1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/ADT/APFloat.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/DenseMap.h" 45 #include "llvm/ADT/Optional.h" 46 #include "llvm/ADT/SmallPtrSet.h" 47 #include "llvm/ADT/SmallString.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/Analysis/BranchProbabilityInfo.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/CodeGen/Analysis.h" 53 #include "llvm/CodeGen/FastISel.h" 54 #include "llvm/CodeGen/FunctionLoweringInfo.h" 55 #include "llvm/CodeGen/ISDOpcodes.h" 56 #include "llvm/CodeGen/MachineBasicBlock.h" 57 #include "llvm/CodeGen/MachineFrameInfo.h" 58 #include "llvm/CodeGen/MachineInstr.h" 59 #include "llvm/CodeGen/MachineInstrBuilder.h" 60 #include "llvm/CodeGen/MachineMemOperand.h" 61 #include "llvm/CodeGen/MachineModuleInfo.h" 62 #include "llvm/CodeGen/MachineOperand.h" 63 #include "llvm/CodeGen/MachineRegisterInfo.h" 64 #include "llvm/CodeGen/MachineValueType.h" 65 #include "llvm/CodeGen/StackMaps.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/IR/Argument.h" 68 #include "llvm/IR/Attributes.h" 69 #include "llvm/IR/BasicBlock.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfo.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Mangler.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/Type.h" 91 #include "llvm/IR/User.h" 92 #include "llvm/IR/Value.h" 93 #include "llvm/MC/MCContext.h" 94 #include "llvm/MC/MCInstrDesc.h" 95 #include "llvm/MC/MCRegisterInfo.h" 96 #include "llvm/Support/Casting.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/ErrorHandling.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetInstrInfo.h" 102 #include "llvm/Target/TargetLowering.h" 103 #include "llvm/Target/TargetMachine.h" 104 #include "llvm/Target/TargetOptions.h" 105 #include "llvm/Target/TargetSubtargetInfo.h" 106 #include <algorithm> 107 #include <cassert> 108 #include <cstdint> 109 #include <iterator> 110 #include <utility> 111 112 using namespace llvm; 113 114 #define DEBUG_TYPE "isel" 115 116 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 117 "target-independent selector"); 118 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 119 "target-specific selector"); 120 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 121 122 /// Set the current block to which generated machine instructions will be 123 /// appended, and clear the local CSE map. 124 void FastISel::startNewBlock() { 125 LocalValueMap.clear(); 126 127 // Instructions are appended to FuncInfo.MBB. If the basic block already 128 // contains labels or copies, use the last instruction as the last local 129 // value. 130 EmitStartPt = nullptr; 131 if (!FuncInfo.MBB->empty()) 132 EmitStartPt = &FuncInfo.MBB->back(); 133 LastLocalValue = EmitStartPt; 134 } 135 136 bool FastISel::lowerArguments() { 137 if (!FuncInfo.CanLowerReturn) 138 // Fallback to SDISel argument lowering code to deal with sret pointer 139 // parameter. 140 return false; 141 142 if (!fastLowerArguments()) 143 return false; 144 145 // Enter arguments into ValueMap for uses in non-entry BBs. 146 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 147 E = FuncInfo.Fn->arg_end(); 148 I != E; ++I) { 149 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I); 150 assert(VI != LocalValueMap.end() && "Missed an argument?"); 151 FuncInfo.ValueMap[&*I] = VI->second; 152 } 153 return true; 154 } 155 156 void FastISel::flushLocalValueMap() { 157 LocalValueMap.clear(); 158 LastLocalValue = EmitStartPt; 159 recomputeInsertPt(); 160 SavedInsertPt = FuncInfo.InsertPt; 161 } 162 163 bool FastISel::hasTrivialKill(const Value *V) { 164 // Don't consider constants or arguments to have trivial kills. 165 const Instruction *I = dyn_cast<Instruction>(V); 166 if (!I) 167 return false; 168 169 // No-op casts are trivially coalesced by fast-isel. 170 if (const auto *Cast = dyn_cast<CastInst>(I)) 171 if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) && 172 !hasTrivialKill(Cast->getOperand(0))) 173 return false; 174 175 // Even the value might have only one use in the LLVM IR, it is possible that 176 // FastISel might fold the use into another instruction and now there is more 177 // than one use at the Machine Instruction level. 178 unsigned Reg = lookUpRegForValue(V); 179 if (Reg && !MRI.use_empty(Reg)) 180 return false; 181 182 // GEPs with all zero indices are trivially coalesced by fast-isel. 183 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 184 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 185 return false; 186 187 // Only instructions with a single use in the same basic block are considered 188 // to have trivial kills. 189 return I->hasOneUse() && 190 !(I->getOpcode() == Instruction::BitCast || 191 I->getOpcode() == Instruction::PtrToInt || 192 I->getOpcode() == Instruction::IntToPtr) && 193 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 194 } 195 196 unsigned FastISel::getRegForValue(const Value *V) { 197 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 198 // Don't handle non-simple values in FastISel. 199 if (!RealVT.isSimple()) 200 return 0; 201 202 // Ignore illegal types. We must do this before looking up the value 203 // in ValueMap because Arguments are given virtual registers regardless 204 // of whether FastISel can handle them. 205 MVT VT = RealVT.getSimpleVT(); 206 if (!TLI.isTypeLegal(VT)) { 207 // Handle integer promotions, though, because they're common and easy. 208 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 209 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 210 else 211 return 0; 212 } 213 214 // Look up the value to see if we already have a register for it. 215 unsigned Reg = lookUpRegForValue(V); 216 if (Reg) 217 return Reg; 218 219 // In bottom-up mode, just create the virtual register which will be used 220 // to hold the value. It will be materialized later. 221 if (isa<Instruction>(V) && 222 (!isa<AllocaInst>(V) || 223 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 224 return FuncInfo.InitializeRegForValue(V); 225 226 SavePoint SaveInsertPt = enterLocalValueArea(); 227 228 // Materialize the value in a register. Emit any instructions in the 229 // local value area. 230 Reg = materializeRegForValue(V, VT); 231 232 leaveLocalValueArea(SaveInsertPt); 233 234 return Reg; 235 } 236 237 unsigned FastISel::materializeConstant(const Value *V, MVT VT) { 238 unsigned Reg = 0; 239 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 240 if (CI->getValue().getActiveBits() <= 64) 241 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 242 } else if (isa<AllocaInst>(V)) 243 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 244 else if (isa<ConstantPointerNull>(V)) 245 // Translate this as an integer zero so that it can be 246 // local-CSE'd with actual integer zeros. 247 Reg = getRegForValue( 248 Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 249 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 250 if (CF->isNullValue()) 251 Reg = fastMaterializeFloatZero(CF); 252 else 253 // Try to emit the constant directly. 254 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 255 256 if (!Reg) { 257 // Try to emit the constant by using an integer constant with a cast. 258 const APFloat &Flt = CF->getValueAPF(); 259 EVT IntVT = TLI.getPointerTy(DL); 260 uint32_t IntBitWidth = IntVT.getSizeInBits(); 261 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); 262 bool isExact; 263 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); 264 if (isExact) { 265 unsigned IntegerReg = 266 getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); 267 if (IntegerReg != 0) 268 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 269 /*Kill=*/false); 270 } 271 } 272 } else if (const auto *Op = dyn_cast<Operator>(V)) { 273 if (!selectOperator(Op, Op->getOpcode())) 274 if (!isa<Instruction>(Op) || 275 !fastSelectInstruction(cast<Instruction>(Op))) 276 return 0; 277 Reg = lookUpRegForValue(Op); 278 } else if (isa<UndefValue>(V)) { 279 Reg = createResultReg(TLI.getRegClassFor(VT)); 280 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 281 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 282 } 283 return Reg; 284 } 285 286 /// Helper for getRegForValue. This function is called when the value isn't 287 /// already available in a register and must be materialized with new 288 /// instructions. 289 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 290 unsigned Reg = 0; 291 // Give the target-specific code a try first. 292 if (isa<Constant>(V)) 293 Reg = fastMaterializeConstant(cast<Constant>(V)); 294 295 // If target-specific code couldn't or didn't want to handle the value, then 296 // give target-independent code a try. 297 if (!Reg) 298 Reg = materializeConstant(V, VT); 299 300 // Don't cache constant materializations in the general ValueMap. 301 // To do so would require tracking what uses they dominate. 302 if (Reg) { 303 LocalValueMap[V] = Reg; 304 LastLocalValue = MRI.getVRegDef(Reg); 305 } 306 return Reg; 307 } 308 309 unsigned FastISel::lookUpRegForValue(const Value *V) { 310 // Look up the value to see if we already have a register for it. We 311 // cache values defined by Instructions across blocks, and other values 312 // only locally. This is because Instructions already have the SSA 313 // def-dominates-use requirement enforced. 314 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 315 if (I != FuncInfo.ValueMap.end()) 316 return I->second; 317 return LocalValueMap[V]; 318 } 319 320 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 321 if (!isa<Instruction>(I)) { 322 LocalValueMap[I] = Reg; 323 return; 324 } 325 326 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 327 if (AssignedReg == 0) 328 // Use the new register. 