1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
11 //
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time.  For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
19 //
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support.  In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
24 //
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated.  Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time.  Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
33 //
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators.  More complicated operations currently require
38 // target-specific code.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/CodeGen/FastISel.h"
43 #include "llvm/ADT/APFloat.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/DenseMap.h"
46 #include "llvm/ADT/Optional.h"
47 #include "llvm/ADT/SmallPtrSet.h"
48 #include "llvm/ADT/SmallString.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/Analysis/BranchProbabilityInfo.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/CodeGen/Analysis.h"
54 #include "llvm/CodeGen/FunctionLoweringInfo.h"
55 #include "llvm/CodeGen/ISDOpcodes.h"
56 #include "llvm/CodeGen/MachineBasicBlock.h"
57 #include "llvm/CodeGen/MachineFrameInfo.h"
58 #include "llvm/CodeGen/MachineInstr.h"
59 #include "llvm/CodeGen/MachineInstrBuilder.h"
60 #include "llvm/CodeGen/MachineMemOperand.h"
61 #include "llvm/CodeGen/MachineModuleInfo.h"
62 #include "llvm/CodeGen/MachineOperand.h"
63 #include "llvm/CodeGen/MachineRegisterInfo.h"
64 #include "llvm/CodeGen/MachineValueType.h"
65 #include "llvm/CodeGen/StackMaps.h"
66 #include "llvm/CodeGen/TargetInstrInfo.h"
67 #include "llvm/CodeGen/TargetLowering.h"
68 #include "llvm/CodeGen/TargetSubtargetInfo.h"
69 #include "llvm/CodeGen/ValueTypes.h"
70 #include "llvm/IR/Argument.h"
71 #include "llvm/IR/Attributes.h"
72 #include "llvm/IR/BasicBlock.h"
73 #include "llvm/IR/CallSite.h"
74 #include "llvm/IR/CallingConv.h"
75 #include "llvm/IR/Constant.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DebugInfo.h"
79 #include "llvm/IR/DebugLoc.h"
80 #include "llvm/IR/DerivedTypes.h"
81 #include "llvm/IR/Function.h"
82 #include "llvm/IR/GetElementPtrTypeIterator.h"
83 #include "llvm/IR/GlobalValue.h"
84 #include "llvm/IR/InlineAsm.h"
85 #include "llvm/IR/InstrTypes.h"
86 #include "llvm/IR/Instruction.h"
87 #include "llvm/IR/Instructions.h"
88 #include "llvm/IR/IntrinsicInst.h"
89 #include "llvm/IR/LLVMContext.h"
90 #include "llvm/IR/Mangler.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Operator.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/MC/MCContext.h"
97 #include "llvm/MC/MCInstrDesc.h"
98 #include "llvm/MC/MCRegisterInfo.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/Debug.h"
101 #include "llvm/Support/ErrorHandling.h"
102 #include "llvm/Support/MathExtras.h"
103 #include "llvm/Support/raw_ostream.h"
104 #include "llvm/Target/TargetMachine.h"
105 #include "llvm/Target/TargetOptions.h"
106 #include <algorithm>
107 #include <cassert>
108 #include <cstdint>
109 #include <iterator>
110 #include <utility>
111 
112 using namespace llvm;
113 
114 #define DEBUG_TYPE "isel"
115 
116 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
117                                          "target-independent selector");
118 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
119                                     "target-specific selector");
120 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
121 
122 /// Set the current block to which generated machine instructions will be
123 /// appended.
124 void FastISel::startNewBlock() {
125   assert(LocalValueMap.empty() &&
126          "local values should be cleared after finishing a BB");
127 
128   // Instructions are appended to FuncInfo.MBB. If the basic block already
129   // contains labels or copies, use the last instruction as the last local
130   // value.
131   EmitStartPt = nullptr;
132   if (!FuncInfo.MBB->empty())
133     EmitStartPt = &FuncInfo.MBB->back();
134   LastLocalValue = EmitStartPt;
135 }
136 
137 /// Flush the local CSE map and sink anything we can.
138 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
139 
140 bool FastISel::lowerArguments() {
141   if (!FuncInfo.CanLowerReturn)
142     // Fallback to SDISel argument lowering code to deal with sret pointer
143     // parameter.
144     return false;
145 
146   if (!fastLowerArguments())
147     return false;
148 
149   // Enter arguments into ValueMap for uses in non-entry BBs.
150   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
151                                     E = FuncInfo.Fn->arg_end();
152        I != E; ++I) {
153     DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I);
154     assert(VI != LocalValueMap.end() && "Missed an argument?");
155     FuncInfo.ValueMap[&*I] = VI->second;
156   }
157   return true;
158 }
159 
160 /// Return the defined register if this instruction defines exactly one
161 /// virtual register and uses no other virtual registers. Otherwise return 0.
162 static unsigned findSinkableLocalRegDef(MachineInstr &MI) {
163   unsigned RegDef = 0;
164   for (const MachineOperand &MO : MI.operands()) {
165     if (!MO.isReg())
166       continue;
167     if (MO.isDef()) {
168       if (RegDef)
169         return 0;
170       RegDef = MO.getReg();
171     } else if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
172       // This is another use of a vreg. Don't try to sink it.
173       return 0;
174     }
175   }
176   return RegDef;
177 }
178 
179 void FastISel::flushLocalValueMap() {
180   // Try to sink local values down to their first use so that we can give them a
181   // better debug location. This has the side effect of shrinking local value
182   // live ranges, which helps out fast regalloc.
183   if (LastLocalValue != EmitStartPt) {
184     // Sink local value materialization instructions between EmitStartPt and
185     // LastLocalValue. Visit them bottom-up, starting from LastLocalValue, to
186     // avoid inserting into the range that we're iterating over.
187     MachineBasicBlock::reverse_iterator RE =
188         EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
189                     : FuncInfo.MBB->rend();
190     MachineBasicBlock::reverse_iterator RI(LastLocalValue);
191 
192     InstOrderMap OrderMap;
193     for (; RI != RE;) {
194       MachineInstr &LocalMI = *RI;
195       ++RI;
196       bool Store = true;
197       if (!LocalMI.isSafeToMove(nullptr, Store))
198         continue;
199       unsigned DefReg = findSinkableLocalRegDef(LocalMI);
200       if (DefReg == 0)
201         continue;
202 
203       sinkLocalValueMaterialization(LocalMI, DefReg, OrderMap);
204     }
205   }
206 
207   LocalValueMap.clear();
208   LastLocalValue = EmitStartPt;
209   recomputeInsertPt();
210   SavedInsertPt = FuncInfo.InsertPt;
211 }
212 
213 static bool isRegUsedByPhiNodes(unsigned DefReg,
214                                 FunctionLoweringInfo &FuncInfo) {
215   for (auto &P : FuncInfo.PHINodesToUpdate)
216     if (P.second == DefReg)
217       return true;
218   return false;
219 }
220 
221 /// Build a map of instruction orders. Return the first terminator and its
222 /// order. Consider EH_LABEL instructions to be terminators as well, since local
223 /// values for phis after invokes must be materialized before the call.
224 void FastISel::InstOrderMap::initialize(MachineBasicBlock *MBB) {
225   unsigned Order = 0;
226   for (MachineInstr &I : *MBB) {
227     if (!FirstTerminator &&
228         (I.isTerminator() || (I.isEHLabel() && &I != &MBB->front()))) {
229       FirstTerminator = &I;
230       FirstTerminatorOrder = Order;
231     }
232     Orders[&I] = Order++;
233   }
234 }
235 
236 void FastISel::sinkLocalValueMaterialization(MachineInstr &LocalMI,
237                                              unsigned DefReg,
238                                              InstOrderMap &OrderMap) {
239   // If this register is used by a register fixup, MRI will not contain all
240   // the uses until after register fixups, so don't attempt to sink or DCE
241   // this instruction. Register fixups typically come from no-op cast
242   // instructions, which replace the cast instruction vreg with the local
243   // value vreg.
244   if (FuncInfo.RegsWithFixups.count(DefReg))
245     return;
246 
247   // We can DCE this instruction if there are no uses and it wasn't a
248   // materialized for a successor PHI node.
249   bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
250   if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
251     if (EmitStartPt == &LocalMI)
252       EmitStartPt = EmitStartPt->getPrevNode();
253     DEBUG(dbgs() << "removing dead local value materialization " << LocalMI);
254     OrderMap.Orders.erase(&LocalMI);
255     LocalMI.eraseFromParent();
256     return;
257   }
258 
259   // Number the instructions if we haven't yet so we can efficiently find the
260   // earliest use.
261   if (OrderMap.Orders.empty())
262     OrderMap.initialize(FuncInfo.MBB);
263 
264   // Find the first user in the BB.
265   MachineInstr *FirstUser = nullptr;
266   unsigned FirstOrder = std::numeric_limits<unsigned>::max();
267   for (MachineInstr &UseInst : MRI.use_nodbg_instructions(DefReg)) {
268     unsigned UseOrder = OrderMap.Orders[&UseInst];
269     if (UseOrder < FirstOrder) {
270       FirstOrder = UseOrder;
271       FirstUser = &UseInst;
272     }
273   }
274 
275   // The insertion point will be the first terminator or the first user,
276   // whichever came first. If there was no terminator, this must be a
277   // fallthrough block and the insertion point is the end of the block.
