1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/CodeGen/Analysis.h" 43 #include "llvm/ADT/Optional.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Analysis/BranchProbabilityInfo.h" 46 #include "llvm/Analysis/Loads.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/CodeGen/Analysis.h" 49 #include "llvm/CodeGen/FastISel.h" 50 #include "llvm/CodeGen/FunctionLoweringInfo.h" 51 #include "llvm/CodeGen/MachineFrameInfo.h" 52 #include "llvm/CodeGen/MachineInstrBuilder.h" 53 #include "llvm/CodeGen/MachineModuleInfo.h" 54 #include "llvm/CodeGen/MachineRegisterInfo.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DebugInfo.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Operator.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Target/TargetInstrInfo.h" 67 #include "llvm/Target/TargetLowering.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include "llvm/Target/TargetSubtargetInfo.h" 70 using namespace llvm; 71 72 #define DEBUG_TYPE "isel" 73 74 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 75 "target-independent selector"); 76 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 77 "target-specific selector"); 78 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 79 80 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS, 81 unsigned AttrIdx) { 82 IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 83 IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 84 IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 85 IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 86 IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 87 IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 88 IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 89 IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 90 Alignment = CS->getParamAlignment(AttrIdx); 91 } 92 93 /// Set the current block to which generated machine instructions will be 94 /// appended, and clear the local CSE map. 95 void FastISel::startNewBlock() { 96 LocalValueMap.clear(); 97 98 // Instructions are appended to FuncInfo.MBB. If the basic block already 99 // contains labels or copies, use the last instruction as the last local 100 // value. 101 EmitStartPt = nullptr; 102 if (!FuncInfo.MBB->empty()) 103 EmitStartPt = &FuncInfo.MBB->back(); 104 LastLocalValue = EmitStartPt; 105 } 106 107 bool FastISel::lowerArguments() { 108 if (!FuncInfo.CanLowerReturn) 109 // Fallback to SDISel argument lowering code to deal with sret pointer 110 // parameter. 111 return false; 112 113 if (!fastLowerArguments()) 114 return false; 115 116 // Enter arguments into ValueMap for uses in non-entry BBs. 117 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 118 E = FuncInfo.Fn->arg_end(); 119 I != E; ++I) { 120 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I); 121 assert(VI != LocalValueMap.end() && "Missed an argument?"); 122 FuncInfo.ValueMap[I] = VI->second; 123 } 124 return true; 125 } 126 127 void FastISel::flushLocalValueMap() { 128 LocalValueMap.clear(); 129 LastLocalValue = EmitStartPt; 130 recomputeInsertPt(); 131 SavedInsertPt = FuncInfo.InsertPt; 132 } 133 134 bool FastISel::hasTrivialKill(const Value *V) { 135 // Don't consider constants or arguments to have trivial kills. 136 const Instruction *I = dyn_cast<Instruction>(V); 137 if (!I) 138 return false; 139 140 // No-op casts are trivially coalesced by fast-isel. 141 if (const auto *Cast = dyn_cast<CastInst>(I)) 142 if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) && 143 !hasTrivialKill(Cast->getOperand(0))) 144 return false; 145 146 // Even the value might have only one use in the LLVM IR, it is possible that 147 // FastISel might fold the use into another instruction and now there is more 148 // than one use at the Machine Instruction level. 149 unsigned Reg = lookUpRegForValue(V); 150 if (Reg && !MRI.use_empty(Reg)) 151 return false; 152 153 // GEPs with all zero indices are trivially coalesced by fast-isel. 154 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 155 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 156 return false; 157 158 // Only instructions with a single use in the same basic block are considered 159 // to have trivial kills. 160 return I->hasOneUse() && 161 !(I->getOpcode() == Instruction::BitCast || 162 I->getOpcode() == Instruction::PtrToInt || 163 I->getOpcode() == Instruction::IntToPtr) && 164 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 165 } 166 167 unsigned FastISel::getRegForValue(const Value *V) { 168 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); 169 // Don't handle non-simple values in FastISel. 170 if (!RealVT.isSimple()) 171 return 0; 172 173 // Ignore illegal types. We must do this before looking up the value 174 // in ValueMap because Arguments are given virtual registers regardless 175 // of whether FastISel can handle them. 176 MVT VT = RealVT.getSimpleVT(); 177 if (!TLI.isTypeLegal(VT)) { 178 // Handle integer promotions, though, because they're common and easy. 179 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 180 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 181 else 182 return 0; 183 } 184 185 // Look up the value to see if we already have a register for it. 186 unsigned Reg = lookUpRegForValue(V); 187 if (Reg) 188 return Reg; 189 190 // In bottom-up mode, just create the virtual register which will be used 191 // to hold the value. It will be materialized later. 192 if (isa<Instruction>(V) && 193 (!isa<AllocaInst>(V) || 194 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 195 return FuncInfo.InitializeRegForValue(V); 196 197 SavePoint SaveInsertPt = enterLocalValueArea(); 198 199 // Materialize the value in a register. Emit any instructions in the 200 // local value area. 201 Reg = materializeRegForValue(V, VT); 202 203 leaveLocalValueArea(SaveInsertPt); 204 205 return Reg; 206 } 207 208 unsigned FastISel::materializeConstant(const Value *V, MVT VT) { 209 unsigned Reg = 0; 210 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 211 if (CI->getValue().getActiveBits() <= 64) 212 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 213 } else if (isa<AllocaInst>(V)) 214 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 215 else if (isa<ConstantPointerNull>(V)) 216 // Translate this as an integer zero so that it can be 217 // local-CSE'd with actual integer zeros. 218 Reg = getRegForValue( 219 Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 220 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 221 if (CF->isNullValue()) 222 Reg = fastMaterializeFloatZero(CF); 223 else 224 // Try to emit the constant directly. 225 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 226 227 if (!Reg) { 228 // Try to emit the constant by using an integer constant with a cast. 229 const APFloat &Flt = CF->getValueAPF(); 230 EVT IntVT = TLI.getPointerTy(); 231 232 uint64_t x[2]; 233 uint32_t IntBitWidth = IntVT.getSizeInBits(); 234 bool isExact; 235 (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 236 APFloat::rmTowardZero, &isExact); 237 if (isExact) { 238 APInt IntVal(IntBitWidth, x); 239 240 unsigned IntegerReg = 241 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 242 if (IntegerReg != 0) 243 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 244 /*Kill=*/false); 245 } 246 } 247 } else if (const auto *Op = dyn_cast<Operator>(V)) { 248 if (!selectOperator(Op, Op->getOpcode())) 249 if (!isa<Instruction>(Op) || 250 !fastSelectInstruction(cast<Instruction>(Op))) 251 return 0; 252 Reg = lookUpRegForValue(Op); 253 } else if (isa<UndefValue>(V)) { 254 Reg = createResultReg(TLI.getRegClassFor(VT)); 255 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 256 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 257 } 258 return Reg; 259 } 260 261 /// Helper for getRegForValue. This function is called when the value isn't 262 /// already available in a register and must be materialized with new 263 /// instructions. 264 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 265 unsigned Reg = 0; 266 // Give the target-specific code a try first. 267 if (isa<Constant>(V)) 268 Reg = fastMaterializeConstant(cast<Constant>(V)); 269 270 // If target-specific code couldn't or didn't want to handle the value, then 271 // give target-independent code a try. 272 if (!Reg) 273 Reg = materializeConstant(V, VT); 274 275 // Don't cache constant materializations in the general ValueMap. 276 // To do so would require tracking what uses they dominate. 277 if (Reg) { 278 LocalValueMap[V] = Reg; 279 LastLocalValue = MRI.getVRegDef(Reg); 280 } 281 return Reg; 282 } 283 284 unsigned FastISel::lookUpRegForValue(const Value *V) { 285 // Look up the value to see if we already have a register for it. We 286 // cache values defined by Instructions across blocks, and other values 287 // only locally. This is because Instructions already have the SSA 288 // def-dominates-use requirement enforced. 289 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 290 if (I != FuncInfo.ValueMap.end()) 291 return I->second; 292 return LocalValueMap[V]; 293 } 294 295 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 296 if (!isa<Instruction>(I)) { 297 LocalValueMap[I] = Reg; 298 return; 299 } 300 301 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 302 if (AssignedReg == 0) 303 // Use the new register. 