329 AssignedReg = Reg; 330 else if (Reg != AssignedReg) { 331 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 332 for (unsigned i = 0; i < NumRegs; i++) 333 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 334 335 AssignedReg = Reg; 336 } 337 } 338 339 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 340 unsigned IdxN = getRegForValue(Idx); 341 if (IdxN == 0) 342 // Unhandled operand. Halt "fast" selection and bail. 343 return std::pair<unsigned, bool>(0, false); 344 345 bool IdxNIsKill = hasTrivialKill(Idx); 346 347 // If the index is smaller or larger than intptr_t, truncate or extend it. 348 MVT PtrVT = TLI.getPointerTy(DL); 349 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 350 if (IdxVT.bitsLT(PtrVT)) { 351 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 352 IdxNIsKill); 353 IdxNIsKill = true; 354 } else if (IdxVT.bitsGT(PtrVT)) { 355 IdxN = 356 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 357 IdxNIsKill = true; 358 } 359 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 360 } 361 362 void FastISel::recomputeInsertPt() { 363 if (getLastLocalValue()) { 364 FuncInfo.InsertPt = getLastLocalValue(); 365 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 366 ++FuncInfo.InsertPt; 367 } else 368 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 369 370 // Now skip past any EH_LABELs, which must remain at the beginning. 371 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 372 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 373 ++FuncInfo.InsertPt; 374 } 375 376 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 377 MachineBasicBlock::iterator E) { 378 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 379 "Invalid iterator!"); 380 while (I != E) { 381 MachineInstr *Dead = &*I; 382 ++I; 383 Dead->eraseFromParent(); 384 ++NumFastIselDead; 385 } 386 recomputeInsertPt(); 387 } 388 389 FastISel::SavePoint FastISel::enterLocalValueArea() { 390 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 391 DebugLoc OldDL = DbgLoc; 392 recomputeInsertPt(); 393 DbgLoc = DebugLoc(); 394 SavePoint SP = {OldInsertPt, OldDL}; 395 return SP; 396 } 397 398 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 399 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 400 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 401 402 // Restore the previous insert position. 403 FuncInfo.InsertPt = OldInsertPt.InsertPt; 404 DbgLoc = OldInsertPt.DL; 405 } 406 407 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 408 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 409 if (VT == MVT::Other || !VT.isSimple()) 410 // Unhandled type. Halt "fast" selection and bail. 411 return false; 412 413 // We only handle legal types. For example, on x86-32 the instruction 414 // selector contains all of the 64-bit instructions from x86-64, 415 // under the assumption that i64 won't be used if the target doesn't 416 // support it. 417 if (!TLI.isTypeLegal(VT)) { 418 // MVT::i1 is special. Allow AND, OR, or XOR because they 419 // don't require additional zeroing, which makes them easy. 420 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 421 ISDOpcode == ISD::XOR)) 422 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 423 else 424 return false; 425 } 426 427 // Check if the first operand is a constant, and handle it as "ri". At -O0, 428 // we don't have anything that canonicalizes operand order. 429 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 430 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 431 unsigned Op1 = getRegForValue(I->getOperand(1)); 432 if (!Op1) 433 return false; 434 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 435 436 unsigned ResultReg = 437 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 438 CI->getZExtValue(), VT.getSimpleVT()); 439 if (!ResultReg) 440 return false; 441 442 // We successfully emitted code for the given LLVM Instruction. 443 updateValueMap(I, ResultReg); 444 return true; 445 } 446 447 unsigned Op0 = getRegForValue(I->getOperand(0)); 448 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 449 return false; 450 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 451 452 // Check if the second operand is a constant and handle it appropriately. 453 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 454 uint64_t Imm = CI->getSExtValue(); 455 456 // Transform "sdiv exact X, 8" -> "sra X, 3". 457 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 458 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 459 Imm = Log2_64(Imm); 460 ISDOpcode = ISD::SRA; 461 } 462 463 // Transform "urem x, pow2" -> "and x, pow2-1". 464 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 465 isPowerOf2_64(Imm)) { 466 --Imm; 467 ISDOpcode = ISD::AND; 468 } 469 470 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 471 Op0IsKill, Imm, VT.getSimpleVT()); 472 if (!ResultReg) 473 return false; 474 475 // We successfully emitted code for the given LLVM Instruction. 476 updateValueMap(I, ResultReg); 477 return true; 478 } 479 480 unsigned Op1 = getRegForValue(I->getOperand(1)); 481 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 482 return false; 483 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 484 485 // Now we have both operands in registers. Emit the instruction. 486 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 487 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 488 if (!ResultReg) 489 // Target-specific code wasn't able to find a machine opcode for 490 // the given ISD opcode and type. Halt "fast" selection and bail. 491 return false; 492 493 // We successfully emitted code for the given LLVM Instruction. 494 updateValueMap(I, ResultReg); 495 return true; 496 } 497 498 bool FastISel::selectGetElementPtr(const User *I) { 499 unsigned N = getRegForValue(I->getOperand(0)); 500 if (!N) // Unhandled operand. Halt "fast" selection and bail. 501 return false; 502 bool NIsKill = hasTrivialKill(I->getOperand(0)); 503 504 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 505 // into a single N = N + TotalOffset. 506 uint64_t TotalOffs = 0; 507 // FIXME: What's a good SWAG number for MaxOffs? 508 uint64_t MaxOffs = 2048; 509 MVT VT = TLI.getPointerTy(DL); 510 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 511 GTI != E; ++GTI) { 512 const Value *Idx = GTI.getOperand(); 513 if (StructType *StTy = GTI.getStructTypeOrNull()) { 514 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 515 if (Field) { 516 // N = N + Offset 517 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 518 if (TotalOffs >= MaxOffs) { 519 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 520 if (!N) // Unhandled operand. Halt "fast" selection and bail. 521 return false; 522 NIsKill = true; 523 TotalOffs = 0; 524 } 525 } 526 } else { 527 Type *Ty = GTI.getIndexedType(); 528 529 // If this is a constant subscript, handle it quickly. 530 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 531 if (CI->isZero()) 532 continue; 533 // N = N + Offset 534 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 535 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 536 if (TotalOffs >= MaxOffs) { 537 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 538 if (!N) // Unhandled operand. Halt "fast" selection and bail. 539 return false; 540 NIsKill = true; 541 TotalOffs = 0; 542 } 543 continue; 544 } 545 if (TotalOffs) { 546 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 547 if (!N) // Unhandled operand. Halt "fast" selection and bail. 548 return false; 549 NIsKill = true; 550 TotalOffs = 0; 551 } 552 553 // N = N + Idx * ElementSize; 554 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 555 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 556 unsigned IdxN = Pair.first; 557 bool IdxNIsKill = Pair.second; 558 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 559 return false; 560 561 if (ElementSize != 1) { 562 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 563 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 564 return false; 565 IdxNIsKill = true; 566 } 567 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 568 if (!N) // Unhandled operand. Halt "fast" selection and bail. 569 return false; 570 } 571 } 572 if (TotalOffs) { 573 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 574 if (!N) // Unhandled operand. Halt "fast" selection and bail. 575 return false; 576 } 577 578 // We successfully emitted code for the given LLVM Instruction. 579 updateValueMap(I, N); 580 return true; 581 } 582 583 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 584 const CallInst *CI, unsigned StartIdx) { 585 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 586 Value *Val = CI->getArgOperand(i); 587 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 588 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 589 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 590 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 591 } else if (isa<ConstantPointerNull>(Val)) { 592 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 593 Ops.push_back(MachineOperand::CreateImm(0)); 594 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 595 // Values coming from a stack location also require a special encoding, 596 // but that is added later on by the target specific frame index 597 // elimination implementation. 598 auto SI = FuncInfo.StaticAllocaMap.find(AI); 599 if (SI != FuncInfo.StaticAllocaMap.end()) 600 Ops.push_back(MachineOperand::CreateFI(SI->second)); 601 else 602 return false; 603 } else { 604 unsigned Reg = getRegForValue(Val); 605 if (!Reg) 606 return false; 607 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 608 } 609 } 610 return true; 611 } 612 613 bool FastISel::selectStackmap(const CallInst *I) { 614 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 615 // [live variables...]) 