278   MachineBasicBlock::instr_iterator SinkPos;
279   if (UsedByPHI && OrderMap.FirstTerminatorOrder < FirstOrder) {
280     FirstOrder = OrderMap.FirstTerminatorOrder;
281     SinkPos = OrderMap.FirstTerminator->getIterator();
282   } else if (FirstUser) {
283     SinkPos = FirstUser->getIterator();
284   } else {
285     assert(UsedByPHI && "must be users if not used by a phi");
286     SinkPos = FuncInfo.MBB->instr_end();
287   }
288 
289   // Collect all DBG_VALUEs before the new insertion position so that we can
290   // sink them.
291   SmallVector<MachineInstr *, 1> DbgValues;
292   for (MachineInstr &DbgVal : MRI.use_instructions(DefReg)) {
293     if (!DbgVal.isDebugValue())
294       continue;
295     unsigned UseOrder = OrderMap.Orders[&DbgVal];
296     if (UseOrder < FirstOrder)
297       DbgValues.push_back(&DbgVal);
298   }
299 
300   // Sink LocalMI before SinkPos and assign it the same DebugLoc.
301   DEBUG(dbgs() << "sinking local value to first use " << LocalMI);
302   FuncInfo.MBB->remove(&LocalMI);
303   FuncInfo.MBB->insert(SinkPos, &LocalMI);
304   if (SinkPos != FuncInfo.MBB->end())
305     LocalMI.setDebugLoc(SinkPos->getDebugLoc());
306 
307   // Sink any debug values that we've collected.
308   for (MachineInstr *DI : DbgValues) {
309     FuncInfo.MBB->remove(DI);
310     FuncInfo.MBB->insert(SinkPos, DI);
311   }
312 }
313 
314 bool FastISel::hasTrivialKill(const Value *V) {
315   // Don't consider constants or arguments to have trivial kills.
316   const Instruction *I = dyn_cast<Instruction>(V);
317   if (!I)
318     return false;
319 
320   // No-op casts are trivially coalesced by fast-isel.
321   if (const auto *Cast = dyn_cast<CastInst>(I))
322     if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0)))
323       return false;
324 
325   // Even the value might have only one use in the LLVM IR, it is possible that
326   // FastISel might fold the use into another instruction and now there is more
327   // than one use at the Machine Instruction level.
328   unsigned Reg = lookUpRegForValue(V);
329   if (Reg && !MRI.use_empty(Reg))
330     return false;
331 
332   // GEPs with all zero indices are trivially coalesced by fast-isel.
333   if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
334     if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
335       return false;
336 
337   // Only instructions with a single use in the same basic block are considered
338   // to have trivial kills.
339   return I->hasOneUse() &&
340          !(I->getOpcode() == Instruction::BitCast ||
341            I->getOpcode() == Instruction::PtrToInt ||
342            I->getOpcode() == Instruction::IntToPtr) &&
343          cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
344 }
345 
346 unsigned FastISel::getRegForValue(const Value *V) {
347   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
348   // Don't handle non-simple values in FastISel.
349   if (!RealVT.isSimple())
350     return 0;
351 
352   // Ignore illegal types. We must do this before looking up the value
353   // in ValueMap because Arguments are given virtual registers regardless
354   // of whether FastISel can handle them.
355   MVT VT = RealVT.getSimpleVT();
356   if (!TLI.isTypeLegal(VT)) {
357     // Handle integer promotions, though, because they're common and easy.
358     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
359       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
360     else
361       return 0;
362   }
363 
364   // Look up the value to see if we already have a register for it.
365   unsigned Reg = lookUpRegForValue(V);
366   if (Reg)
367     return Reg;
368 
369   // In bottom-up mode, just create the virtual register which will be used
370   // to hold the value. It will be materialized later.
371   if (isa<Instruction>(V) &&
372       (!isa<AllocaInst>(V) ||
373        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
374     return FuncInfo.InitializeRegForValue(V);
375 
376   SavePoint SaveInsertPt = enterLocalValueArea();
377 
378   // Materialize the value in a register. Emit any instructions in the
379   // local value area.
380   Reg = materializeRegForValue(V, VT);
381 
382   leaveLocalValueArea(SaveInsertPt);
383 
384   return Reg;
385 }
386 
387 unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
388   unsigned Reg = 0;
389   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
390     if (CI->getValue().getActiveBits() <= 64)
391       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
392   } else if (isa<AllocaInst>(V))
393     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
394   else if (isa<ConstantPointerNull>(V))
395     // Translate this as an integer zero so that it can be
396     // local-CSE'd with actual integer zeros.
397     Reg = getRegForValue(
398         Constant::getNullValue(DL.getIntPtrType(V->getContext())));
399   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
400     if (CF->isNullValue())
401       Reg = fastMaterializeFloatZero(CF);
402     else
403       // Try to emit the constant directly.
404       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
405 
406     if (!Reg) {
407       // Try to emit the constant by using an integer constant with a cast.
408       const APFloat &Flt = CF->getValueAPF();
409       EVT IntVT = TLI.getPointerTy(DL);
410       uint32_t IntBitWidth = IntVT.getSizeInBits();
411       APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
412       bool isExact;
413       (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
414       if (isExact) {
415         unsigned IntegerReg =
416             getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
417         if (IntegerReg != 0)
418           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
419                            /*Kill=*/false);
420       }
421     }
422   } else if (const auto *Op = dyn_cast<Operator>(V)) {
423     if (!selectOperator(Op, Op->getOpcode()))
424       if (!isa<Instruction>(Op) ||
425           !fastSelectInstruction(cast<Instruction>(Op)))
426         return 0;
427     Reg = lookUpRegForValue(Op);
428   } else if (isa<UndefValue>(V)) {
429     Reg = createResultReg(TLI.getRegClassFor(VT));
430     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
431             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
432   }
433   return Reg;
434 }
435 
436 /// Helper for getRegForValue. This function is called when the value isn't
437 /// already available in a register and must be materialized with new
438 /// instructions.
439 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
440   unsigned Reg = 0;
441   // Give the target-specific code a try first.
442   if (isa<Constant>(V))
443     Reg = fastMaterializeConstant(cast<Constant>(V));
444 
445   // If target-specific code couldn't or didn't want to handle the value, then
446   // give target-independent code a try.
447   if (!Reg)
448     Reg = materializeConstant(V, VT);
449 
450   // Don't cache constant materializations in the general ValueMap.
451   // To do so would require tracking what uses they dominate.
452   if (Reg) {
453     LocalValueMap[V] = Reg;
454     LastLocalValue = MRI.getVRegDef(Reg);
455   }
456   return Reg;
457 }
458 
459 unsigned FastISel::lookUpRegForValue(const Value *V) {
460   // Look up the value to see if we already have a register for it. We
461   // cache values defined by Instructions across blocks, and other values
462   // only locally. This is because Instructions already have the SSA
463   // def-dominates-use requirement enforced.
464   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
465   if (I != FuncInfo.ValueMap.end())
466     return I->second;
467   return LocalValueMap[V];
468 }
469 
470 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
471   if (!isa<Instruction>(I)) {
472     LocalValueMap[I] = Reg;
473     return;
474   }
475 
476   unsigned &AssignedReg = FuncInfo.ValueMap[I];
477   if (AssignedReg == 0)
478     // Use the new register.
479     AssignedReg = Reg;
480   else if (Reg != AssignedReg) {
481     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
482     for (unsigned i = 0; i < NumRegs; i++) {
483       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
484       FuncInfo.RegsWithFixups.insert(Reg + i);
485     }
486 
487     AssignedReg = Reg;
488   }
489 }
490 
491 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
492   unsigned IdxN = getRegForValue(Idx);
493   if (IdxN == 0)
494     // Unhandled operand. Halt "fast" selection and bail.
495     return std::pair<unsigned, bool>(0, false);
496 
497   bool IdxNIsKill = hasTrivialKill(Idx);
498 
499   // If the index is smaller or larger than intptr_t, truncate or extend it.
500   MVT PtrVT = TLI.getPointerTy(DL);
501   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
502   if (IdxVT.bitsLT(PtrVT)) {
503     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
504                       IdxNIsKill);
505     IdxNIsKill = true;
506   } else if (IdxVT.bitsGT(PtrVT)) {
507     IdxN =
508         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
509     IdxNIsKill = true;
510   }
511   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
512 }
513 
514 void FastISel::recomputeInsertPt() {
515   if (getLastLocalValue()) {
516     FuncInfo.InsertPt = getLastLocalValue();
517     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
518     ++FuncInfo.InsertPt;
519   } else
520     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
521 
522   // Now skip past any EH_LABELs, which must remain at the beginning.
523   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
524          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
525     ++FuncInfo.InsertPt;
526 }
527 
528 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
529                               MachineBasicBlock::iterator E) {
530   assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
531          "Invalid iterator!");
532   while (I != E) {
533     MachineInstr *Dead = &*I;
534     ++I;
535     Dead->eraseFromParent();
536     ++NumFastIselDead;
537   }
538   recomputeInsertPt();
539 }
540 
541 FastISel::SavePoint FastISel::enterLocalValueArea() {
542   MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
543   DebugLoc OldDL = DbgLoc;
544   recomputeInsertPt();
545   DbgLoc = DebugLoc();
546   SavePoint SP = {OldInsertPt, OldDL};
547   return SP;
548 }
549 
550 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
551   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
552     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
553 
554   // Restore the previous insert position.
555   FuncInfo.InsertPt = OldInsertPt.InsertPt;
556   DbgLoc = OldInsertPt.DL;
557 }
558 
559 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
560   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
561   if (VT == MVT::Other || !VT.isSimple())
562     // Unhandled type. Halt "fast" selection and bail.
