1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #define DEBUG_TYPE "isel" 43 #include "llvm/Function.h" 44 #include "llvm/GlobalVariable.h" 45 #include "llvm/Instructions.h" 46 #include "llvm/IntrinsicInst.h" 47 #include "llvm/Operator.h" 48 #include "llvm/CodeGen/Analysis.h" 49 #include "llvm/CodeGen/FastISel.h" 50 #include "llvm/CodeGen/FunctionLoweringInfo.h" 51 #include "llvm/CodeGen/MachineInstrBuilder.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/Analysis/DebugInfo.h" 55 #include "llvm/Analysis/Loads.h" 56 #include "llvm/Target/TargetData.h" 57 #include "llvm/Target/TargetInstrInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetMachine.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/ADT/Statistic.h" 63 using namespace llvm; 64 65 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 66 "target-independent selector"); 67 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 68 "target-specific selector"); 69 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 70 71 /// startNewBlock - Set the current block to which generated machine 72 /// instructions will be appended, and clear the local CSE map. 73 /// 74 void FastISel::startNewBlock() { 75 LocalValueMap.clear(); 76 77 EmitStartPt = 0; 78 79 // Advance the emit start point past any EH_LABEL instructions. 80 MachineBasicBlock::iterator 81 I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end(); 82 while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) { 83 EmitStartPt = I; 84 ++I; 85 } 86 LastLocalValue = EmitStartPt; 87 } 88 89 void FastISel::flushLocalValueMap() { 90 LocalValueMap.clear(); 91 LastLocalValue = EmitStartPt; 92 recomputeInsertPt(); 93 } 94 95 bool FastISel::hasTrivialKill(const Value *V) const { 96 // Don't consider constants or arguments to have trivial kills. 97 const Instruction *I = dyn_cast<Instruction>(V); 98 if (!I) 99 return false; 100 101 // No-op casts are trivially coalesced by fast-isel. 102 if (const CastInst *Cast = dyn_cast<CastInst>(I)) 103 if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) && 104 !hasTrivialKill(Cast->getOperand(0))) 105 return false; 106 107 // GEPs with all zero indices are trivially coalesced by fast-isel. 108 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 109 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 110 return false; 111 112 // Only instructions with a single use in the same basic block are considered 113 // to have trivial kills. 114 return I->hasOneUse() && 115 !(I->getOpcode() == Instruction::BitCast || 116 I->getOpcode() == Instruction::PtrToInt || 117 I->getOpcode() == Instruction::IntToPtr) && 118 cast<Instruction>(*I->use_begin())->getParent() == I->getParent(); 119 } 120 121 unsigned FastISel::getRegForValue(const Value *V) { 122 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); 123 // Don't handle non-simple values in FastISel. 124 if (!RealVT.isSimple()) 125 return 0; 126 127 // Ignore illegal types. We must do this before looking up the value 128 // in ValueMap because Arguments are given virtual registers regardless 129 // of whether FastISel can handle them. 130 MVT VT = RealVT.getSimpleVT(); 131 if (!TLI.isTypeLegal(VT)) { 132 // Handle integer promotions, though, because they're common and easy. 133 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 134 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 135 else 136 return 0; 137 } 138 139 // Look up the value to see if we already have a register for it. 140 unsigned Reg = lookUpRegForValue(V); 141 if (Reg != 0) 142 return Reg; 143 144 // In bottom-up mode, just create the virtual register which will be used 145 // to hold the value. It will be materialized later. 146 if (isa<Instruction>(V) && 147 (!isa<AllocaInst>(V) || 148 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 149 return FuncInfo.InitializeRegForValue(V); 150 151 SavePoint SaveInsertPt = enterLocalValueArea(); 152 153 // Materialize the value in a register. Emit any instructions in the 154 // local value area. 155 Reg = materializeRegForValue(V, VT); 156 157 leaveLocalValueArea(SaveInsertPt); 158 159 return Reg; 160 } 161 162 /// materializeRegForValue - Helper for getRegForValue. This function is 163 /// called when the value isn't already available in a register and must 164 /// be materialized with new instructions. 165 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 166 unsigned Reg = 0; 167 168 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 169 if (CI->getValue().getActiveBits() <= 64) 170 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 171 } else if (isa<AllocaInst>(V)) { 172 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V)); 173 } else if (isa<ConstantPointerNull>(V)) { 174 // Translate this as an integer zero so that it can be 175 // local-CSE'd with actual integer zeros. 176 Reg = 177 getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext()))); 178 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 179 if (CF->isNullValue()) { 180 Reg = TargetMaterializeFloatZero(CF); 181 } else { 182 // Try to emit the constant directly. 183 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); 184 } 185 186 if (!Reg) { 187 // Try to emit the constant by using an integer constant with a cast. 188 const APFloat &Flt = CF->getValueAPF(); 189 EVT IntVT = TLI.getPointerTy(); 190 191 uint64_t x[2]; 192 uint32_t IntBitWidth = IntVT.getSizeInBits(); 193 bool isExact; 194 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 195 APFloat::rmTowardZero, &isExact); 196 if (isExact) { 197 APInt IntVal(IntBitWidth, x); 198 199 unsigned IntegerReg = 200 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 201 if (IntegerReg != 0) 202 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 203 IntegerReg, /*Kill=*/false); 204 } 205 } 206 } else if (const Operator *Op = dyn_cast<Operator>(V)) { 207 if (!SelectOperator(Op, Op->getOpcode())) 208 if (!isa<Instruction>(Op) || 209 !TargetSelectInstruction(cast<Instruction>(Op))) 210 return 0; 211 Reg = lookUpRegForValue(Op); 212 } else if (isa<UndefValue>(V)) { 213 Reg = createResultReg(TLI.getRegClassFor(VT)); 214 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 215 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 216 } 217 218 // If target-independent code couldn't handle the value, give target-specific 219 // code a try. 220 if (!Reg && isa<Constant>(V)) 221 Reg = TargetMaterializeConstant(cast<Constant>(V)); 222 223 // Don't cache constant materializations in the general ValueMap. 