selection DAG isel expects. 1144 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1145 (!isa<AllocaInst>(Address) || 1146 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1147 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1148 false); 1149 1150 if (Op) { 1151 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1152 "Expected inlined-at fields to agree"); 1153 if (Op->isReg()) { 1154 Op->setIsDebug(true); 1155 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1156 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0, 1157 DI->getVariable(), DI->getExpression()); 1158 } else 1159 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1160 TII.get(TargetOpcode::DBG_VALUE)) 1161 .addOperand(*Op) 1162 .addImm(0) 1163 .addMetadata(DI->getVariable()) 1164 .addMetadata(DI->getExpression()); 1165 } else { 1166 // We can't yet handle anything else here because it would require 1167 // generating code, thus altering codegen because of debug info. 1168 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1169 } 1170 return true; 1171 } 1172 case Intrinsic::dbg_value: { 1173 // This form of DBG_VALUE is target-independent. 1174 const DbgValueInst *DI = cast<DbgValueInst>(II); 1175 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1176 const Value *V = DI->getValue(); 1177 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1178 "Expected inlined-at fields to agree"); 1179 if (!V) { 1180 // Currently the optimizer can produce this; insert an undef to 1181 // help debugging. Probably the optimizer should not do this. 1182 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1183 .addReg(0U) 1184 .addImm(DI->getOffset()) 1185 .addMetadata(DI->getVariable()) 1186 .addMetadata(DI->getExpression()); 1187 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1188 if (CI->getBitWidth() > 64) 1189 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1190 .addCImm(CI) 1191 .addImm(DI->getOffset()) 1192 .addMetadata(DI->getVariable()) 1193 .addMetadata(DI->getExpression()); 1194 else 1195 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1196 .addImm(CI->getZExtValue()) 1197 .addImm(DI->getOffset()) 1198 .addMetadata(DI->getVariable()) 1199 .addMetadata(DI->getExpression()); 1200 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1201 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1202 .addFPImm(CF) 1203 .addImm(DI->getOffset()) 1204 .addMetadata(DI->getVariable()) 1205 .addMetadata(DI->getExpression()); 1206 } else if (unsigned Reg = lookUpRegForValue(V)) { 1207 // FIXME: This does not handle register-indirect values at offset 0. 1208 bool IsIndirect = DI->getOffset() != 0; 1209 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1210 DI->getOffset(), DI->getVariable(), DI->getExpression()); 1211 } else { 1212 // We can't yet handle anything else here because it would require 1213 // generating code, thus altering codegen because of debug info. 1214 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1215 } 1216 return true; 1217 } 1218 case Intrinsic::objectsize: { 1219 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1220 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1221 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1222 unsigned ResultReg = getRegForValue(ResCI); 1223 if (!ResultReg) 1224 return false; 1225 updateValueMap(II, ResultReg); 1226 return true; 1227 } 1228 case Intrinsic::expect: { 1229 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1230 if (!ResultReg) 1231 return false; 1232 updateValueMap(II, ResultReg); 1233 return true; 1234 } 1235 case Intrinsic::experimental_stackmap: 1236 return selectStackmap(II); 1237 case Intrinsic::experimental_patchpoint_void: 1238 case Intrinsic::experimental_patchpoint_i64: 1239 return selectPatchpoint(II); 1240 } 1241 1242 return fastLowerIntrinsicCall(II); 1243 } 1244 1245 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1246 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1247 EVT DstVT = TLI.getValueType(DL, I->getType()); 1248 1249 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1250 !DstVT.isSimple()) 1251 // Unhandled type. Halt "fast" selection and bail. 1252 return false; 1253 1254 // Check if the destination type is legal. 1255 if (!TLI.isTypeLegal(DstVT)) 1256 return false; 1257 1258 // Check if the source operand is legal. 1259 if (!TLI.isTypeLegal(SrcVT)) 1260 return false; 1261 1262 unsigned InputReg = getRegForValue(I->getOperand(0)); 1263 if (!InputReg) 1264 // Unhandled operand. Halt "fast" selection and bail. 1265 return false; 1266 1267 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1268 1269 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1270 Opcode, InputReg, InputRegIsKill); 1271 if (!ResultReg) 1272 return false; 1273 1274 updateValueMap(I, ResultReg); 1275 return true; 1276 } 1277 1278 bool FastISel::selectBitCast(const User *I) { 1279 // If the bitcast doesn't change the type, just use the operand value. 