1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/CodeGen/Analysis.h" 43 #include "llvm/CodeGen/FastISel.h" 44 #include "llvm/ADT/Optional.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/BranchProbabilityInfo.h" 47 #include "llvm/Analysis/Loads.h" 48 #include "llvm/CodeGen/Analysis.h" 49 #include "llvm/CodeGen/FunctionLoweringInfo.h" 50 #include "llvm/CodeGen/MachineFrameInfo.h" 51 #include "llvm/CodeGen/MachineInstrBuilder.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/StackMaps.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugInfo.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/GlobalVariable.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Target/TargetInstrInfo.h" 65 #include "llvm/Target/TargetLibraryInfo.h" 66 #include "llvm/Target/TargetLowering.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetSubtargetInfo.h" 69 using namespace llvm; 70 71 #define DEBUG_TYPE "isel" 72 73 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 74 "target-independent selector"); 75 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 76 "target-specific selector"); 77 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 78 79 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 80 /// and called function attributes. 81 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS, 82 unsigned AttrIdx) { 83 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 84 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 85 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 86 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 87 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 88 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 89 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 90 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 91 Alignment = CS->getParamAlignment(AttrIdx); 92 } 93 94 /// startNewBlock - Set the current block to which generated machine 95 /// instructions will be appended, and clear the local CSE map. 96 /// 97 void FastISel::startNewBlock() { 98 LocalValueMap.clear(); 99 100 // Instructions are appended to FuncInfo.MBB. If the basic block already 101 // contains labels or copies, use the last instruction as the last local 102 // value. 103 EmitStartPt = nullptr; 104 if (!FuncInfo.MBB->empty()) 105 EmitStartPt = &FuncInfo.MBB->back(); 106 LastLocalValue = EmitStartPt; 107 } 108 109 bool FastISel::LowerArguments() { 110 if (!FuncInfo.CanLowerReturn) 111 // Fallback to SDISel argument lowering code to deal with sret pointer 112 // parameter. 113 return false; 114 115 if (!FastLowerArguments()) 116 return false; 117 118 // Enter arguments into ValueMap for uses in non-entry BBs. 119 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 120 E = FuncInfo.Fn->arg_end(); I != E; ++I) { 121 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I); 122 assert(VI != LocalValueMap.end() && "Missed an argument?"); 123 FuncInfo.ValueMap[I] = VI->second; 124 } 125 return true; 126 } 127 128 void FastISel::flushLocalValueMap() { 129 LocalValueMap.clear(); 130 LastLocalValue = EmitStartPt; 131 recomputeInsertPt(); 132 } 133 134 bool FastISel::hasTrivialKill(const Value *V) const { 135 // Don't consider constants or arguments to have trivial kills. 136 const Instruction *I = dyn_cast<Instruction>(V); 137 if (!I) 138 return false; 139 140 // No-op casts are trivially coalesced by fast-isel. 141 if (const CastInst *Cast = dyn_cast<CastInst>(I)) 142 if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) && 143 !hasTrivialKill(Cast->getOperand(0))) 144 return false; 145 146 // GEPs with all zero indices are trivially coalesced by fast-isel. 147 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 148 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 149 return false; 150 151 // Only instructions with a single use in the same basic block are considered 152 // to have trivial kills. 153 return I->hasOneUse() && 154 !(I->getOpcode() == Instruction::BitCast || 155 I->getOpcode() == Instruction::PtrToInt || 156 I->getOpcode() == Instruction::IntToPtr) && 157 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 158 } 159 160 unsigned FastISel::getRegForValue(const Value *V) { 161 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); 162 // Don't handle non-simple values in FastISel. 163 if (!RealVT.isSimple()) 164 return 0; 165 166 // Ignore illegal types. We must do this before looking up the value 167 // in ValueMap because Arguments are given virtual registers regardless 168 // of whether FastISel can handle them. 169 MVT VT = RealVT.getSimpleVT(); 170 if (!TLI.isTypeLegal(VT)) { 171 // Handle integer promotions, though, because they're common and easy. 172 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 173 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 174 else 175 return 0; 176 } 177 178 // Look up the value to see if we already have a register for it. 179 unsigned Reg = lookUpRegForValue(V); 180 if (Reg != 0) 181 return Reg; 182 183 // In bottom-up mode, just create the virtual register which will be used 184 // to hold the value. It will be materialized later. 185 if (isa<Instruction>(V) && 186 (!isa<AllocaInst>(V) || 187 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 188 return FuncInfo.InitializeRegForValue(V); 189 190 SavePoint SaveInsertPt = enterLocalValueArea(); 191 192 // Materialize the value in a register. Emit any instructions in the 193 // local value area. 194 Reg = materializeRegForValue(V, VT); 195 196 leaveLocalValueArea(SaveInsertPt); 197 198 return Reg; 199 } 200 201 unsigned FastISel::MaterializeConstant(const Value *V, MVT VT) { 202 unsigned Reg = 0; 203 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 204 if (CI->getValue().getActiveBits() <= 64) 205 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 206 } else if (isa<AllocaInst>(V)) 207 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V)); 208 else if (isa<ConstantPointerNull>(V)) 209 // Translate this as an integer zero so that it can be 210 // local-CSE'd with actual integer zeros. 