304 AssignedReg = Reg; 305 else if (Reg != AssignedReg) { 306 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 307 for (unsigned i = 0; i < NumRegs; i++) 308 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 309 310 AssignedReg = Reg; 311 } 312 } 313 314 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 315 unsigned IdxN = getRegForValue(Idx); 316 if (IdxN == 0) 317 // Unhandled operand. Halt "fast" selection and bail. 318 return std::pair<unsigned, bool>(0, false); 319 320 bool IdxNIsKill = hasTrivialKill(Idx); 321 322 // If the index is smaller or larger than intptr_t, truncate or extend it. 323 MVT PtrVT = TLI.getPointerTy(); 324 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 325 if (IdxVT.bitsLT(PtrVT)) { 326 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 327 IdxNIsKill); 328 IdxNIsKill = true; 329 } else if (IdxVT.bitsGT(PtrVT)) { 330 IdxN = 331 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 332 IdxNIsKill = true; 333 } 334 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 335 } 336 337 void FastISel::recomputeInsertPt() { 338 if (getLastLocalValue()) { 339 FuncInfo.InsertPt = getLastLocalValue(); 340 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 341 ++FuncInfo.InsertPt; 342 } else 343 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 344 345 // Now skip past any EH_LABELs, which must remain at the beginning. 346 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 347 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 348 ++FuncInfo.InsertPt; 349 } 350 351 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 352 MachineBasicBlock::iterator E) { 353 assert(I && E && std::distance(I, E) > 0 && "Invalid iterator!"); 354 while (I != E) { 355 MachineInstr *Dead = &*I; 356 ++I; 357 Dead->eraseFromParent(); 358 ++NumFastIselDead; 359 } 360 recomputeInsertPt(); 361 } 362 363 FastISel::SavePoint FastISel::enterLocalValueArea() { 364 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 365 DebugLoc OldDL = DbgLoc; 366 recomputeInsertPt(); 367 DbgLoc = DebugLoc(); 368 SavePoint SP = {OldInsertPt, OldDL}; 369 return SP; 370 } 371 372 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 373 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 374 LastLocalValue = std::prev(FuncInfo.InsertPt); 375 376 // Restore the previous insert position. 377 FuncInfo.InsertPt = OldInsertPt.InsertPt; 378 DbgLoc = OldInsertPt.DL; 379 } 380 381 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 382 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 383 if (VT == MVT::Other || !VT.isSimple()) 384 // Unhandled type. Halt "fast" selection and bail. 385 return false; 386 387 // We only handle legal types. For example, on x86-32 the instruction 388 // selector contains all of the 64-bit instructions from x86-64, 389 // under the assumption that i64 won't be used if the target doesn't 390 // support it. 391 if (!TLI.isTypeLegal(VT)) { 392 // MVT::i1 is special. Allow AND, OR, or XOR because they 393 // don't require additional zeroing, which makes them easy. 394 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 395 ISDOpcode == ISD::XOR)) 396 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 397 else 398 return false; 399 } 400 401 // Check if the first operand is a constant, and handle it as "ri". At -O0, 402 // we don't have anything that canonicalizes operand order. 403 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 404 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 405 unsigned Op1 = getRegForValue(I->getOperand(1)); 406 if (!Op1) 407 return false; 408 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 409 410 unsigned ResultReg = 411 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 412 CI->getZExtValue(), VT.getSimpleVT()); 413 if (!ResultReg) 414 return false; 415 416 // We successfully emitted code for the given LLVM Instruction. 417 updateValueMap(I, ResultReg); 418 return true; 419 } 420 421 unsigned Op0 = getRegForValue(I->getOperand(0)); 422 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 423 return false; 424 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 425 426 // Check if the second operand is a constant and handle it appropriately. 427 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 428 uint64_t Imm = CI->getSExtValue(); 429 430 // Transform "sdiv exact X, 8" -> "sra X, 3". 431 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 432 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 433 Imm = Log2_64(Imm); 434 ISDOpcode = ISD::SRA; 435 } 436 437 // Transform "urem x, pow2" -> "and x, pow2-1". 438 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 439 isPowerOf2_64(Imm)) { 440 --Imm; 441 ISDOpcode = ISD::AND; 442 } 443 444 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 445 Op0IsKill, Imm, VT.getSimpleVT()); 446 if (!ResultReg) 447 return false; 448 449 // We successfully emitted code for the given LLVM Instruction. 450 updateValueMap(I, ResultReg); 451 return true; 452 } 453 454 // Check if the second operand is a constant float. 455 if (const auto *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 456 unsigned ResultReg = fastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 457 ISDOpcode, Op0, Op0IsKill, CF); 458 if (ResultReg) { 459 // We successfully emitted code for the given LLVM Instruction. 460 updateValueMap(I, ResultReg); 461 return true; 462 } 463 } 464 465 unsigned Op1 = getRegForValue(I->getOperand(1)); 466 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 467 return false; 468 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 469 470 // Now we have both operands in registers. Emit the instruction. 471 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 472 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 473 if (!ResultReg) 474 // Target-specific code wasn't able to find a machine opcode for 475 // the given ISD opcode and type. Halt "fast" selection and bail. 476 return false; 477 478 // We successfully emitted code for the given LLVM Instruction. 479 updateValueMap(I, ResultReg); 480 return true; 481 } 482 483 bool FastISel::selectGetElementPtr(const User *I) { 484 unsigned N = getRegForValue(I->getOperand(0)); 485 if (!N) // Unhandled operand. Halt "fast" selection and bail. 486 return false; 487 bool NIsKill = hasTrivialKill(I->getOperand(0)); 488 489 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 490 // into a single N = N + TotalOffset. 491 uint64_t TotalOffs = 0; 492 // FIXME: What's a good SWAG number for MaxOffs? 493 uint64_t MaxOffs = 2048; 494 Type *Ty = I->getOperand(0)->getType(); 495 MVT VT = TLI.getPointerTy(); 496 for (GetElementPtrInst::const_op_iterator OI = I->op_begin() + 1, 497 E = I->op_end(); 498 OI != E; ++OI) { 499 const Value *Idx = *OI; 500 if (auto *StTy = dyn_cast<StructType>(Ty)) { 501 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 502 if (Field) { 503 // N = N + Offset 504 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 505 if (TotalOffs >= MaxOffs) { 506 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 507 if (!N) // Unhandled operand. Halt "fast" selection and bail. 508 return false; 509 NIsKill = true; 510 TotalOffs = 0; 511 } 512 } 513 Ty = StTy->getElementType(Field); 514 } else { 515 Ty = cast<SequentialType>(Ty)->getElementType(); 516 517 // If this is a constant subscript, handle it quickly. 518 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 519 if (CI->isZero()) 520 continue; 521 // N = N + Offset 522 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 523 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 524 if (TotalOffs >= MaxOffs) { 525 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 526 if (!N) // Unhandled operand. Halt "fast" selection and bail. 527 return false; 528 NIsKill = true; 529 TotalOffs = 0; 530 } 531 continue; 532 } 533 if (TotalOffs) { 534 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 535 if (!N) // Unhandled operand. Halt "fast" selection and bail. 536 return false; 537 NIsKill = true; 538 TotalOffs = 0; 539 } 540 541 // N = N + Idx * ElementSize; 542 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 543 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 544 unsigned IdxN = Pair.first; 545 bool IdxNIsKill = Pair.second; 546 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 547 return false; 548 549 if (ElementSize != 1) { 550 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 551 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 552 return false; 553 IdxNIsKill = true; 554 } 555 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 556 if (!N) // Unhandled operand. Halt "fast" selection and bail. 557 return false; 558 } 559 } 560 if (TotalOffs) { 561 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 562 if (!N) // Unhandled operand. Halt "fast" selection and bail. 563 return false; 564 } 565 566 // We successfully emitted code for the given LLVM Instruction. 567 updateValueMap(I, N); 568 return true; 569 } 570 571 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 572 const CallInst *CI, unsigned StartIdx) { 573 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 574 Value *Val = CI->getArgOperand(i); 575 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 576 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 577 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 578 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 579 } else if (isa<ConstantPointerNull>(Val)) { 580 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 581 Ops.push_back(MachineOperand::CreateImm(0)); 582 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 583 // Values coming from a stack location also require a sepcial encoding, 584 // but that is added later on by the target specific frame index 585 // elimination implementation. 