224 // To do so would require tracking what uses they dominate. 225 if (Reg != 0) { 226 LocalValueMap[V] = Reg; 227 LastLocalValue = MRI.getVRegDef(Reg); 228 } 229 return Reg; 230 } 231 232 unsigned FastISel::lookUpRegForValue(const Value *V) { 233 // Look up the value to see if we already have a register for it. We 234 // cache values defined by Instructions across blocks, and other values 235 // only locally. This is because Instructions already have the SSA 236 // def-dominates-use requirement enforced. 237 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 238 if (I != FuncInfo.ValueMap.end()) 239 return I->second; 240 return LocalValueMap[V]; 241 } 242 243 /// UpdateValueMap - Update the value map to include the new mapping for this 244 /// instruction, or insert an extra copy to get the result in a previous 245 /// determined register. 246 /// NOTE: This is only necessary because we might select a block that uses 247 /// a value before we select the block that defines the value. It might be 248 /// possible to fix this by selecting blocks in reverse postorder. 249 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 250 if (!isa<Instruction>(I)) { 251 LocalValueMap[I] = Reg; 252 return; 253 } 254 255 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 256 if (AssignedReg == 0) 257 // Use the new register. 258 AssignedReg = Reg; 259 else if (Reg != AssignedReg) { 260 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 261 for (unsigned i = 0; i < NumRegs; i++) 262 FuncInfo.RegFixups[AssignedReg+i] = Reg+i; 263 264 AssignedReg = Reg; 265 } 266 } 267 268 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 269 unsigned IdxN = getRegForValue(Idx); 270 if (IdxN == 0) 271 // Unhandled operand. Halt "fast" selection and bail. 272 return std::pair<unsigned, bool>(0, false); 273 274 bool IdxNIsKill = hasTrivialKill(Idx); 275 276 // If the index is smaller or larger than intptr_t, truncate or extend it. 277 MVT PtrVT = TLI.getPointerTy(); 278 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 279 if (IdxVT.bitsLT(PtrVT)) { 280 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, 281 IdxN, IdxNIsKill); 282 IdxNIsKill = true; 283 } 284 else if (IdxVT.bitsGT(PtrVT)) { 285 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, 286 IdxN, IdxNIsKill); 287 IdxNIsKill = true; 288 } 289 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 290 } 291 292 void FastISel::recomputeInsertPt() { 293 if (getLastLocalValue()) { 294 FuncInfo.InsertPt = getLastLocalValue(); 295 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 296 ++FuncInfo.InsertPt; 297 } else 298 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 299 300 // Now skip past any EH_LABELs, which must remain at the beginning. 301 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 302 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 303 ++FuncInfo.InsertPt; 304 } 305 306 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 307 MachineBasicBlock::iterator E) { 308 assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!"); 309 while (I != E) { 310 MachineInstr *Dead = &*I; 311 ++I; 312 Dead->eraseFromParent(); 313 ++NumFastIselDead; 314 } 315 recomputeInsertPt(); 316 } 317 318 FastISel::SavePoint FastISel::enterLocalValueArea() { 319 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 320 DebugLoc OldDL = DL; 321 recomputeInsertPt(); 322 DL = DebugLoc(); 323 SavePoint SP = { OldInsertPt, OldDL }; 324 return SP; 325 } 326 327 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 328 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 329 LastLocalValue = llvm::prior(FuncInfo.InsertPt); 330 331 // Restore the previous insert position. 332 FuncInfo.InsertPt = OldInsertPt.InsertPt; 333 DL = OldInsertPt.DL; 334 } 335 336 /// SelectBinaryOp - Select and emit code for a binary operator instruction, 337 /// which has an opcode which directly corresponds to the given ISD opcode. 338 /// 339 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) { 340 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 341 if (VT == MVT::Other || !VT.isSimple()) 342 // Unhandled type. Halt "fast" selection and bail. 343 return false; 344 345 // We only handle legal types. For example, on x86-32 the instruction 346 // selector contains all of the 64-bit instructions from x86-64, 347 // under the assumption that i64 won't be used if the target doesn't 348 // support it. 349 if (!TLI.isTypeLegal(VT)) { 350 // MVT::i1 is special. Allow AND, OR, or XOR because they 351 // don't require additional zeroing, which makes them easy. 352 if (VT == MVT::i1 && 353 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 354 ISDOpcode == ISD::XOR)) 355 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 356 else 357 return false; 358 } 359 360 // Check if the first operand is a constant, and handle it as "ri". At -O0, 361 // we don't have anything that canonicalizes operand order. 362 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 363 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 364 unsigned Op1 = getRegForValue(I->getOperand(1)); 365 if (Op1 == 0) return false; 366 367 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 368 369 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, 370 Op1IsKill, CI->getZExtValue(), 371 VT.getSimpleVT()); 372 if (ResultReg == 0) return false; 373 374 // We successfully emitted code for the given LLVM Instruction. 