1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/CodeGen/FastISel.h" 43 #include "llvm/ADT/Optional.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Analysis/Loads.h" 46 #include "llvm/CodeGen/Analysis.h" 47 #include "llvm/CodeGen/FunctionLoweringInfo.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DebugInfo.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/IntrinsicInst.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetLibraryInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetMachine.h" 64 using namespace llvm; 65 66 #define DEBUG_TYPE "isel" 67 68 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 69 "target-independent selector"); 70 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 71 "target-specific selector"); 72 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 73 74 /// startNewBlock - Set the current block to which generated machine 75 /// instructions will be appended, and clear the local CSE map. 76 /// 77 void FastISel::startNewBlock() { 78 LocalValueMap.clear(); 79 80 // Instructions are appended to FuncInfo.MBB. If the basic block already 81 // contains labels or copies, use the last instruction as the last local 82 // value. 83 EmitStartPt = nullptr; 84 if (!FuncInfo.MBB->empty()) 85 EmitStartPt = &FuncInfo.MBB->back(); 86 LastLocalValue = EmitStartPt; 87 } 88 89 bool FastISel::LowerArguments() { 90 if (!FuncInfo.CanLowerReturn) 91 // Fallback to SDISel argument lowering code to deal with sret pointer 92 // parameter. 93 return false; 94 95 if (!FastLowerArguments()) 96 return false; 97 98 // Enter arguments into ValueMap for uses in non-entry BBs. 99 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 100 E = FuncInfo.Fn->arg_end(); I != E; ++I) { 101 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I); 102 assert(VI != LocalValueMap.end() && "Missed an argument?"); 103 FuncInfo.ValueMap[I] = VI->second; 104 } 105 return true; 106 } 107 108 void FastISel::flushLocalValueMap() { 109 LocalValueMap.clear(); 110 LastLocalValue = EmitStartPt; 111 recomputeInsertPt(); 112 } 113 114 bool FastISel::hasTrivialKill(const Value *V) const { 115 // Don't consider constants or arguments to have trivial kills. 116 const Instruction *I = dyn_cast<Instruction>(V); 117 if (!I) 118 return false; 119 120 // No-op casts are trivially coalesced by fast-isel. 121 if (const CastInst *Cast = dyn_cast<CastInst>(I)) 122 if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) && 123 !hasTrivialKill(Cast->getOperand(0))) 124 return false; 125 126 // GEPs with all zero indices are trivially coalesced by fast-isel. 127 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 128 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 129 return false; 130 131 // Only instructions with a single use in the same basic block are considered 132 // to have trivial kills. 133 return I->hasOneUse() && 134 !(I->getOpcode() == Instruction::BitCast || 135 I->getOpcode() == Instruction::PtrToInt || 136 I->getOpcode() == Instruction::IntToPtr) && 137 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 138 } 139 140 unsigned FastISel::getRegForValue(const Value *V) { 141 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); 142 // Don't handle non-simple values in FastISel. 143 if (!RealVT.isSimple()) 144 return 0; 145 146 // Ignore illegal types. We must do this before looking up the value 147 // in ValueMap because Arguments are given virtual registers regardless 148 // of whether FastISel can handle them. 149 MVT VT = RealVT.getSimpleVT(); 150 if (!TLI.isTypeLegal(VT)) { 151 // Handle integer promotions, though, because they're common and easy. 152 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 153 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 154 else 155 return 0; 156 } 157 158 // Look up the value to see if we already have a register for it. 159 unsigned Reg = lookUpRegForValue(V); 160 if (Reg != 0) 161 return Reg; 162 163 // In bottom-up mode, just create the virtual register which will be used 164 // to hold the value. It will be materialized later. 165 if (isa<Instruction>(V) && 166 (!isa<AllocaInst>(V) || 167 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 168 return FuncInfo.InitializeRegForValue(V); 169 170 SavePoint SaveInsertPt = enterLocalValueArea(); 171 172 // Materialize the value in a register. Emit any instructions in the 173 // local value area. 174 Reg = materializeRegForValue(V, VT); 175 176 leaveLocalValueArea(SaveInsertPt); 177 178 return Reg; 179 } 180 181 /// materializeRegForValue - Helper for getRegForValue. This function is 182 /// called when the value isn't already available in a register and must 183 /// be materialized with new instructions. 184 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 185 unsigned Reg = 0; 186 187 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 188 if (CI->getValue().getActiveBits() <= 64) 189 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 190 } else if (isa<AllocaInst>(V)) { 191 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V)); 192 } else if (isa<ConstantPointerNull>(V)) { 193 // Translate this as an integer zero so that it can be 194 // local-CSE'd with actual integer zeros. 195 Reg = 196 getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 197 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 198 if (CF->isNullValue()) { 199 Reg = TargetMaterializeFloatZero(CF); 200 } else { 201 // Try to emit the constant directly. 202 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); 203 } 204 205 if (!Reg) { 206 // Try to emit the constant by using an integer constant with a cast. 207 const APFloat &Flt = CF->getValueAPF(); 208 EVT IntVT = TLI.getPointerTy(); 209 210 uint64_t x[2]; 211 uint32_t IntBitWidth = IntVT.getSizeInBits(); 212 bool isExact; 213 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 214 APFloat::rmTowardZero, &isExact); 215 if (isExact) { 216 APInt IntVal(IntBitWidth, x); 217 218 unsigned IntegerReg = 219 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 220 if (IntegerReg != 0) 221 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 222 IntegerReg, /*Kill=*/false); 223 } 224 } 225 } else if (const Operator *Op = dyn_cast<Operator>(V)) { 226 if (!SelectOperator(Op, Op->getOpcode())) 227 if (!isa<Instruction>(Op) || 228 !TargetSelectInstruction(cast<Instruction>(Op))) 229 return 0; 230 Reg = lookUpRegForValue(Op); 231 } else if (isa<UndefValue>(V)) { 232 Reg = createResultReg(TLI.getRegClassFor(VT)); 233 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 234 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 235 } 236 237 // If target-independent code couldn't handle the value, give target-specific 238 // code a try. 239 if (!Reg && isa<Constant>(V)) 240 Reg = TargetMaterializeConstant(cast<Constant>(V)); 241 242 // Don't cache constant materializations in the general ValueMap. 