586 auto SI = FuncInfo.StaticAllocaMap.find(AI); 587 if (SI != FuncInfo.StaticAllocaMap.end()) 588 Ops.push_back(MachineOperand::CreateFI(SI->second)); 589 else 590 return false; 591 } else { 592 unsigned Reg = getRegForValue(Val); 593 if (!Reg) 594 return false; 595 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 596 } 597 } 598 return true; 599 } 600 601 bool FastISel::selectStackmap(const CallInst *I) { 602 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 603 // [live variables...]) 604 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 605 "Stackmap cannot return a value."); 606 607 // The stackmap intrinsic only records the live variables (the arguments 608 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 609 // intrinsic, this won't be lowered to a function call. This means we don't 610 // have to worry about calling conventions and target-specific lowering code. 611 // Instead we perform the call lowering right here. 612 // 613 // CALLSEQ_START(0) 614 // STACKMAP(id, nbytes, ...) 615 // CALLSEQ_END(0, 0) 616 // 617 SmallVector<MachineOperand, 32> Ops; 618 619 // Add the <id> and <numBytes> constants. 620 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 621 "Expected a constant integer."); 622 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 623 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 624 625 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 626 "Expected a constant integer."); 627 const auto *NumBytes = 628 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 629 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 630 631 // Push live variables for the stack map (skipping the first two arguments 632 // <id> and <numBytes>). 633 if (!addStackMapLiveVars(Ops, I, 2)) 634 return false; 635 636 // We are not adding any register mask info here, because the stackmap doesn't 637 // clobber anything. 638 639 // Add scratch registers as implicit def and early clobber. 640 CallingConv::ID CC = I->getCallingConv(); 641 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 642 for (unsigned i = 0; ScratchRegs[i]; ++i) 643 Ops.push_back(MachineOperand::CreateReg( 644 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 645 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 646 647 // Issue CALLSEQ_START 648 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 649 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) 650 .addImm(0); 651 652 // Issue STACKMAP. 653 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 654 TII.get(TargetOpcode::STACKMAP)); 655 for (auto const &MO : Ops) 656 MIB.addOperand(MO); 657 658 // Issue CALLSEQ_END 659 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 660 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 661 .addImm(0) 662 .addImm(0); 663 664 // Inform the Frame Information that we have a stackmap in this function. 665 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 666 667 return true; 668 } 669 670 /// \brief Lower an argument list according to the target calling convention. 671 /// 672 /// This is a helper for lowering intrinsics that follow a target calling 673 /// convention or require stack pointer adjustment. Only a subset of the 674 /// intrinsic's operands need to participate in the calling convention. 675 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 676 unsigned NumArgs, const Value *Callee, 677 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 678 ArgListTy Args; 679 Args.reserve(NumArgs); 680 681 // Populate the argument list. 682 // Attributes for args start at offset 1, after the return attribute. 683 ImmutableCallSite CS(CI); 684 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 685 ArgI != ArgE; ++ArgI) { 686 Value *V = CI->getOperand(ArgI); 687 688 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 689 690 ArgListEntry Entry; 691 Entry.Val = V; 692 Entry.Ty = V->getType(); 693 Entry.setAttributes(&CS, AttrI); 694 Args.push_back(Entry); 695 } 696 697 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 698 : CI->getType(); 699 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 700 701 return lowerCallTo(CLI); 702 } 703 704 bool FastISel::selectPatchpoint(const CallInst *I) { 705 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 706 // i32 <numBytes>, 707 // i8* <target>, 708 // i32 <numArgs>, 709 // [Args...], 710 // [live variables...]) 711 CallingConv::ID CC = I->getCallingConv(); 712 bool IsAnyRegCC = CC == CallingConv::AnyReg; 713 bool HasDef = !I->getType()->isVoidTy(); 714 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 715 716 // Get the real number of arguments participating in the call <numArgs> 717 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 718 "Expected a constant integer."); 719 const auto *NumArgsVal = 720 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 721 unsigned NumArgs = NumArgsVal->getZExtValue(); 722 723 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 724 // This includes all meta-operands up to but not including CC. 725 unsigned NumMetaOpers = PatchPointOpers::CCPos; 726 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 727 "Not enough arguments provided to the patchpoint intrinsic"); 728 729 // For AnyRegCC the arguments are lowered later on manually. 730 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 731 CallLoweringInfo CLI; 732 CLI.setIsPatchPoint(); 733 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 734 return false; 735 736 assert(CLI.Call && "No call instruction specified."); 737 738 SmallVector<MachineOperand, 32> Ops; 739 740 // Add an explicit result reg if we use the anyreg calling convention. 741 if (IsAnyRegCC && HasDef) { 742 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 743 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 744 CLI.NumResultRegs = 1; 745 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 746 } 747 748 // Add the <id> and <numBytes> constants. 749 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 750 "Expected a constant integer."); 751 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 752 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 753 754 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 755 "Expected a constant integer."); 756 const auto *NumBytes = 757 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 758 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 759 760 // Add the call target. 761 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 762 uint64_t CalleeConstAddr = 763 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 764 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 765 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 766 if (C->getOpcode() == Instruction::IntToPtr) { 767 uint64_t CalleeConstAddr = 768 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 769 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 770 } else 771 llvm_unreachable("Unsupported ConstantExpr."); 772 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 773 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 774 } else if (isa<ConstantPointerNull>(Callee)) 775 Ops.push_back(MachineOperand::CreateImm(0)); 776 else 777 llvm_unreachable("Unsupported callee address."); 778 779 // Adjust <numArgs> to account for any arguments that have been passed on 780 // the stack instead. 781 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 782 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 783 784 // Add the calling convention 785 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 786 787 // Add the arguments we omitted previously. The register allocator should 788 // place these in any free register. 789 if (IsAnyRegCC) { 790 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 791 unsigned Reg = getRegForValue(I->getArgOperand(i)); 792 if (!Reg) 793 return false; 794 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 795 } 796 } 797 798 // Push the arguments from the call instruction. 799 for (auto Reg : CLI.OutRegs) 800 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 801 802 // Push live variables for the stack map. 803 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 804 return false; 805 806 // Push the register mask info. 807 Ops.push_back(MachineOperand::CreateRegMask( 808 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 809 810 // Add scratch registers as implicit def and early clobber. 811 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 812 for (unsigned i = 0; ScratchRegs[i]; ++i) 813 Ops.push_back(MachineOperand::CreateReg( 814 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 815 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 816 817 // Add implicit defs (return values). 818 for (auto Reg : CLI.InRegs) 819 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 820 /*IsImpl=*/true)); 821 822 // Insert the patchpoint instruction before the call generated by the target. 823 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 824 TII.get(TargetOpcode::PATCHPOINT)); 825 826 for (auto &MO : Ops) 827 MIB.addOperand(MO); 828 829 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 830 831 // Delete the original call instruction. 832 CLI.Call->eraseFromParent(); 833 834 // Inform the Frame Information that we have a patchpoint in this function. 