616 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 617 "Stackmap cannot return a value."); 618 619 // The stackmap intrinsic only records the live variables (the arguments 620 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 621 // intrinsic, this won't be lowered to a function call. This means we don't 622 // have to worry about calling conventions and target-specific lowering code. 623 // Instead we perform the call lowering right here. 624 // 625 // CALLSEQ_START(0...) 626 // STACKMAP(id, nbytes, ...) 627 // CALLSEQ_END(0, 0) 628 // 629 SmallVector<MachineOperand, 32> Ops; 630 631 // Add the <id> and <numBytes> constants. 632 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 633 "Expected a constant integer."); 634 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 635 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 636 637 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 638 "Expected a constant integer."); 639 const auto *NumBytes = 640 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 641 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 642 643 // Push live variables for the stack map (skipping the first two arguments 644 // <id> and <numBytes>). 645 if (!addStackMapLiveVars(Ops, I, 2)) 646 return false; 647 648 // We are not adding any register mask info here, because the stackmap doesn't 649 // clobber anything. 650 651 // Add scratch registers as implicit def and early clobber. 652 CallingConv::ID CC = I->getCallingConv(); 653 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 654 for (unsigned i = 0; ScratchRegs[i]; ++i) 655 Ops.push_back(MachineOperand::CreateReg( 656 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 657 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 658 659 // Issue CALLSEQ_START 660 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 661 auto Builder = 662 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 663 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 664 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 665 Builder.addImm(0); 666 667 // Issue STACKMAP. 668 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 669 TII.get(TargetOpcode::STACKMAP)); 670 for (auto const &MO : Ops) 671 MIB.add(MO); 672 673 // Issue CALLSEQ_END 674 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 675 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 676 .addImm(0) 677 .addImm(0); 678 679 // Inform the Frame Information that we have a stackmap in this function. 680 FuncInfo.MF->getFrameInfo().setHasStackMap(); 681 682 return true; 683 } 684 685 /// \brief Lower an argument list according to the target calling convention. 686 /// 687 /// This is a helper for lowering intrinsics that follow a target calling 688 /// convention or require stack pointer adjustment. Only a subset of the 689 /// intrinsic's operands need to participate in the calling convention. 690 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 691 unsigned NumArgs, const Value *Callee, 692 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 693 ArgListTy Args; 694 Args.reserve(NumArgs); 695 696 // Populate the argument list. 697 ImmutableCallSite CS(CI); 698 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { 699 Value *V = CI->getOperand(ArgI); 700 701 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 702 703 ArgListEntry Entry; 704 Entry.Val = V; 705 Entry.Ty = V->getType(); 706 Entry.setAttributes(&CS, ArgIdx); 707 Args.push_back(Entry); 708 } 709 710 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 711 : CI->getType(); 712 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 713 714 return lowerCallTo(CLI); 715 } 716 717 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 718 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 719 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 720 SmallString<32> MangledName; 721 Mangler::getNameWithPrefix(MangledName, Target, DL); 722 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 723 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 724 } 725 726 bool FastISel::selectPatchpoint(const CallInst *I) { 727 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 728 // i32 <numBytes>, 729 // i8* <target>, 730 // i32 <numArgs>, 731 // [Args...], 732 // [live variables...]) 733 CallingConv::ID CC = I->getCallingConv(); 734 bool IsAnyRegCC = CC == CallingConv::AnyReg; 735 bool HasDef = !I->getType()->isVoidTy(); 736 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 737 738 // Get the real number of arguments participating in the call <numArgs> 739 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 740 "Expected a constant integer."); 741 const auto *NumArgsVal = 742 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 743 unsigned NumArgs = NumArgsVal->getZExtValue(); 744 745 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 746 // This includes all meta-operands up to but not including CC. 747 unsigned NumMetaOpers = PatchPointOpers::CCPos; 748 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 749 "Not enough arguments provided to the patchpoint intrinsic"); 750 751 // For AnyRegCC the arguments are lowered later on manually. 752 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 753 CallLoweringInfo CLI; 754 CLI.setIsPatchPoint(); 755 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 756 return false; 757 758 assert(CLI.Call && "No call instruction specified."); 759 760 SmallVector<MachineOperand, 32> Ops; 761 762 // Add an explicit result reg if we use the anyreg calling convention. 763 if (IsAnyRegCC && HasDef) { 764 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 765 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 766 CLI.NumResultRegs = 1; 767 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 768 } 769 770 // Add the <id> and <numBytes> constants. 771 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 772 "Expected a constant integer."); 773 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 774 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 775 776 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 777 "Expected a constant integer."); 778 const auto *NumBytes = 779 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 780 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 781 782 // Add the call target. 783 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 784 uint64_t CalleeConstAddr = 785 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 786 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 787 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 788 if (C->getOpcode() == Instruction::IntToPtr) { 789 uint64_t CalleeConstAddr = 790 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 791 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 792 } else 793 llvm_unreachable("Unsupported ConstantExpr."); 794 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 795 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 796 } else if (isa<ConstantPointerNull>(Callee)) 797 Ops.push_back(MachineOperand::CreateImm(0)); 798 else 799 llvm_unreachable("Unsupported callee address."); 800 801 // Adjust <numArgs> to account for any arguments that have been passed on 802 // the stack instead. 803 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 804 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 805 806 // Add the calling convention 807 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 808 809 // Add the arguments we omitted previously. The register allocator should 810 // place these in any free register. 811 if (IsAnyRegCC) { 812 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 813 unsigned Reg = getRegForValue(I->getArgOperand(i)); 814 if (!Reg) 815 return false; 816 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 817 } 818 } 819 820 // Push the arguments from the call instruction. 821 for (auto Reg : CLI.OutRegs) 822 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 823 824 // Push live variables for the stack map. 825 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 826 return false; 827 828 // Push the register mask info. 829 Ops.push_back(MachineOperand::CreateRegMask( 830 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 831 832 // Add scratch registers as implicit def and early clobber. 833 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 834 for (unsigned i = 0; ScratchRegs[i]; ++i) 835 Ops.push_back(MachineOperand::CreateReg( 836 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 837 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 838 839 // Add implicit defs (return values). 840 for (auto Reg : CLI.InRegs) 841 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 842 /*IsImpl=*/true)); 843 844 // Insert the patchpoint instruction before the call generated by the target. 845 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 846 TII.get(TargetOpcode::PATCHPOINT)); 847 848 for (auto &MO : Ops) 849 MIB.add(MO); 850 851 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 852 853 // Delete the original call instruction. 854 CLI.Call->eraseFromParent(); 855 856 // Inform the Frame Information that we have a patchpoint in this function. 