375 UpdateValueMap(I, ResultReg); 376 return true; 377 } 378 379 380 unsigned Op0 = getRegForValue(I->getOperand(0)); 381 if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. 382 return false; 383 384 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 385 386 // Check if the second operand is a constant and handle it appropriately. 387 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 388 uint64_t Imm = CI->getZExtValue(); 389 390 // Transform "sdiv exact X, 8" -> "sra X, 3". 391 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 392 cast<BinaryOperator>(I)->isExact() && 393 isPowerOf2_64(Imm)) { 394 Imm = Log2_64(Imm); 395 ISDOpcode = ISD::SRA; 396 } 397 398 // Transform "urem x, pow2" -> "and x, pow2-1". 399 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 400 isPowerOf2_64(Imm)) { 401 --Imm; 402 ISDOpcode = ISD::AND; 403 } 404 405 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 406 Op0IsKill, Imm, VT.getSimpleVT()); 407 if (ResultReg == 0) return false; 408 409 // We successfully emitted code for the given LLVM Instruction. 410 UpdateValueMap(I, ResultReg); 411 return true; 412 } 413 414 // Check if the second operand is a constant float. 415 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 416 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 417 ISDOpcode, Op0, Op0IsKill, CF); 418 if (ResultReg != 0) { 419 // We successfully emitted code for the given LLVM Instruction. 420 UpdateValueMap(I, ResultReg); 421 return true; 422 } 423 } 424 425 unsigned Op1 = getRegForValue(I->getOperand(1)); 426 if (Op1 == 0) 427 // Unhandled operand. Halt "fast" selection and bail. 428 return false; 429 430 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 431 432 // Now we have both operands in registers. Emit the instruction. 433 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 434 ISDOpcode, 435 Op0, Op0IsKill, 436 Op1, Op1IsKill); 437 if (ResultReg == 0) 438 // Target-specific code wasn't able to find a machine opcode for 439 // the given ISD opcode and type. Halt "fast" selection and bail. 440 return false; 441 442 // We successfully emitted code for the given LLVM Instruction. 443 UpdateValueMap(I, ResultReg); 444 return true; 445 } 446 447 bool FastISel::SelectGetElementPtr(const User *I) { 448 unsigned N = getRegForValue(I->getOperand(0)); 449 if (N == 0) 450 // Unhandled operand. Halt "fast" selection and bail. 451 return false; 452 453 bool NIsKill = hasTrivialKill(I->getOperand(0)); 454 455 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 456 // into a single N = N + TotalOffset. 457 uint64_t TotalOffs = 0; 458 // FIXME: What's a good SWAG number for MaxOffs? 459 uint64_t MaxOffs = 2048; 460 Type *Ty = I->getOperand(0)->getType(); 461 MVT VT = TLI.getPointerTy(); 462 for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1, 463 E = I->op_end(); OI != E; ++OI) { 464 const Value *Idx = *OI; 465 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 466 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 467 if (Field) { 468 // N = N + Offset 469 TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field); 470 if (TotalOffs >= MaxOffs) { 471 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 472 if (N == 0) 473 // Unhandled operand. Halt "fast" selection and bail. 474 return false; 475 NIsKill = true; 476 TotalOffs = 0; 477 } 478 } 479 Ty = StTy->getElementType(Field); 480 } else { 481 Ty = cast<SequentialType>(Ty)->getElementType(); 482 483 // If this is a constant subscript, handle it quickly. 484 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 485 if (CI->isZero()) continue; 486 // N = N + Offset 487 TotalOffs += 488 TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 489 if (TotalOffs >= MaxOffs) { 490 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 491 if (N == 0) 492 // Unhandled operand. Halt "fast" selection and bail. 493 return false; 494 NIsKill = true; 495 TotalOffs = 0; 496 } 497 continue; 498 } 499 if (TotalOffs) { 500 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 501 if (N == 0) 502 // Unhandled operand. Halt "fast" selection and bail. 503 return false; 504 NIsKill = true; 505 TotalOffs = 0; 506 } 507 508 // N = N + Idx * ElementSize; 509 uint64_t ElementSize = TD.getTypeAllocSize(Ty); 510 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 511 unsigned IdxN = Pair.first; 512 bool IdxNIsKill = Pair.second; 513 if (IdxN == 0) 514 // Unhandled operand. Halt "fast" selection and bail. 515 return false; 516 517 if (ElementSize != 1) { 518 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 519 if (IdxN == 0) 520 // Unhandled operand. Halt "fast" selection and bail. 521 return false; 522 IdxNIsKill = true; 523 } 524 N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 525 if (N == 0) 526 // Unhandled operand. Halt "fast" selection and bail. 527 return false; 528 } 529 } 530 if (TotalOffs) { 531 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 532 if (N == 0) 533 // Unhandled operand. Halt "fast" selection and bail. 534 return false; 535 } 536 537 // We successfully emitted code for the given LLVM Instruction. 538 UpdateValueMap(I, N); 539 return true; 540 } 541 542 bool FastISel::SelectCall(const User *I) { 543 const CallInst *Call = cast<CallInst>(I); 544 545 // Handle simple inline asms. 546 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 547 // Don't attempt to handle constraints. 