1280 if (I->getType() == I->getOperand(0)->getType()) { 1281 unsigned Reg = getRegForValue(I->getOperand(0)); 1282 if (!Reg) 1283 return false; 1284 updateValueMap(I, Reg); 1285 return true; 1286 } 1287 1288 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1289 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1290 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1291 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1292 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1293 // Unhandled type. Halt "fast" selection and bail. 1294 return false; 1295 1296 MVT SrcVT = SrcEVT.getSimpleVT(); 1297 MVT DstVT = DstEVT.getSimpleVT(); 1298 unsigned Op0 = getRegForValue(I->getOperand(0)); 1299 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1300 return false; 1301 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1302 1303 // First, try to perform the bitcast by inserting a reg-reg copy. 1304 unsigned ResultReg = 0; 1305 if (SrcVT == DstVT) { 1306 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1307 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1308 // Don't attempt a cross-class copy. It will likely fail. 1309 if (SrcClass == DstClass) { 1310 ResultReg = createResultReg(DstClass); 1311 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1312 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1313 } 1314 } 1315 1316 // If the reg-reg copy failed, select a BITCAST opcode. 1317 if (!ResultReg) 1318 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1319 1320 if (!ResultReg) 1321 return false; 1322 1323 updateValueMap(I, ResultReg); 1324 return true; 1325 } 1326 1327 // Return true if we should copy from swift error to the final vreg as specified 1328 // by SwiftErrorWorklist. 1329 static bool shouldCopySwiftErrorsToFinalVRegs(const TargetLowering &TLI, 1330 FunctionLoweringInfo &FuncInfo) { 1331 if (!TLI.supportSwiftError()) 1332 return false; 1333 return FuncInfo.SwiftErrorWorklist.count(FuncInfo.MBB); 1334 } 1335 1336 // Remove local value instructions starting from the instruction after 1337 // SavedLastLocalValue to the current function insert point. 1338 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1339 { 1340 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1341 if (CurLastLocalValue != SavedLastLocalValue) { 1342 // Find the first local value instruction to be deleted. 1343 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1344 // Otherwise it's the first instruction in the block. 1345 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1346 if (SavedLastLocalValue) 1347 ++FirstDeadInst; 1348 else 1349 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1350 setLastLocalValue(SavedLastLocalValue); 1351 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1352 } 1353 } 1354 1355 bool FastISel::selectInstruction(const Instruction *I) { 1356 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1357 // Just before the terminator instruction, insert instructions to 1358 // feed PHI nodes in successor blocks. 1359 if (isa<TerminatorInst>(I)) { 1360 // If we need to materialize any vreg from worklist, we bail out of 1361 // FastISel. 1362 if (shouldCopySwiftErrorsToFinalVRegs(TLI, FuncInfo)) 1363 return false; 1364 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1365 // PHI node handling may have generated local value instructions, 1366 // even though it failed to handle all PHI nodes. 1367 // We remove these instructions because SelectionDAGISel will generate 1368 // them again. 1369 removeDeadLocalValueCode(SavedLastLocalValue); 1370 return false; 1371 } 1372 } 1373 1374 // FastISel does not handle any operand bundles except OB_funclet. 1375 if (ImmutableCallSite CS = ImmutableCallSite(I)) 1376 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) 1377 if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1378 return false; 1379 1380 DbgLoc = I->getDebugLoc(); 1381 1382 SavedInsertPt = FuncInfo.InsertPt; 1383 1384 if (const auto *Call = dyn_cast<CallInst>(I)) { 1385 const Function *F = Call->getCalledFunction(); 1386 LibFunc::Func Func; 1387 1388 // As a special case, don't handle calls to builtin library functions that 1389 // may be translated directly to target instructions. 1390 if (F && !F->hasLocalLinkage() && F->hasName() && 1391 LibInfo->getLibFunc(F->getName(), Func) && 1392 LibInfo->hasOptimizedCodeGen(Func)) 1393 return false; 1394 1395 // Don't handle Intrinsic::trap if a trap function is specified. 1396 if (F && F->getIntrinsicID() == Intrinsic::trap && 1397 Call->hasFnAttr("trap-func-name")) 1398 return false; 1399 } 1400 1401 // First, try doing target-independent selection. 1402 if (!SkipTargetIndependentISel) { 1403 if (selectOperator(I, I->getOpcode())) { 1404 ++NumFastIselSuccessIndependent; 1405 DbgLoc = DebugLoc(); 1406 return true; 1407 } 1408 // Remove dead code. 1409 recomputeInsertPt(); 1410 if (SavedInsertPt != FuncInfo.InsertPt) 1411 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1412 SavedInsertPt = FuncInfo.InsertPt; 1413 } 1414 // Next, try calling the target to attempt to handle the instruction. 