563     return false;
564 
565   // We only handle legal types. For example, on x86-32 the instruction
566   // selector contains all of the 64-bit instructions from x86-64,
567   // under the assumption that i64 won't be used if the target doesn't
568   // support it.
569   if (!TLI.isTypeLegal(VT)) {
570     // MVT::i1 is special. Allow AND, OR, or XOR because they
571     // don't require additional zeroing, which makes them easy.
572     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
573                           ISDOpcode == ISD::XOR))
574       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
575     else
576       return false;
577   }
578 
579   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
580   // we don't have anything that canonicalizes operand order.
581   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
582     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
583       unsigned Op1 = getRegForValue(I->getOperand(1));
584       if (!Op1)
585         return false;
586       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
587 
588       unsigned ResultReg =
589           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
590                        CI->getZExtValue(), VT.getSimpleVT());
591       if (!ResultReg)
592         return false;
593 
594       // We successfully emitted code for the given LLVM Instruction.
595       updateValueMap(I, ResultReg);
596       return true;
597     }
598 
599   unsigned Op0 = getRegForValue(I->getOperand(0));
600   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
601     return false;
602   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
603 
604   // Check if the second operand is a constant and handle it appropriately.
605   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
606     uint64_t Imm = CI->getSExtValue();
607 
608     // Transform "sdiv exact X, 8" -> "sra X, 3".
609     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
610         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
611       Imm = Log2_64(Imm);
612       ISDOpcode = ISD::SRA;
613     }
614 
615     // Transform "urem x, pow2" -> "and x, pow2-1".
616     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
617         isPowerOf2_64(Imm)) {
618       --Imm;
619       ISDOpcode = ISD::AND;
620     }
621 
622     unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
623                                       Op0IsKill, Imm, VT.getSimpleVT());
624     if (!ResultReg)
625       return false;
626 
627     // We successfully emitted code for the given LLVM Instruction.
628     updateValueMap(I, ResultReg);
629     return true;
630   }
631 
632   unsigned Op1 = getRegForValue(I->getOperand(1));
633   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
634     return false;
635   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
636 
637   // Now we have both operands in registers. Emit the instruction.
638   unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
639                                    ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
640   if (!ResultReg)
641     // Target-specific code wasn't able to find a machine opcode for
642     // the given ISD opcode and type. Halt "fast" selection and bail.
643     return false;
644 
645   // We successfully emitted code for the given LLVM Instruction.
646   updateValueMap(I, ResultReg);
647   return true;
648 }
649 
650 bool FastISel::selectGetElementPtr(const User *I) {
651   unsigned N = getRegForValue(I->getOperand(0));
652   if (!N) // Unhandled operand. Halt "fast" selection and bail.
653     return false;
654   bool NIsKill = hasTrivialKill(I->getOperand(0));
655 
656   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
657   // into a single N = N + TotalOffset.
658   uint64_t TotalOffs = 0;
659   // FIXME: What's a good SWAG number for MaxOffs?
660   uint64_t MaxOffs = 2048;
661   MVT VT = TLI.getPointerTy(DL);
662   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
663        GTI != E; ++GTI) {
664     const Value *Idx = GTI.getOperand();
665     if (StructType *StTy = GTI.getStructTypeOrNull()) {
666       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
667       if (Field) {
668         // N = N + Offset
669         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
670         if (TotalOffs >= MaxOffs) {
671           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
672           if (!N) // Unhandled operand. Halt "fast" selection and bail.
673             return false;
674           NIsKill = true;
675           TotalOffs = 0;
676         }
677       }
678     } else {
679       Type *Ty = GTI.getIndexedType();
680 
681       // If this is a constant subscript, handle it quickly.
682       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
683         if (CI->isZero())
684           continue;
685         // N = N + Offset
686         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
687         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
688         if (TotalOffs >= MaxOffs) {
689           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
690           if (!N) // Unhandled operand. Halt "fast" selection and bail.
691             return false;
692           NIsKill = true;
693           TotalOffs = 0;
694         }
695         continue;
696       }
697       if (TotalOffs) {
698         N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
699         if (!N) // Unhandled operand. Halt "fast" selection and bail.
700           return false;
701         NIsKill = true;
702         TotalOffs = 0;
703       }
704 
705       // N = N + Idx * ElementSize;
706       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
707       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
708       unsigned IdxN = Pair.first;
709       bool IdxNIsKill = Pair.second;
710       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
711         return false;
712 
713       if (ElementSize != 1) {
714         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
715         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
716           return false;
717         IdxNIsKill = true;
718       }
719       N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
720       if (!N) // Unhandled operand. Halt "fast" selection and bail.
721         return false;
722     }
723   }
724   if (TotalOffs) {
725     N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
726     if (!N) // Unhandled operand. Halt "fast" selection and bail.
727       return false;
728   }
729 
730   // We successfully emitted code for the given LLVM Instruction.
731   updateValueMap(I, N);
732   return true;
733 }
734 
735 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
736                                    const CallInst *CI, unsigned StartIdx) {
737   for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
738     Value *Val = CI->getArgOperand(i);
739     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
740     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
741       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
742       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
743     } else if (isa<ConstantPointerNull>(Val)) {
744       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
745       Ops.push_back(MachineOperand::CreateImm(0));
746     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
747       // Values coming from a stack location also require a special encoding,
748       // but that is added later on by the target specific frame index
749       // elimination implementation.
750       auto SI = FuncInfo.StaticAllocaMap.find(AI);
751       if (SI != FuncInfo.StaticAllocaMap.end())
752         Ops.push_back(MachineOperand::CreateFI(SI->second));
753       else
754         return false;
755     } else {
756       unsigned Reg = getRegForValue(Val);
757       if (!Reg)
758         return false;
759       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
760     }
761   }
762   return true;
763 }
764 
765 bool FastISel::selectStackmap(const CallInst *I) {
766   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
767   //                                  [live variables...])
768   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
769          "Stackmap cannot return a value.");
770 
771   // The stackmap intrinsic only records the live variables (the arguments
772   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
773   // intrinsic, this won't be lowered to a function call. This means we don't
774   // have to worry about calling conventions and target-specific lowering code.
775   // Instead we perform the call lowering right here.
776   //
777   // CALLSEQ_START(0, 0...)
778   // STACKMAP(id, nbytes, ...)
779   // CALLSEQ_END(0, 0)
780   //
781   SmallVector<MachineOperand, 32> Ops;
782 
783   // Add the <id> and <numBytes> constants.
784   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
785          "Expected a constant integer.");
786   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
787   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
788 
789   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
790          "Expected a constant integer.");
791   const auto *NumBytes =
792       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
793   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
794 
795   // Push live variables for the stack map (skipping the first two arguments
796   // <id> and <numBytes>).
797   if (!addStackMapLiveVars(Ops, I, 2))
798     return false;
799 
800   // We are not adding any register mask info here, because the stackmap doesn't
801   // clobber anything.
802 
803   // Add scratch registers as implicit def and early clobber.
804   CallingConv::ID CC = I->getCallingConv();
805   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
806   for (unsigned i = 0; ScratchRegs[i]; ++i)
807     Ops.push_back(MachineOperand::CreateReg(
808         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
809         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
810 
811   // Issue CALLSEQ_START
812   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
813   auto Builder =
814       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
815   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
816   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
817     Builder.addImm(0);
818 
819   // Issue STACKMAP.
820   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
821                                     TII.get(TargetOpcode::STACKMAP));
822   for (auto const &MO : Ops)
823     MIB.add(MO);
824 
825   // Issue CALLSEQ_END
826   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
827   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
828       .addImm(0)
829       .addImm(0);
830 
831   // Inform the Frame Information that we have a stackmap in this function.
832   FuncInfo.MF->getFrameInfo().setHasStackMap();
833 
834   return true;
835 }
836 
837 /// \brief Lower an argument list according to the target calling convention.
838 ///
839 /// This is a helper for lowering intrinsics that follow a target calling
840 /// convention or require stack pointer adjustment. Only a subset of the
841 /// intrinsic's operands need to participate in the calling convention.
842 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
843                                  unsigned NumArgs, const Value *Callee,
844                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
845   ArgListTy Args;
846   Args.reserve(NumArgs);
847 
848   // Populate the argument list.
849   ImmutableCallSite CS(CI);
850   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
851     Value *V = CI->getOperand(ArgI);
852 
853     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
854 
855     ArgListEntry Entry;
856     Entry.Val = V;
857     Entry.Ty = V->getType();
858     Entry.setAttributes(&CS, ArgI);
859     Args.push_back(Entry);
860   }
861 
862   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
863                                : CI->getType();
864   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
865 
866   return lowerCallTo(CLI);
867 }
868 
869 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
870     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
871     StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
872   SmallString<32> MangledName;
873   Mangler::getNameWithPrefix(MangledName, Target, DL);
874   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
875   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
876 }
877 
878 bool FastISel::selectPatchpoint(const CallInst *I) {
879   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
880   //                                                 i32 <numBytes>,
881   //                                                 i8* <target>,
882   //                                                 i32 <numArgs>,
883   //                                                 [Args...],
884   //                                                 [live variables...])
885   CallingConv::ID CC = I->getCallingConv();
886   bool IsAnyRegCC = CC == CallingConv::AnyReg;
887   bool HasDef = !I->getType()->isVoidTy();
888   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
889 
890   // Get the real number of arguments participating in the call <numArgs>
891   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
892          "Expected a constant integer.");
893   const auto *NumArgsVal =
894       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
895   unsigned NumArgs = NumArgsVal->getZExtValue();
896 
897   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
898   // This includes all meta-operands up to but not including CC.