548 if (!IA->getConstraintString().empty()) 549 return false; 550 551 unsigned ExtraInfo = 0; 552 if (IA->hasSideEffects()) 553 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 554 if (IA->isAlignStack()) 555 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 556 557 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 558 TII.get(TargetOpcode::INLINEASM)) 559 .addExternalSymbol(IA->getAsmString().c_str()) 560 .addImm(ExtraInfo); 561 return true; 562 } 563 564 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 565 ComputeUsesVAFloatArgument(*Call, &MMI); 566 567 const Function *F = Call->getCalledFunction(); 568 if (!F) return false; 569 570 // Handle selected intrinsic function calls. 571 switch (F->getIntrinsicID()) { 572 default: break; 573 // At -O0 we don't care about the lifetime intrinsics. 574 case Intrinsic::lifetime_start: 575 case Intrinsic::lifetime_end: 576 return true; 577 case Intrinsic::dbg_declare: { 578 const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call); 579 if (!DIVariable(DI->getVariable()).Verify() || 580 !FuncInfo.MF->getMMI().hasDebugInfo()) { 581 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 582 return true; 583 } 584 585 const Value *Address = DI->getAddress(); 586 if (!Address || isa<UndefValue>(Address)) { 587 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 588 return true; 589 } 590 591 unsigned Reg = 0; 592 unsigned Offset = 0; 593 if (const Argument *Arg = dyn_cast<Argument>(Address)) { 594 // Some arguments' frame index is recorded during argument lowering. 595 Offset = FuncInfo.getArgumentFrameIndex(Arg); 596 if (Offset) 597 Reg = TRI.getFrameRegister(*FuncInfo.MF); 598 } 599 if (!Reg) 600 Reg = lookUpRegForValue(Address); 601 602 if (!Reg && isa<Instruction>(Address) && 603 (!isa<AllocaInst>(Address) || 604 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 605 Reg = FuncInfo.InitializeRegForValue(Address); 606 607 if (Reg) 608 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 609 TII.get(TargetOpcode::DBG_VALUE)) 610 .addReg(Reg, RegState::Debug).addImm(Offset) 611 .addMetadata(DI->getVariable()); 612 else 613 // We can't yet handle anything else here because it would require 614 // generating code, thus altering codegen because of debug info. 615 DEBUG(dbgs() << "Dropping debug info for " << DI); 616 return true; 617 } 618 case Intrinsic::dbg_value: { 619 // This form of DBG_VALUE is target-independent. 620 const DbgValueInst *DI = cast<DbgValueInst>(Call); 621 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 622 const Value *V = DI->getValue(); 623 if (!V) { 624 // Currently the optimizer can produce this; insert an undef to 625 // help debugging. Probably the optimizer should not do this. 626 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 627 .addReg(0U).addImm(DI->getOffset()) 628 .addMetadata(DI->getVariable()); 629 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 630 if (CI->getBitWidth() > 64) 631 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 632 .addCImm(CI).addImm(DI->getOffset()) 633 .addMetadata(DI->getVariable()); 634 else 635 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 636 .addImm(CI->getZExtValue()).addImm(DI->getOffset()) 637 .addMetadata(DI->getVariable()); 638 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 639 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 640 .addFPImm(CF).addImm(DI->getOffset()) 641 .addMetadata(DI->getVariable()); 642 } else if (unsigned Reg = lookUpRegForValue(V)) { 643 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 644 .addReg(Reg, RegState::Debug).addImm(DI->getOffset()) 645 .addMetadata(DI->getVariable()); 646 } else { 647 // We can't yet handle anything else here because it would require 648 // generating code, thus altering codegen because of debug info. 649 DEBUG(dbgs() << "Dropping debug info for " << DI); 650 } 651 return true; 652 } 653 case Intrinsic::objectsize: { 654 ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1)); 655 unsigned long long Res = CI->isZero() ? -1ULL : 0; 656 Constant *ResCI = ConstantInt::get(Call->getType(), Res); 657 unsigned ResultReg = getRegForValue(ResCI); 658 if (ResultReg == 0) 659 return false; 660 UpdateValueMap(Call, ResultReg); 661 return true; 662 } 663 } 664 665 // Usually, it does not make sense to initialize a value, 666 // make an unrelated function call and use the value, because 667 // it tends to be spilled on the stack. So, we move the pointer 668 // to the last local value to the beginning of the block, so that 669 // all the values which have already been materialized, 670 // appear after the call. It also makes sense to skip intrinsics 671 // since they tend to be inlined. 672 if (!isa<IntrinsicInst>(F)) 673 flushLocalValueMap(); 674 675 // An arbitrary call. Bail. 676 return false; 677 } 678 679 bool FastISel::SelectCast(const User *I, unsigned Opcode) { 680 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 681 EVT DstVT = TLI.getValueType(I->getType()); 682 683 if (SrcVT == MVT::Other || !SrcVT.isSimple() || 684 DstVT == MVT::Other || !DstVT.isSimple()) 685 // Unhandled type. Halt "fast" selection and bail. 686 return false; 687 688 // Check if the destination type is legal. 689 if (!TLI.isTypeLegal(DstVT)) 690 return false; 691 692 // Check if the source operand is legal. 693 if (!TLI.isTypeLegal(SrcVT)) 694 return false; 695 696 unsigned InputReg = getRegForValue(I->getOperand(0)); 697 if (!InputReg) 698 // Unhandled operand. Halt "fast" selection and bail. 699 return false; 700 701 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 702 703 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), 704 DstVT.getSimpleVT(), 705 Opcode, 706 InputReg, InputRegIsKill); 707 if (!ResultReg) 708 return false; 709 710 UpdateValueMap(I, ResultReg); 711 return true; 712 } 713 714 bool FastISel::SelectBitCast(const User *I) { 715 // If the bitcast doesn't change the type, just use the operand value. 716 if (I->getType() == I->getOperand(0)->getType()) { 717 unsigned Reg = getRegForValue(I->getOperand(0)); 718 if (Reg == 0) 719 return false; 720 UpdateValueMap(I, Reg); 721 return true; 722 } 723 724 // Bitcasts of other values become reg-reg copies or BITCAST operators. 