1415 if (fastSelectInstruction(I)) { 1416 ++NumFastIselSuccessTarget; 1417 DbgLoc = DebugLoc(); 1418 return true; 1419 } 1420 // Remove dead code. 1421 recomputeInsertPt(); 1422 if (SavedInsertPt != FuncInfo.InsertPt) 1423 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1424 1425 DbgLoc = DebugLoc(); 1426 // Undo phi node updates, because they will be added again by SelectionDAG. 1427 if (isa<TerminatorInst>(I)) { 1428 // PHI node handling may have generated local value instructions. 1429 // We remove them because SelectionDAGISel will generate them again. 1430 removeDeadLocalValueCode(SavedLastLocalValue); 1431 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1432 } 1433 return false; 1434 } 1435 1436 /// Emit an unconditional branch to the given block, unless it is the immediate 1437 /// (fall-through) successor, and update the CFG. 1438 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) { 1439 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1440 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1441 // For more accurate line information if this is the only instruction 1442 // in the block then emit it, otherwise we have the unconditional 1443 // fall-through case, which needs no instructions. 1444 } else { 1445 // The unconditional branch case. 1446 TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr, 1447 SmallVector<MachineOperand, 0>(), DbgLoc); 1448 } 1449 if (FuncInfo.BPI) { 1450 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1451 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1452 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1453 } else 1454 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1455 } 1456 1457 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1458 MachineBasicBlock *TrueMBB, 1459 MachineBasicBlock *FalseMBB) { 1460 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1461 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1462 // successor/predecessor lists. 1463 if (TrueMBB != FalseMBB) { 1464 if (FuncInfo.BPI) { 1465 auto BranchProbability = 1466 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1467 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1468 } else 1469 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1470 } 1471 1472 fastEmitBranch(FalseMBB, DbgLoc); 1473 } 1474 1475 /// Emit an FNeg operation. 1476 bool FastISel::selectFNeg(const User *I) { 1477 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1478 if (!OpReg) 1479 return false; 1480 bool OpRegIsKill = hasTrivialKill(I); 1481 1482 // If the target has ISD::FNEG, use it. 1483 EVT VT = TLI.getValueType(DL, I->getType()); 1484 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1485 OpReg, OpRegIsKill); 1486 if (ResultReg) { 1487 updateValueMap(I, ResultReg); 1488 return true; 1489 } 1490 1491 // Bitcast the value to integer, twiddle the sign bit with xor, 1492 // and then bitcast it back to floating-point. 1493 if (VT.getSizeInBits() > 64) 1494 return false; 1495 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1496 if (!TLI.isTypeLegal(IntVT)) 1497 return false; 1498 1499 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1500 ISD::BITCAST, OpReg, OpRegIsKill); 1501 if (!IntReg) 1502 return false; 1503 1504 unsigned IntResultReg = fastEmit_ri_( 1505 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1506 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1507 if (!IntResultReg) 1508 return false; 1509 1510 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1511 IntResultReg, /*IsKill=*/true); 1512 if (!ResultReg) 1513 return false; 1514 1515 updateValueMap(I, ResultReg); 1516 return true; 1517 } 1518 1519 bool FastISel::selectExtractValue(const User *U) { 1520 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1521 if (!EVI) 1522 return false; 1523 1524 // Make sure we only try to handle extracts with a legal result. But also 1525 // allow i1 because it's easy. 1526 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1527 if (!RealVT.isSimple()) 1528 return false; 1529 MVT VT = RealVT.getSimpleVT(); 1530 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1531 return false; 1532 1533 const Value *Op0 = EVI->getOperand(0); 1534 Type *AggTy = Op0->getType(); 1535 1536 // Get the base result register. 1537 unsigned ResultReg; 1538 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1539 if (I != FuncInfo.ValueMap.end()) 1540 ResultReg = I->second; 1541 else if (isa<Instruction>(Op0)) 1542 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1543 else 1544 return false; // fast-isel can't handle aggregate constants at the moment 1545 1546 // Get the actual result register, which is an offset from the base register. 