857 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 858 859 if (CLI.NumResultRegs) 860 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 861 return true; 862 } 863 864 /// Returns an AttributeList representing the attributes applied to the return 865 /// value of the given call. 866 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 867 SmallVector<Attribute::AttrKind, 2> Attrs; 868 if (CLI.RetSExt) 869 Attrs.push_back(Attribute::SExt); 870 if (CLI.RetZExt) 871 Attrs.push_back(Attribute::ZExt); 872 if (CLI.IsInReg) 873 Attrs.push_back(Attribute::InReg); 874 875 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 876 Attrs); 877 } 878 879 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 880 unsigned NumArgs) { 881 MCContext &Ctx = MF->getContext(); 882 SmallString<32> MangledName; 883 Mangler::getNameWithPrefix(MangledName, SymName, DL); 884 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 885 return lowerCallTo(CI, Sym, NumArgs); 886 } 887 888 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 889 unsigned NumArgs) { 890 ImmutableCallSite CS(CI); 891 892 FunctionType *FTy = CS.getFunctionType(); 893 Type *RetTy = CS.getType(); 894 895 ArgListTy Args; 896 Args.reserve(NumArgs); 897 898 // Populate the argument list. 899 // Attributes for args start at offset 1, after the return attribute. 900 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 901 Value *V = CI->getOperand(ArgI); 902 903 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 904 905 ArgListEntry Entry; 906 Entry.Val = V; 907 Entry.Ty = V->getType(); 908 Entry.setAttributes(&CS, ArgI); 909 Args.push_back(Entry); 910 } 911 TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args); 912 913 CallLoweringInfo CLI; 914 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs); 915 916 return lowerCallTo(CLI); 917 } 918 919 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 920 // Handle the incoming return values from the call. 921 CLI.clearIns(); 922 SmallVector<EVT, 4> RetTys; 923 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 924 925 SmallVector<ISD::OutputArg, 4> Outs; 926 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 927 928 bool CanLowerReturn = TLI.CanLowerReturn( 929 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 930 931 // FIXME: sret demotion isn't supported yet - bail out. 932 if (!CanLowerReturn) 933 return false; 934 935 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 936 EVT VT = RetTys[I]; 937 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 938 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 939 for (unsigned i = 0; i != NumRegs; ++i) { 940 ISD::InputArg MyFlags; 941 MyFlags.VT = RegisterVT; 942 MyFlags.ArgVT = VT; 943 MyFlags.Used = CLI.IsReturnValueUsed; 944 if (CLI.RetSExt) 945 MyFlags.Flags.setSExt(); 946 if (CLI.RetZExt) 947 MyFlags.Flags.setZExt(); 948 if (CLI.IsInReg) 949 MyFlags.Flags.setInReg(); 950 CLI.Ins.push_back(MyFlags); 951 } 952 } 953 954 // Handle all of the outgoing arguments. 955 CLI.clearOuts(); 956 for (auto &Arg : CLI.getArgs()) { 957 Type *FinalType = Arg.Ty; 958 if (Arg.IsByVal) 959 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 960 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 961 FinalType, CLI.CallConv, CLI.IsVarArg); 962 963 ISD::ArgFlagsTy Flags; 964 if (Arg.IsZExt) 965 Flags.setZExt(); 966 if (Arg.IsSExt) 967 Flags.setSExt(); 968 if (Arg.IsInReg) 969 Flags.setInReg(); 970 if (Arg.IsSRet) 971 Flags.setSRet(); 972 if (Arg.IsSwiftSelf) 973 Flags.setSwiftSelf(); 974 if (Arg.IsSwiftError) 975 Flags.setSwiftError(); 976 if (Arg.IsByVal) 977 Flags.setByVal(); 978 if (Arg.IsInAlloca) { 979 Flags.setInAlloca(); 980 // Set the byval flag for CCAssignFn callbacks that don't know about 981 // inalloca. This way we can know how many bytes we should've allocated 982 // and how many bytes a callee cleanup function will pop. If we port 983 // inalloca to more targets, we'll have to add custom inalloca handling in 984 // the various CC lowering callbacks. 985 Flags.setByVal(); 986 } 987 if (Arg.IsByVal || Arg.IsInAlloca) { 988 PointerType *Ty = cast<PointerType>(Arg.Ty); 989 Type *ElementTy = Ty->getElementType(); 990 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 991 // For ByVal, alignment should come from FE. BE will guess if this info is 992 // not there, but there are cases it cannot get right. 993 unsigned FrameAlign = Arg.Alignment; 994 if (!FrameAlign) 995 FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL); 996 Flags.setByValSize(FrameSize); 997 Flags.setByValAlign(FrameAlign); 998 } 999 if (Arg.IsNest) 1000 Flags.setNest(); 1001 if (NeedsRegBlock) 1002 Flags.setInConsecutiveRegs(); 1003 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 1004 Flags.setOrigAlign(OriginalAlignment); 1005 1006 CLI.OutVals.push_back(Arg.Val); 1007 CLI.OutFlags.push_back(Flags); 1008 } 1009 1010 if (!fastLowerCall(CLI)) 1011 return false; 1012 1013 // Set all unused physreg defs as dead. 1014 assert(CLI.Call && "No call instruction specified."); 1015 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1016 1017 if (CLI.NumResultRegs && CLI.CS) 1018 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 1019 1020 return true; 1021 } 1022 1023 bool FastISel::lowerCall(const CallInst *CI) { 1024 ImmutableCallSite CS(CI); 1025 1026 FunctionType *FuncTy = CS.getFunctionType(); 1027 Type *RetTy = CS.getType(); 1028 1029 ArgListTy Args; 1030 ArgListEntry Entry; 1031 Args.reserve(CS.arg_size()); 1032 1033 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1034 i != e; ++i) { 1035 Value *V = *i; 1036 1037 // Skip empty types 1038 if (V->getType()->isEmptyTy()) 1039 continue; 1040 1041 Entry.Val = V; 1042 Entry.Ty = V->getType(); 1043 1044 // Skip the first return-type Attribute to get to params. 1045 Entry.setAttributes(&CS, i - CS.arg_begin()); 1046 Args.push_back(Entry); 1047 } 1048 1049 // Check if target-independent constraints permit a tail call here. 1050 // Target-dependent constraints are checked within fastLowerCall. 1051 bool IsTailCall = CI->isTailCall(); 1052 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1053 IsTailCall = false; 1054 1055 CallLoweringInfo CLI; 1056 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1057 .setTailCall(IsTailCall); 1058 1059 return lowerCallTo(CLI); 1060 } 1061 1062 bool FastISel::selectCall(const User *I) { 1063 const CallInst *Call = cast<CallInst>(I); 1064 1065 // Handle simple inline asms. 1066 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1067 // If the inline asm has side effects, then make sure that no local value 1068 // lives across by flushing the local value map. 1069 if (IA->hasSideEffects()) 1070 flushLocalValueMap(); 1071 1072 // Don't attempt to handle constraints. 1073 if (!IA->getConstraintString().empty()) 1074 return false; 1075 1076 unsigned ExtraInfo = 0; 1077 if (IA->hasSideEffects()) 1078 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1079 if (IA->isAlignStack()) 1080 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1081 1082 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1083 TII.get(TargetOpcode::INLINEASM)) 1084 .addExternalSymbol(IA->getAsmString().c_str()) 1085 .addImm(ExtraInfo); 1086 return true; 1087 } 1088 1089 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1090 computeUsesVAFloatArgument(*Call, MMI); 1091 1092 // Handle intrinsic function calls. 1093 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1094 return selectIntrinsicCall(II); 1095 1096 // Usually, it does not make sense to initialize a value, 1097 // make an unrelated function call and use the value, because 1098 // it tends to be spilled on the stack. So, we move the pointer 1099 // to the last local value to the beginning of the block, so that 1100 // all the values which have already been materialized, 1101 // appear after the call. It also makes sense to skip intrinsics 1102 // since they tend to be inlined. 1103 flushLocalValueMap(); 1104 1105 return lowerCall(Call); 1106 } 1107 1108 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1109 switch (II->getIntrinsicID()) { 1110 default: 1111 break; 1112 // At -O0 we don't care about the lifetime intrinsics. 1113 case Intrinsic::lifetime_start: 1114 case Intrinsic::lifetime_end: 1115 // The donothing intrinsic does, well, nothing. 1116 case Intrinsic::donothing: 1117 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1118 case Intrinsic::assume: 1119 return true; 1120 case Intrinsic::dbg_declare: { 1121 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1122 assert(DI->getVariable() && "Missing variable"); 1123 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1124 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1125 return true; 1126 } 1127 1128 const Value *Address = DI->getAddress(); 1129 if (!Address || isa<UndefValue>(Address)) { 1130 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1131 return true; 1132 } 1133 1134 unsigned Offset = 0; 1135 Optional<MachineOperand> Op; 1136 if (const auto *Arg = dyn_cast<Argument>(Address)) 1137 // Some arguments' frame index is recorded during argument lowering. 1138 Offset = FuncInfo.getArgumentFrameIndex(Arg); 1139 if (Offset) 1140 Op = MachineOperand::CreateFI(Offset); 1141 if (!Op) 1142 if (unsigned Reg = lookUpRegForValue(Address)) 1143 Op = MachineOperand::CreateReg(Reg, false); 1144 1145 // If we have a VLA that has a "use" in a metadata node that's then used 1146 // here but it has no other uses, then we have a problem. E.g., 1147 // 1148 // int foo (const int *x) { 1149 // char a[*x]; 1150 // return 0; 1151 // } 1152 // 1153 // If we assign 'a' a vreg and fast isel later on has to use the selection 1154 // DAG isel, it will want to copy the value to the vreg. However, there are 1155 // no uses, which goes counter to what selection DAG isel expects. 1156 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1157 (!isa<AllocaInst>(Address) || 1158 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1159 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1160 false); 1161 1162 if (Op) { 1163 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1164 "Expected inlined-at fields to agree"); 1165 if (Op->isReg()) { 1166 Op->setIsDebug(true); 1167 // A dbg.declare describes the address of a source variable, so lower it 1168 // into an indirect DBG_VALUE. 