899   unsigned NumMetaOpers = PatchPointOpers::CCPos;
900   assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
901          "Not enough arguments provided to the patchpoint intrinsic");
902 
903   // For AnyRegCC the arguments are lowered later on manually.
904   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
905   CallLoweringInfo CLI;
906   CLI.setIsPatchPoint();
907   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
908     return false;
909 
910   assert(CLI.Call && "No call instruction specified.");
911 
912   SmallVector<MachineOperand, 32> Ops;
913 
914   // Add an explicit result reg if we use the anyreg calling convention.
915   if (IsAnyRegCC && HasDef) {
916     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
917     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
918     CLI.NumResultRegs = 1;
919     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true));
920   }
921 
922   // Add the <id> and <numBytes> constants.
923   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
924          "Expected a constant integer.");
925   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
926   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
927 
928   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
929          "Expected a constant integer.");
930   const auto *NumBytes =
931       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
932   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
933 
934   // Add the call target.
935   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
936     uint64_t CalleeConstAddr =
937       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
938     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
939   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
940     if (C->getOpcode() == Instruction::IntToPtr) {
941       uint64_t CalleeConstAddr =
942         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
943       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
944     } else
945       llvm_unreachable("Unsupported ConstantExpr.");
946   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
947     Ops.push_back(MachineOperand::CreateGA(GV, 0));
948   } else if (isa<ConstantPointerNull>(Callee))
949     Ops.push_back(MachineOperand::CreateImm(0));
950   else
951     llvm_unreachable("Unsupported callee address.");
952 
953   // Adjust <numArgs> to account for any arguments that have been passed on
954   // the stack instead.
955   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
956   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
957 
958   // Add the calling convention
959   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
960 
961   // Add the arguments we omitted previously. The register allocator should
962   // place these in any free register.
963   if (IsAnyRegCC) {
964     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
965       unsigned Reg = getRegForValue(I->getArgOperand(i));
966       if (!Reg)
967         return false;
968       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
969     }
970   }
971 
972   // Push the arguments from the call instruction.
973   for (auto Reg : CLI.OutRegs)
974     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
975 
976   // Push live variables for the stack map.
977   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
978     return false;
979 
980   // Push the register mask info.
981   Ops.push_back(MachineOperand::CreateRegMask(
982       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
983 
984   // Add scratch registers as implicit def and early clobber.
985   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
986   for (unsigned i = 0; ScratchRegs[i]; ++i)
987     Ops.push_back(MachineOperand::CreateReg(
988         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
989         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
990 
991   // Add implicit defs (return values).
992   for (auto Reg : CLI.InRegs)
993     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true,
994                                             /*IsImpl=*/true));
995 
996   // Insert the patchpoint instruction before the call generated by the target.
997   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
998                                     TII.get(TargetOpcode::PATCHPOINT));
999 
1000   for (auto &MO : Ops)
1001     MIB.add(MO);
1002 
1003   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1004 
1005   // Delete the original call instruction.
1006   CLI.Call->eraseFromParent();
1007 
1008   // Inform the Frame Information that we have a patchpoint in this function.
1009   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
1010 
1011   if (CLI.NumResultRegs)
1012     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
1013   return true;
1014 }
1015 
1016 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
1017   const auto &Triple = TM.getTargetTriple();
1018   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
1019     return true; // don't do anything to this instruction.
1020   SmallVector<MachineOperand, 8> Ops;
1021   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
1022                                           /*IsDef=*/false));
1023   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
1024                                           /*IsDef=*/false));
1025   MachineInstrBuilder MIB =
1026       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1027               TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
1028   for (auto &MO : Ops)
1029     MIB.add(MO);
1030 
1031   // Insert the Patchable Event Call instruction, that gets lowered properly.
1032   return true;
1033 }
1034 
1035 
1036 /// Returns an AttributeList representing the attributes applied to the return
1037 /// value of the given call.
1038 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
1039   SmallVector<Attribute::AttrKind, 2> Attrs;
1040   if (CLI.RetSExt)
1041     Attrs.push_back(Attribute::SExt);
1042   if (CLI.RetZExt)
1043     Attrs.push_back(Attribute::ZExt);
1044   if (CLI.IsInReg)
1045     Attrs.push_back(Attribute::InReg);
1046 
1047   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
1048                             Attrs);
1049 }
1050 
1051 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
1052                            unsigned NumArgs) {
1053   MCContext &Ctx = MF->getContext();
1054   SmallString<32> MangledName;
1055   Mangler::getNameWithPrefix(MangledName, SymName, DL);
1056   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
1057   return lowerCallTo(CI, Sym, NumArgs);
1058 }
1059 
1060 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
1061                            unsigned NumArgs) {
1062   ImmutableCallSite CS(CI);
1063 
1064   FunctionType *FTy = CS.getFunctionType();
1065   Type *RetTy = CS.getType();
1066 
1067   ArgListTy Args;
1068   Args.reserve(NumArgs);
1069 
1070   // Populate the argument list.
1071   // Attributes for args start at offset 1, after the return attribute.
1072   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
1073     Value *V = CI->getOperand(ArgI);
1074 
1075     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
1076 
1077     ArgListEntry Entry;
1078     Entry.Val = V;
1079     Entry.Ty = V->getType();
1080     Entry.setAttributes(&CS, ArgI);
1081     Args.push_back(Entry);
1082   }
1083   TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args);
1084 
1085   CallLoweringInfo CLI;
1086   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs);
1087 
1088   return lowerCallTo(CLI);
1089 }
1090 
1091 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
1092   // Handle the incoming return values from the call.
1093   CLI.clearIns();
1094   SmallVector<EVT, 4> RetTys;
1095   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
1096 
1097   SmallVector<ISD::OutputArg, 4> Outs;
1098   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1099 
1100   bool CanLowerReturn = TLI.CanLowerReturn(
1101       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
1102 
1103   // FIXME: sret demotion isn't supported yet - bail out.
1104   if (!CanLowerReturn)
1105     return false;
1106 
1107   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
1108     EVT VT = RetTys[I];
1109     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1110     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1111     for (unsigned i = 0; i != NumRegs; ++i) {
1112       ISD::InputArg MyFlags;
1113       MyFlags.VT = RegisterVT;
1114       MyFlags.ArgVT = VT;
1115       MyFlags.Used = CLI.IsReturnValueUsed;
1116       if (CLI.RetSExt)
1117         MyFlags.Flags.setSExt();
1118       if (CLI.RetZExt)
1119         MyFlags.Flags.setZExt();
1120       if (CLI.IsInReg)
1121         MyFlags.Flags.setInReg();
1122       CLI.Ins.push_back(MyFlags);
1123     }
1124   }
1125 
1126   // Handle all of the outgoing arguments.
1127   CLI.clearOuts();
1128   for (auto &Arg : CLI.getArgs()) {
1129     Type *FinalType = Arg.Ty;
1130     if (Arg.IsByVal)
1131       FinalType = cast<PointerType>(Arg.Ty)->getElementType();
1132     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1133         FinalType, CLI.CallConv, CLI.IsVarArg);
1134 
1135     ISD::ArgFlagsTy Flags;
1136     if (Arg.IsZExt)
1137       Flags.setZExt();
1138     if (Arg.IsSExt)
1139       Flags.setSExt();
1140     if (Arg.IsInReg)
1141       Flags.setInReg();
1142     if (Arg.IsSRet)
1143       Flags.setSRet();
1144     if (Arg.IsSwiftSelf)
1145       Flags.setSwiftSelf();
1146     if (Arg.IsSwiftError)
1147       Flags.setSwiftError();
1148     if (Arg.IsByVal)
1149       Flags.setByVal();
1150     if (Arg.IsInAlloca) {
1151       Flags.setInAlloca();
1152       // Set the byval flag for CCAssignFn callbacks that don't know about
1153       // inalloca. This way we can know how many bytes we should've allocated
1154       // and how many bytes a callee cleanup function will pop.  If we port
1155       // inalloca to more targets, we'll have to add custom inalloca handling in
1156       // the various CC lowering callbacks.
1157       Flags.setByVal();
1158     }
1159     if (Arg.IsByVal || Arg.IsInAlloca) {
1160       PointerType *Ty = cast<PointerType>(Arg.Ty);
1161       Type *ElementTy = Ty->getElementType();
1162       unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
1163       // For ByVal, alignment should come from FE. BE will guess if this info is
1164       // not there, but there are cases it cannot get right.
1165       unsigned FrameAlign = Arg.Alignment;
1166       if (!FrameAlign)
1167         FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL);
1168       Flags.setByValSize(FrameSize);
1169       Flags.setByValAlign(FrameAlign);
1170     }
1171     if (Arg.IsNest)
1172       Flags.setNest();
1173     if (NeedsRegBlock)
1174       Flags.setInConsecutiveRegs();
1175     unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty);
1176     Flags.setOrigAlign(OriginalAlignment);
1177 
1178     CLI.OutVals.push_back(Arg.Val);
1179     CLI.OutFlags.push_back(Flags);
1180   }
1181 
1182   if (!fastLowerCall(CLI))
1183     return false;
1184 
1185   // Set all unused physreg defs as dead.