1547 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1548 1549 SmallVector<EVT, 4> AggValueVTs; 1550 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1551 1552 for (unsigned i = 0; i < VTIndex; i++) 1553 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1554 1555 updateValueMap(EVI, ResultReg); 1556 return true; 1557 } 1558 1559 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1560 switch (Opcode) { 1561 case Instruction::Add: 1562 return selectBinaryOp(I, ISD::ADD); 1563 case Instruction::FAdd: 1564 return selectBinaryOp(I, ISD::FADD); 1565 case Instruction::Sub: 1566 return selectBinaryOp(I, ISD::SUB); 1567 case Instruction::FSub: 1568 // FNeg is currently represented in LLVM IR as a special case of FSub. 1569 if (BinaryOperator::isFNeg(I)) 1570 return selectFNeg(I); 1571 return selectBinaryOp(I, ISD::FSUB); 1572 case Instruction::Mul: 1573 return selectBinaryOp(I, ISD::MUL); 1574 case Instruction::FMul: 1575 return selectBinaryOp(I, ISD::FMUL); 1576 case Instruction::SDiv: 1577 return selectBinaryOp(I, ISD::SDIV); 1578 case Instruction::UDiv: 1579 return selectBinaryOp(I, ISD::UDIV); 1580 case Instruction::FDiv: 1581 return selectBinaryOp(I, ISD::FDIV); 1582 case Instruction::SRem: 1583 return selectBinaryOp(I, ISD::SREM); 1584 case Instruction::URem: 1585 return selectBinaryOp(I, ISD::UREM); 1586 case Instruction::FRem: 1587 return selectBinaryOp(I, ISD::FREM); 1588 case Instruction::Shl: 1589 return selectBinaryOp(I, ISD::SHL); 1590 case Instruction::LShr: 1591 return selectBinaryOp(I, ISD::SRL); 1592 case Instruction::AShr: 1593 return selectBinaryOp(I, ISD::SRA); 1594 case Instruction::And: 1595 return selectBinaryOp(I, ISD::AND); 1596 case Instruction::Or: 1597 return selectBinaryOp(I, ISD::OR); 1598 case Instruction::Xor: 1599 return selectBinaryOp(I, ISD::XOR); 1600 1601 case Instruction::GetElementPtr: 1602 return selectGetElementPtr(I); 1603 1604 case Instruction::Br: { 1605 const BranchInst *BI = cast<BranchInst>(I); 1606 1607 if (BI->isUnconditional()) { 1608 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1609 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1610 fastEmitBranch(MSucc, BI->getDebugLoc()); 1611 return true; 1612 } 1613 1614 // Conditional branches are not handed yet. 1615 // Halt "fast" selection and bail. 1616 return false; 1617 } 1618 1619 case Instruction::Unreachable: 1620 if (TM.Options.TrapUnreachable) 1621 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1622 else 1623 return true; 1624 1625 case Instruction::Alloca: 1626 // FunctionLowering has the static-sized case covered. 1627 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1628 return true; 1629 1630 // Dynamic-sized alloca is not handled yet. 1631 return false; 1632 1633 case Instruction::Call: 1634 return selectCall(I); 1635 1636 case Instruction::BitCast: 1637 return selectBitCast(I); 1638 1639 case Instruction::FPToSI: 1640 return selectCast(I, ISD::FP_TO_SINT); 1641 case Instruction::ZExt: 1642 return selectCast(I, ISD::ZERO_EXTEND); 1643 case Instruction::SExt: 1644 return selectCast(I, ISD::SIGN_EXTEND); 1645 case Instruction::Trunc: 1646 return selectCast(I, ISD::TRUNCATE); 1647 case Instruction::SIToFP: 1648 return selectCast(I, ISD::SINT_TO_FP); 1649 1650 case Instruction::IntToPtr: // Deliberate fall-through. 1651 case Instruction::PtrToInt: { 1652 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1653 EVT DstVT = TLI.getValueType(DL, I->getType()); 1654 if (DstVT.bitsGT(SrcVT)) 1655 return selectCast(I, ISD::ZERO_EXTEND); 1656 if (DstVT.bitsLT(SrcVT)) 1657 return selectCast(I, ISD::TRUNCATE); 1658 unsigned Reg = getRegForValue(I->getOperand(0)); 1659 if (!Reg) 1660 return false; 1661 updateValueMap(I, Reg); 1662 return true; 1663 } 1664 1665 case Instruction::ExtractValue: 1666 return selectExtractValue(I); 1667 1668 case Instruction::PHI: 1669 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1670 1671 default: 1672 // Unhandled instruction. Halt "fast" selection and bail. 1673 return false; 1674 } 1675 } 1676 1677 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1678 const TargetLibraryInfo *LibInfo, 1679 bool SkipTargetIndependentISel) 1680 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1681 MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1682 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1683 TII(*MF->getSubtarget().getInstrInfo()), 1684 TLI(*MF->getSubtarget().getTargetLowering()), 1685 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1686 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1687 1688 FastISel::~FastISel() {} 1689 1690 bool FastISel::fastLowerArguments() { return false; } 1691 1692 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1693 1694 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1695 return false; 1696 } 1697 1698 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1699 1700 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1701 bool /*Op0IsKill*/) { 1702 return 0; 1703 } 1704 1705 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1706 bool /*Op0IsKill*/, unsigned /*Op1*/, 1707 bool /*Op1IsKill*/) { 1708 return 0; 1709 } 1710 1711 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1712 return 0; 1713 } 1714 1715 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1716 