1169 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1170 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, 1171 Op->getReg(), 0, DI->getVariable(), DI->getExpression()); 1172 } else 1173 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1174 TII.get(TargetOpcode::DBG_VALUE)) 1175 .add(*Op) 1176 .addImm(0) 1177 .addMetadata(DI->getVariable()) 1178 .addMetadata(DI->getExpression()); 1179 } else { 1180 // We can't yet handle anything else here because it would require 1181 // generating code, thus altering codegen because of debug info. 1182 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1183 } 1184 return true; 1185 } 1186 case Intrinsic::dbg_value: { 1187 // This form of DBG_VALUE is target-independent. 1188 const DbgValueInst *DI = cast<DbgValueInst>(II); 1189 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1190 const Value *V = DI->getValue(); 1191 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1192 "Expected inlined-at fields to agree"); 1193 if (!V) { 1194 // Currently the optimizer can produce this; insert an undef to 1195 // help debugging. Probably the optimizer should not do this. 1196 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1197 .addReg(0U) 1198 .addImm(DI->getOffset()) 1199 .addMetadata(DI->getVariable()) 1200 .addMetadata(DI->getExpression()); 1201 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1202 if (CI->getBitWidth() > 64) 1203 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1204 .addCImm(CI) 1205 .addImm(DI->getOffset()) 1206 .addMetadata(DI->getVariable()) 1207 .addMetadata(DI->getExpression()); 1208 else 1209 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1210 .addImm(CI->getZExtValue()) 1211 .addImm(DI->getOffset()) 1212 .addMetadata(DI->getVariable()) 1213 .addMetadata(DI->getExpression()); 1214 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1215 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1216 .addFPImm(CF) 1217 .addImm(DI->getOffset()) 1218 .addMetadata(DI->getVariable()) 1219 .addMetadata(DI->getExpression()); 1220 } else if (unsigned Reg = lookUpRegForValue(V)) { 1221 // FIXME: This does not handle register-indirect values at offset 0. 1222 bool IsIndirect = DI->getOffset() != 0; 1223 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1224 DI->getOffset(), DI->getVariable(), DI->getExpression()); 1225 } else { 1226 // We can't yet handle anything else here because it would require 1227 // generating code, thus altering codegen because of debug info. 1228 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1229 } 1230 return true; 1231 } 1232 case Intrinsic::objectsize: { 1233 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1234 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1235 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1236 unsigned ResultReg = getRegForValue(ResCI); 1237 if (!ResultReg) 1238 return false; 1239 updateValueMap(II, ResultReg); 1240 return true; 1241 } 1242 case Intrinsic::invariant_group_barrier: 1243 case Intrinsic::expect: { 1244 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1245 if (!ResultReg) 1246 return false; 1247 updateValueMap(II, ResultReg); 1248 return true; 1249 } 1250 case Intrinsic::experimental_stackmap: 1251 return selectStackmap(II); 1252 case Intrinsic::experimental_patchpoint_void: 1253 case Intrinsic::experimental_patchpoint_i64: 1254 return selectPatchpoint(II); 1255 } 1256 1257 return fastLowerIntrinsicCall(II); 1258 } 1259 1260 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1261 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1262 EVT DstVT = TLI.getValueType(DL, I->getType()); 1263 1264 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1265 !DstVT.isSimple()) 1266 // Unhandled type. Halt "fast" selection and bail. 1267 return false; 1268 1269 // Check if the destination type is legal. 1270 if (!TLI.isTypeLegal(DstVT)) 1271 return false; 1272 1273 // Check if the source operand is legal. 1274 if (!TLI.isTypeLegal(SrcVT)) 1275 return false; 1276 1277 unsigned InputReg = getRegForValue(I->getOperand(0)); 1278 if (!InputReg) 1279 // Unhandled operand. Halt "fast" selection and bail. 1280 return false; 1281 1282 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1283 1284 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1285 Opcode, InputReg, InputRegIsKill); 1286 if (!ResultReg) 1287 return false; 1288 1289 updateValueMap(I, ResultReg); 1290 return true; 1291 } 1292 1293 bool FastISel::selectBitCast(const User *I) { 1294 // If the bitcast doesn't change the type, just use the operand value. 1295 if (I->getType() == I->getOperand(0)->getType()) { 1296 unsigned Reg = getRegForValue(I->getOperand(0)); 1297 if (!Reg) 1298 return false; 1299 updateValueMap(I, Reg); 1300 return true; 1301 } 1302 1303 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1304 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1305 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1306 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1307 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1308 // Unhandled type. Halt "fast" selection and bail. 1309 return false; 1310 1311 MVT SrcVT = SrcEVT.getSimpleVT(); 1312 MVT DstVT = DstEVT.getSimpleVT(); 1313 unsigned Op0 = getRegForValue(I->getOperand(0)); 1314 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1315 return false; 1316 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1317 1318 // First, try to perform the bitcast by inserting a reg-reg copy. 1319 unsigned ResultReg = 0; 1320 if (SrcVT == DstVT) { 1321 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1322 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1323 // Don't attempt a cross-class copy. It will likely fail. 1324 if (SrcClass == DstClass) { 1325 ResultReg = createResultReg(DstClass); 1326 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1327 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1328 } 1329 } 1330 1331 // If the reg-reg copy failed, select a BITCAST opcode. 1332 if (!ResultReg) 1333 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1334 1335 if (!ResultReg) 1336 return false; 1337 1338 updateValueMap(I, ResultReg); 1339 return true; 1340 } 1341 1342 // Remove local value instructions starting from the instruction after 1343 // SavedLastLocalValue to the current function insert point. 1344 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1345 { 1346 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1347 if (CurLastLocalValue != SavedLastLocalValue) { 1348 // Find the first local value instruction to be deleted. 1349 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1350 // Otherwise it's the first instruction in the block. 1351 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1352 if (SavedLastLocalValue) 1353 ++FirstDeadInst; 1354 else 1355 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1356 setLastLocalValue(SavedLastLocalValue); 1357 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1358 } 1359 } 1360 1361 bool FastISel::selectInstruction(const Instruction *I) { 1362 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1363 // Just before the terminator instruction, insert instructions to 1364 // feed PHI nodes in successor blocks. 1365 if (isa<TerminatorInst>(I)) { 1366 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1367 // PHI node handling may have generated local value instructions, 1368 // even though it failed to handle all PHI nodes. 1369 // We remove these instructions because SelectionDAGISel will generate 1370 // them again. 1371 removeDeadLocalValueCode(SavedLastLocalValue); 1372 return false; 1373 } 1374 } 1375 1376 // FastISel does not handle any operand bundles except OB_funclet. 1377 if (ImmutableCallSite CS = ImmutableCallSite(I)) 1378 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) 1379 if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1380 return false; 1381 1382 DbgLoc = I->getDebugLoc(); 1383 1384 SavedInsertPt = FuncInfo.InsertPt; 1385 1386 if (const auto *Call = dyn_cast<CallInst>(I)) { 1387 const Function *F = Call->getCalledFunction(); 1388 LibFunc Func; 1389 1390 // As a special case, don't handle calls to builtin library functions that 1391 // may be translated directly to target instructions. 1392 if (F && !F->hasLocalLinkage() && F->hasName() && 1393 LibInfo->getLibFunc(F->getName(), Func) && 1394 LibInfo->hasOptimizedCodeGen(Func)) 1395 return false; 1396 1397 // Don't handle Intrinsic::trap if a trap function is specified. 1398 if (F && F->getIntrinsicID() == Intrinsic::trap && 1399 Call->hasFnAttr("trap-func-name")) 1400 return false; 1401 } 1402 1403 // First, try doing target-independent selection. 1404 if (!SkipTargetIndependentISel) { 1405 if (selectOperator(I, I->getOpcode())) { 1406 ++NumFastIselSuccessIndependent; 1407 DbgLoc = DebugLoc(); 1408 return true; 1409 } 1410 // Remove dead code. 1411 recomputeInsertPt(); 1412 if (SavedInsertPt != FuncInfo.InsertPt) 1413 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1414 SavedInsertPt = FuncInfo.InsertPt; 1415 } 1416 // Next, try calling the target to attempt to handle the instruction. 1417 if (fastSelectInstruction(I)) { 1418 ++NumFastIselSuccessTarget; 1419 DbgLoc = DebugLoc(); 1420 return true; 1421 } 1422 // Remove dead code. 1423 recomputeInsertPt(); 1424 if (SavedInsertPt != FuncInfo.InsertPt) 1425 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1426 1427 DbgLoc = DebugLoc(); 1428 // Undo phi node updates, because they will be added again by SelectionDAG. 1429 if (isa<TerminatorInst>(I)) { 1430 // PHI node handling may have generated local value instructions. 1431 // We remove them because SelectionDAGISel will generate them again. 