1186   assert(CLI.Call && "No call instruction specified.");
1187   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1188 
1189   if (CLI.NumResultRegs && CLI.CS)
1190     updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
1191 
1192   return true;
1193 }
1194 
1195 bool FastISel::lowerCall(const CallInst *CI) {
1196   ImmutableCallSite CS(CI);
1197 
1198   FunctionType *FuncTy = CS.getFunctionType();
1199   Type *RetTy = CS.getType();
1200 
1201   ArgListTy Args;
1202   ArgListEntry Entry;
1203   Args.reserve(CS.arg_size());
1204 
1205   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1206        i != e; ++i) {
1207     Value *V = *i;
1208 
1209     // Skip empty types
1210     if (V->getType()->isEmptyTy())
1211       continue;
1212 
1213     Entry.Val = V;
1214     Entry.Ty = V->getType();
1215 
1216     // Skip the first return-type Attribute to get to params.
1217     Entry.setAttributes(&CS, i - CS.arg_begin());
1218     Args.push_back(Entry);
1219   }
1220 
1221   // Check if target-independent constraints permit a tail call here.
1222   // Target-dependent constraints are checked within fastLowerCall.
1223   bool IsTailCall = CI->isTailCall();
1224   if (IsTailCall && !isInTailCallPosition(CS, TM))
1225     IsTailCall = false;
1226 
1227   CallLoweringInfo CLI;
1228   CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
1229       .setTailCall(IsTailCall);
1230 
1231   return lowerCallTo(CLI);
1232 }
1233 
1234 bool FastISel::selectCall(const User *I) {
1235   const CallInst *Call = cast<CallInst>(I);
1236 
1237   // Handle simple inline asms.
1238   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
1239     // If the inline asm has side effects, then make sure that no local value
1240     // lives across by flushing the local value map.
1241     if (IA->hasSideEffects())
1242       flushLocalValueMap();
1243 
1244     // Don't attempt to handle constraints.
1245     if (!IA->getConstraintString().empty())
1246       return false;
1247 
1248     unsigned ExtraInfo = 0;
1249     if (IA->hasSideEffects())
1250       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1251     if (IA->isAlignStack())
1252       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1253 
1254     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1255             TII.get(TargetOpcode::INLINEASM))
1256         .addExternalSymbol(IA->getAsmString().c_str())
1257         .addImm(ExtraInfo);
1258     return true;
1259   }
1260 
1261   MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
1262   computeUsesVAFloatArgument(*Call, MMI);
1263 
1264   // Handle intrinsic function calls.
1265   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1266     return selectIntrinsicCall(II);
1267 
1268   // Usually, it does not make sense to initialize a value,
1269   // make an unrelated function call and use the value, because
1270   // it tends to be spilled on the stack. So, we move the pointer
1271   // to the last local value to the beginning of the block, so that
1272   // all the values which have already been materialized,
1273   // appear after the call. It also makes sense to skip intrinsics
1274   // since they tend to be inlined.
1275   flushLocalValueMap();
1276 
1277   return lowerCall(Call);
1278 }
1279 
1280 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1281   switch (II->getIntrinsicID()) {
1282   default:
1283     break;
1284   // At -O0 we don't care about the lifetime intrinsics.
1285   case Intrinsic::lifetime_start:
1286   case Intrinsic::lifetime_end:
1287   // The donothing intrinsic does, well, nothing.
1288   case Intrinsic::donothing:
1289   // Neither does the sideeffect intrinsic.
1290   case Intrinsic::sideeffect:
1291   // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1292   case Intrinsic::assume:
1293     return true;
1294   case Intrinsic::dbg_declare: {
1295     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1296     assert(DI->getVariable() && "Missing variable");
1297     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1298       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1299       return true;
1300     }
1301 
1302     const Value *Address = DI->getAddress();
1303     if (!Address || isa<UndefValue>(Address)) {
1304       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1305       return true;
1306     }
1307 
1308     // Byval arguments with frame indices were already handled after argument
1309     // lowering and before isel.
1310     const auto *Arg =
1311         dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
1312     if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
1313       return true;
1314 
1315     Optional<MachineOperand> Op;
1316     if (unsigned Reg = lookUpRegForValue(Address))
1317       Op = MachineOperand::CreateReg(Reg, false);
1318 
1319     // If we have a VLA that has a "use" in a metadata node that's then used
1320     // here but it has no other uses, then we have a problem. E.g.,
1321     //
1322     //   int foo (const int *x) {
1323     //     char a[*x];
1324     //     return 0;
1325     //   }
1326     //
1327     // If we assign 'a' a vreg and fast isel later on has to use the selection
1328     // DAG isel, it will want to copy the value to the vreg. However, there are
1329     // no uses, which goes counter to what selection DAG isel expects.
1330     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1331         (!isa<AllocaInst>(Address) ||
1332          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1333       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1334                                      false);
1335 
1336     if (Op) {
1337       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1338              "Expected inlined-at fields to agree");
1339       if (Op->isReg()) {
1340         Op->setIsDebug(true);
1341         // A dbg.declare describes the address of a source variable, so lower it
1342         // into an indirect DBG_VALUE.
1343         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1344                 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true,
1345                 Op->getReg(), DI->getVariable(), DI->getExpression());
1346       } else
1347         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1348                 TII.get(TargetOpcode::DBG_VALUE))
1349             .add(*Op)
1350             .addImm(0)
1351             .addMetadata(DI->getVariable())
1352             .addMetadata(DI->getExpression());
1353     } else {
1354       // We can't yet handle anything else here because it would require
1355       // generating code, thus altering codegen because of debug info.
1356       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1357     }
1358     return true;
1359   }
1360   case Intrinsic::dbg_value: {
1361     // This form of DBG_VALUE is target-independent.
1362     const DbgValueInst *DI = cast<DbgValueInst>(II);
1363     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1364     const Value *V = DI->getValue();
1365     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1366            "Expected inlined-at fields to agree");
1367     if (!V) {
1368       // Currently the optimizer can produce this; insert an undef to
1369       // help debugging.  Probably the optimizer should not do this.
1370       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
1371               DI->getVariable(), DI->getExpression());
1372     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1373       if (CI->getBitWidth() > 64)
1374         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1375             .addCImm(CI)
1376             .addImm(0U)
1377             .addMetadata(DI->getVariable())
1378             .addMetadata(DI->getExpression());
1379       else
1380         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1381             .addImm(CI->getZExtValue())
1382             .addImm(0U)
1383             .addMetadata(DI->getVariable())
1384             .addMetadata(DI->getExpression());
1385     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1386       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1387           .addFPImm(CF)
1388           .addImm(0U)
1389           .addMetadata(DI->getVariable())
1390           .addMetadata(DI->getExpression());
1391     } else if (unsigned Reg = lookUpRegForValue(V)) {
1392       // FIXME: This does not handle register-indirect values at offset 0.
1393       bool IsIndirect = false;
1394       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1395               DI->getVariable(), DI->getExpression());
1396     } else {
1397       // We can't yet handle anything else here because it would require
1398       // generating code, thus altering codegen because of debug info.
1399       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1400     }
1401     return true;
1402   }
1403   case Intrinsic::objectsize: {
1404     ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1405     unsigned long long Res = CI->isZero() ? -1ULL : 0;
1406     Constant *ResCI = ConstantInt::get(II->getType(), Res);
1407     unsigned ResultReg = getRegForValue(ResCI);
1408     if (!ResultReg)
1409       return false;
1410     updateValueMap(II, ResultReg);
1411     return true;
1412   }
1413   case Intrinsic::invariant_group_barrier:
1414   case Intrinsic::expect: {
1415     unsigned ResultReg = getRegForValue(II->getArgOperand(0));
1416     if (!ResultReg)
1417       return false;
1418     updateValueMap(II, ResultReg);
1419     return true;
1420   }
1421   case Intrinsic::experimental_stackmap:
1422     return selectStackmap(II);
1423   case Intrinsic::experimental_patchpoint_void:
1424   case Intrinsic::experimental_patchpoint_i64:
1425     return selectPatchpoint(II);
1426 
1427   case Intrinsic::xray_customevent:
1428     return selectXRayCustomEvent(II);
1429   }
1430 
1431   return fastLowerIntrinsicCall(II);
1432 }
1433 
1434 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1435   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1436   EVT DstVT = TLI.getValueType(DL, I->getType());
1437 
1438   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1439       !DstVT.isSimple())
1440     // Unhandled type. Halt "fast" selection and bail.
1441     return false;
1442 
1443   // Check if the destination type is legal.
1444   if (!TLI.isTypeLegal(DstVT))
1445     return false;
1446 
1447   // Check if the source operand is legal.
1448   if (!TLI.isTypeLegal(SrcVT))
1449     return false;
1450 
1451   unsigned InputReg = getRegForValue(I->getOperand(0));
1452   if (!InputReg)
1453     // Unhandled operand.  Halt "fast" selection and bail.
1454     return false;
1455 
1456   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
1457 
1458   unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1459                                   Opcode, InputReg, InputRegIsKill);
1460   if (!ResultReg)
1461     return false;
1462 
1463   updateValueMap(I, ResultReg);
1464   return true;
1465 }
1466 
1467 bool FastISel::selectBitCast(const User *I) {
1468   // If the bitcast doesn't change the type, just use the operand value.
1469   if (I->getType() == I->getOperand(0)->getType()) {
1470     unsigned Reg = getRegForValue(I->getOperand(0));
1471     if (!Reg)
1472       return false;
1473     updateValueMap(I, Reg);
1474     return true;
1475   }
1476 
1477   // Bitcasts of other values become reg-reg copies or BITCAST operators.
1478   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1479   EVT DstEVT = TLI.getValueType(DL, I->getType());
1480   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1481       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1482     // Unhandled type. Halt "fast" selection and bail.