243 // To do so would require tracking what uses they dominate. 244 if (Reg != 0) { 245 LocalValueMap[V] = Reg; 246 LastLocalValue = MRI.getVRegDef(Reg); 247 } 248 return Reg; 249 } 250 251 unsigned FastISel::lookUpRegForValue(const Value *V) { 252 // Look up the value to see if we already have a register for it. We 253 // cache values defined by Instructions across blocks, and other values 254 // only locally. This is because Instructions already have the SSA 255 // def-dominates-use requirement enforced. 256 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 257 if (I != FuncInfo.ValueMap.end()) 258 return I->second; 259 return LocalValueMap[V]; 260 } 261 262 /// UpdateValueMap - Update the value map to include the new mapping for this 263 /// instruction, or insert an extra copy to get the result in a previous 264 /// determined register. 265 /// NOTE: This is only necessary because we might select a block that uses 266 /// a value before we select the block that defines the value. It might be 267 /// possible to fix this by selecting blocks in reverse postorder. 268 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 269 if (!isa<Instruction>(I)) { 270 LocalValueMap[I] = Reg; 271 return; 272 } 273 274 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 275 if (AssignedReg == 0) 276 // Use the new register. 277 AssignedReg = Reg; 278 else if (Reg != AssignedReg) { 279 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 280 for (unsigned i = 0; i < NumRegs; i++) 281 FuncInfo.RegFixups[AssignedReg+i] = Reg+i; 282 283 AssignedReg = Reg; 284 } 285 } 286 287 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 288 unsigned IdxN = getRegForValue(Idx); 289 if (IdxN == 0) 290 // Unhandled operand. Halt "fast" selection and bail. 291 return std::pair<unsigned, bool>(0, false); 292 293 bool IdxNIsKill = hasTrivialKill(Idx); 294 295 // If the index is smaller or larger than intptr_t, truncate or extend it. 296 MVT PtrVT = TLI.getPointerTy(); 297 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 298 if (IdxVT.bitsLT(PtrVT)) { 299 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, 300 IdxN, IdxNIsKill); 301 IdxNIsKill = true; 302 } 303 else if (IdxVT.bitsGT(PtrVT)) { 304 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, 305 IdxN, IdxNIsKill); 306 IdxNIsKill = true; 307 } 308 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 309 } 310 311 void FastISel::recomputeInsertPt() { 312 if (getLastLocalValue()) { 313 FuncInfo.InsertPt = getLastLocalValue(); 314 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 315 ++FuncInfo.InsertPt; 316 } else 317 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 318 319 // Now skip past any EH_LABELs, which must remain at the beginning. 320 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 321 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 322 ++FuncInfo.InsertPt; 323 } 324 325 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 326 MachineBasicBlock::iterator E) { 327 assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!"); 328 while (I != E) { 329 MachineInstr *Dead = &*I; 330 ++I; 331 Dead->eraseFromParent(); 332 ++NumFastIselDead; 333 } 334 recomputeInsertPt(); 335 } 336 337 FastISel::SavePoint FastISel::enterLocalValueArea() { 338 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 339 DebugLoc OldDL = DbgLoc; 340 recomputeInsertPt(); 341 DbgLoc = DebugLoc(); 342 SavePoint SP = { OldInsertPt, OldDL }; 343 return SP; 344 } 345 346 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 347 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 348 LastLocalValue = std::prev(FuncInfo.InsertPt); 349 350 // Restore the previous insert position. 351 FuncInfo.InsertPt = OldInsertPt.InsertPt; 352 DbgLoc = OldInsertPt.DL; 353 } 354 355 /// SelectBinaryOp - Select and emit code for a binary operator instruction, 356 /// which has an opcode which directly corresponds to the given ISD opcode. 357 /// 358 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) { 359 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 360 if (VT == MVT::Other || !VT.isSimple()) 361 // Unhandled type. Halt "fast" selection and bail. 362 return false; 363 364 // We only handle legal types. For example, on x86-32 the instruction 365 // selector contains all of the 64-bit instructions from x86-64, 366 // under the assumption that i64 won't be used if the target doesn't 367 // support it. 368 if (!TLI.isTypeLegal(VT)) { 369 // MVT::i1 is special. Allow AND, OR, or XOR because they 370 // don't require additional zeroing, which makes them easy. 371 if (VT == MVT::i1 && 372 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 373 ISDOpcode == ISD::XOR)) 374 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 375 else 376 return false; 377 } 378 379 // Check if the first operand is a constant, and handle it as "ri". At -O0, 380 // we don't have anything that canonicalizes operand order. 381 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 382 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 383 unsigned Op1 = getRegForValue(I->getOperand(1)); 384 if (Op1 == 0) return false; 385 386 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 387 388 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, 389 Op1IsKill, CI->getZExtValue(), 390 VT.getSimpleVT()); 391 if (ResultReg == 0) return false; 392 393 // We successfully emitted code for the given LLVM Instruction. 394 UpdateValueMap(I, ResultReg); 395 return true; 396 } 397 398 399 unsigned Op0 = getRegForValue(I->getOperand(0)); 400 if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. 401 return false; 402 403 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 404 405 // Check if the second operand is a constant and handle it appropriately. 406 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 407 uint64_t Imm = CI->getZExtValue(); 408 409 // Transform "sdiv exact X, 8" -> "sra X, 3". 410 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 411 cast<BinaryOperator>(I)->isExact() && 412 isPowerOf2_64(Imm)) { 413 Imm = Log2_64(Imm); 414 ISDOpcode = ISD::SRA; 415 } 416 417 // Transform "urem x, pow2" -> "and x, pow2-1". 418 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 419 isPowerOf2_64(Imm)) { 420 --Imm; 421 ISDOpcode = ISD::AND; 422 } 423 424 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 425 Op0IsKill, Imm, VT.getSimpleVT()); 426 if (ResultReg == 0) return false; 427 428 // We successfully emitted code for the given LLVM Instruction. 429 UpdateValueMap(I, ResultReg); 430 return true; 431 } 432 433 // Check if the second operand is a constant float. 434 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 435 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 436 ISDOpcode, Op0, Op0IsKill, CF); 437 if (ResultReg != 0) { 438 // We successfully emitted code for the given LLVM Instruction. 