1432 removeDeadLocalValueCode(SavedLastLocalValue); 1433 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1434 } 1435 return false; 1436 } 1437 1438 /// Emit an unconditional branch to the given block, unless it is the immediate 1439 /// (fall-through) successor, and update the CFG. 1440 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1441 const DebugLoc &DbgLoc) { 1442 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1443 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1444 // For more accurate line information if this is the only instruction 1445 // in the block then emit it, otherwise we have the unconditional 1446 // fall-through case, which needs no instructions. 1447 } else { 1448 // The unconditional branch case. 1449 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1450 SmallVector<MachineOperand, 0>(), DbgLoc); 1451 } 1452 if (FuncInfo.BPI) { 1453 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1454 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1455 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1456 } else 1457 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1458 } 1459 1460 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1461 MachineBasicBlock *TrueMBB, 1462 MachineBasicBlock *FalseMBB) { 1463 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1464 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1465 // successor/predecessor lists. 1466 if (TrueMBB != FalseMBB) { 1467 if (FuncInfo.BPI) { 1468 auto BranchProbability = 1469 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1470 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1471 } else 1472 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1473 } 1474 1475 fastEmitBranch(FalseMBB, DbgLoc); 1476 } 1477 1478 /// Emit an FNeg operation. 1479 bool FastISel::selectFNeg(const User *I) { 1480 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1481 if (!OpReg) 1482 return false; 1483 bool OpRegIsKill = hasTrivialKill(I); 1484 1485 // If the target has ISD::FNEG, use it. 1486 EVT VT = TLI.getValueType(DL, I->getType()); 1487 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1488 OpReg, OpRegIsKill); 1489 if (ResultReg) { 1490 updateValueMap(I, ResultReg); 1491 return true; 1492 } 1493 1494 // Bitcast the value to integer, twiddle the sign bit with xor, 1495 // and then bitcast it back to floating-point. 1496 if (VT.getSizeInBits() > 64) 1497 return false; 1498 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1499 if (!TLI.isTypeLegal(IntVT)) 1500 return false; 1501 1502 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1503 ISD::BITCAST, OpReg, OpRegIsKill); 1504 if (!IntReg) 1505 return false; 1506 1507 unsigned IntResultReg = fastEmit_ri_( 1508 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1509 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1510 if (!IntResultReg) 1511 return false; 1512 1513 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1514 IntResultReg, /*IsKill=*/true); 1515 if (!ResultReg) 1516 return false; 1517 1518 updateValueMap(I, ResultReg); 1519 return true; 1520 } 1521 1522 bool FastISel::selectExtractValue(const User *U) { 1523 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1524 if (!EVI) 1525 return false; 1526 1527 // Make sure we only try to handle extracts with a legal result. But also 1528 // allow i1 because it's easy. 1529 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1530 if (!RealVT.isSimple()) 1531 return false; 1532 MVT VT = RealVT.getSimpleVT(); 1533 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1534 return false; 1535 1536 const Value *Op0 = EVI->getOperand(0); 1537 Type *AggTy = Op0->getType(); 1538 1539 // Get the base result register. 1540 unsigned ResultReg; 1541 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1542 if (I != FuncInfo.ValueMap.end()) 1543 ResultReg = I->second; 1544 else if (isa<Instruction>(Op0)) 1545 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1546 else 1547 return false; // fast-isel can't handle aggregate constants at the moment 1548 1549 // Get the actual result register, which is an offset from the base register. 1550 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1551 1552 SmallVector<EVT, 4> AggValueVTs; 1553 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1554 1555 for (unsigned i = 0; i < VTIndex; i++) 1556 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1557 1558 updateValueMap(EVI, ResultReg); 1559 return true; 1560 } 1561 1562 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1563 switch (Opcode) { 1564 case Instruction::Add: 1565 return selectBinaryOp(I, ISD::ADD); 1566 case Instruction::FAdd: 1567 return selectBinaryOp(I, ISD::FADD); 1568 case Instruction::Sub: 1569 return selectBinaryOp(I, ISD::SUB); 1570 case Instruction::FSub: 1571 // FNeg is currently represented in LLVM IR as a special case of FSub. 1572 if (BinaryOperator::isFNeg(I)) 1573 return selectFNeg(I); 1574 return selectBinaryOp(I, ISD::FSUB); 1575 case Instruction::Mul: 1576 return selectBinaryOp(I, ISD::MUL); 1577 case Instruction::FMul: 1578 return selectBinaryOp(I, ISD::FMUL); 1579 case Instruction::SDiv: 1580 return selectBinaryOp(I, ISD::SDIV); 1581 case Instruction::UDiv: 1582 return selectBinaryOp(I, ISD::UDIV); 1583 case Instruction::FDiv: 1584 return selectBinaryOp(I, ISD::FDIV); 1585 case Instruction::SRem: 1586 return selectBinaryOp(I, ISD::SREM); 1587 case Instruction::URem: 1588 return selectBinaryOp(I, ISD::UREM); 1589 case Instruction::FRem: 1590 return selectBinaryOp(I, ISD::FREM); 1591 case Instruction::Shl: 1592 return selectBinaryOp(I, ISD::SHL); 1593 case Instruction::LShr: 1594 return selectBinaryOp(I, ISD::SRL); 1595 case Instruction::AShr: 1596 return selectBinaryOp(I, ISD::SRA); 1597 case Instruction::And: 1598 return selectBinaryOp(I, ISD::AND); 1599 case Instruction::Or: 1600 return selectBinaryOp(I, ISD::OR); 1601 case Instruction::Xor: 1602 return selectBinaryOp(I, ISD::XOR); 1603 1604 case Instruction::GetElementPtr: 1605 return selectGetElementPtr(I); 1606 1607 case Instruction::Br: { 1608 const BranchInst *BI = cast<BranchInst>(I); 1609 1610 if (BI->isUnconditional()) { 1611 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1612 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1613 fastEmitBranch(MSucc, BI->getDebugLoc()); 1614 return true; 1615 } 1616 1617 // Conditional branches are not handed yet. 1618 // Halt "fast" selection and bail. 1619 return false; 1620 } 1621 1622 case Instruction::Unreachable: 1623 if (TM.Options.TrapUnreachable) 1624 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1625 else 1626 return true; 1627 1628 case Instruction::Alloca: 1629 // FunctionLowering has the static-sized case covered. 1630 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1631 return true; 1632 1633 // Dynamic-sized alloca is not handled yet. 1634 return false; 1635 1636 case Instruction::Call: 1637 return selectCall(I); 1638 1639 case Instruction::BitCast: 1640 return selectBitCast(I); 1641 1642 case Instruction::FPToSI: 1643 return selectCast(I, ISD::FP_TO_SINT); 1644 case Instruction::ZExt: 1645 return selectCast(I, ISD::ZERO_EXTEND); 1646 case Instruction::SExt: 1647 return selectCast(I, ISD::SIGN_EXTEND); 1648 case Instruction::Trunc: 1649 return selectCast(I, ISD::TRUNCATE); 1650 case Instruction::SIToFP: 1651 return selectCast(I, ISD::SINT_TO_FP); 1652 1653 case Instruction::IntToPtr: // Deliberate fall-through. 1654 case Instruction::PtrToInt: { 1655 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1656 EVT DstVT = TLI.getValueType(DL, I->getType()); 1657 if (DstVT.bitsGT(SrcVT)) 1658 return selectCast(I, ISD::ZERO_EXTEND); 1659 if (DstVT.bitsLT(SrcVT)) 1660 return selectCast(I, ISD::TRUNCATE); 1661 unsigned Reg = getRegForValue(I->getOperand(0)); 1662 if (!Reg) 1663 return false; 1664 updateValueMap(I, Reg); 1665 return true; 1666 } 1667 1668 case Instruction::ExtractValue: 1669 return selectExtractValue(I); 1670 1671 case Instruction::PHI: 1672 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1673 1674 default: 1675 // Unhandled instruction. Halt "fast" selection and bail. 1676 return false; 1677 } 1678 } 1679 1680 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1681 const TargetLibraryInfo *LibInfo, 1682 bool SkipTargetIndependentISel) 1683 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1684 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1685 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1686 TII(*MF->getSubtarget().getInstrInfo()), 1687 TLI(*MF->getSubtarget().getTargetLowering()), 1688 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1689 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1690 1691 FastISel::~FastISel() = default; 1692 1693 bool FastISel::fastLowerArguments() { return false; } 1694 1695 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1696 1697 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1698 return false; 1699 } 1700 1701 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1702 1703 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1704 bool /*Op0IsKill*/) { 1705 return 0; 1706 } 1707 1708 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1709 bool /*Op0IsKill*/, unsigned /*Op1*/, 1710 bool /*Op1IsKill*/) { 1711 return 0; 1712 } 1713 1714 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1715 return 0; 1716 } 1717 1718 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1719 const ConstantFP * /*FPImm*/) { 1720 return 0; 1721 } 1722 1723 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1724 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1725 return 0; 1726 } 1727 1728 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1729 /// instruction with an immediate operand using fastEmit_ri. 1730 /// If that fails, it materializes the immediate into a register and try 1731 /// fastEmit_rr instead. 