const ConstantFP * /*FPImm*/) { 1717 return 0; 1718 } 1719 1720 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1721 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1722 return 0; 1723 } 1724 1725 unsigned FastISel::fastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/, 1726 bool /*Op0IsKill*/, 1727 const ConstantFP * /*FPImm*/) { 1728 return 0; 1729 } 1730 1731 unsigned FastISel::fastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/, 1732 bool /*Op0IsKill*/, unsigned /*Op1*/, 1733 bool /*Op1IsKill*/, uint64_t /*Imm*/) { 1734 return 0; 1735 } 1736 1737 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1738 /// instruction with an immediate operand using fastEmit_ri. 1739 /// If that fails, it materializes the immediate into a register and try 1740 /// fastEmit_rr instead. 1741 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1742 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1743 // If this is a multiply by a power of two, emit this as a shift left. 1744 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1745 Opcode = ISD::SHL; 1746 Imm = Log2_64(Imm); 1747 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1748 // div x, 8 -> srl x, 3 1749 Opcode = ISD::SRL; 1750 Imm = Log2_64(Imm); 1751 } 1752 1753 // Horrible hack (to be removed), check to make sure shift amounts are 1754 // in-range. 1755 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1756 Imm >= VT.getSizeInBits()) 1757 return 0; 1758 1759 // First check if immediate type is legal. If not, we can't use the ri form. 1760 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1761 if (ResultReg) 1762 return ResultReg; 1763 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1764 bool IsImmKill = true; 1765 if (!MaterialReg) { 1766 // This is a bit ugly/slow, but failing here means falling out of 1767 // fast-isel, which would be very slow. 1768 IntegerType *ITy = 1769 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1770 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1771 if (!MaterialReg) 1772 return 0; 1773 // FIXME: If the materialized register here has no uses yet then this 1774 // will be the first use and we should be able to mark it as killed. 1775 // However, the local value area for materialising constant expressions 1776 // grows down, not up, which means that any constant expressions we generate 1777 // later which also use 'Imm' could be after this instruction and therefore 1778 // after this kill. 1779 IsImmKill = false; 1780 } 1781 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); 1782 } 1783 1784 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { 1785 return MRI.createVirtualRegister(RC); 1786 } 1787 1788 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 1789 unsigned OpNum) { 1790 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1791 const TargetRegisterClass *RegClass = 1792 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1793 if (!MRI.constrainRegClass(Op, RegClass)) { 1794 // If it's not legal to COPY between the register classes, something 1795 // has gone very wrong before we got here. 1796 unsigned NewOp = createResultReg(RegClass); 1797 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1798 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1799 return NewOp; 1800 } 1801 } 1802 return Op; 1803 } 1804 1805 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1806 const TargetRegisterClass *RC) { 1807 unsigned ResultReg = createResultReg(RC); 1808 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1809 1810 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1811 return ResultReg; 1812 } 1813 1814 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 1815 const TargetRegisterClass *RC, unsigned Op0, 1816 bool Op0IsKill) { 1817 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1818 1819 unsigned ResultReg = createResultReg(RC); 1820 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1821 1822 if (II.getNumDefs() >= 1) 1823 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1824 .addReg(Op0, getKillRegState(Op0IsKill)); 1825 else { 1826 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1827 .addReg(Op0, getKillRegState(Op0IsKill)); 1828 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1829 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1830 } 1831 1832 return ResultReg; 1833 } 1834 1835 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 1836 const TargetRegisterClass *RC, unsigned Op0, 1837 bool Op0IsKill, unsigned Op1, 1838 bool Op1IsKill) { 1839 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1840 1841 unsigned ResultReg = createResultReg(RC); 1842 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1843 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1844 1845 if (II.getNumDefs() >= 1) 1846 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1847 .addReg(Op0, getKillRegState(Op0IsKill)) 1848 .addReg(Op1, getKillRegState(Op1IsKill)); 1849 else { 1850 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1851 .addReg(Op0, getKillRegState(Op0IsKill)) 1852 .addReg(Op1, getKillRegState(Op1IsKill)); 1853 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1854 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1855 } 1856 return ResultReg; 1857 } 1858 1859 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 1860 const TargetRegisterClass *RC, unsigned Op0, 1861 bool Op0IsKill, unsigned Op1, 1862 bool Op1IsKill, unsigned Op2, 1863 bool Op2IsKill) { 1864 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1865 1866 unsigned ResultReg = createResultReg(RC); 1867 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1868 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1869 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1870 1871 if (II.getNumDefs() >= 1) 1872 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1873 .addReg(Op0, getKillRegState(Op0IsKill)) 1874 .addReg(Op1, getKillRegState(Op1IsKill)) 1875 .addReg(Op2, getKillRegState(Op2IsKill)); 1876 else { 1877 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1878 .addReg(Op0, getKillRegState(Op0IsKill)) 1879 .addReg(Op1, getKillRegState(Op1IsKill)) 1880 .addReg(Op2, getKillRegState(Op2IsKill)); 1881 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1882 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1883 } 1884 return ResultReg; 1885 } 1886 1887 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 1888 const TargetRegisterClass *RC, unsigned Op0, 1889 bool Op0IsKill, uint64_t Imm) { 1890 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1891 1892 unsigned ResultReg = createResultReg(RC); 1893 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1894 1895 if (II.getNumDefs() >= 1) 1896 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1897 .addReg(Op0, getKillRegState(Op0IsKill)) 1898 .addImm(Imm); 1899 else { 1900 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1901 .addReg(Op0, getKillRegState(Op0IsKill)) 1902 .addImm(Imm); 1903 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1904 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1905 } 1906 return ResultReg; 1907 } 1908 1909 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 1910 const TargetRegisterClass *RC, unsigned Op0, 1911 bool Op0IsKill, uint64_t Imm1, 1912 uint64_t Imm2) { 1913 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1914 1915 unsigned ResultReg = createResultReg(RC); 1916 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1917 1918 if (II.getNumDefs() >= 1) 1919 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1920 .addReg(Op0, getKillRegState(Op0IsKill)) 1921 .addImm(Imm1) 1922 .addImm(Imm2); 1923 else { 1924 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1925 .addReg(Op0, getKillRegState(Op0IsKill)) 1926 .addImm(Imm1) 1927 .addImm(Imm2); 1928 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1929 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1930 } 1931 return ResultReg; 1932 } 1933 1934 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 1935 const TargetRegisterClass *RC, 1936 const ConstantFP *FPImm) { 1937 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1938 1939 unsigned ResultReg = createResultReg(RC); 1940 1941 if (II.getNumDefs() >= 1) 1942 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1943 .addFPImm(FPImm); 1944 else { 1945 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1946 .addFPImm(FPImm); 1947 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1948 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1949 } 1950 return ResultReg; 1951 } 1952 1953 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 1954 const TargetRegisterClass *RC, unsigned Op0, 1955 bool Op0IsKill, unsigned Op1, 1956 bool Op1IsKill, uint64_t Imm) { 1957 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1958 1959 unsigned ResultReg = createResultReg(RC); 1960 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1961 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1962 1963 if (II.getNumDefs() >= 1) 1964 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1965 .addReg(Op0, getKillRegState(Op0IsKill)) 1966 .addReg(Op1, getKillRegState(Op1IsKill)) 1967 .addImm(Imm); 1968 else { 1969 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1970 .addReg(Op0, getKillRegState(Op0IsKill)) 1971 .addReg(Op1, getKillRegState(Op1IsKill)) 1972 .addImm(Imm); 1973 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1974 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1975 } 1976 return ResultReg; 1977 } 1978 1979 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 1980 const TargetRegisterClass *RC, uint64_t Imm) { 1981 unsigned ResultReg = createResultReg(RC); 1982 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1983 1984 if (II.getNumDefs() >= 1) 1985 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1986 .addImm(Imm); 1987 else { 1988 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 1989 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1990 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1991 } 1992 return ResultReg; 1993 } 1994 1995 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 1996 bool Op0IsKill, uint32_t Idx) { 1997 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1998 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1999 "Cannot yet extract from physregs"); 2000 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2001 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2002 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 2003 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 2004 return ResultReg; 2005 } 2006 2007 /// Emit MachineInstrs to compute the value of Op with all but the least 2008 /// significant bit set to zero. 2009 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 2010 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 2011 } 2012 2013 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2014 /// Emit code to ensure constants are copied into registers when needed. 2015 /// Remember the virtual registers that need to be added to the Machine PHI 2016 /// nodes as input. We cannot just directly add them, because expansion 2017 /// might result in multiple MBB's for one BB. As such, the start of the 2018 /// BB might correspond to a different MBB than the end. 2019 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2020 const TerminatorInst *TI = LLVMBB->getTerminator(); 2021 2022 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2023 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2024 2025 // Check successor nodes' PHI nodes that expect a constant to be available 2026 // from this block. 2027 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2028 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2029 if (!isa<PHINode>(SuccBB->begin())) 2030 continue; 2031 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2032 2033 // If this terminator has multiple identical successors (common for 2034 // switches), only handle each succ once. 2035 if (!SuccsHandled.insert(SuccMBB).second) 2036 continue; 2037 2038 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2039 2040 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2041 // nodes and Machine PHI nodes, but the incoming operands have not been 2042 // emitted yet. 2043 for (BasicBlock::const_iterator I = SuccBB->begin(); 2044 const auto *PN = dyn_cast<PHINode>(I); ++I) { 2045 2046 // Ignore dead phi's. 2047 if (PN->use_empty()) 2048 continue; 2049 2050 // Only handle legal types. Two interesting things to note here. First, 2051 // by bailing out early, we may leave behind some dead instructions, 2052 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2053 // own moves. Second, this check is necessary because FastISel doesn't 2054 // use CreateRegs to create registers, so it always creates 2055 // exactly one register for each non-void instruction. 2056 EVT VT = TLI.getValueType(DL, PN->getType(), /*AllowUnknown=*/true); 2057 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2058 // Handle integer promotions, though, because they're common and easy. 2059 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2060 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2061 return false; 2062 } 2063 } 2064 2065 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 2066 2067 // Set the DebugLoc for the copy. Prefer the location of the operand 2068 // if there is one; use the location of the PHI otherwise. 2069 DbgLoc = PN->getDebugLoc(); 2070 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2071 DbgLoc = Inst->getDebugLoc(); 2072 2073 unsigned Reg = getRegForValue(PHIOp); 2074 if (!Reg) { 2075 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2076 return false; 2077 } 2078 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 2079 DbgLoc = DebugLoc(); 2080 } 2081 } 2082 2083 return true; 2084 } 2085 2086 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2087 assert(LI->hasOneUse() && 2088 "tryToFoldLoad expected a LoadInst with a single use"); 2089 // We know that the load has a single use, but don't know what it is. If it 2090 // isn't one of the folded instructions, then we can't succeed here. Handle 2091 // this by scanning the single-use users of the load until we get to FoldInst. 2092 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2093 2094 const Instruction *TheUser = LI->user_back(); 2095 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2096 // Stay in the right block. 2097 TheUser->getParent() == FoldInst->getParent() && 2098 --MaxUsers) { // Don't scan too far. 2099 // If there are multiple or no uses of this instruction, then bail out. 2100 if (!TheUser->hasOneUse()) 2101 return false; 2102 2103 TheUser = TheUser->user_back(); 2104 } 2105 2106 // If we didn't find the fold instruction, then we failed to collapse the 2107 // sequence. 2108 if (TheUser != FoldInst) 2109 return false; 2110 2111 // Don't try to fold volatile loads. Target has to deal with alignment 2112 // constraints. 