439 UpdateValueMap(I, ResultReg); 440 return true; 441 } 442 } 443 444 unsigned Op1 = getRegForValue(I->getOperand(1)); 445 if (Op1 == 0) 446 // Unhandled operand. Halt "fast" selection and bail. 447 return false; 448 449 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 450 451 // Now we have both operands in registers. Emit the instruction. 452 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 453 ISDOpcode, 454 Op0, Op0IsKill, 455 Op1, Op1IsKill); 456 if (ResultReg == 0) 457 // Target-specific code wasn't able to find a machine opcode for 458 // the given ISD opcode and type. Halt "fast" selection and bail. 459 return false; 460 461 // We successfully emitted code for the given LLVM Instruction. 462 UpdateValueMap(I, ResultReg); 463 return true; 464 } 465 466 bool FastISel::SelectGetElementPtr(const User *I) { 467 unsigned N = getRegForValue(I->getOperand(0)); 468 if (N == 0) 469 // Unhandled operand. Halt "fast" selection and bail. 470 return false; 471 472 bool NIsKill = hasTrivialKill(I->getOperand(0)); 473 474 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 475 // into a single N = N + TotalOffset. 476 uint64_t TotalOffs = 0; 477 // FIXME: What's a good SWAG number for MaxOffs? 478 uint64_t MaxOffs = 2048; 479 Type *Ty = I->getOperand(0)->getType(); 480 MVT VT = TLI.getPointerTy(); 481 for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1, 482 E = I->op_end(); OI != E; ++OI) { 483 const Value *Idx = *OI; 484 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 485 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 486 if (Field) { 487 // N = N + Offset 488 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 489 if (TotalOffs >= MaxOffs) { 490 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 491 if (N == 0) 492 // Unhandled operand. Halt "fast" selection and bail. 493 return false; 494 NIsKill = true; 495 TotalOffs = 0; 496 } 497 } 498 Ty = StTy->getElementType(Field); 499 } else { 500 Ty = cast<SequentialType>(Ty)->getElementType(); 501 502 // If this is a constant subscript, handle it quickly. 503 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 504 if (CI->isZero()) continue; 505 // N = N + Offset 506 TotalOffs += 507 DL.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 508 if (TotalOffs >= MaxOffs) { 509 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 510 if (N == 0) 511 // Unhandled operand. Halt "fast" selection and bail. 512 return false; 513 NIsKill = true; 514 TotalOffs = 0; 515 } 516 continue; 517 } 518 if (TotalOffs) { 519 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 520 if (N == 0) 521 // Unhandled operand. Halt "fast" selection and bail. 522 return false; 523 NIsKill = true; 524 TotalOffs = 0; 525 } 526 527 // N = N + Idx * ElementSize; 528 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 529 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 530 unsigned IdxN = Pair.first; 531 bool IdxNIsKill = Pair.second; 532 if (IdxN == 0) 533 // Unhandled operand. Halt "fast" selection and bail. 534 return false; 535 536 if (ElementSize != 1) { 537 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 538 if (IdxN == 0) 539 // Unhandled operand. Halt "fast" selection and bail. 540 return false; 541 IdxNIsKill = true; 542 } 543 N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 544 if (N == 0) 545 // Unhandled operand. Halt "fast" selection and bail. 546 return false; 547 } 548 } 549 if (TotalOffs) { 550 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 551 if (N == 0) 552 // Unhandled operand. Halt "fast" selection and bail. 553 return false; 554 } 555 556 // We successfully emitted code for the given LLVM Instruction. 557 UpdateValueMap(I, N); 558 return true; 559 } 560 561 bool FastISel::SelectCall(const User *I) { 562 const CallInst *Call = cast<CallInst>(I); 563 564 // Handle simple inline asms. 565 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 566 // Don't attempt to handle constraints. 567 if (!IA->getConstraintString().empty()) 568 return false; 569 570 unsigned ExtraInfo = 0; 571 if (IA->hasSideEffects()) 572 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 573 if (IA->isAlignStack()) 574 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 575 576 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 577 TII.get(TargetOpcode::INLINEASM)) 578 .addExternalSymbol(IA->getAsmString().c_str()) 579 .addImm(ExtraInfo); 580 return true; 581 } 582 583 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 584 ComputeUsesVAFloatArgument(*Call, &MMI); 585 586 const Function *F = Call->getCalledFunction(); 587 if (!F) return false; 588 589 // Handle selected intrinsic function calls. 590 switch (F->getIntrinsicID()) { 591 default: break; 592 // At -O0 we don't care about the lifetime intrinsics. 593 case Intrinsic::lifetime_start: 594 case Intrinsic::lifetime_end: 595 // The donothing intrinsic does, well, nothing. 596 case Intrinsic::donothing: 597 return true; 598 599 case Intrinsic::dbg_declare: { 600 const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call); 601 DIVariable DIVar(DI->getVariable()); 602 assert((!DIVar || DIVar.isVariable()) && 603 "Variable in DbgDeclareInst should be either null or a DIVariable."); 604 if (!DIVar || 605 !FuncInfo.MF->getMMI().hasDebugInfo()) { 606 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 607 return true; 608 } 609 610 const Value *Address = DI->getAddress(); 611 if (!Address || isa<UndefValue>(Address)) { 612 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 613 return true; 614 } 615 616 unsigned Offset = 0; 617 Optional<MachineOperand> Op; 618 if (const Argument *Arg = dyn_cast<Argument>(Address)) 619 // Some arguments' frame index is recorded during argument lowering. 620 Offset = FuncInfo.getArgumentFrameIndex(Arg); 621 if (Offset) 622 Op = MachineOperand::CreateFI(Offset); 623 if (!Op) 624 if (unsigned Reg = lookUpRegForValue(Address)) 625 Op = MachineOperand::CreateReg(Reg, false); 626 627 // If we have a VLA that has a "use" in a metadata node that's then used 628 // here but it has no other uses, then we have a problem. E.g., 629 // 630 // int foo (const int *x) { 631 // char a[*x]; 632 // return 0; 633 // } 634 // 635 // If we assign 'a' a vreg and fast isel later on has to use the selection 636 // DAG isel, it will want to copy the value to the vreg. However, there are 637 // no uses, which goes counter to what selection DAG isel expects. 638 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 639 (!isa<AllocaInst>(Address) || 640 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 641 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 642 false); 643 644 if (Op) { 645 if (Op->isReg()) { 646 Op->setIsDebug(true); 647 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 648 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0, 649 DI->getVariable()); 650 } else 651 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 652 TII.get(TargetOpcode::DBG_VALUE)) 653 .addOperand(*Op) 654 .addImm(0) 655 .addMetadata(DI->getVariable()); 656 } else { 657 // We can't yet handle anything else here because it would require 658 // generating code, thus altering codegen because of debug info. 659 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 660 } 661 return true; 662 } 663 case Intrinsic::dbg_value: { 664 // This form of DBG_VALUE is target-independent. 