835 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 836 837 if (CLI.NumResultRegs) 838 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 839 return true; 840 } 841 842 /// Returns an AttributeSet representing the attributes applied to the return 843 /// value of the given call. 844 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 845 SmallVector<Attribute::AttrKind, 2> Attrs; 846 if (CLI.RetSExt) 847 Attrs.push_back(Attribute::SExt); 848 if (CLI.RetZExt) 849 Attrs.push_back(Attribute::ZExt); 850 if (CLI.IsInReg) 851 Attrs.push_back(Attribute::InReg); 852 853 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 854 Attrs); 855 } 856 857 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 858 unsigned NumArgs) { 859 ImmutableCallSite CS(CI); 860 861 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 862 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 863 Type *RetTy = FTy->getReturnType(); 864 865 ArgListTy Args; 866 Args.reserve(NumArgs); 867 868 // Populate the argument list. 869 // Attributes for args start at offset 1, after the return attribute. 870 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 871 Value *V = CI->getOperand(ArgI); 872 873 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 874 875 ArgListEntry Entry; 876 Entry.Val = V; 877 Entry.Ty = V->getType(); 878 Entry.setAttributes(&CS, ArgI + 1); 879 Args.push_back(Entry); 880 } 881 882 CallLoweringInfo CLI; 883 CLI.setCallee(RetTy, FTy, SymName, std::move(Args), CS, NumArgs); 884 885 return lowerCallTo(CLI); 886 } 887 888 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 889 // Handle the incoming return values from the call. 890 CLI.clearIns(); 891 SmallVector<EVT, 4> RetTys; 892 ComputeValueVTs(TLI, CLI.RetTy, RetTys); 893 894 SmallVector<ISD::OutputArg, 4> Outs; 895 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI); 896 897 bool CanLowerReturn = TLI.CanLowerReturn( 898 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 899 900 // FIXME: sret demotion isn't supported yet - bail out. 901 if (!CanLowerReturn) 902 return false; 903 904 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 905 EVT VT = RetTys[I]; 906 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 907 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 908 for (unsigned i = 0; i != NumRegs; ++i) { 909 ISD::InputArg MyFlags; 910 MyFlags.VT = RegisterVT; 911 MyFlags.ArgVT = VT; 912 MyFlags.Used = CLI.IsReturnValueUsed; 913 if (CLI.RetSExt) 914 MyFlags.Flags.setSExt(); 915 if (CLI.RetZExt) 916 MyFlags.Flags.setZExt(); 917 if (CLI.IsInReg) 918 MyFlags.Flags.setInReg(); 919 CLI.Ins.push_back(MyFlags); 920 } 921 } 922 923 // Handle all of the outgoing arguments. 924 CLI.clearOuts(); 925 for (auto &Arg : CLI.getArgs()) { 926 Type *FinalType = Arg.Ty; 927 if (Arg.IsByVal) 928 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 929 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 930 FinalType, CLI.CallConv, CLI.IsVarArg); 931 932 ISD::ArgFlagsTy Flags; 933 if (Arg.IsZExt) 934 Flags.setZExt(); 935 if (Arg.IsSExt) 936 Flags.setSExt(); 937 if (Arg.IsInReg) 938 Flags.setInReg(); 939 if (Arg.IsSRet) 940 Flags.setSRet(); 941 if (Arg.IsByVal) 942 Flags.setByVal(); 943 if (Arg.IsInAlloca) { 944 Flags.setInAlloca(); 945 // Set the byval flag for CCAssignFn callbacks that don't know about 946 // inalloca. This way we can know how many bytes we should've allocated 947 // and how many bytes a callee cleanup function will pop. If we port 948 // inalloca to more targets, we'll have to add custom inalloca handling in 949 // the various CC lowering callbacks. 950 Flags.setByVal(); 951 } 952 if (Arg.IsByVal || Arg.IsInAlloca) { 953 PointerType *Ty = cast<PointerType>(Arg.Ty); 954 Type *ElementTy = Ty->getElementType(); 955 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 956 // For ByVal, alignment should come from FE. BE will guess if this info is 957 // not there, but there are cases it cannot get right. 958 unsigned FrameAlign = Arg.Alignment; 959 if (!FrameAlign) 960 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 961 Flags.setByValSize(FrameSize); 962 Flags.setByValAlign(FrameAlign); 963 } 964 if (Arg.IsNest) 965 Flags.setNest(); 966 if (NeedsRegBlock) 967 Flags.setInConsecutiveRegs(); 968 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 969 Flags.setOrigAlign(OriginalAlignment); 970 971 CLI.OutVals.push_back(Arg.Val); 972 CLI.OutFlags.push_back(Flags); 973 } 974 975 if (!fastLowerCall(CLI)) 976 return false; 977 978 // Set all unused physreg defs as dead. 979 assert(CLI.Call && "No call instruction specified."); 980 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 981 982 if (CLI.NumResultRegs && CLI.CS) 983 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 984 985 return true; 986 } 987 988 bool FastISel::lowerCall(const CallInst *CI) { 989 ImmutableCallSite CS(CI); 990 991 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 992 FunctionType *FuncTy = cast<FunctionType>(PT->getElementType()); 993 Type *RetTy = FuncTy->getReturnType(); 994 995 ArgListTy Args; 996 ArgListEntry Entry; 997 Args.reserve(CS.arg_size()); 998 999 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1000 i != e; ++i) { 1001 Value *V = *i; 1002 1003 // Skip empty types 1004 if (V->getType()->isEmptyTy()) 1005 continue; 1006 1007 Entry.Val = V; 1008 Entry.Ty = V->getType(); 1009 1010 // Skip the first return-type Attribute to get to params. 1011 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 1012 Args.push_back(Entry); 1013 } 1014 1015 // Check if target-independent constraints permit a tail call here. 1016 // Target-dependent constraints are checked within fastLowerCall. 1017 bool IsTailCall = CI->isTailCall(); 1018 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1019 IsTailCall = false; 1020 1021 CallLoweringInfo CLI; 1022 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1023 .setTailCall(IsTailCall); 1024 1025 return lowerCallTo(CLI); 1026 } 1027 1028 bool FastISel::selectCall(const User *I) { 1029 const CallInst *Call = cast<CallInst>(I); 1030 1031 // Handle simple inline asms. 1032 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1033 // If the inline asm has side effects, then make sure that no local value 1034 // lives across by flushing the local value map. 1035 if (IA->hasSideEffects()) 1036 flushLocalValueMap(); 1037 1038 // Don't attempt to handle constraints. 1039 if (!IA->getConstraintString().empty()) 1040 return false; 1041 1042 unsigned ExtraInfo = 0; 1043 if (IA->hasSideEffects()) 1044 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1045 if (IA->isAlignStack()) 1046 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1047 1048 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1049 TII.get(TargetOpcode::INLINEASM)) 1050 .addExternalSymbol(IA->getAsmString().c_str()) 1051 .addImm(ExtraInfo); 1052 return true; 1053 } 1054 1055 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1056 ComputeUsesVAFloatArgument(*Call, &MMI); 1057 1058 // Handle intrinsic function calls. 1059 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1060 return selectIntrinsicCall(II); 1061 1062 // Usually, it does not make sense to initialize a value, 1063 // make an unrelated function call and use the value, because 1064 // it tends to be spilled on the stack. So, we move the pointer 1065 // to the last local value to the beginning of the block, so that 1066 // all the values which have already been materialized, 1067 // appear after the call. It also makes sense to skip intrinsics 1068 // since they tend to be inlined. 1069 flushLocalValueMap(); 1070 1071 return lowerCall(Call); 1072 } 1073 1074 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1075 switch (II->getIntrinsicID()) { 1076 default: 1077 break; 1078 // At -O0 we don't care about the lifetime intrinsics. 1079 case Intrinsic::lifetime_start: 1080 case Intrinsic::lifetime_end: 1081 // The donothing intrinsic does, well, nothing. 1082 case Intrinsic::donothing: 1083 return true; 1084 case Intrinsic::eh_actions: { 1085 unsigned ResultReg = getRegForValue(UndefValue::get(II->getType())); 1086 if (!ResultReg) 1087 return false; 1088 updateValueMap(II, ResultReg); 1089 return true; 1090 } 1091 case Intrinsic::dbg_declare: { 1092 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1093 assert(DI->getVariable() && "Missing variable"); 1094 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1095 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1096 return true; 1097 } 1098 1099 const Value *Address = DI->getAddress(); 1100 if (!Address || isa<UndefValue>(Address)) { 1101 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1102 return true; 1103 } 1104 1105 unsigned Offset = 0; 1106 Optional<MachineOperand> Op; 1107 if (const auto *Arg = dyn_cast<Argument>(Address)) 1108 // Some arguments' frame index is recorded during argument lowering. 1109 Offset = FuncInfo.getArgumentFrameIndex(Arg); 1110 if (Offset) 1111 Op = MachineOperand::CreateFI(Offset); 1112 if (!Op) 1113 if (unsigned Reg = lookUpRegForValue(Address)) 1114 Op = MachineOperand::CreateReg(Reg, false); 1115 1116 // If we have a VLA that has a "use" in a metadata node that's then used 1117 // here but it has no other uses, then we have a problem. E.g., 1118 // 1119 // int foo (const int *x) { 1120 // char a[*x]; 1121 // return 0; 1122 // } 1123 // 1124 // If we assign 'a' a vreg and fast isel later on has to use the selection 1125 // DAG isel, it will want to copy the value to the vreg. However, there are 1126 // no uses, which goes counter to what selection DAG isel expects. 