725 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 726 EVT DstVT = TLI.getValueType(I->getType()); 727 728 if (SrcVT == MVT::Other || !SrcVT.isSimple() || 729 DstVT == MVT::Other || !DstVT.isSimple() || 730 !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT)) 731 // Unhandled type. Halt "fast" selection and bail. 732 return false; 733 734 unsigned Op0 = getRegForValue(I->getOperand(0)); 735 if (Op0 == 0) 736 // Unhandled operand. Halt "fast" selection and bail. 737 return false; 738 739 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 740 741 // First, try to perform the bitcast by inserting a reg-reg copy. 742 unsigned ResultReg = 0; 743 if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) { 744 const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); 745 const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); 746 // Don't attempt a cross-class copy. It will likely fail. 747 if (SrcClass == DstClass) { 748 ResultReg = createResultReg(DstClass); 749 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 750 ResultReg).addReg(Op0); 751 } 752 } 753 754 // If the reg-reg copy failed, select a BITCAST opcode. 755 if (!ResultReg) 756 ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 757 ISD::BITCAST, Op0, Op0IsKill); 758 759 if (!ResultReg) 760 return false; 761 762 UpdateValueMap(I, ResultReg); 763 return true; 764 } 765 766 bool 767 FastISel::SelectInstruction(const Instruction *I) { 768 // Just before the terminator instruction, insert instructions to 769 // feed PHI nodes in successor blocks. 770 if (isa<TerminatorInst>(I)) 771 if (!HandlePHINodesInSuccessorBlocks(I->getParent())) 772 return false; 773 774 DL = I->getDebugLoc(); 775 776 MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt; 777 778 // First, try doing target-independent selection. 779 if (SelectOperator(I, I->getOpcode())) { 780 ++NumFastIselSuccessIndependent; 781 DL = DebugLoc(); 782 return true; 783 } 784 // Remove dead code. However, ignore call instructions since we've flushed 785 // the local value map and recomputed the insert point. 786 if (!isa<CallInst>(I)) { 787 recomputeInsertPt(); 788 if (SavedInsertPt != FuncInfo.InsertPt) 789 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 790 } 791 792 // Next, try calling the target to attempt to handle the instruction. 793 SavedInsertPt = FuncInfo.InsertPt; 794 if (TargetSelectInstruction(I)) { 795 ++NumFastIselSuccessTarget; 796 DL = DebugLoc(); 797 return true; 798 } 799 // Check for dead code and remove as necessary. 800 recomputeInsertPt(); 801 if (SavedInsertPt != FuncInfo.InsertPt) 802 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 803 804 DL = DebugLoc(); 805 return false; 806 } 807 808 /// FastEmitBranch - Emit an unconditional branch to the given block, 809 /// unless it is the immediate (fall-through) successor, and update 810 /// the CFG. 811 void 812 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) { 813 if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 814 // The unconditional fall-through case, which needs no instructions. 815 } else { 816 // The unconditional branch case. 817 TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL, 818 SmallVector<MachineOperand, 0>(), DL); 819 } 820 FuncInfo.MBB->addSuccessor(MSucc); 821 } 822 823 /// SelectFNeg - Emit an FNeg operation. 824 /// 825 bool 826 FastISel::SelectFNeg(const User *I) { 827 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 828 if (OpReg == 0) return false; 829 830 bool OpRegIsKill = hasTrivialKill(I); 831 832 // If the target has ISD::FNEG, use it. 833 EVT VT = TLI.getValueType(I->getType()); 834 unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), 835 ISD::FNEG, OpReg, OpRegIsKill); 836 if (ResultReg != 0) { 837 UpdateValueMap(I, ResultReg); 838 return true; 839 } 840 841 // Bitcast the value to integer, twiddle the sign bit with xor, 842 // and then bitcast it back to floating-point. 843 if (VT.getSizeInBits() > 64) return false; 844 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 845 if (!TLI.isTypeLegal(IntVT)) 846 return false; 847 848 unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 849 ISD::BITCAST, OpReg, OpRegIsKill); 850 if (IntReg == 0) 851 return false; 852 853 unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, 854 IntReg, /*Kill=*/true, 855 UINT64_C(1) << (VT.getSizeInBits()-1), 856 IntVT.getSimpleVT()); 857 if (IntResultReg == 0) 858 return false; 859 860 ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), 861 ISD::BITCAST, IntResultReg, /*Kill=*/true); 862 if (ResultReg == 0) 863 return false; 864 865 UpdateValueMap(I, ResultReg); 866 return true; 867 } 868 869 bool 870 FastISel::SelectExtractValue(const User *U) { 871 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 872 if (!EVI) 873 return false; 874 875 // Make sure we only try to handle extracts with a legal result. But also 876 // allow i1 because it's easy. 877 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true); 878 if (!RealVT.isSimple()) 879 return false; 880 MVT VT = RealVT.getSimpleVT(); 881 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 882 return false; 883 884 const Value *Op0 = EVI->getOperand(0); 885 Type *AggTy = Op0->getType(); 886 887 // Get the base result register. 888 unsigned ResultReg; 889 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 890 if (I != FuncInfo.ValueMap.end()) 891 ResultReg = I->second; 892 else if (isa<Instruction>(Op0)) 893 ResultReg = FuncInfo.InitializeRegForValue(Op0); 894 else 895 return false; // fast-isel can't handle aggregate constants at the moment 896 897 // Get the actual result register, which is an offset from the base register. 