665 const DbgValueInst *DI = cast<DbgValueInst>(Call); 666 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 667 const Value *V = DI->getValue(); 668 if (!V) { 669 // Currently the optimizer can produce this; insert an undef to 670 // help debugging. Probably the optimizer should not do this. 671 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 672 .addReg(0U).addImm(DI->getOffset()) 673 .addMetadata(DI->getVariable()); 674 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 675 if (CI->getBitWidth() > 64) 676 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 677 .addCImm(CI).addImm(DI->getOffset()) 678 .addMetadata(DI->getVariable()); 679 else 680 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 681 .addImm(CI->getZExtValue()).addImm(DI->getOffset()) 682 .addMetadata(DI->getVariable()); 683 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 684 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 685 .addFPImm(CF).addImm(DI->getOffset()) 686 .addMetadata(DI->getVariable()); 687 } else if (unsigned Reg = lookUpRegForValue(V)) { 688 // FIXME: This does not handle register-indirect values at offset 0. 689 bool IsIndirect = DI->getOffset() != 0; 690 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, 691 Reg, DI->getOffset(), DI->getVariable()); 692 } else { 693 // We can't yet handle anything else here because it would require 694 // generating code, thus altering codegen because of debug info. 695 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 696 } 697 return true; 698 } 699 case Intrinsic::objectsize: { 700 ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1)); 701 unsigned long long Res = CI->isZero() ? -1ULL : 0; 702 Constant *ResCI = ConstantInt::get(Call->getType(), Res); 703 unsigned ResultReg = getRegForValue(ResCI); 704 if (ResultReg == 0) 705 return false; 706 UpdateValueMap(Call, ResultReg); 707 return true; 708 } 709 case Intrinsic::expect: { 710 unsigned ResultReg = getRegForValue(Call->getArgOperand(0)); 711 if (ResultReg == 0) 712 return false; 713 UpdateValueMap(Call, ResultReg); 714 return true; 715 } 716 } 717 718 // Usually, it does not make sense to initialize a value, 719 // make an unrelated function call and use the value, because 720 // it tends to be spilled on the stack. So, we move the pointer 721 // to the last local value to the beginning of the block, so that 722 // all the values which have already been materialized, 723 // appear after the call. It also makes sense to skip intrinsics 724 // since they tend to be inlined. 725 if (!isa<IntrinsicInst>(Call)) 726 flushLocalValueMap(); 727 728 // An arbitrary call. Bail. 729 return false; 730 } 731 732 bool FastISel::SelectCast(const User *I, unsigned Opcode) { 733 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 734 EVT DstVT = TLI.getValueType(I->getType()); 735 736 if (SrcVT == MVT::Other || !SrcVT.isSimple() || 737 DstVT == MVT::Other || !DstVT.isSimple()) 738 // Unhandled type. Halt "fast" selection and bail. 739 return false; 740 741 // Check if the destination type is legal. 742 if (!TLI.isTypeLegal(DstVT)) 743 return false; 744 745 // Check if the source operand is legal. 746 if (!TLI.isTypeLegal(SrcVT)) 747 return false; 748 749 unsigned InputReg = getRegForValue(I->getOperand(0)); 750 if (!InputReg) 751 // Unhandled operand. Halt "fast" selection and bail. 752 return false; 753 754 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 755 756 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), 757 DstVT.getSimpleVT(), 758 Opcode, 759 InputReg, InputRegIsKill); 760 if (!ResultReg) 761 return false; 762 763 UpdateValueMap(I, ResultReg); 764 return true; 765 } 766 767 bool FastISel::SelectBitCast(const User *I) { 768 // If the bitcast doesn't change the type, just use the operand value. 769 if (I->getType() == I->getOperand(0)->getType()) { 770 unsigned Reg = getRegForValue(I->getOperand(0)); 771 if (Reg == 0) 772 return false; 773 UpdateValueMap(I, Reg); 774 return true; 775 } 776 777 // Bitcasts of other values become reg-reg copies or BITCAST operators. 778 EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType()); 779 EVT DstEVT = TLI.getValueType(I->getType()); 780 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 781 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 782 // Unhandled type. Halt "fast" selection and bail. 783 return false; 784 785 MVT SrcVT = SrcEVT.getSimpleVT(); 786 MVT DstVT = DstEVT.getSimpleVT(); 787 unsigned Op0 = getRegForValue(I->getOperand(0)); 788 if (Op0 == 0) 789 // Unhandled operand. Halt "fast" selection and bail. 790 return false; 791 792 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 793 794 // First, try to perform the bitcast by inserting a reg-reg copy. 795 unsigned ResultReg = 0; 796 if (SrcVT == DstVT) { 797 const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); 798 const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); 799 // Don't attempt a cross-class copy. It will likely fail. 800 if (SrcClass == DstClass) { 801 ResultReg = createResultReg(DstClass); 802 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 803 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 804 } 805 } 806 807 // If the reg-reg copy failed, select a BITCAST opcode. 808 if (!ResultReg) 809 ResultReg = FastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 810 811 if (!ResultReg) 812 return false; 813 814 UpdateValueMap(I, ResultReg); 815 return true; 816 } 817 818 bool 819 FastISel::SelectInstruction(const Instruction *I) { 820 // Just before the terminator instruction, insert instructions to 821 // feed PHI nodes in successor blocks. 822 if (isa<TerminatorInst>(I)) 823 if (!HandlePHINodesInSuccessorBlocks(I->getParent())) 824 return false; 825 826 DbgLoc = I->getDebugLoc(); 827 828 MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt; 829 830 if (const CallInst *Call = dyn_cast<CallInst>(I)) { 831 const Function *F = Call->getCalledFunction(); 832 LibFunc::Func Func; 833 834 // As a special case, don't handle calls to builtin library functions that 835 // may be translated directly to target instructions. 836 if (F && !F->hasLocalLinkage() && F->hasName() && 837 LibInfo->getLibFunc(F->getName(), Func) && 838 LibInfo->hasOptimizedCodeGen(Func)) 839 return false; 840 841 // Don't handle Intrinsic::trap if a trap funciton is specified. 842 if (F && F->getIntrinsicID() == Intrinsic::trap && 843 !TM.Options.getTrapFunctionName().empty()) 844 return false; 845 } 846 847 // First, try doing target-independent selection. 