1732 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1733 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1734 // If this is a multiply by a power of two, emit this as a shift left. 1735 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1736 Opcode = ISD::SHL; 1737 Imm = Log2_64(Imm); 1738 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1739 // div x, 8 -> srl x, 3 1740 Opcode = ISD::SRL; 1741 Imm = Log2_64(Imm); 1742 } 1743 1744 // Horrible hack (to be removed), check to make sure shift amounts are 1745 // in-range. 1746 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1747 Imm >= VT.getSizeInBits()) 1748 return 0; 1749 1750 // First check if immediate type is legal. If not, we can't use the ri form. 1751 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1752 if (ResultReg) 1753 return ResultReg; 1754 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1755 bool IsImmKill = true; 1756 if (!MaterialReg) { 1757 // This is a bit ugly/slow, but failing here means falling out of 1758 // fast-isel, which would be very slow. 1759 IntegerType *ITy = 1760 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1761 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1762 if (!MaterialReg) 1763 return 0; 1764 // FIXME: If the materialized register here has no uses yet then this 1765 // will be the first use and we should be able to mark it as killed. 1766 // However, the local value area for materialising constant expressions 1767 // grows down, not up, which means that any constant expressions we generate 1768 // later which also use 'Imm' could be after this instruction and therefore 1769 // after this kill. 1770 IsImmKill = false; 1771 } 1772 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); 1773 } 1774 1775 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { 1776 return MRI.createVirtualRegister(RC); 1777 } 1778 1779 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 1780 unsigned OpNum) { 1781 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1782 const TargetRegisterClass *RegClass = 1783 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1784 if (!MRI.constrainRegClass(Op, RegClass)) { 1785 // If it's not legal to COPY between the register classes, something 1786 // has gone very wrong before we got here. 1787 unsigned NewOp = createResultReg(RegClass); 1788 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1789 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1790 return NewOp; 1791 } 1792 } 1793 return Op; 1794 } 1795 1796 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1797 const TargetRegisterClass *RC) { 1798 unsigned ResultReg = createResultReg(RC); 1799 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1800 1801 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1802 return ResultReg; 1803 } 1804 1805 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 1806 const TargetRegisterClass *RC, unsigned Op0, 1807 bool Op0IsKill) { 1808 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1809 1810 unsigned ResultReg = createResultReg(RC); 1811 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1812 1813 if (II.getNumDefs() >= 1) 1814 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1815 .addReg(Op0, getKillRegState(Op0IsKill)); 1816 else { 1817 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1818 .addReg(Op0, getKillRegState(Op0IsKill)); 1819 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1820 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1821 } 1822 1823 return ResultReg; 1824 } 1825 1826 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 1827 const TargetRegisterClass *RC, unsigned Op0, 1828 bool Op0IsKill, unsigned Op1, 1829 bool Op1IsKill) { 1830 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1831 1832 unsigned ResultReg = createResultReg(RC); 1833 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1834 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1835 1836 if (II.getNumDefs() >= 1) 1837 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1838 .addReg(Op0, getKillRegState(Op0IsKill)) 1839 .addReg(Op1, getKillRegState(Op1IsKill)); 1840 else { 1841 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1842 .addReg(Op0, getKillRegState(Op0IsKill)) 1843 .addReg(Op1, getKillRegState(Op1IsKill)); 1844 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1845 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1846 } 1847 return ResultReg; 1848 } 1849 1850 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 1851 const TargetRegisterClass *RC, unsigned Op0, 1852 bool Op0IsKill, unsigned Op1, 1853 bool Op1IsKill, unsigned Op2, 1854 bool Op2IsKill) { 1855 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1856 1857 unsigned ResultReg = createResultReg(RC); 1858 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1859 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1860 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1861 1862 if (II.getNumDefs() >= 1) 1863 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1864 .addReg(Op0, getKillRegState(Op0IsKill)) 1865 .addReg(Op1, getKillRegState(Op1IsKill)) 1866 .addReg(Op2, getKillRegState(Op2IsKill)); 1867 else { 1868 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1869 .addReg(Op0, getKillRegState(Op0IsKill)) 1870 .addReg(Op1, getKillRegState(Op1IsKill)) 1871 .addReg(Op2, getKillRegState(Op2IsKill)); 1872 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1873 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1874 } 1875 return ResultReg; 1876 } 1877 1878 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 1879 const TargetRegisterClass *RC, unsigned Op0, 1880 bool Op0IsKill, uint64_t Imm) { 1881 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1882 1883 unsigned ResultReg = createResultReg(RC); 1884 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1885 1886 if (II.getNumDefs() >= 1) 1887 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1888 .addReg(Op0, getKillRegState(Op0IsKill)) 1889 .addImm(Imm); 1890 else { 1891 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1892 .addReg(Op0, getKillRegState(Op0IsKill)) 1893 .addImm(Imm); 1894 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1895 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1896 } 1897 return ResultReg; 1898 } 1899 1900 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 1901 const TargetRegisterClass *RC, unsigned Op0, 1902 bool Op0IsKill, uint64_t Imm1, 1903 uint64_t Imm2) { 1904 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1905 1906 unsigned ResultReg = createResultReg(RC); 1907 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1908 1909 if (II.getNumDefs() >= 1) 1910 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1911 .addReg(Op0, getKillRegState(Op0IsKill)) 1912 .addImm(Imm1) 1913 .addImm(Imm2); 1914 else { 1915 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1916 .addReg(Op0, getKillRegState(Op0IsKill)) 1917 .addImm(Imm1) 1918 .addImm(Imm2); 1919 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1920 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1921 } 1922 return ResultReg; 1923 } 1924 1925 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 1926 const TargetRegisterClass *RC, 1927 const ConstantFP *FPImm) { 1928 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1929 1930 unsigned ResultReg = createResultReg(RC); 1931 1932 if (II.getNumDefs() >= 1) 1933 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1934 .addFPImm(FPImm); 1935 else { 1936 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1937 .addFPImm(FPImm); 1938 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1939 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1940 } 1941 return ResultReg; 1942 } 1943 1944 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 1945 const TargetRegisterClass *RC, unsigned Op0, 1946 bool Op0IsKill, unsigned Op1, 1947 bool Op1IsKill, uint64_t Imm) { 1948 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1949 1950 unsigned ResultReg = createResultReg(RC); 1951 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1952 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1953 1954 if (II.getNumDefs() >= 1) 1955 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1956 .addReg(Op0, getKillRegState(Op0IsKill)) 1957 .addReg(Op1, getKillRegState(Op1IsKill)) 1958 .addImm(Imm); 1959 else { 1960 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1961 .addReg(Op0, getKillRegState(Op0IsKill)) 1962 .addReg(Op1, getKillRegState(Op1IsKill)) 1963 .addImm(Imm); 1964 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1965 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1966 } 1967 return ResultReg; 1968 } 1969 1970 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 1971 const TargetRegisterClass *RC, uint64_t Imm) { 1972 unsigned ResultReg = createResultReg(RC); 1973 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1974 1975 if (II.getNumDefs() >= 1) 1976 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1977 .addImm(Imm); 1978 else { 1979 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 1980 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1981 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1982 } 1983 return ResultReg; 1984 } 1985 1986 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 1987 bool Op0IsKill, uint32_t Idx) { 1988 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1989 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1990 "Cannot yet extract from physregs"); 1991 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 1992 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 1993 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 1994 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 1995 return ResultReg; 1996 } 1997 1998 /// Emit MachineInstrs to compute the value of Op with all but the least 1999 /// significant bit set to zero. 2000 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 2001 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 2002 } 2003 2004 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2005 /// Emit code to ensure constants are copied into registers when needed. 