1483     return false;
1484 
1485   MVT SrcVT = SrcEVT.getSimpleVT();
1486   MVT DstVT = DstEVT.getSimpleVT();
1487   unsigned Op0 = getRegForValue(I->getOperand(0));
1488   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1489     return false;
1490   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
1491 
1492   // First, try to perform the bitcast by inserting a reg-reg copy.
1493   unsigned ResultReg = 0;
1494   if (SrcVT == DstVT) {
1495     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1496     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1497     // Don't attempt a cross-class copy. It will likely fail.
1498     if (SrcClass == DstClass) {
1499       ResultReg = createResultReg(DstClass);
1500       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1501               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1502     }
1503   }
1504 
1505   // If the reg-reg copy failed, select a BITCAST opcode.
1506   if (!ResultReg)
1507     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
1508 
1509   if (!ResultReg)
1510     return false;
1511 
1512   updateValueMap(I, ResultReg);
1513   return true;
1514 }
1515 
1516 // Remove local value instructions starting from the instruction after
1517 // SavedLastLocalValue to the current function insert point.
1518 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1519 {
1520   MachineInstr *CurLastLocalValue = getLastLocalValue();
1521   if (CurLastLocalValue != SavedLastLocalValue) {
1522     // Find the first local value instruction to be deleted.
1523     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1524     // Otherwise it's the first instruction in the block.
1525     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1526     if (SavedLastLocalValue)
1527       ++FirstDeadInst;
1528     else
1529       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1530     setLastLocalValue(SavedLastLocalValue);
1531     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1532   }
1533 }
1534 
1535 bool FastISel::selectInstruction(const Instruction *I) {
1536   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1537   // Just before the terminator instruction, insert instructions to
1538   // feed PHI nodes in successor blocks.
1539   if (isa<TerminatorInst>(I)) {
1540     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1541       // PHI node handling may have generated local value instructions,
1542       // even though it failed to handle all PHI nodes.
1543       // We remove these instructions because SelectionDAGISel will generate
1544       // them again.
1545       removeDeadLocalValueCode(SavedLastLocalValue);
1546       return false;
1547     }
1548   }
1549 
1550   // FastISel does not handle any operand bundles except OB_funclet.
1551   if (ImmutableCallSite CS = ImmutableCallSite(I))
1552     for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i)
1553       if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1554         return false;
1555 
1556   DbgLoc = I->getDebugLoc();
1557 
1558   SavedInsertPt = FuncInfo.InsertPt;
1559 
1560   if (const auto *Call = dyn_cast<CallInst>(I)) {
1561     const Function *F = Call->getCalledFunction();
1562     LibFunc Func;
1563 
1564     // As a special case, don't handle calls to builtin library functions that
1565     // may be translated directly to target instructions.
1566     if (F && !F->hasLocalLinkage() && F->hasName() &&
1567         LibInfo->getLibFunc(F->getName(), Func) &&
1568         LibInfo->hasOptimizedCodeGen(Func))
1569       return false;
1570 
1571     // Don't handle Intrinsic::trap if a trap function is specified.
1572     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1573         Call->hasFnAttr("trap-func-name"))
1574       return false;
1575   }
1576 
1577   // First, try doing target-independent selection.
1578   if (!SkipTargetIndependentISel) {
1579     if (selectOperator(I, I->getOpcode())) {
1580       ++NumFastIselSuccessIndependent;
1581       DbgLoc = DebugLoc();
1582       return true;
1583     }
1584     // Remove dead code.
1585     recomputeInsertPt();
1586     if (SavedInsertPt != FuncInfo.InsertPt)
1587       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1588     SavedInsertPt = FuncInfo.InsertPt;
1589   }
1590   // Next, try calling the target to attempt to handle the instruction.
1591   if (fastSelectInstruction(I)) {
1592     ++NumFastIselSuccessTarget;
1593     DbgLoc = DebugLoc();
1594     return true;
1595   }
1596   // Remove dead code.
1597   recomputeInsertPt();
1598   if (SavedInsertPt != FuncInfo.InsertPt)
1599     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1600 
1601   DbgLoc = DebugLoc();
1602   // Undo phi node updates, because they will be added again by SelectionDAG.
1603   if (isa<TerminatorInst>(I)) {
1604     // PHI node handling may have generated local value instructions.
1605     // We remove them because SelectionDAGISel will generate them again.
1606     removeDeadLocalValueCode(SavedLastLocalValue);
1607     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1608   }
1609   return false;
1610 }
1611 
1612 /// Emit an unconditional branch to the given block, unless it is the immediate
1613 /// (fall-through) successor, and update the CFG.
1614 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1615                               const DebugLoc &DbgLoc) {
1616   if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
1617       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1618     // For more accurate line information if this is the only instruction
1619     // in the block then emit it, otherwise we have the unconditional
1620     // fall-through case, which needs no instructions.
1621   } else {
1622     // The unconditional branch case.
1623     TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1624                      SmallVector<MachineOperand, 0>(), DbgLoc);
1625   }
1626   if (FuncInfo.BPI) {
1627     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1628         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1629     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1630   } else
1631     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1632 }
1633 
1634 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1635                                 MachineBasicBlock *TrueMBB,
1636                                 MachineBasicBlock *FalseMBB) {
1637   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1638   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1639   // successor/predecessor lists.
1640   if (TrueMBB != FalseMBB) {
1641     if (FuncInfo.BPI) {
1642       auto BranchProbability =
1643           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1644       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1645     } else
1646       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1647   }
1648 
1649   fastEmitBranch(FalseMBB, DbgLoc);
1650 }
1651 
1652 /// Emit an FNeg operation.
1653 bool FastISel::selectFNeg(const User *I) {
1654   unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
1655   if (!OpReg)
1656     return false;
1657   bool OpRegIsKill = hasTrivialKill(I);
1658 
1659   // If the target has ISD::FNEG, use it.
1660   EVT VT = TLI.getValueType(DL, I->getType());
1661   unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1662                                   OpReg, OpRegIsKill);
1663   if (ResultReg) {
1664     updateValueMap(I, ResultReg);
1665     return true;
1666   }
1667 
1668   // Bitcast the value to integer, twiddle the sign bit with xor,
1669   // and then bitcast it back to floating-point.
1670   if (VT.getSizeInBits() > 64)
1671     return false;
1672   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1673   if (!TLI.isTypeLegal(IntVT))
1674     return false;
1675 
1676   unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1677                                ISD::BITCAST, OpReg, OpRegIsKill);
1678   if (!IntReg)
1679     return false;
1680 
1681   unsigned IntResultReg = fastEmit_ri_(
1682       IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
1683       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1684   if (!IntResultReg)
1685     return false;
1686 
1687   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1688                          IntResultReg, /*IsKill=*/true);
1689   if (!ResultReg)
1690     return false;
1691 
1692   updateValueMap(I, ResultReg);
1693   return true;
1694 }
1695 
1696 bool FastISel::selectExtractValue(const User *U) {
1697   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1698   if (!EVI)
1699     return false;
1700 
1701   // Make sure we only try to handle extracts with a legal result.  But also
1702   // allow i1 because it's easy.
1703   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1704   if (!RealVT.isSimple())
1705     return false;
1706   MVT VT = RealVT.getSimpleVT();
1707   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1708     return false;
1709 
1710   const Value *Op0 = EVI->getOperand(0);
1711   Type *AggTy = Op0->getType();
1712 
1713   // Get the base result register.
1714   unsigned ResultReg;
1715   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
1716   if (I != FuncInfo.ValueMap.end())
1717     ResultReg = I->second;
1718   else if (isa<Instruction>(Op0))
1719     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1720   else
1721     return false; // fast-isel can't handle aggregate constants at the moment
1722 
1723   // Get the actual result register, which is an offset from the base register.
1724   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1725 
1726   SmallVector<EVT, 4> AggValueVTs;
1727   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1728 
1729   for (unsigned i = 0; i < VTIndex; i++)
1730     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1731 
1732   updateValueMap(EVI, ResultReg);
1733   return true;
1734 }
1735 
1736 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1737   switch (Opcode) {
1738   case Instruction::Add:
1739     return selectBinaryOp(I, ISD::ADD);
1740   case Instruction::FAdd:
1741     return selectBinaryOp(I, ISD::FADD);
1742   case Instruction::Sub:
1743     return selectBinaryOp(I, ISD::SUB);
1744   case Instruction::FSub:
1745     // FNeg is currently represented in LLVM IR as a special case of FSub.
1746     if (BinaryOperator::isFNeg(I))
1747       return selectFNeg(I);
1748     return selectBinaryOp(I, ISD::FSUB);
1749   case Instruction::Mul:
1750     return selectBinaryOp(I, ISD::MUL);
1751   case Instruction::FMul:
1752     return selectBinaryOp(I, ISD::FMUL);
1753   case Instruction::SDiv:
1754     return selectBinaryOp(I, ISD::SDIV);
1755   case Instruction::UDiv:
1756     return selectBinaryOp(I, ISD::UDIV);
1757   case Instruction::FDiv:
1758     return selectBinaryOp(I, ISD::FDIV);
1759   case Instruction::SRem:
1760     return selectBinaryOp(I, ISD::SREM);
1761   case Instruction::URem:
1762     return selectBinaryOp(I, ISD::UREM);
1763   case Instruction::FRem:
1764     return selectBinaryOp(I, ISD::FREM);
1765   case Instruction::Shl:
1766     return selectBinaryOp(I, ISD::SHL);
1767   case Instruction::LShr:
1768     return selectBinaryOp(I, ISD::SRL);
1769   case Instruction::AShr:
1770     return selectBinaryOp(I, ISD::SRA);
1771   case Instruction::And:
1772     return selectBinaryOp(I, ISD::AND);
1773   case Instruction::Or:
1774     return selectBinaryOp(I, ISD::OR);
1775   case Instruction::Xor:
1776     return selectBinaryOp(I, ISD::XOR);
1777 
1778   case Instruction::GetElementPtr:
1779     return selectGetElementPtr(I);
1780 
1781   case Instruction::Br: {
1782     const BranchInst *BI = cast<BranchInst>(I);
1783 
1784     if (BI->isUnconditional()) {
1785       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1786       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1787       fastEmitBranch(MSucc, BI->getDebugLoc());
1788       return true;
1789     }
1790 
1791     // Conditional branches are not handed yet.