848 if (SelectOperator(I, I->getOpcode())) { 849 ++NumFastIselSuccessIndependent; 850 DbgLoc = DebugLoc(); 851 return true; 852 } 853 // Remove dead code. However, ignore call instructions since we've flushed 854 // the local value map and recomputed the insert point. 855 if (!isa<CallInst>(I)) { 856 recomputeInsertPt(); 857 if (SavedInsertPt != FuncInfo.InsertPt) 858 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 859 } 860 861 // Next, try calling the target to attempt to handle the instruction. 862 SavedInsertPt = FuncInfo.InsertPt; 863 if (TargetSelectInstruction(I)) { 864 ++NumFastIselSuccessTarget; 865 DbgLoc = DebugLoc(); 866 return true; 867 } 868 // Check for dead code and remove as necessary. 869 recomputeInsertPt(); 870 if (SavedInsertPt != FuncInfo.InsertPt) 871 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 872 873 DbgLoc = DebugLoc(); 874 return false; 875 } 876 877 /// FastEmitBranch - Emit an unconditional branch to the given block, 878 /// unless it is the immediate (fall-through) successor, and update 879 /// the CFG. 880 void 881 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) { 882 883 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 884 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 885 // For more accurate line information if this is the only instruction 886 // in the block then emit it, otherwise we have the unconditional 887 // fall-through case, which needs no instructions. 888 } else { 889 // The unconditional branch case. 890 TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr, 891 SmallVector<MachineOperand, 0>(), DbgLoc); 892 } 893 FuncInfo.MBB->addSuccessor(MSucc); 894 } 895 896 /// SelectFNeg - Emit an FNeg operation. 897 /// 898 bool 899 FastISel::SelectFNeg(const User *I) { 900 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 901 if (OpReg == 0) return false; 902 903 bool OpRegIsKill = hasTrivialKill(I); 904 905 // If the target has ISD::FNEG, use it. 906 EVT VT = TLI.getValueType(I->getType()); 907 unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), 908 ISD::FNEG, OpReg, OpRegIsKill); 909 if (ResultReg != 0) { 910 UpdateValueMap(I, ResultReg); 911 return true; 912 } 913 914 // Bitcast the value to integer, twiddle the sign bit with xor, 915 // and then bitcast it back to floating-point. 916 if (VT.getSizeInBits() > 64) return false; 917 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 918 if (!TLI.isTypeLegal(IntVT)) 919 return false; 920 921 unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 922 ISD::BITCAST, OpReg, OpRegIsKill); 923 if (IntReg == 0) 924 return false; 925 926 unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, 927 IntReg, /*Kill=*/true, 928 UINT64_C(1) << (VT.getSizeInBits()-1), 929 IntVT.getSimpleVT()); 930 if (IntResultReg == 0) 931 return false; 932 933 ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), 934 ISD::BITCAST, IntResultReg, /*Kill=*/true); 935 if (ResultReg == 0) 936 return false; 937 938 UpdateValueMap(I, ResultReg); 939 return true; 940 } 941 942 bool 943 FastISel::SelectExtractValue(const User *U) { 944 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 945 if (!EVI) 946 return false; 947 948 // Make sure we only try to handle extracts with a legal result. But also 949 // allow i1 because it's easy. 950 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true); 951 if (!RealVT.isSimple()) 952 return false; 953 MVT VT = RealVT.getSimpleVT(); 954 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 955 return false; 956 957 const Value *Op0 = EVI->getOperand(0); 958 Type *AggTy = Op0->getType(); 959 960 // Get the base result register. 961 unsigned ResultReg; 962 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 963 if (I != FuncInfo.ValueMap.end()) 964 ResultReg = I->second; 965 else if (isa<Instruction>(Op0)) 966 ResultReg = FuncInfo.InitializeRegForValue(Op0); 967 else 968 return false; // fast-isel can't handle aggregate constants at the moment 969 970 // Get the actual result register, which is an offset from the base register. 971 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 972 973 SmallVector<EVT, 4> AggValueVTs; 974 ComputeValueVTs(TLI, AggTy, AggValueVTs); 975 976 for (unsigned i = 0; i < VTIndex; i++) 977 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 978 979 UpdateValueMap(EVI, ResultReg); 980 return true; 981 } 982 983 bool 984 FastISel::SelectOperator(const User *I, unsigned Opcode) { 985 switch (Opcode) { 986 case Instruction::Add: 987 return SelectBinaryOp(I, ISD::ADD); 988 case Instruction::FAdd: 989 return SelectBinaryOp(I, ISD::FADD); 990 case Instruction::Sub: 991 return SelectBinaryOp(I, ISD::SUB); 992 case Instruction::FSub: 993 // FNeg is currently represented in LLVM IR as a special case of FSub. 994 if (BinaryOperator::isFNeg(I)) 995 return SelectFNeg(I); 996 return SelectBinaryOp(I, ISD::FSUB); 997 case Instruction::Mul: 998 return SelectBinaryOp(I, ISD::MUL); 999 case Instruction::FMul: 1000 return SelectBinaryOp(I, ISD::FMUL); 1001 case Instruction::SDiv: 1002 return SelectBinaryOp(I, ISD::SDIV); 1003 case Instruction::UDiv: 1004 return SelectBinaryOp(I, ISD::UDIV); 1005 case Instruction::FDiv: 1006 return SelectBinaryOp(I, ISD::FDIV); 1007 case Instruction::SRem: 1008 return SelectBinaryOp(I, ISD::SREM); 1009 case Instruction::URem: 1010 return SelectBinaryOp(I, ISD::UREM); 1011 case Instruction::FRem: 1012 return SelectBinaryOp(I, ISD::FREM); 1013 case Instruction::Shl: 1014 return SelectBinaryOp(I, ISD::SHL); 1015 case Instruction::LShr: 1016 return SelectBinaryOp(I, ISD::SRL); 1017 case Instruction::AShr: 1018 return SelectBinaryOp(I, ISD::SRA); 1019 case Instruction::And: 1020 return SelectBinaryOp(I, ISD::AND); 1021 case Instruction::Or: 1022 return SelectBinaryOp(I, ISD::OR); 1023 case Instruction::Xor: 1024 return SelectBinaryOp(I, ISD::XOR); 1025 1026 case Instruction::GetElementPtr: 1027 return SelectGetElementPtr(I); 1028 1029 case Instruction::Br: { 1030 const BranchInst *BI = cast<BranchInst>(I); 1031 1032 if (BI->isUnconditional()) { 1033 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1034 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1035 FastEmitBranch(MSucc, BI->getDebugLoc()); 1036 return true; 1037 } 1038 1039 // Conditional branches are not handed yet. 1040 // Halt "fast" selection and bail. 1041 return false; 1042 } 1043 1044 case Instruction::Unreachable: 1045 if (TM.Options.TrapUnreachable) 1046 return FastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1047 else 1048 return true; 1049 1050 case Instruction::Alloca: 1051 // FunctionLowering has the static-sized case covered. 