1127 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1128 (!isa<AllocaInst>(Address) || 1129 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1130 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1131 false); 1132 1133 if (Op) { 1134 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1135 "Expected inlined-at fields to agree"); 1136 if (Op->isReg()) { 1137 Op->setIsDebug(true); 1138 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1139 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0, 1140 DI->getVariable(), DI->getExpression()); 1141 } else 1142 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1143 TII.get(TargetOpcode::DBG_VALUE)) 1144 .addOperand(*Op) 1145 .addImm(0) 1146 .addMetadata(DI->getVariable()) 1147 .addMetadata(DI->getExpression()); 1148 } else { 1149 // We can't yet handle anything else here because it would require 1150 // generating code, thus altering codegen because of debug info. 1151 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1152 } 1153 return true; 1154 } 1155 case Intrinsic::dbg_value: { 1156 // This form of DBG_VALUE is target-independent. 1157 const DbgValueInst *DI = cast<DbgValueInst>(II); 1158 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1159 const Value *V = DI->getValue(); 1160 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1161 "Expected inlined-at fields to agree"); 1162 if (!V) { 1163 // Currently the optimizer can produce this; insert an undef to 1164 // help debugging. Probably the optimizer should not do this. 1165 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1166 .addReg(0U) 1167 .addImm(DI->getOffset()) 1168 .addMetadata(DI->getVariable()) 1169 .addMetadata(DI->getExpression()); 1170 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1171 if (CI->getBitWidth() > 64) 1172 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1173 .addCImm(CI) 1174 .addImm(DI->getOffset()) 1175 .addMetadata(DI->getVariable()) 1176 .addMetadata(DI->getExpression()); 1177 else 1178 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1179 .addImm(CI->getZExtValue()) 1180 .addImm(DI->getOffset()) 1181 .addMetadata(DI->getVariable()) 1182 .addMetadata(DI->getExpression()); 1183 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1184 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1185 .addFPImm(CF) 1186 .addImm(DI->getOffset()) 1187 .addMetadata(DI->getVariable()) 1188 .addMetadata(DI->getExpression()); 1189 } else if (unsigned Reg = lookUpRegForValue(V)) { 1190 // FIXME: This does not handle register-indirect values at offset 0. 1191 bool IsIndirect = DI->getOffset() != 0; 1192 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1193 DI->getOffset(), DI->getVariable(), DI->getExpression()); 1194 } else { 1195 // We can't yet handle anything else here because it would require 1196 // generating code, thus altering codegen because of debug info. 1197 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1198 } 1199 return true; 1200 } 1201 case Intrinsic::objectsize: { 1202 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1203 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1204 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1205 unsigned ResultReg = getRegForValue(ResCI); 1206 if (!ResultReg) 1207 return false; 1208 updateValueMap(II, ResultReg); 1209 return true; 1210 } 1211 case Intrinsic::expect: { 1212 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1213 if (!ResultReg) 1214 return false; 1215 updateValueMap(II, ResultReg); 1216 return true; 1217 } 1218 case Intrinsic::experimental_stackmap: 1219 return selectStackmap(II); 1220 case Intrinsic::experimental_patchpoint_void: 1221 case Intrinsic::experimental_patchpoint_i64: 1222 return selectPatchpoint(II); 1223 } 1224 1225 return fastLowerIntrinsicCall(II); 1226 } 1227 1228 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1229 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1230 EVT DstVT = TLI.getValueType(I->getType()); 1231 1232 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1233 !DstVT.isSimple()) 1234 // Unhandled type. Halt "fast" selection and bail. 1235 return false; 1236 1237 // Check if the destination type is legal. 1238 if (!TLI.isTypeLegal(DstVT)) 1239 return false; 1240 1241 // Check if the source operand is legal. 1242 if (!TLI.isTypeLegal(SrcVT)) 1243 return false; 1244 1245 unsigned InputReg = getRegForValue(I->getOperand(0)); 1246 if (!InputReg) 1247 // Unhandled operand. Halt "fast" selection and bail. 1248 return false; 1249 1250 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1251 1252 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1253 Opcode, InputReg, InputRegIsKill); 1254 if (!ResultReg) 1255 return false; 1256 1257 updateValueMap(I, ResultReg); 1258 return true; 1259 } 1260 1261 bool FastISel::selectBitCast(const User *I) { 1262 // If the bitcast doesn't change the type, just use the operand value. 1263 if (I->getType() == I->getOperand(0)->getType()) { 1264 unsigned Reg = getRegForValue(I->getOperand(0)); 1265 if (!Reg) 1266 return false; 1267 updateValueMap(I, Reg); 1268 return true; 1269 } 1270 1271 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1272 EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType()); 1273 EVT DstEVT = TLI.getValueType(I->getType()); 1274 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1275 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1276 // Unhandled type. Halt "fast" selection and bail. 1277 return false; 1278 1279 MVT SrcVT = SrcEVT.getSimpleVT(); 1280 MVT DstVT = DstEVT.getSimpleVT(); 1281 unsigned Op0 = getRegForValue(I->getOperand(0)); 1282 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1283 return false; 1284 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1285 1286 // First, try to perform the bitcast by inserting a reg-reg copy. 1287 unsigned ResultReg = 0; 1288 if (SrcVT == DstVT) { 1289 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1290 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1291 // Don't attempt a cross-class copy. It will likely fail. 1292 if (SrcClass == DstClass) { 1293 ResultReg = createResultReg(DstClass); 1294 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1295 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1296 } 1297 } 1298 1299 // If the reg-reg copy failed, select a BITCAST opcode. 1300 if (!ResultReg) 1301 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1302 1303 if (!ResultReg) 1304 return false; 1305 1306 updateValueMap(I, ResultReg); 1307 return true; 1308 } 1309 1310 bool FastISel::selectInstruction(const Instruction *I) { 1311 // Just before the terminator instruction, insert instructions to 1312 // feed PHI nodes in successor blocks. 1313 if (isa<TerminatorInst>(I)) 1314 if (!handlePHINodesInSuccessorBlocks(I->getParent())) 1315 return false; 1316 1317 DbgLoc = I->getDebugLoc(); 1318 1319 SavedInsertPt = FuncInfo.InsertPt; 1320 1321 if (const auto *Call = dyn_cast<CallInst>(I)) { 1322 const Function *F = Call->getCalledFunction(); 1323 LibFunc::Func Func; 1324 1325 // As a special case, don't handle calls to builtin library functions that 1326 // may be translated directly to target instructions. 1327 if (F && !F->hasLocalLinkage() && F->hasName() && 1328 LibInfo->getLibFunc(F->getName(), Func) && 1329 LibInfo->hasOptimizedCodeGen(Func)) 1330 return false; 1331 1332 // Don't handle Intrinsic::trap if a trap funciton is specified. 1333 if (F && F->getIntrinsicID() == Intrinsic::trap && 1334 !TM.Options.getTrapFunctionName().empty()) 1335 return false; 1336 } 1337 1338 // First, try doing target-independent selection. 1339 if (!SkipTargetIndependentISel) { 1340 if (selectOperator(I, I->getOpcode())) { 1341 ++NumFastIselSuccessIndependent; 1342 DbgLoc = DebugLoc(); 1343 return true; 1344 } 1345 // Remove dead code. 1346 recomputeInsertPt(); 1347 if (SavedInsertPt != FuncInfo.InsertPt) 1348 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1349 SavedInsertPt = FuncInfo.InsertPt; 1350 } 1351 // Next, try calling the target to attempt to handle the instruction. 1352 if (fastSelectInstruction(I)) { 1353 ++NumFastIselSuccessTarget; 1354 DbgLoc = DebugLoc(); 1355 return true; 1356 } 1357 // Remove dead code. 1358 recomputeInsertPt(); 1359 if (SavedInsertPt != FuncInfo.InsertPt) 1360 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1361 1362 DbgLoc = DebugLoc(); 1363 // Undo phi node updates, because they will be added again by SelectionDAG. 1364 if (isa<TerminatorInst>(I)) 1365 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1366 return false; 1367 } 1368 1369 /// Emit an unconditional branch to the given block, unless it is the immediate 1370 /// (fall-through) successor, and update the CFG. 1371 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) { 1372 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1373 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1374 // For more accurate line information if this is the only instruction 1375 // in the block then emit it, otherwise we have the unconditional 1376 // fall-through case, which needs no instructions. 1377 } else { 1378 // The unconditional branch case. 1379 TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr, 1380 SmallVector<MachineOperand, 0>(), DbgLoc); 1381 } 1382 uint32_t BranchWeight = 0; 1383 if (FuncInfo.BPI) 1384 BranchWeight = FuncInfo.BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(), 1385 MSucc->getBasicBlock()); 1386 FuncInfo.MBB->addSuccessor(MSucc, BranchWeight); 1387 } 1388 1389 /// Emit an FNeg operation. 1390 bool FastISel::selectFNeg(const User *I) { 1391 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1392 if (!OpReg) 1393 return false; 1394 bool OpRegIsKill = hasTrivialKill(I); 1395 1396 // If the target has ISD::FNEG, use it. 1397 EVT VT = TLI.getValueType(I->getType()); 1398 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1399 OpReg, OpRegIsKill); 1400 if (ResultReg) { 1401 updateValueMap(I, ResultReg); 1402 return true; 1403 } 1404 1405 // Bitcast the value to integer, twiddle the sign bit with xor, 1406 // and then bitcast it back to floating-point. 