898 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 899 900 SmallVector<EVT, 4> AggValueVTs; 901 ComputeValueVTs(TLI, AggTy, AggValueVTs); 902 903 for (unsigned i = 0; i < VTIndex; i++) 904 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 905 906 UpdateValueMap(EVI, ResultReg); 907 return true; 908 } 909 910 bool 911 FastISel::SelectOperator(const User *I, unsigned Opcode) { 912 switch (Opcode) { 913 case Instruction::Add: 914 return SelectBinaryOp(I, ISD::ADD); 915 case Instruction::FAdd: 916 return SelectBinaryOp(I, ISD::FADD); 917 case Instruction::Sub: 918 return SelectBinaryOp(I, ISD::SUB); 919 case Instruction::FSub: 920 // FNeg is currently represented in LLVM IR as a special case of FSub. 921 if (BinaryOperator::isFNeg(I)) 922 return SelectFNeg(I); 923 return SelectBinaryOp(I, ISD::FSUB); 924 case Instruction::Mul: 925 return SelectBinaryOp(I, ISD::MUL); 926 case Instruction::FMul: 927 return SelectBinaryOp(I, ISD::FMUL); 928 case Instruction::SDiv: 929 return SelectBinaryOp(I, ISD::SDIV); 930 case Instruction::UDiv: 931 return SelectBinaryOp(I, ISD::UDIV); 932 case Instruction::FDiv: 933 return SelectBinaryOp(I, ISD::FDIV); 934 case Instruction::SRem: 935 return SelectBinaryOp(I, ISD::SREM); 936 case Instruction::URem: 937 return SelectBinaryOp(I, ISD::UREM); 938 case Instruction::FRem: 939 return SelectBinaryOp(I, ISD::FREM); 940 case Instruction::Shl: 941 return SelectBinaryOp(I, ISD::SHL); 942 case Instruction::LShr: 943 return SelectBinaryOp(I, ISD::SRL); 944 case Instruction::AShr: 945 return SelectBinaryOp(I, ISD::SRA); 946 case Instruction::And: 947 return SelectBinaryOp(I, ISD::AND); 948 case Instruction::Or: 949 return SelectBinaryOp(I, ISD::OR); 950 case Instruction::Xor: 951 return SelectBinaryOp(I, ISD::XOR); 952 953 case Instruction::GetElementPtr: 954 return SelectGetElementPtr(I); 955 956 case Instruction::Br: { 957 const BranchInst *BI = cast<BranchInst>(I); 958 959 if (BI->isUnconditional()) { 960 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 961 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 962 FastEmitBranch(MSucc, BI->getDebugLoc()); 963 return true; 964 } 965 966 // Conditional branches are not handed yet. 967 // Halt "fast" selection and bail. 968 return false; 969 } 970 971 case Instruction::Unreachable: 972 // Nothing to emit. 973 return true; 974 975 case Instruction::Alloca: 976 // FunctionLowering has the static-sized case covered. 977 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 978 return true; 979 980 // Dynamic-sized alloca is not handled yet. 981 return false; 982 983 case Instruction::Call: 984 return SelectCall(I); 985 986 case Instruction::BitCast: 987 return SelectBitCast(I); 988 989 case Instruction::FPToSI: 990 return SelectCast(I, ISD::FP_TO_SINT); 991 case Instruction::ZExt: 992 return SelectCast(I, ISD::ZERO_EXTEND); 993 case Instruction::SExt: 994 return SelectCast(I, ISD::SIGN_EXTEND); 995 case Instruction::Trunc: 996 return SelectCast(I, ISD::TRUNCATE); 997 case Instruction::SIToFP: 998 return SelectCast(I, ISD::SINT_TO_FP); 999 1000 case Instruction::IntToPtr: // Deliberate fall-through. 1001 case Instruction::PtrToInt: { 1002 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1003 EVT DstVT = TLI.getValueType(I->getType()); 1004 if (DstVT.bitsGT(SrcVT)) 1005 return SelectCast(I, ISD::ZERO_EXTEND); 1006 if (DstVT.bitsLT(SrcVT)) 1007 return SelectCast(I, ISD::TRUNCATE); 1008 unsigned Reg = getRegForValue(I->getOperand(0)); 1009 if (Reg == 0) return false; 1010 UpdateValueMap(I, Reg); 1011 return true; 1012 } 1013 1014 case Instruction::ExtractValue: 1015 return SelectExtractValue(I); 1016 1017 case Instruction::PHI: 1018 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1019 1020 default: 1021 // Unhandled instruction. Halt "fast" selection and bail. 1022 return false; 1023 } 1024 } 1025 1026 FastISel::FastISel(FunctionLoweringInfo &funcInfo) 1027 : FuncInfo(funcInfo), 1028 MRI(FuncInfo.MF->getRegInfo()), 1029 MFI(*FuncInfo.MF->getFrameInfo()), 1030 MCP(*FuncInfo.MF->getConstantPool()), 1031 TM(FuncInfo.MF->getTarget()), 1032 TD(*TM.getTargetData()), 1033 TII(*TM.getInstrInfo()), 1034 TLI(*TM.getTargetLowering()), 1035 TRI(*TM.getRegisterInfo()) { 1036 } 1037 1038 FastISel::~FastISel() {} 1039 1040 unsigned FastISel::FastEmit_(MVT, MVT, 1041 unsigned) { 1042 return 0; 1043 } 1044 1045 unsigned FastISel::FastEmit_r(MVT, MVT, 1046 unsigned, 1047 unsigned /*Op0*/, bool /*Op0IsKill*/) { 1048 return 0; 1049 } 1050 1051 unsigned FastISel::FastEmit_rr(MVT, MVT, 1052 unsigned, 1053 unsigned /*Op0*/, bool /*Op0IsKill*/, 1054 unsigned /*Op1*/, bool /*Op1IsKill*/) { 1055 return 0; 1056 } 1057 1058 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1059 return 0; 1060 } 1061 1062 unsigned FastISel::FastEmit_f(MVT, MVT, 1063 unsigned, const ConstantFP * /*FPImm*/) { 1064 return 0; 1065 } 1066 1067 unsigned FastISel::FastEmit_ri(MVT, MVT, 1068 unsigned, 1069 unsigned /*Op0*/, bool /*Op0IsKill*/, 1070 uint64_t /*Imm*/) { 1071 return 0; 1072 } 1073 1074 unsigned FastISel::FastEmit_rf(MVT, MVT, 1075 unsigned, 1076 unsigned /*Op0*/, bool /*Op0IsKill*/, 1077 const ConstantFP * /*FPImm*/) { 1078 return 0; 1079 } 1080 1081 unsigned FastISel::FastEmit_rri(MVT, MVT, 1082 unsigned, 1083 unsigned /*Op0*/, bool /*Op0IsKill*/, 1084 unsigned /*Op1*/, bool /*Op1IsKill*/, 1085 uint64_t /*Imm*/) { 1086 return 0; 1087 } 1088 1089 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries 1090 /// to emit an instruction with an immediate operand using FastEmit_ri. 1091 /// If that fails, it materializes the immediate into a register and try 1092 /// FastEmit_rr instead. 