1052 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1053 return true; 1054 1055 // Dynamic-sized alloca is not handled yet. 1056 return false; 1057 1058 case Instruction::Call: 1059 return SelectCall(I); 1060 1061 case Instruction::BitCast: 1062 return SelectBitCast(I); 1063 1064 case Instruction::FPToSI: 1065 return SelectCast(I, ISD::FP_TO_SINT); 1066 case Instruction::ZExt: 1067 return SelectCast(I, ISD::ZERO_EXTEND); 1068 case Instruction::SExt: 1069 return SelectCast(I, ISD::SIGN_EXTEND); 1070 case Instruction::Trunc: 1071 return SelectCast(I, ISD::TRUNCATE); 1072 case Instruction::SIToFP: 1073 return SelectCast(I, ISD::SINT_TO_FP); 1074 1075 case Instruction::IntToPtr: // Deliberate fall-through. 1076 case Instruction::PtrToInt: { 1077 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1078 EVT DstVT = TLI.getValueType(I->getType()); 1079 if (DstVT.bitsGT(SrcVT)) 1080 return SelectCast(I, ISD::ZERO_EXTEND); 1081 if (DstVT.bitsLT(SrcVT)) 1082 return SelectCast(I, ISD::TRUNCATE); 1083 unsigned Reg = getRegForValue(I->getOperand(0)); 1084 if (Reg == 0) return false; 1085 UpdateValueMap(I, Reg); 1086 return true; 1087 } 1088 1089 case Instruction::ExtractValue: 1090 return SelectExtractValue(I); 1091 1092 case Instruction::PHI: 1093 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1094 1095 default: 1096 // Unhandled instruction. Halt "fast" selection and bail. 1097 return false; 1098 } 1099 } 1100 1101 FastISel::FastISel(FunctionLoweringInfo &funcInfo, 1102 const TargetLibraryInfo *libInfo) 1103 : FuncInfo(funcInfo), 1104 MRI(FuncInfo.MF->getRegInfo()), 1105 MFI(*FuncInfo.MF->getFrameInfo()), 1106 MCP(*FuncInfo.MF->getConstantPool()), 1107 TM(FuncInfo.MF->getTarget()), 1108 DL(*TM.getDataLayout()), 1109 TII(*TM.getInstrInfo()), 1110 TLI(*TM.getTargetLowering()), 1111 TRI(*TM.getRegisterInfo()), 1112 LibInfo(libInfo) { 1113 } 1114 1115 FastISel::~FastISel() {} 1116 1117 bool FastISel::FastLowerArguments() { 1118 return false; 1119 } 1120 1121 unsigned FastISel::FastEmit_(MVT, MVT, 1122 unsigned) { 1123 return 0; 1124 } 1125 1126 unsigned FastISel::FastEmit_r(MVT, MVT, 1127 unsigned, 1128 unsigned /*Op0*/, bool /*Op0IsKill*/) { 1129 return 0; 1130 } 1131 1132 unsigned FastISel::FastEmit_rr(MVT, MVT, 1133 unsigned, 1134 unsigned /*Op0*/, bool /*Op0IsKill*/, 1135 unsigned /*Op1*/, bool /*Op1IsKill*/) { 1136 return 0; 1137 } 1138 1139 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1140 return 0; 1141 } 1142 1143 unsigned FastISel::FastEmit_f(MVT, MVT, 1144 unsigned, const ConstantFP * /*FPImm*/) { 1145 return 0; 1146 } 1147 1148 unsigned FastISel::FastEmit_ri(MVT, MVT, 1149 unsigned, 1150 unsigned /*Op0*/, bool /*Op0IsKill*/, 1151 uint64_t /*Imm*/) { 1152 return 0; 1153 } 1154 1155 unsigned FastISel::FastEmit_rf(MVT, MVT, 1156 unsigned, 1157 unsigned /*Op0*/, bool /*Op0IsKill*/, 1158 const ConstantFP * /*FPImm*/) { 1159 return 0; 1160 } 1161 1162 unsigned FastISel::FastEmit_rri(MVT, MVT, 1163 unsigned, 1164 unsigned /*Op0*/, bool /*Op0IsKill*/, 1165 unsigned /*Op1*/, bool /*Op1IsKill*/, 1166 uint64_t /*Imm*/) { 1167 return 0; 1168 } 1169 1170 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries 1171 /// to emit an instruction with an immediate operand using FastEmit_ri. 1172 /// If that fails, it materializes the immediate into a register and try 1173 /// FastEmit_rr instead. 1174 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode, 1175 unsigned Op0, bool Op0IsKill, 1176 uint64_t Imm, MVT ImmType) { 1177 // If this is a multiply by a power of two, emit this as a shift left. 1178 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1179 Opcode = ISD::SHL; 1180 Imm = Log2_64(Imm); 1181 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1182 // div x, 8 -> srl x, 3 1183 Opcode = ISD::SRL; 1184 Imm = Log2_64(Imm); 1185 } 1186 1187 // Horrible hack (to be removed), check to make sure shift amounts are 1188 // in-range. 1189 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1190 Imm >= VT.getSizeInBits()) 1191 return 0; 1192 1193 // First check if immediate type is legal. If not, we can't use the ri form. 1194 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1195 if (ResultReg != 0) 1196 return ResultReg; 1197 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1198 if (MaterialReg == 0) { 1199 // This is a bit ugly/slow, but failing here means falling out of 1200 // fast-isel, which would be very slow. 1201 IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(), 1202 VT.getSizeInBits()); 1203 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1204 assert (MaterialReg != 0 && "Unable to materialize imm."); 1205 if (MaterialReg == 0) return 0; 1206 } 1207 return FastEmit_rr(VT, VT, Opcode, 1208 Op0, Op0IsKill, 1209 MaterialReg, /*Kill=*/true); 1210 } 1211 1212 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { 1213 return MRI.createVirtualRegister(RC); 1214 } 1215 1216 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, 1217 unsigned Op, unsigned OpNum) { 1218 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1219 const TargetRegisterClass *RegClass = 1220 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1221 if (!MRI.constrainRegClass(Op, RegClass)) { 1222 // If it's not legal to COPY between the register classes, something 1223 // has gone very wrong before we got here. 1224 unsigned NewOp = createResultReg(RegClass); 1225 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1226 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1227 return NewOp; 1228 } 1229 } 1230 return Op; 1231 } 1232 1233 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, 1234 const TargetRegisterClass* RC) { 1235 unsigned ResultReg = createResultReg(RC); 1236 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1237 1238 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1239 return ResultReg; 1240 } 1241 1242 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, 1243 const TargetRegisterClass *RC, 1244 unsigned Op0, bool Op0IsKill) { 1245 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1246 1247 unsigned ResultReg = createResultReg(RC); 1248 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1249 1250 if (II.getNumDefs() >= 1) 1251 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1252 .addReg(Op0, Op0IsKill * RegState::Kill); 1253 else { 1254 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1255 .addReg(Op0, Op0IsKill * RegState::Kill); 1256 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1257 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1258 } 1259 1260 return ResultReg; 1261 } 1262 1263 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 1264 const TargetRegisterClass *RC, 1265 unsigned Op0, bool Op0IsKill, 1266 unsigned Op1, bool Op1IsKill) { 1267 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1268 1269 unsigned ResultReg = createResultReg(RC); 1270 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1271 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1272 1273 if (II.getNumDefs() >= 1) 1274 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1275 .addReg(Op0, Op0IsKill * RegState::Kill) 1276 .addReg(Op1, Op1IsKill * RegState::Kill); 