1792     // Halt "fast" selection and bail.
1793     return false;
1794   }
1795 
1796   case Instruction::Unreachable:
1797     if (TM.Options.TrapUnreachable)
1798       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1799     else
1800       return true;
1801 
1802   case Instruction::Alloca:
1803     // FunctionLowering has the static-sized case covered.
1804     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1805       return true;
1806 
1807     // Dynamic-sized alloca is not handled yet.
1808     return false;
1809 
1810   case Instruction::Call:
1811     return selectCall(I);
1812 
1813   case Instruction::BitCast:
1814     return selectBitCast(I);
1815 
1816   case Instruction::FPToSI:
1817     return selectCast(I, ISD::FP_TO_SINT);
1818   case Instruction::ZExt:
1819     return selectCast(I, ISD::ZERO_EXTEND);
1820   case Instruction::SExt:
1821     return selectCast(I, ISD::SIGN_EXTEND);
1822   case Instruction::Trunc:
1823     return selectCast(I, ISD::TRUNCATE);
1824   case Instruction::SIToFP:
1825     return selectCast(I, ISD::SINT_TO_FP);
1826 
1827   case Instruction::IntToPtr: // Deliberate fall-through.
1828   case Instruction::PtrToInt: {
1829     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1830     EVT DstVT = TLI.getValueType(DL, I->getType());
1831     if (DstVT.bitsGT(SrcVT))
1832       return selectCast(I, ISD::ZERO_EXTEND);
1833     if (DstVT.bitsLT(SrcVT))
1834       return selectCast(I, ISD::TRUNCATE);
1835     unsigned Reg = getRegForValue(I->getOperand(0));
1836     if (!Reg)
1837       return false;
1838     updateValueMap(I, Reg);
1839     return true;
1840   }
1841 
1842   case Instruction::ExtractValue:
1843     return selectExtractValue(I);
1844 
1845   case Instruction::PHI:
1846     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1847 
1848   default:
1849     // Unhandled instruction. Halt "fast" selection and bail.
1850     return false;
1851   }
1852 }
1853 
1854 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1855                    const TargetLibraryInfo *LibInfo,
1856                    bool SkipTargetIndependentISel)
1857     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1858       MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1859       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1860       TII(*MF->getSubtarget().getInstrInfo()),
1861       TLI(*MF->getSubtarget().getTargetLowering()),
1862       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1863       SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1864 
1865 FastISel::~FastISel() = default;
1866 
1867 bool FastISel::fastLowerArguments() { return false; }
1868 
1869 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1870 
1871 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1872   return false;
1873 }
1874 
1875 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1876 
1877 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
1878                               bool /*Op0IsKill*/) {
1879   return 0;
1880 }
1881 
1882 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1883                                bool /*Op0IsKill*/, unsigned /*Op1*/,
1884                                bool /*Op1IsKill*/) {
1885   return 0;
1886 }
1887 
1888 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1889   return 0;
1890 }
1891 
1892 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1893                               const ConstantFP * /*FPImm*/) {
1894   return 0;
1895 }
1896 
1897 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1898                                bool /*Op0IsKill*/, uint64_t /*Imm*/) {
1899   return 0;
1900 }
1901 
1902 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1903 /// instruction with an immediate operand using fastEmit_ri.
1904 /// If that fails, it materializes the immediate into a register and try
1905 /// fastEmit_rr instead.
1906 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1907                                 bool Op0IsKill, uint64_t Imm, MVT ImmType) {
1908   // If this is a multiply by a power of two, emit this as a shift left.
1909   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1910     Opcode = ISD::SHL;
1911     Imm = Log2_64(Imm);
1912   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1913     // div x, 8 -> srl x, 3
1914     Opcode = ISD::SRL;
1915     Imm = Log2_64(Imm);
1916   }
1917 
1918   // Horrible hack (to be removed), check to make sure shift amounts are
1919   // in-range.
1920   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1921       Imm >= VT.getSizeInBits())
1922     return 0;
1923 
1924   // First check if immediate type is legal. If not, we can't use the ri form.
1925   unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1926   if (ResultReg)
1927     return ResultReg;
1928   unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1929   bool IsImmKill = true;
1930   if (!MaterialReg) {
1931     // This is a bit ugly/slow, but failing here means falling out of
1932     // fast-isel, which would be very slow.
1933     IntegerType *ITy =
1934         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1935     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1936     if (!MaterialReg)
1937       return 0;
1938     // FIXME: If the materialized register here has no uses yet then this
1939     // will be the first use and we should be able to mark it as killed.
1940     // However, the local value area for materialising constant expressions
1941     // grows down, not up, which means that any constant expressions we generate
1942     // later which also use 'Imm' could be after this instruction and therefore
1943     // after this kill.
1944     IsImmKill = false;
1945   }
1946   return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill);
1947 }
1948 
1949 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
1950   return MRI.createVirtualRegister(RC);
1951 }
1952 
1953 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
1954                                             unsigned OpNum) {
1955   if (TargetRegisterInfo::isVirtualRegister(Op)) {
1956     const TargetRegisterClass *RegClass =
1957         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1958     if (!MRI.constrainRegClass(Op, RegClass)) {
1959       // If it's not legal to COPY between the register classes, something
1960       // has gone very wrong before we got here.
1961       unsigned NewOp = createResultReg(RegClass);
1962       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1963               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1964       return NewOp;
1965     }
1966   }
1967   return Op;
1968 }
1969 
1970 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
1971                                  const TargetRegisterClass *RC) {
1972   unsigned ResultReg = createResultReg(RC);
1973   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1974 
1975   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
1976   return ResultReg;
1977 }
1978 
1979 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
1980                                   const TargetRegisterClass *RC, unsigned Op0,
1981                                   bool Op0IsKill) {
1982   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1983 
1984   unsigned ResultReg = createResultReg(RC);
1985   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1986 
1987   if (II.getNumDefs() >= 1)
1988     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1989         .addReg(Op0, getKillRegState(Op0IsKill));
1990   else {
1991     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1992         .addReg(Op0, getKillRegState(Op0IsKill));
1993     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1994             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1995   }
1996 
1997   return ResultReg;
1998 }
1999 
2000 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2001                                    const TargetRegisterClass *RC, unsigned Op0,
2002                                    bool Op0IsKill, unsigned Op1,
2003                                    bool Op1IsKill) {
2004   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2005 
2006   unsigned ResultReg = createResultReg(RC);
2007   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2008   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2009 
2010   if (II.getNumDefs() >= 1)
2011     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2012         .addReg(Op0, getKillRegState(Op0IsKill))
2013         .addReg(Op1, getKillRegState(Op1IsKill));
2014   else {
2015     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2016         .addReg(Op0, getKillRegState(Op0IsKill))
2017         .addReg(Op1, getKillRegState(Op1IsKill));
2018     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2019             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2020   }
2021   return ResultReg;
2022 }
2023 
2024 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
2025                                     const TargetRegisterClass *RC, unsigned Op0,
2026                                     bool Op0IsKill, unsigned Op1,
2027                                     bool Op1IsKill, unsigned Op2,
2028                                     bool Op2IsKill) {
2029   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2030 
2031   unsigned ResultReg = createResultReg(RC);
2032   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2033   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2034   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
2035 
2036   if (II.getNumDefs() >= 1)
2037     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2038         .addReg(Op0, getKillRegState(Op0IsKill))
2039         .addReg(Op1, getKillRegState(Op1IsKill))
2040         .addReg(Op2, getKillRegState(Op2IsKill));
2041   else {
2042     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2043         .addReg(Op0, getKillRegState(Op0IsKill))
2044         .addReg(Op1, getKillRegState(Op1IsKill))
2045         .addReg(Op2, getKillRegState(Op2IsKill));
2046     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2047             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2048   }
2049   return ResultReg;
2050 }
2051 
2052 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2053                                    const TargetRegisterClass *RC, unsigned Op0,
2054                                    bool Op0IsKill, uint64_t Imm) {
2055   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2056 
2057   unsigned ResultReg = createResultReg(RC);
2058   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2059 
2060   if (II.getNumDefs() >= 1)
2061     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2062         .addReg(Op0, getKillRegState(Op0IsKill))
2063         .addImm(Imm);
2064   else {
2065     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2066         .addReg(Op0, getKillRegState(Op0IsKill))
2067         .addImm(Imm);
2068     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2069             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2070   }
2071   return ResultReg;
2072 }
2073 
2074 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2075                                     const TargetRegisterClass *RC, unsigned Op0,
2076                                     bool Op0IsKill, uint64_t Imm1,
2077                                     uint64_t Imm2) {
2078   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2079 
2080   unsigned ResultReg = createResultReg(RC);
2081   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2082 
2083   if (II.getNumDefs() >= 1)
2084     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2085         .addReg(Op0, getKillRegState(Op0IsKill))
2086         .addImm(Imm1)
2087         .addImm(Imm2);
2088   else {
2089     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2090         .addReg(Op0, getKillRegState(Op0IsKill))
2091         .addImm(Imm1)
2092         .addImm(Imm2);
2093     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2094             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2095   }
2096   return ResultReg;
2097 }
2098 
2099 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2100                                   const TargetRegisterClass *RC,
2101                                   const ConstantFP *FPImm) {
2102   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2103 
2104   unsigned ResultReg = createResultReg(RC);
2105 
2106   if (II.getNumDefs() >= 1)
2107     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2108         .addFPImm(FPImm);
2109   else {
2110     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2111         .addFPImm(FPImm);
2112     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2113             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2114   }
2115   return ResultReg;
2116 }
2117 
2118 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2119                                     const TargetRegisterClass *RC, unsigned Op0,
2120                                     bool Op0IsKill, unsigned Op1,
2121                                     bool Op1IsKill, uint64_t Imm) {
2122   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2123 
2124   unsigned ResultReg = createResultReg(RC);
2125   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2126   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2127 
2128   if (II.getNumDefs() >= 1)
2129     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2130         .addReg(Op0, getKillRegState(Op0IsKill))
2131         .addReg(Op1, getKillRegState(Op1IsKill))
2132         .addImm(Imm);
2133   else {
2134     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2135         .addReg(Op0, getKillRegState(Op0IsKill))
2136         .addReg(Op1, getKillRegState(Op1IsKill))
2137         .addImm(Imm);
2138     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2139             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2140   }
2141   return ResultReg;
2142 }
2143 
2144 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2145                                   const TargetRegisterClass *RC, uint64_t Imm) {
2146   unsigned ResultReg = createResultReg(RC);
2147   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2148 
2149   if (II.getNumDefs() >= 1)
2150     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2151         .addImm(Imm);
2152   else {
2153     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
2154     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2155             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2156   }
2157   return ResultReg;
2158 }
2159 
2160 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2161                                               bool Op0IsKill, uint32_t Idx) {
2162   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2163   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
2164          "Cannot yet extract from physregs");
2165   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2166   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2167   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
2168           ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
2169   return ResultReg;
2170 }
2171 
2172 /// Emit MachineInstrs to compute the value of Op with all but the least
2173 /// significant bit set to zero.