1407 if (VT.getSizeInBits() > 64) 1408 return false; 1409 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1410 if (!TLI.isTypeLegal(IntVT)) 1411 return false; 1412 1413 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1414 ISD::BITCAST, OpReg, OpRegIsKill); 1415 if (!IntReg) 1416 return false; 1417 1418 unsigned IntResultReg = fastEmit_ri_( 1419 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1420 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1421 if (!IntResultReg) 1422 return false; 1423 1424 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1425 IntResultReg, /*IsKill=*/true); 1426 if (!ResultReg) 1427 return false; 1428 1429 updateValueMap(I, ResultReg); 1430 return true; 1431 } 1432 1433 bool FastISel::selectExtractValue(const User *U) { 1434 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1435 if (!EVI) 1436 return false; 1437 1438 // Make sure we only try to handle extracts with a legal result. But also 1439 // allow i1 because it's easy. 1440 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true); 1441 if (!RealVT.isSimple()) 1442 return false; 1443 MVT VT = RealVT.getSimpleVT(); 1444 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1445 return false; 1446 1447 const Value *Op0 = EVI->getOperand(0); 1448 Type *AggTy = Op0->getType(); 1449 1450 // Get the base result register. 1451 unsigned ResultReg; 1452 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1453 if (I != FuncInfo.ValueMap.end()) 1454 ResultReg = I->second; 1455 else if (isa<Instruction>(Op0)) 1456 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1457 else 1458 return false; // fast-isel can't handle aggregate constants at the moment 1459 1460 // Get the actual result register, which is an offset from the base register. 1461 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1462 1463 SmallVector<EVT, 4> AggValueVTs; 1464 ComputeValueVTs(TLI, AggTy, AggValueVTs); 1465 1466 for (unsigned i = 0; i < VTIndex; i++) 1467 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1468 1469 updateValueMap(EVI, ResultReg); 1470 return true; 1471 } 1472 1473 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1474 switch (Opcode) { 1475 case Instruction::Add: 1476 return selectBinaryOp(I, ISD::ADD); 1477 case Instruction::FAdd: 1478 return selectBinaryOp(I, ISD::FADD); 1479 case Instruction::Sub: 1480 return selectBinaryOp(I, ISD::SUB); 1481 case Instruction::FSub: 1482 // FNeg is currently represented in LLVM IR as a special case of FSub. 1483 if (BinaryOperator::isFNeg(I)) 1484 return selectFNeg(I); 1485 return selectBinaryOp(I, ISD::FSUB); 1486 case Instruction::Mul: 1487 return selectBinaryOp(I, ISD::MUL); 1488 case Instruction::FMul: 1489 return selectBinaryOp(I, ISD::FMUL); 1490 case Instruction::SDiv: 1491 return selectBinaryOp(I, ISD::SDIV); 1492 case Instruction::UDiv: 1493 return selectBinaryOp(I, ISD::UDIV); 1494 case Instruction::FDiv: 1495 return selectBinaryOp(I, ISD::FDIV); 1496 case Instruction::SRem: 1497 return selectBinaryOp(I, ISD::SREM); 1498 case Instruction::URem: 1499 return selectBinaryOp(I, ISD::UREM); 1500 case Instruction::FRem: 1501 return selectBinaryOp(I, ISD::FREM); 1502 case Instruction::Shl: 1503 return selectBinaryOp(I, ISD::SHL); 1504 case Instruction::LShr: 1505 return selectBinaryOp(I, ISD::SRL); 1506 case Instruction::AShr: 1507 return selectBinaryOp(I, ISD::SRA); 1508 case Instruction::And: 1509 return selectBinaryOp(I, ISD::AND); 1510 case Instruction::Or: 1511 return selectBinaryOp(I, ISD::OR); 1512 case Instruction::Xor: 1513 return selectBinaryOp(I, ISD::XOR); 1514 1515 case Instruction::GetElementPtr: 1516 return selectGetElementPtr(I); 1517 1518 case Instruction::Br: { 1519 const BranchInst *BI = cast<BranchInst>(I); 1520 1521 if (BI->isUnconditional()) { 1522 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1523 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1524 fastEmitBranch(MSucc, BI->getDebugLoc()); 1525 return true; 1526 } 1527 1528 // Conditional branches are not handed yet. 1529 // Halt "fast" selection and bail. 1530 return false; 1531 } 1532 1533 case Instruction::Unreachable: 1534 if (TM.Options.TrapUnreachable) 1535 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1536 else 1537 return true; 1538 1539 case Instruction::Alloca: 1540 // FunctionLowering has the static-sized case covered. 1541 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1542 return true; 1543 1544 // Dynamic-sized alloca is not handled yet. 1545 return false; 1546 1547 case Instruction::Call: 1548 return selectCall(I); 1549 1550 case Instruction::BitCast: 1551 return selectBitCast(I); 1552 1553 case Instruction::FPToSI: 1554 return selectCast(I, ISD::FP_TO_SINT); 1555 case Instruction::ZExt: 1556 return selectCast(I, ISD::ZERO_EXTEND); 1557 case Instruction::SExt: 1558 return selectCast(I, ISD::SIGN_EXTEND); 1559 case Instruction::Trunc: 1560 return selectCast(I, ISD::TRUNCATE); 1561 case Instruction::SIToFP: 1562 return selectCast(I, ISD::SINT_TO_FP); 1563 1564 case Instruction::IntToPtr: // Deliberate fall-through. 1565 case Instruction::PtrToInt: { 1566 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1567 EVT DstVT = TLI.getValueType(I->getType()); 1568 if (DstVT.bitsGT(SrcVT)) 1569 return selectCast(I, ISD::ZERO_EXTEND); 1570 if (DstVT.bitsLT(SrcVT)) 1571 return selectCast(I, ISD::TRUNCATE); 1572 unsigned Reg = getRegForValue(I->getOperand(0)); 1573 if (!Reg) 1574 return false; 1575 updateValueMap(I, Reg); 1576 return true; 1577 } 1578 1579 case Instruction::ExtractValue: 1580 return selectExtractValue(I); 1581 1582 case Instruction::PHI: 1583 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1584 1585 default: 1586 // Unhandled instruction. Halt "fast" selection and bail. 1587 return false; 1588 } 1589 } 1590 1591 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1592 const TargetLibraryInfo *LibInfo, 1593 bool SkipTargetIndependentISel) 1594 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1595 MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1596 TM(FuncInfo.MF->getTarget()), DL(*TM.getDataLayout()), 1597 TII(*MF->getSubtarget().getInstrInfo()), 1598 TLI(*MF->getSubtarget().getTargetLowering()), 1599 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1600 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1601 1602 FastISel::~FastISel() {} 1603 1604 bool FastISel::fastLowerArguments() { return false; } 1605 1606 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1607 1608 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1609 return false; 1610 } 1611 1612 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1613 1614 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1615 bool /*Op0IsKill*/) { 1616 return 0; 1617 } 1618 1619 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1620 bool /*Op0IsKill*/, unsigned /*Op1*/, 1621 bool /*Op1IsKill*/) { 1622 return 0; 1623 } 1624 1625 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1626 return 0; 1627 } 1628 1629 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1630 const ConstantFP * /*FPImm*/) { 1631 return 0; 1632 } 1633 1634 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1635 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1636 return 0; 1637 } 1638 1639 unsigned FastISel::fastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/, 1640 bool /*Op0IsKill*/, 1641 const ConstantFP * /*FPImm*/) { 1642 return 0; 1643 } 1644 1645 unsigned FastISel::fastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/, 1646 bool /*Op0IsKill*/, unsigned /*Op1*/, 1647 bool /*Op1IsKill*/, uint64_t /*Imm*/) { 1648 return 0; 1649 } 1650 1651 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1652 /// instruction with an immediate operand using fastEmit_ri. 1653 /// If that fails, it materializes the immediate into a register and try 1654 /// fastEmit_rr instead. 1655 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1656 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1657 // If this is a multiply by a power of two, emit this as a shift left. 1658 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1659 Opcode = ISD::SHL; 1660 Imm = Log2_64(Imm); 1661 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1662 // div x, 8 -> srl x, 3 1663 Opcode = ISD::SRL; 1664 Imm = Log2_64(Imm); 1665 } 1666 1667 // Horrible hack (to be removed), check to make sure shift amounts are 1668 // in-range. 