2006 /// Remember the virtual registers that need to be added to the Machine PHI 2007 /// nodes as input. We cannot just directly add them, because expansion 2008 /// might result in multiple MBB's for one BB. As such, the start of the 2009 /// BB might correspond to a different MBB than the end. 2010 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2011 const TerminatorInst *TI = LLVMBB->getTerminator(); 2012 2013 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2014 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2015 2016 // Check successor nodes' PHI nodes that expect a constant to be available 2017 // from this block. 2018 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2019 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2020 if (!isa<PHINode>(SuccBB->begin())) 2021 continue; 2022 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2023 2024 // If this terminator has multiple identical successors (common for 2025 // switches), only handle each succ once. 2026 if (!SuccsHandled.insert(SuccMBB).second) 2027 continue; 2028 2029 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2030 2031 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2032 // nodes and Machine PHI nodes, but the incoming operands have not been 2033 // emitted yet. 2034 for (BasicBlock::const_iterator I = SuccBB->begin(); 2035 const auto *PN = dyn_cast<PHINode>(I); ++I) { 2036 2037 // Ignore dead phi's. 2038 if (PN->use_empty()) 2039 continue; 2040 2041 // Only handle legal types. Two interesting things to note here. First, 2042 // by bailing out early, we may leave behind some dead instructions, 2043 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2044 // own moves. Second, this check is necessary because FastISel doesn't 2045 // use CreateRegs to create registers, so it always creates 2046 // exactly one register for each non-void instruction. 2047 EVT VT = TLI.getValueType(DL, PN->getType(), /*AllowUnknown=*/true); 2048 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2049 // Handle integer promotions, though, because they're common and easy. 2050 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2051 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2052 return false; 2053 } 2054 } 2055 2056 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 2057 2058 // Set the DebugLoc for the copy. Prefer the location of the operand 2059 // if there is one; use the location of the PHI otherwise. 2060 DbgLoc = PN->getDebugLoc(); 2061 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2062 DbgLoc = Inst->getDebugLoc(); 2063 2064 unsigned Reg = getRegForValue(PHIOp); 2065 if (!Reg) { 2066 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2067 return false; 2068 } 2069 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2070 DbgLoc = DebugLoc(); 2071 } 2072 } 2073 2074 return true; 2075 } 2076 2077 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2078 assert(LI->hasOneUse() && 2079 "tryToFoldLoad expected a LoadInst with a single use"); 2080 // We know that the load has a single use, but don't know what it is. If it 2081 // isn't one of the folded instructions, then we can't succeed here. Handle 2082 // this by scanning the single-use users of the load until we get to FoldInst. 2083 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2084 2085 const Instruction *TheUser = LI->user_back(); 2086 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2087 // Stay in the right block. 2088 TheUser->getParent() == FoldInst->getParent() && 2089 --MaxUsers) { // Don't scan too far. 2090 // If there are multiple or no uses of this instruction, then bail out. 2091 if (!TheUser->hasOneUse()) 2092 return false; 2093 2094 TheUser = TheUser->user_back(); 2095 } 2096 2097 // If we didn't find the fold instruction, then we failed to collapse the 2098 // sequence. 2099 if (TheUser != FoldInst) 2100 return false; 2101 2102 // Don't try to fold volatile loads. Target has to deal with alignment 2103 // constraints. 2104 if (LI->isVolatile()) 2105 return false; 2106 2107 // Figure out which vreg this is going into. If there is no assigned vreg yet 2108 // then there actually was no reference to it. Perhaps the load is referenced 2109 // by a dead instruction. 2110 unsigned LoadReg = getRegForValue(LI); 2111 if (!LoadReg) 2112 return false; 2113 2114 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2115 // may mean that the instruction got lowered to multiple MIs, or the use of 2116 // the loaded value ended up being multiple operands of the result. 2117 if (!MRI.hasOneUse(LoadReg)) 2118 return false; 2119 2120 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2121 MachineInstr *User = RI->getParent(); 2122 2123 // Set the insertion point properly. Folding the load can cause generation of 2124 // other random instructions (like sign extends) for addressing modes; make 2125 // sure they get inserted in a logical place before the new instruction. 2126 FuncInfo.InsertPt = User; 2127 FuncInfo.MBB = User->getParent(); 2128 2129 // Ask the target to try folding the load. 2130 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2131 } 2132 2133 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2134 // Must be an add. 2135 if (!isa<AddOperator>(Add)) 2136 return false; 2137 // Type size needs to match. 2138 if (DL.getTypeSizeInBits(GEP->getType()) != 2139 DL.getTypeSizeInBits(Add->getType())) 2140 return false; 2141 // Must be in the same basic block. 2142 if (isa<Instruction>(Add) && 2143 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2144 return false; 2145 // Must have a constant operand. 2146 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2147 } 2148 2149 MachineMemOperand * 2150 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2151 const Value *Ptr; 2152 Type *ValTy; 2153 unsigned Alignment; 2154 MachineMemOperand::Flags Flags; 2155 bool IsVolatile; 2156 2157 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2158 Alignment = LI->getAlignment(); 2159 IsVolatile = LI->isVolatile(); 2160 Flags = MachineMemOperand::MOLoad; 2161 Ptr = LI->getPointerOperand(); 2162 ValTy = LI->getType(); 2163 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2164 Alignment = SI->getAlignment(); 2165 IsVolatile = SI->isVolatile(); 2166 Flags = MachineMemOperand::MOStore; 2167 Ptr = SI->getPointerOperand(); 2168 ValTy = SI->getValueOperand()->getType(); 2169 } else 2170 return nullptr; 2171 2172 bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2173 bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2174 bool IsDereferenceable = 2175 I->getMetadata(LLVMContext::MD_dereferenceable) != nullptr; 2176 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2177 2178 AAMDNodes AAInfo; 2179 I->getAAMetadata(AAInfo); 2180 2181 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2182 Alignment = DL.getABITypeAlignment(ValTy); 2183 2184 unsigned Size = DL.getTypeStoreSize(ValTy); 2185 2186 if (IsVolatile) 2187 Flags |= MachineMemOperand::MOVolatile; 2188 if (IsNonTemporal) 2189 Flags |= MachineMemOperand::MONonTemporal; 2190 if (IsDereferenceable) 2191 Flags |= MachineMemOperand::MODereferenceable; 2192 if (IsInvariant) 2193 Flags |= MachineMemOperand::MOInvariant; 2194 2195 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2196 Alignment, AAInfo, Ranges); 2197 } 2198 2199 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2200 // If both operands are the same, then try to optimize or fold the cmp. 2201 CmpInst::Predicate Predicate = CI->getPredicate(); 2202 if (CI->getOperand(0) != CI->getOperand(1)) 2203 return Predicate; 2204 2205 switch (Predicate) { 2206 default: llvm_unreachable("Invalid predicate!"); 2207 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2208 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2209 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2210 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2211 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2212 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2213 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2214 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2215 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2216 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2217 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2218 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2219 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2220 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2221 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2222 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2223 2224 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2225 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2226 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2227 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2228 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2229 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2230 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2231 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2232 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2233 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2234 } 2235 2236 return Predicate; 2237 } 2238