1093 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode, 1094 unsigned Op0, bool Op0IsKill, 1095 uint64_t Imm, MVT ImmType) { 1096 // If this is a multiply by a power of two, emit this as a shift left. 1097 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1098 Opcode = ISD::SHL; 1099 Imm = Log2_64(Imm); 1100 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1101 // div x, 8 -> srl x, 3 1102 Opcode = ISD::SRL; 1103 Imm = Log2_64(Imm); 1104 } 1105 1106 // Horrible hack (to be removed), check to make sure shift amounts are 1107 // in-range. 1108 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1109 Imm >= VT.getSizeInBits()) 1110 return 0; 1111 1112 // First check if immediate type is legal. If not, we can't use the ri form. 1113 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1114 if (ResultReg != 0) 1115 return ResultReg; 1116 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1117 if (MaterialReg == 0) { 1118 // This is a bit ugly/slow, but failing here means falling out of 1119 // fast-isel, which would be very slow. 1120 IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(), 1121 VT.getSizeInBits()); 1122 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1123 } 1124 return FastEmit_rr(VT, VT, Opcode, 1125 Op0, Op0IsKill, 1126 MaterialReg, /*Kill=*/true); 1127 } 1128 1129 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { 1130 return MRI.createVirtualRegister(RC); 1131 } 1132 1133 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, 1134 const TargetRegisterClass* RC) { 1135 unsigned ResultReg = createResultReg(RC); 1136 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1137 1138 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg); 1139 return ResultReg; 1140 } 1141 1142 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, 1143 const TargetRegisterClass *RC, 1144 unsigned Op0, bool Op0IsKill) { 1145 unsigned ResultReg = createResultReg(RC); 1146 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1147 1148 if (II.getNumDefs() >= 1) 1149 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1150 .addReg(Op0, Op0IsKill * RegState::Kill); 1151 else { 1152 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1153 .addReg(Op0, Op0IsKill * RegState::Kill); 1154 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1155 ResultReg).addReg(II.ImplicitDefs[0]); 1156 } 1157 1158 return ResultReg; 1159 } 1160 1161 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 1162 const TargetRegisterClass *RC, 1163 unsigned Op0, bool Op0IsKill, 1164 unsigned Op1, bool Op1IsKill) { 1165 unsigned ResultReg = createResultReg(RC); 1166 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1167 1168 if (II.getNumDefs() >= 1) 1169 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1170 .addReg(Op0, Op0IsKill * RegState::Kill) 1171 .addReg(Op1, Op1IsKill * RegState::Kill); 1172 else { 1173 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1174 .addReg(Op0, Op0IsKill * RegState::Kill) 1175 .addReg(Op1, Op1IsKill * RegState::Kill); 1176 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1177 ResultReg).addReg(II.ImplicitDefs[0]); 1178 } 1179 return ResultReg; 1180 } 1181 1182 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 1183 const TargetRegisterClass *RC, 1184 unsigned Op0, bool Op0IsKill, 1185 unsigned Op1, bool Op1IsKill, 1186 unsigned Op2, bool Op2IsKill) { 1187 unsigned ResultReg = createResultReg(RC); 1188 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1189 1190 if (II.getNumDefs() >= 1) 1191 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1192 .addReg(Op0, Op0IsKill * RegState::Kill) 1193 .addReg(Op1, Op1IsKill * RegState::Kill) 1194 .addReg(Op2, Op2IsKill * RegState::Kill); 1195 else { 1196 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1197 .addReg(Op0, Op0IsKill * RegState::Kill) 1198 .addReg(Op1, Op1IsKill * RegState::Kill) 1199 .addReg(Op2, Op2IsKill * RegState::Kill); 1200 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1201 ResultReg).addReg(II.ImplicitDefs[0]); 1202 } 1203 return ResultReg; 1204 } 1205 1206 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 1207 const TargetRegisterClass *RC, 1208 unsigned Op0, bool Op0IsKill, 1209 uint64_t Imm) { 1210 unsigned ResultReg = createResultReg(RC); 1211 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1212 1213 if (II.getNumDefs() >= 1) 1214 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1215 .addReg(Op0, Op0IsKill * RegState::Kill) 1216 .addImm(Imm); 1217 else { 1218 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1219 .addReg(Op0, Op0IsKill * RegState::Kill) 1220 .addImm(Imm); 1221 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1222 ResultReg).addReg(II.ImplicitDefs[0]); 1223 } 1224 return ResultReg; 1225 } 1226 1227 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode, 1228 const TargetRegisterClass *RC, 1229 unsigned Op0, bool Op0IsKill, 1230 uint64_t Imm1, uint64_t Imm2) { 1231 unsigned ResultReg = createResultReg(RC); 1232 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1233 1234 if (II.getNumDefs() >= 1) 1235 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1236 .addReg(Op0, Op0IsKill * RegState::Kill) 1237 .addImm(Imm1) 1238 .addImm(Imm2); 1239 else { 1240 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1241 .addReg(Op0, Op0IsKill * RegState::Kill) 1242 .addImm(Imm1) 1243 .addImm(Imm2); 1244 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1245 ResultReg).addReg(II.ImplicitDefs[0]); 1246 } 1247 return ResultReg; 1248 } 1249 1250 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 1251 const TargetRegisterClass *RC, 1252 unsigned Op0, bool Op0IsKill, 1253 const ConstantFP *FPImm) { 1254 unsigned ResultReg = createResultReg(RC); 1255 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1256 1257 if (II.getNumDefs() >= 1) 1258 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1259 .addReg(Op0, Op0IsKill * RegState::Kill) 1260 .addFPImm(FPImm); 1261 else { 1262 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1263 .addReg(Op0, Op0IsKill * RegState::Kill) 1264 .addFPImm(FPImm); 1265 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1266 