2113 if (LI->isVolatile()) 2114 return false; 2115 2116 // Figure out which vreg this is going into. If there is no assigned vreg yet 2117 // then there actually was no reference to it. Perhaps the load is referenced 2118 // by a dead instruction. 2119 unsigned LoadReg = getRegForValue(LI); 2120 if (!LoadReg) 2121 return false; 2122 2123 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2124 // may mean that the instruction got lowered to multiple MIs, or the use of 2125 // the loaded value ended up being multiple operands of the result. 2126 if (!MRI.hasOneUse(LoadReg)) 2127 return false; 2128 2129 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2130 MachineInstr *User = RI->getParent(); 2131 2132 // Set the insertion point properly. Folding the load can cause generation of 2133 // other random instructions (like sign extends) for addressing modes; make 2134 // sure they get inserted in a logical place before the new instruction. 2135 FuncInfo.InsertPt = User; 2136 FuncInfo.MBB = User->getParent(); 2137 2138 // Ask the target to try folding the load. 2139 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2140 } 2141 2142 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2143 // Must be an add. 2144 if (!isa<AddOperator>(Add)) 2145 return false; 2146 // Type size needs to match. 2147 if (DL.getTypeSizeInBits(GEP->getType()) != 2148 DL.getTypeSizeInBits(Add->getType())) 2149 return false; 2150 // Must be in the same basic block. 2151 if (isa<Instruction>(Add) && 2152 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2153 return false; 2154 // Must have a constant operand. 2155 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2156 } 2157 2158 MachineMemOperand * 2159 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2160 const Value *Ptr; 2161 Type *ValTy; 2162 unsigned Alignment; 2163 unsigned Flags; 2164 bool IsVolatile; 2165 2166 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2167 Alignment = LI->getAlignment(); 2168 IsVolatile = LI->isVolatile(); 2169 Flags = MachineMemOperand::MOLoad; 2170 Ptr = LI->getPointerOperand(); 2171 ValTy = LI->getType(); 2172 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2173 Alignment = SI->getAlignment(); 2174 IsVolatile = SI->isVolatile(); 2175 Flags = MachineMemOperand::MOStore; 2176 Ptr = SI->getPointerOperand(); 2177 ValTy = SI->getValueOperand()->getType(); 2178 } else 2179 return nullptr; 2180 2181 bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2182 bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2183 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2184 2185 AAMDNodes AAInfo; 2186 I->getAAMetadata(AAInfo); 2187 2188 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2189 Alignment = DL.getABITypeAlignment(ValTy); 2190 2191 unsigned Size = DL.getTypeStoreSize(ValTy); 2192 2193 if (IsVolatile) 2194 Flags |= MachineMemOperand::MOVolatile; 2195 if (IsNonTemporal) 2196 Flags |= MachineMemOperand::MONonTemporal; 2197 if (IsInvariant) 2198 Flags |= MachineMemOperand::MOInvariant; 2199 2200 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2201 Alignment, AAInfo, Ranges); 2202 } 2203 2204 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2205 // If both operands are the same, then try to optimize or fold the cmp. 2206 CmpInst::Predicate Predicate = CI->getPredicate(); 2207 if (CI->getOperand(0) != CI->getOperand(1)) 2208 return Predicate; 2209 2210 switch (Predicate) { 2211 default: llvm_unreachable("Invalid predicate!"); 2212 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2213 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2214 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2215 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2216 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2217 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2218 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2219 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2220 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2221 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2222 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2223 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2224 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2225 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2226 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2227 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2228 2229 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2230 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2231 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2232 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2233 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2234 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2235 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2236 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2237 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2238 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2239 } 2240 2241 return Predicate; 2242 } 2243