1669 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1670 Imm >= VT.getSizeInBits()) 1671 return 0; 1672 1673 // First check if immediate type is legal. If not, we can't use the ri form. 1674 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1675 if (ResultReg) 1676 return ResultReg; 1677 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1678 if (!MaterialReg) { 1679 // This is a bit ugly/slow, but failing here means falling out of 1680 // fast-isel, which would be very slow. 1681 IntegerType *ITy = 1682 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1683 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1684 if (!MaterialReg) 1685 return 0; 1686 } 1687 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, 1688 /*IsKill=*/true); 1689 } 1690 1691 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { 1692 return MRI.createVirtualRegister(RC); 1693 } 1694 1695 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 1696 unsigned OpNum) { 1697 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1698 const TargetRegisterClass *RegClass = 1699 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1700 if (!MRI.constrainRegClass(Op, RegClass)) { 1701 // If it's not legal to COPY between the register classes, something 1702 // has gone very wrong before we got here. 1703 unsigned NewOp = createResultReg(RegClass); 1704 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1705 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1706 return NewOp; 1707 } 1708 } 1709 return Op; 1710 } 1711 1712 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1713 const TargetRegisterClass *RC) { 1714 unsigned ResultReg = createResultReg(RC); 1715 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1716 1717 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1718 return ResultReg; 1719 } 1720 1721 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 1722 const TargetRegisterClass *RC, unsigned Op0, 1723 bool Op0IsKill) { 1724 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1725 1726 unsigned ResultReg = createResultReg(RC); 1727 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1728 1729 if (II.getNumDefs() >= 1) 1730 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1731 .addReg(Op0, getKillRegState(Op0IsKill)); 1732 else { 1733 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1734 .addReg(Op0, getKillRegState(Op0IsKill)); 1735 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1736 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1737 } 1738 1739 return ResultReg; 1740 } 1741 1742 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 1743 const TargetRegisterClass *RC, unsigned Op0, 1744 bool Op0IsKill, unsigned Op1, 1745 bool Op1IsKill) { 1746 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1747 1748 unsigned ResultReg = createResultReg(RC); 1749 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1750 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1751 1752 if (II.getNumDefs() >= 1) 1753 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1754 .addReg(Op0, getKillRegState(Op0IsKill)) 1755 .addReg(Op1, getKillRegState(Op1IsKill)); 1756 else { 1757 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1758 .addReg(Op0, getKillRegState(Op0IsKill)) 1759 .addReg(Op1, getKillRegState(Op1IsKill)); 1760 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1761 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1762 } 1763 return ResultReg; 1764 } 1765 1766 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 1767 const TargetRegisterClass *RC, unsigned Op0, 1768 bool Op0IsKill, unsigned Op1, 1769 bool Op1IsKill, unsigned Op2, 1770 bool Op2IsKill) { 1771 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1772 1773 unsigned ResultReg = createResultReg(RC); 1774 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1775 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1776 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1777 1778 if (II.getNumDefs() >= 1) 1779 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1780 .addReg(Op0, getKillRegState(Op0IsKill)) 1781 .addReg(Op1, getKillRegState(Op1IsKill)) 1782 .addReg(Op2, getKillRegState(Op2IsKill)); 1783 else { 1784 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1785 .addReg(Op0, getKillRegState(Op0IsKill)) 1786 .addReg(Op1, getKillRegState(Op1IsKill)) 1787 .addReg(Op2, getKillRegState(Op2IsKill)); 1788 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1789 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1790 } 1791 return ResultReg; 1792 } 1793 1794 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 1795 const TargetRegisterClass *RC, unsigned Op0, 1796 bool Op0IsKill, uint64_t Imm) { 1797 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1798 1799 unsigned ResultReg = createResultReg(RC); 1800 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1801 1802 if (II.getNumDefs() >= 1) 1803 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1804 .addReg(Op0, getKillRegState(Op0IsKill)) 1805 .addImm(Imm); 1806 else { 1807 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1808 .addReg(Op0, getKillRegState(Op0IsKill)) 1809 .addImm(Imm); 1810 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1811 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1812 } 1813 return ResultReg; 1814 } 1815 1816 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 1817 const TargetRegisterClass *RC, unsigned Op0, 1818 bool Op0IsKill, uint64_t Imm1, 1819 uint64_t Imm2) { 1820 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1821 1822 unsigned ResultReg = createResultReg(RC); 1823 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1824 1825 if (II.getNumDefs() >= 1) 1826 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1827 .addReg(Op0, getKillRegState(Op0IsKill)) 1828 .addImm(Imm1) 1829 .addImm(Imm2); 1830 else { 1831 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1832 .addReg(Op0, getKillRegState(Op0IsKill)) 1833 .addImm(Imm1) 1834 .addImm(Imm2); 1835 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1836 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1837 } 1838 return ResultReg; 1839 } 1840 1841 unsigned FastISel::fastEmitInst_rf(unsigned MachineInstOpcode, 1842 const TargetRegisterClass *RC, unsigned Op0, 1843 bool Op0IsKill, const ConstantFP *FPImm) { 1844 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1845 1846 unsigned ResultReg = createResultReg(RC); 1847 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1848 1849 if (II.getNumDefs() >= 1) 1850 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1851 .addReg(Op0, getKillRegState(Op0IsKill)) 1852 .addFPImm(FPImm); 1853 else { 1854 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1855 .addReg(Op0, getKillRegState(Op0IsKill)) 1856 .addFPImm(FPImm); 1857 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1858 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1859 } 1860 return ResultReg; 1861 } 1862 1863 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 1864 const TargetRegisterClass *RC, unsigned Op0, 1865 bool Op0IsKill, unsigned Op1, 1866 bool Op1IsKill, uint64_t Imm) { 1867 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1868 1869 unsigned ResultReg = createResultReg(RC); 1870 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1871 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1872 1873 if (II.getNumDefs() >= 1) 1874 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1875 .addReg(Op0, getKillRegState(Op0IsKill)) 1876 .addReg(Op1, getKillRegState(Op1IsKill)) 1877 .addImm(Imm); 1878 else { 1879 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1880 .addReg(Op0, getKillRegState(Op0IsKill)) 1881 .addReg(Op1, getKillRegState(Op1IsKill)) 1882 .addImm(Imm); 1883 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1884 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1885 } 1886 return ResultReg; 1887 } 1888 1889 unsigned FastISel::fastEmitInst_rrii(unsigned MachineInstOpcode, 1890 const TargetRegisterClass *RC, 1891 unsigned Op0, bool Op0IsKill, unsigned Op1, 1892 bool Op1IsKill, uint64_t Imm1, 1893 uint64_t Imm2) { 1894 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1895 1896 unsigned ResultReg = createResultReg(RC); 1897 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1898 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1899 1900 if (II.getNumDefs() >= 1) 1901 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1902 .addReg(Op0, getKillRegState(Op0IsKill)) 1903 .addReg(Op1, getKillRegState(Op1IsKill)) 1904 .addImm(Imm1) 1905 .addImm(Imm2); 1906 else { 1907 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1908 .addReg(Op0, getKillRegState(Op0IsKill)) 1909 .addReg(Op1, getKillRegState(Op1IsKill)) 1910 .addImm(Imm1) 1911 .addImm(Imm2); 1912 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1913 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1914 } 1915 return ResultReg; 1916 } 1917 1918 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 1919 const TargetRegisterClass *RC, uint64_t Imm) { 1920 unsigned ResultReg = createResultReg(RC); 1921 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1922 1923 if (II.getNumDefs() >= 1) 1924 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1925 .addImm(Imm); 1926 else { 1927 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 1928 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1929 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1930 } 1931 return ResultReg; 1932 } 1933 1934 unsigned FastISel::fastEmitInst_ii(unsigned MachineInstOpcode, 1935 const TargetRegisterClass *RC, uint64_t Imm1, 1936 uint64_t Imm2) { 1937 unsigned ResultReg = createResultReg(RC); 1938 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1939 1940 if (II.getNumDefs() >= 1) 1941 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1942 .addImm(Imm1) 1943 .addImm(Imm2); 1944 else { 1945 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1) 1946 .addImm(Imm2); 1947 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1948 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1949 } 1950 return ResultReg; 1951 } 1952 1953 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 1954 bool Op0IsKill, uint32_t Idx) { 1955 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1956 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1957 "Cannot yet extract from physregs"); 1958 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 1959 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 1960 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 1961 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 1962 return ResultReg; 1963 } 1964 1965 /// Emit MachineInstrs to compute the value of Op with all but the least 1966 /// significant bit set to zero. 1967 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 1968 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 1969 } 1970 1971 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 1972 /// Emit code to ensure constants are copied into registers when needed. 