1277 else { 1278 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1279 .addReg(Op0, Op0IsKill * RegState::Kill) 1280 .addReg(Op1, Op1IsKill * RegState::Kill); 1281 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1282 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1283 } 1284 return ResultReg; 1285 } 1286 1287 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 1288 const TargetRegisterClass *RC, 1289 unsigned Op0, bool Op0IsKill, 1290 unsigned Op1, bool Op1IsKill, 1291 unsigned Op2, bool Op2IsKill) { 1292 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1293 1294 unsigned ResultReg = createResultReg(RC); 1295 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1296 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1297 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1298 1299 if (II.getNumDefs() >= 1) 1300 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1301 .addReg(Op0, Op0IsKill * RegState::Kill) 1302 .addReg(Op1, Op1IsKill * RegState::Kill) 1303 .addReg(Op2, Op2IsKill * RegState::Kill); 1304 else { 1305 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1306 .addReg(Op0, Op0IsKill * RegState::Kill) 1307 .addReg(Op1, Op1IsKill * RegState::Kill) 1308 .addReg(Op2, Op2IsKill * RegState::Kill); 1309 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1310 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1311 } 1312 return ResultReg; 1313 } 1314 1315 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 1316 const TargetRegisterClass *RC, 1317 unsigned Op0, bool Op0IsKill, 1318 uint64_t Imm) { 1319 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1320 1321 unsigned ResultReg = createResultReg(RC); 1322 RC = TII.getRegClass(II, II.getNumDefs(), &TRI, *FuncInfo.MF); 1323 MRI.constrainRegClass(Op0, RC); 1324 1325 if (II.getNumDefs() >= 1) 1326 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1327 .addReg(Op0, Op0IsKill * RegState::Kill) 1328 .addImm(Imm); 1329 else { 1330 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1331 .addReg(Op0, Op0IsKill * RegState::Kill) 1332 .addImm(Imm); 1333 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1334 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1335 } 1336 return ResultReg; 1337 } 1338 1339 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode, 1340 const TargetRegisterClass *RC, 1341 unsigned Op0, bool Op0IsKill, 1342 uint64_t Imm1, uint64_t Imm2) { 1343 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1344 1345 unsigned ResultReg = createResultReg(RC); 1346 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1347 1348 if (II.getNumDefs() >= 1) 1349 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1350 .addReg(Op0, Op0IsKill * RegState::Kill) 1351 .addImm(Imm1) 1352 .addImm(Imm2); 1353 else { 1354 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1355 .addReg(Op0, Op0IsKill * RegState::Kill) 1356 .addImm(Imm1) 1357 .addImm(Imm2); 1358 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1359 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1360 } 1361 return ResultReg; 1362 } 1363 1364 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 1365 const TargetRegisterClass *RC, 1366 unsigned Op0, bool Op0IsKill, 1367 const ConstantFP *FPImm) { 1368 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1369 1370 unsigned ResultReg = createResultReg(RC); 1371 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1372 1373 if (II.getNumDefs() >= 1) 1374 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1375 .addReg(Op0, Op0IsKill * RegState::Kill) 1376 .addFPImm(FPImm); 1377 else { 1378 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1379 .addReg(Op0, Op0IsKill * RegState::Kill) 1380 .addFPImm(FPImm); 1381 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1382 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1383 } 1384 return ResultReg; 1385 } 1386 1387 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 1388 const TargetRegisterClass *RC, 1389 unsigned Op0, bool Op0IsKill, 1390 unsigned Op1, bool Op1IsKill, 1391 uint64_t Imm) { 1392 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1393 1394 unsigned ResultReg = createResultReg(RC); 1395 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1396 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1397 1398 if (II.getNumDefs() >= 1) 1399 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1400 .addReg(Op0, Op0IsKill * RegState::Kill) 1401 .addReg(Op1, Op1IsKill * RegState::Kill) 1402 .addImm(Imm); 1403 else { 1404 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1405 .addReg(Op0, Op0IsKill * RegState::Kill) 1406 .addReg(Op1, Op1IsKill * RegState::Kill) 1407 .addImm(Imm); 1408 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1409 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1410 } 1411 return ResultReg; 1412 } 1413 1414 unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode, 1415 const TargetRegisterClass *RC, 1416 unsigned Op0, bool Op0IsKill, 1417 unsigned Op1, bool Op1IsKill, 1418 uint64_t Imm1, uint64_t Imm2) { 1419 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1420 1421 unsigned ResultReg = createResultReg(RC); 1422 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1423 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1424 1425 if (II.getNumDefs() >= 1) 1426 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1427 .addReg(Op0, Op0IsKill * RegState::Kill) 1428 .addReg(Op1, Op1IsKill * RegState::Kill) 1429 .addImm(Imm1).addImm(Imm2); 1430 else { 1431 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1432 .addReg(Op0, Op0IsKill * RegState::Kill) 1433 .addReg(Op1, Op1IsKill * RegState::Kill) 1434 .addImm(Imm1).addImm(Imm2); 1435 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1436 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1437 } 1438 return ResultReg; 1439 } 1440 1441 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, 1442 const TargetRegisterClass *RC, 1443 uint64_t Imm) { 1444 unsigned ResultReg = createResultReg(RC); 1445 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1446 1447 if (II.getNumDefs() >= 1) 1448 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg).addImm(Imm); 1449 else { 1450 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 1451 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1452 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1453 } 1454 return ResultReg; 1455 } 1456 1457 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 1458 const TargetRegisterClass *RC, 1459 uint64_t Imm1, uint64_t Imm2) { 1460 unsigned ResultReg = createResultReg(RC); 1461 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1462 1463 if (II.getNumDefs() >= 1) 1464 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1465 .addImm(Imm1).addImm(Imm2); 1466 else { 1467 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1).addImm(Imm2); 1468 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1469 