2174 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
2175   return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
2176 }
2177 
2178 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2179 /// Emit code to ensure constants are copied into registers when needed.
2180 /// Remember the virtual registers that need to be added to the Machine PHI
2181 /// nodes as input.  We cannot just directly add them, because expansion
2182 /// might result in multiple MBB's for one BB.  As such, the start of the
2183 /// BB might correspond to a different MBB than the end.
2184 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2185   const TerminatorInst *TI = LLVMBB->getTerminator();
2186 
2187   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2188   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2189 
2190   // Check successor nodes' PHI nodes that expect a constant to be available
2191   // from this block.
2192   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2193     const BasicBlock *SuccBB = TI->getSuccessor(succ);
2194     if (!isa<PHINode>(SuccBB->begin()))
2195       continue;
2196     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2197 
2198     // If this terminator has multiple identical successors (common for
2199     // switches), only handle each succ once.
2200     if (!SuccsHandled.insert(SuccMBB).second)
2201       continue;
2202 
2203     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2204 
2205     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2206     // nodes and Machine PHI nodes, but the incoming operands have not been
2207     // emitted yet.
2208     for (const PHINode &PN : SuccBB->phis()) {
2209       // Ignore dead phi's.
2210       if (PN.use_empty())
2211         continue;
2212 
2213       // Only handle legal types. Two interesting things to note here. First,
2214       // by bailing out early, we may leave behind some dead instructions,
2215       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2216       // own moves. Second, this check is necessary because FastISel doesn't
2217       // use CreateRegs to create registers, so it always creates
2218       // exactly one register for each non-void instruction.
2219       EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2220       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2221         // Handle integer promotions, though, because they're common and easy.
2222         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2223           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2224           return false;
2225         }
2226       }
2227 
2228       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2229 
2230       // Set the DebugLoc for the copy. Prefer the location of the operand
2231       // if there is one; use the location of the PHI otherwise.
2232       DbgLoc = PN.getDebugLoc();
2233       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2234         DbgLoc = Inst->getDebugLoc();
2235 
2236       unsigned Reg = getRegForValue(PHIOp);
2237       if (!Reg) {
2238         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2239         return false;
2240       }
2241       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2242       DbgLoc = DebugLoc();
2243     }
2244   }
2245 
2246   return true;
2247 }
2248 
2249 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2250   assert(LI->hasOneUse() &&
2251          "tryToFoldLoad expected a LoadInst with a single use");
2252   // We know that the load has a single use, but don't know what it is.  If it
2253   // isn't one of the folded instructions, then we can't succeed here.  Handle
2254   // this by scanning the single-use users of the load until we get to FoldInst.
2255   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2256 
2257   const Instruction *TheUser = LI->user_back();
2258   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2259          // Stay in the right block.
2260          TheUser->getParent() == FoldInst->getParent() &&
2261          --MaxUsers) { // Don't scan too far.
2262     // If there are multiple or no uses of this instruction, then bail out.
2263     if (!TheUser->hasOneUse())
2264       return false;
2265 
2266     TheUser = TheUser->user_back();
2267   }
2268 
2269   // If we didn't find the fold instruction, then we failed to collapse the
2270   // sequence.
2271   if (TheUser != FoldInst)
2272     return false;
2273 
2274   // Don't try to fold volatile loads.  Target has to deal with alignment
2275   // constraints.
2276   if (LI->isVolatile())
2277     return false;
2278 
2279   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2280   // then there actually was no reference to it.  Perhaps the load is referenced
2281   // by a dead instruction.
2282   unsigned LoadReg = getRegForValue(LI);
2283   if (!LoadReg)
2284     return false;
2285 
2286   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2287   // may mean that the instruction got lowered to multiple MIs, or the use of
2288   // the loaded value ended up being multiple operands of the result.
2289   if (!MRI.hasOneUse(LoadReg))
2290     return false;
2291 
2292   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2293   MachineInstr *User = RI->getParent();
2294 
2295   // Set the insertion point properly.  Folding the load can cause generation of
2296   // other random instructions (like sign extends) for addressing modes; make
2297   // sure they get inserted in a logical place before the new instruction.
2298   FuncInfo.InsertPt = User;
2299   FuncInfo.MBB = User->getParent();
2300 
2301   // Ask the target to try folding the load.
2302   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2303 }
2304 
2305 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2306   // Must be an add.
2307   if (!isa<AddOperator>(Add))
2308     return false;
2309   // Type size needs to match.
2310   if (DL.getTypeSizeInBits(GEP->getType()) !=
2311       DL.getTypeSizeInBits(Add->getType()))
2312     return false;
2313   // Must be in the same basic block.
2314   if (isa<Instruction>(Add) &&
2315       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2316     return false;
2317   // Must have a constant operand.
2318   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2319 }
2320 
2321 MachineMemOperand *
2322 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2323   const Value *Ptr;
2324   Type *ValTy;
2325   unsigned Alignment;
2326   MachineMemOperand::Flags Flags;
2327   bool IsVolatile;
2328 
2329   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2330     Alignment = LI->getAlignment();
2331     IsVolatile = LI->isVolatile();
2332     Flags = MachineMemOperand::MOLoad;
2333     Ptr = LI->getPointerOperand();
2334     ValTy = LI->getType();
2335   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2336     Alignment = SI->getAlignment();
2337     IsVolatile = SI->isVolatile();
2338     Flags = MachineMemOperand::MOStore;
2339     Ptr = SI->getPointerOperand();
2340     ValTy = SI->getValueOperand()->getType();
2341   } else
2342     return nullptr;
2343 
2344   bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr;
2345   bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
2346   bool IsDereferenceable =
2347       I->getMetadata(LLVMContext::MD_dereferenceable) != nullptr;
2348   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2349 
2350   AAMDNodes AAInfo;
2351   I->getAAMetadata(AAInfo);
2352 
2353   if (Alignment == 0) // Ensure that codegen never sees alignment 0.
2354     Alignment = DL.getABITypeAlignment(ValTy);
2355 
2356   unsigned Size = DL.getTypeStoreSize(ValTy);
2357 
2358   if (IsVolatile)
2359     Flags |= MachineMemOperand::MOVolatile;
2360   if (IsNonTemporal)
2361     Flags |= MachineMemOperand::MONonTemporal;
2362   if (IsDereferenceable)
2363     Flags |= MachineMemOperand::MODereferenceable;
2364   if (IsInvariant)
2365     Flags |= MachineMemOperand::MOInvariant;
2366 
2367   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2368                                            Alignment, AAInfo, Ranges);
2369 }
2370 
2371 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2372   // If both operands are the same, then try to optimize or fold the cmp.
2373   CmpInst::Predicate Predicate = CI->getPredicate();
2374   if (CI->getOperand(0) != CI->getOperand(1))
2375     return Predicate;
2376 
2377   switch (Predicate) {
2378   default: llvm_unreachable("Invalid predicate!");
2379   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2380   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2381   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2382   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2383   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2384   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2385   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2386   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2387   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2388   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2389   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2390   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2391   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2392   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2393   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2394   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2395 
2396   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2397   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2398   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2399   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2400   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2401   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2402   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2403   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2404   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2405   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2406   }
2407 
2408   return Predicate;
2409 }
2410