ResultReg).addReg(II.ImplicitDefs[0]); 1267 } 1268 return ResultReg; 1269 } 1270 1271 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 1272 const TargetRegisterClass *RC, 1273 unsigned Op0, bool Op0IsKill, 1274 unsigned Op1, bool Op1IsKill, 1275 uint64_t Imm) { 1276 unsigned ResultReg = createResultReg(RC); 1277 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1278 1279 if (II.getNumDefs() >= 1) 1280 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1281 .addReg(Op0, Op0IsKill * RegState::Kill) 1282 .addReg(Op1, Op1IsKill * RegState::Kill) 1283 .addImm(Imm); 1284 else { 1285 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1286 .addReg(Op0, Op0IsKill * RegState::Kill) 1287 .addReg(Op1, Op1IsKill * RegState::Kill) 1288 .addImm(Imm); 1289 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1290 ResultReg).addReg(II.ImplicitDefs[0]); 1291 } 1292 return ResultReg; 1293 } 1294 1295 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, 1296 const TargetRegisterClass *RC, 1297 uint64_t Imm) { 1298 unsigned ResultReg = createResultReg(RC); 1299 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1300 1301 if (II.getNumDefs() >= 1) 1302 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm); 1303 else { 1304 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm); 1305 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1306 ResultReg).addReg(II.ImplicitDefs[0]); 1307 } 1308 return ResultReg; 1309 } 1310 1311 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 1312 const TargetRegisterClass *RC, 1313 uint64_t Imm1, uint64_t Imm2) { 1314 unsigned ResultReg = createResultReg(RC); 1315 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1316 1317 if (II.getNumDefs() >= 1) 1318 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1319 .addImm(Imm1).addImm(Imm2); 1320 else { 1321 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2); 1322 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1323 ResultReg).addReg(II.ImplicitDefs[0]); 1324 } 1325 return ResultReg; 1326 } 1327 1328 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT, 1329 unsigned Op0, bool Op0IsKill, 1330 uint32_t Idx) { 1331 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1332 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1333 "Cannot yet extract from physregs"); 1334 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 1335 DL, TII.get(TargetOpcode::COPY), ResultReg) 1336 .addReg(Op0, getKillRegState(Op0IsKill), Idx); 1337 return ResultReg; 1338 } 1339 1340 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op 1341 /// with all but the least significant bit set to zero. 1342 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 1343 return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 1344 } 1345 1346 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 1347 /// Emit code to ensure constants are copied into registers when needed. 1348 /// Remember the virtual registers that need to be added to the Machine PHI 1349 /// nodes as input. We cannot just directly add them, because expansion 1350 /// might result in multiple MBB's for one BB. As such, the start of the 1351 /// BB might correspond to a different MBB than the end. 1352 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 1353 const TerminatorInst *TI = LLVMBB->getTerminator(); 1354 1355 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 1356 unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 1357 1358 // Check successor nodes' PHI nodes that expect a constant to be available 1359 // from this block. 1360 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 1361 const BasicBlock *SuccBB = TI->getSuccessor(succ); 1362 if (!isa<PHINode>(SuccBB->begin())) continue; 1363 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 1364 1365 // If this terminator has multiple identical successors (common for 1366 // switches), only handle each succ once. 1367 if (!SuccsHandled.insert(SuccMBB)) continue; 1368 1369 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 1370 1371 // At this point we know that there is a 1-1 correspondence between LLVM PHI 1372 // nodes and Machine PHI nodes, but the incoming operands have not been 1373 // emitted yet. 1374 for (BasicBlock::const_iterator I = SuccBB->begin(); 1375 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1376 1377 // Ignore dead phi's. 1378 if (PN->use_empty()) continue; 1379 1380 // Only handle legal types. Two interesting things to note here. First, 1381 // by bailing out early, we may leave behind some dead instructions, 1382 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 1383 // own moves. Second, this check is necessary because FastISel doesn't 1384 // use CreateRegs to create registers, so it always creates 1385 // exactly one register for each non-void instruction. 1386 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 1387 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 1388 // Handle integer promotions, though, because they're common and easy. 1389 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 1390 VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT); 1391 else { 1392 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 1393 return false; 1394 } 1395 } 1396 1397 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 1398 1399 // Set the DebugLoc for the copy. Prefer the location of the operand 1400 // if there is one; use the location of the PHI otherwise. 1401 DL = PN->getDebugLoc(); 1402 if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp)) 1403 DL = Inst->getDebugLoc(); 1404 1405 unsigned Reg = getRegForValue(PHIOp); 1406 if (Reg == 0) { 1407 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 1408 return false; 1409 } 1410 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 1411 DL = DebugLoc(); 1412 } 1413 } 1414 1415 return true; 1416 } 1417