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1470 } 1471 return ResultReg; 1472 } 1473 1474 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT, 1475 unsigned Op0, bool Op0IsKill, 1476 uint32_t Idx) { 1477 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1478 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1479 "Cannot yet extract from physregs"); 1480 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 1481 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 1482 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 1483 DbgLoc, TII.get(TargetOpcode::COPY), ResultReg) 1484 .addReg(Op0, getKillRegState(Op0IsKill), Idx); 1485 return ResultReg; 1486 } 1487 1488 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op 1489 /// with all but the least significant bit set to zero. 1490 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 1491 return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 1492 } 1493 1494 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 1495 /// Emit code to ensure constants are copied into registers when needed. 1496 /// Remember the virtual registers that need to be added to the Machine PHI 1497 /// nodes as input. We cannot just directly add them, because expansion 1498 /// might result in multiple MBB's for one BB. As such, the start of the 1499 /// BB might correspond to a different MBB than the end. 1500 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 1501 const TerminatorInst *TI = LLVMBB->getTerminator(); 1502 1503 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 1504 unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 1505 1506 // Check successor nodes' PHI nodes that expect a constant to be available 1507 // from this block. 1508 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 1509 const BasicBlock *SuccBB = TI->getSuccessor(succ); 1510 if (!isa<PHINode>(SuccBB->begin())) continue; 1511 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 1512 1513 // If this terminator has multiple identical successors (common for 1514 // switches), only handle each succ once. 1515 if (!SuccsHandled.insert(SuccMBB)) continue; 1516 1517 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 1518 1519 // At this point we know that there is a 1-1 correspondence between LLVM PHI 1520 // nodes and Machine PHI nodes, but the incoming operands have not been 1521 // emitted yet. 1522 for (BasicBlock::const_iterator I = SuccBB->begin(); 1523 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1524 1525 // Ignore dead phi's. 1526 if (PN->use_empty()) continue; 1527 1528 // Only handle legal types. Two interesting things to note here. First, 1529 // by bailing out early, we may leave behind some dead instructions, 1530 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 1531 // own moves. Second, this check is necessary because FastISel doesn't 1532 // use CreateRegs to create registers, so it always creates 1533 // exactly one register for each non-void instruction. 1534 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 1535 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 1536 // Handle integer promotions, though, because they're common and easy. 1537 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 1538 VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT); 1539 else { 1540 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 1541 return false; 1542 } 1543 } 1544 1545 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 1546 1547 // Set the DebugLoc for the copy. Prefer the location of the operand 1548 // if there is one; use the location of the PHI otherwise. 1549 DbgLoc = PN->getDebugLoc(); 1550 if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp)) 1551 DbgLoc = Inst->getDebugLoc(); 1552 1553 unsigned Reg = getRegForValue(PHIOp); 1554 if (Reg == 0) { 1555 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 1556 return false; 1557 } 1558 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 1559 DbgLoc = DebugLoc(); 1560 } 1561 } 1562 1563 return true; 1564 } 1565 1566 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 1567 assert(LI->hasOneUse() && 1568 "tryToFoldLoad expected a LoadInst with a single use"); 1569 // We know that the load has a single use, but don't know what it is. If it 1570 // isn't one of the folded instructions, then we can't succeed here. Handle 1571 // this by scanning the single-use users of the load until we get to FoldInst. 1572 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 1573 1574 const Instruction *TheUser = LI->user_back(); 1575 while (TheUser != FoldInst && // Scan up until we find FoldInst. 1576 // Stay in the right block. 1577 TheUser->getParent() == FoldInst->getParent() && 1578 --MaxUsers) { // Don't scan too far. 1579 // If there are multiple or no uses of this instruction, then bail out. 1580 if (!TheUser->hasOneUse()) 1581 return false; 1582 1583 TheUser = TheUser->user_back(); 1584 } 1585 1586 // If we didn't find the fold instruction, then we failed to collapse the 1587 // sequence. 1588 if (TheUser != FoldInst) 1589 return false; 1590 1591 // Don't try to fold volatile loads. Target has to deal with alignment 1592 // constraints. 1593 if (LI->isVolatile()) 1594 return false; 1595 1596 // Figure out which vreg this is going into. If there is no assigned vreg yet 1597 // then there actually was no reference to it. Perhaps the load is referenced 1598 // by a dead instruction. 1599 unsigned LoadReg = getRegForValue(LI); 1600 if (LoadReg == 0) 1601 return false; 1602 1603 // We can't fold if this vreg has no uses or more than one use. Multiple uses 1604 // may mean that the instruction got lowered to multiple MIs, or the use of 1605 // the loaded value ended up being multiple operands of the result. 1606 if (!MRI.hasOneUse(LoadReg)) 1607 return false; 1608 1609 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 1610 MachineInstr *User = RI->getParent(); 1611 1612 // Set the insertion point properly. Folding the load can cause generation of 1613 // other random instructions (like sign extends) for addressing modes; make 1614 // sure they get inserted in a logical place before the new instruction. 1615 FuncInfo.InsertPt = User; 1616 FuncInfo.MBB = User->getParent(); 1617 1618 // Ask the target to try folding the load. 1619 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 1620 } 1621 1622 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 1623 // Must be an add. 1624 if (!isa<AddOperator>(Add)) 1625 return false; 1626 // Type size needs to match. 1627 if (DL.getTypeSizeInBits(GEP->getType()) != 1628 DL.getTypeSizeInBits(Add->getType())) 1629 return false; 1630 // Must be in the same basic block. 1631 if (isa<Instruction>(Add) && 1632 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 1633 return false; 1634 // Must have a constant operand. 1635 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 1636 } 1637 1638