1973 /// Remember the virtual registers that need to be added to the Machine PHI 1974 /// nodes as input. We cannot just directly add them, because expansion 1975 /// might result in multiple MBB's for one BB. As such, the start of the 1976 /// BB might correspond to a different MBB than the end. 1977 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 1978 const TerminatorInst *TI = LLVMBB->getTerminator(); 1979 1980 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 1981 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 1982 1983 // Check successor nodes' PHI nodes that expect a constant to be available 1984 // from this block. 1985 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 1986 const BasicBlock *SuccBB = TI->getSuccessor(succ); 1987 if (!isa<PHINode>(SuccBB->begin())) 1988 continue; 1989 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 1990 1991 // If this terminator has multiple identical successors (common for 1992 // switches), only handle each succ once. 1993 if (!SuccsHandled.insert(SuccMBB).second) 1994 continue; 1995 1996 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 1997 1998 // At this point we know that there is a 1-1 correspondence between LLVM PHI 1999 // nodes and Machine PHI nodes, but the incoming operands have not been 2000 // emitted yet. 2001 for (BasicBlock::const_iterator I = SuccBB->begin(); 2002 const auto *PN = dyn_cast<PHINode>(I); ++I) { 2003 2004 // Ignore dead phi's. 2005 if (PN->use_empty()) 2006 continue; 2007 2008 // Only handle legal types. Two interesting things to note here. First, 2009 // by bailing out early, we may leave behind some dead instructions, 2010 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2011 // own moves. Second, this check is necessary because FastISel doesn't 2012 // use CreateRegs to create registers, so it always creates 2013 // exactly one register for each non-void instruction. 2014 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 2015 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2016 // Handle integer promotions, though, because they're common and easy. 2017 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2018 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2019 return false; 2020 } 2021 } 2022 2023 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 2024 2025 // Set the DebugLoc for the copy. Prefer the location of the operand 2026 // if there is one; use the location of the PHI otherwise. 2027 DbgLoc = PN->getDebugLoc(); 2028 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2029 DbgLoc = Inst->getDebugLoc(); 2030 2031 unsigned Reg = getRegForValue(PHIOp); 2032 if (!Reg) { 2033 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2034 return false; 2035 } 2036 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 2037 DbgLoc = DebugLoc(); 2038 } 2039 } 2040 2041 return true; 2042 } 2043 2044 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2045 assert(LI->hasOneUse() && 2046 "tryToFoldLoad expected a LoadInst with a single use"); 2047 // We know that the load has a single use, but don't know what it is. If it 2048 // isn't one of the folded instructions, then we can't succeed here. Handle 2049 // this by scanning the single-use users of the load until we get to FoldInst. 2050 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2051 2052 const Instruction *TheUser = LI->user_back(); 2053 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2054 // Stay in the right block. 2055 TheUser->getParent() == FoldInst->getParent() && 2056 --MaxUsers) { // Don't scan too far. 2057 // If there are multiple or no uses of this instruction, then bail out. 2058 if (!TheUser->hasOneUse()) 2059 return false; 2060 2061 TheUser = TheUser->user_back(); 2062 } 2063 2064 // If we didn't find the fold instruction, then we failed to collapse the 2065 // sequence. 2066 if (TheUser != FoldInst) 2067 return false; 2068 2069 // Don't try to fold volatile loads. Target has to deal with alignment 2070 // constraints. 2071 if (LI->isVolatile()) 2072 return false; 2073 2074 // Figure out which vreg this is going into. If there is no assigned vreg yet 2075 // then there actually was no reference to it. Perhaps the load is referenced 2076 // by a dead instruction. 2077 unsigned LoadReg = getRegForValue(LI); 2078 if (!LoadReg) 2079 return false; 2080 2081 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2082 // may mean that the instruction got lowered to multiple MIs, or the use of 2083 // the loaded value ended up being multiple operands of the result. 2084 if (!MRI.hasOneUse(LoadReg)) 2085 return false; 2086 2087 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2088 MachineInstr *User = RI->getParent(); 2089 2090 // Set the insertion point properly. Folding the load can cause generation of 2091 // other random instructions (like sign extends) for addressing modes; make 2092 // sure they get inserted in a logical place before the new instruction. 2093 FuncInfo.InsertPt = User; 2094 FuncInfo.MBB = User->getParent(); 2095 2096 // Ask the target to try folding the load. 2097 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2098 } 2099 2100 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2101 // Must be an add. 2102 if (!isa<AddOperator>(Add)) 2103 return false; 2104 // Type size needs to match. 2105 if (DL.getTypeSizeInBits(GEP->getType()) != 2106 DL.getTypeSizeInBits(Add->getType())) 2107 return false; 2108 // Must be in the same basic block. 2109 if (isa<Instruction>(Add) && 2110 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2111 return false; 2112 // Must have a constant operand. 2113 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2114 } 2115 2116 MachineMemOperand * 2117 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2118 const Value *Ptr; 2119 Type *ValTy; 2120 unsigned Alignment; 2121 unsigned Flags; 2122 bool IsVolatile; 2123 2124 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2125 Alignment = LI->getAlignment(); 2126 IsVolatile = LI->isVolatile(); 2127 Flags = MachineMemOperand::MOLoad; 2128 Ptr = LI->getPointerOperand(); 2129 ValTy = LI->getType(); 2130 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2131 Alignment = SI->getAlignment(); 2132 IsVolatile = SI->isVolatile(); 2133 Flags = MachineMemOperand::MOStore; 2134 Ptr = SI->getPointerOperand(); 2135 ValTy = SI->getValueOperand()->getType(); 2136 } else 2137 return nullptr; 2138 2139 bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2140 bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2141 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2142 2143 AAMDNodes AAInfo; 2144 I->getAAMetadata(AAInfo); 2145 2146 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2147 Alignment = DL.getABITypeAlignment(ValTy); 2148 2149 unsigned Size = DL.getTypeStoreSize(ValTy); 2150 2151 if (IsVolatile) 2152 Flags |= MachineMemOperand::MOVolatile; 2153 if (IsNonTemporal) 2154 Flags |= MachineMemOperand::MONonTemporal; 2155 if (IsInvariant) 2156 Flags |= MachineMemOperand::MOInvariant; 2157 2158 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2159 Alignment, AAInfo, Ranges); 2160 } 2161 2162 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2163 // If both operands are the same, then try to optimize or fold the cmp. 2164 CmpInst::Predicate Predicate = CI->getPredicate(); 2165 if (CI->getOperand(0) != CI->getOperand(1)) 2166 return Predicate; 2167 2168 switch (Predicate) { 2169 default: llvm_unreachable("Invalid predicate!"); 2170 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2171 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2172 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2173 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2174 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2175 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2176 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2177 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2178 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2179 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2180 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2181 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2182 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2183 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2184 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2185 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2186 2187 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2188 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2189 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2190 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2191 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2192 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2193 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2194 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2195 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2196 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2197 } 2198 2199 return Predicate; 2200 } 2201