211 Reg = 212 getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 213 else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 214 if (CF->isNullValue()) 215 Reg = TargetMaterializeFloatZero(CF); 216 else 217 // Try to emit the constant directly. 218 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); 219 220 if (!Reg) { 221 // Try to emit the constant by using an integer constant with a cast. 222 const APFloat &Flt = CF->getValueAPF(); 223 EVT IntVT = TLI.getPointerTy(); 224 225 uint64_t x[2]; 226 uint32_t IntBitWidth = IntVT.getSizeInBits(); 227 bool isExact; 228 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 229 APFloat::rmTowardZero, &isExact); 230 if (isExact) { 231 APInt IntVal(IntBitWidth, x); 232 233 unsigned IntegerReg = 234 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 235 if (IntegerReg != 0) 236 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 237 IntegerReg, /*Kill=*/false); 238 } 239 } 240 } else if (const Operator *Op = dyn_cast<Operator>(V)) { 241 if (!SelectOperator(Op, Op->getOpcode())) 242 if (!isa<Instruction>(Op) || 243 !TargetSelectInstruction(cast<Instruction>(Op))) 244 return 0; 245 Reg = lookUpRegForValue(Op); 246 } else if (isa<UndefValue>(V)) { 247 Reg = createResultReg(TLI.getRegClassFor(VT)); 248 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 249 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 250 } 251 return Reg; 252 } 253 254 /// materializeRegForValue - Helper for getRegForValue. This function is 255 /// called when the value isn't already available in a register and must 256 /// be materialized with new instructions. 257 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 258 unsigned Reg = 0; 259 // Give the target-specific code a try first. 260 if (isa<Constant>(V)) 261 Reg = TargetMaterializeConstant(cast<Constant>(V)); 262 263 // If target-specific code couldn't or didn't want to handle the value, then 264 // give target-independent code a try. 265 if (!Reg) 266 Reg = MaterializeConstant(V, VT); 267 268 // Don't cache constant materializations in the general ValueMap. 269 // To do so would require tracking what uses they dominate. 270 if (Reg) { 271 LocalValueMap[V] = Reg; 272 LastLocalValue = MRI.getVRegDef(Reg); 273 } 274 return Reg; 275 } 276 277 unsigned FastISel::lookUpRegForValue(const Value *V) { 278 // Look up the value to see if we already have a register for it. We 279 // cache values defined by Instructions across blocks, and other values 280 // only locally. This is because Instructions already have the SSA 281 // def-dominates-use requirement enforced. 282 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 283 if (I != FuncInfo.ValueMap.end()) 284 return I->second; 285 return LocalValueMap[V]; 286 } 287 288 /// UpdateValueMap - Update the value map to include the new mapping for this 289 /// instruction, or insert an extra copy to get the result in a previous 290 /// determined register. 291 /// NOTE: This is only necessary because we might select a block that uses 292 /// a value before we select the block that defines the value. It might be 293 /// possible to fix this by selecting blocks in reverse postorder. 294 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 295 if (!isa<Instruction>(I)) { 296 LocalValueMap[I] = Reg; 297 return; 298 } 299 300 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 301 if (AssignedReg == 0) 302 // Use the new register. 303 AssignedReg = Reg; 304 else if (Reg != AssignedReg) { 305 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 306 for (unsigned i = 0; i < NumRegs; i++) 307 FuncInfo.RegFixups[AssignedReg+i] = Reg+i; 308 309 AssignedReg = Reg; 310 } 311 } 312 313 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 314 unsigned IdxN = getRegForValue(Idx); 315 if (IdxN == 0) 316 // Unhandled operand. Halt "fast" selection and bail. 317 return std::pair<unsigned, bool>(0, false); 318 319 bool IdxNIsKill = hasTrivialKill(Idx); 320 321 // If the index is smaller or larger than intptr_t, truncate or extend it. 322 MVT PtrVT = TLI.getPointerTy(); 323 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 324 if (IdxVT.bitsLT(PtrVT)) { 325 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, 326 IdxN, IdxNIsKill); 327 IdxNIsKill = true; 328 } 329 else if (IdxVT.bitsGT(PtrVT)) { 330 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, 331 IdxN, IdxNIsKill); 332 IdxNIsKill = true; 333 } 334 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 335 } 336 337 void FastISel::recomputeInsertPt() { 338 if (getLastLocalValue()) { 339 FuncInfo.InsertPt = getLastLocalValue(); 340 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 341 ++FuncInfo.InsertPt; 342 } else 343 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 344 345 // Now skip past any EH_LABELs, which must remain at the beginning. 346 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 347 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 348 ++FuncInfo.InsertPt; 349 } 350 351 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 352 MachineBasicBlock::iterator E) { 353 assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!"); 354 while (I != E) { 355 MachineInstr *Dead = &*I; 356 ++I; 357 Dead->eraseFromParent(); 358 ++NumFastIselDead; 359 } 360 recomputeInsertPt(); 361 } 362 363 FastISel::SavePoint FastISel::enterLocalValueArea() { 364 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 365 DebugLoc OldDL = DbgLoc; 366 recomputeInsertPt(); 367 DbgLoc = DebugLoc(); 368 SavePoint SP = { OldInsertPt, OldDL }; 369 return SP; 370 } 371 372 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 373 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 374 LastLocalValue = std::prev(FuncInfo.InsertPt); 375 376 // Restore the previous insert position. 377 FuncInfo.InsertPt = OldInsertPt.InsertPt; 378 DbgLoc = OldInsertPt.DL; 379 } 380 381 /// SelectBinaryOp - Select and emit code for a binary operator instruction, 382 /// which has an opcode which directly corresponds to the given ISD opcode. 383 /// 384 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) { 385 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 386 if (VT == MVT::Other || !VT.isSimple()) 387 // Unhandled type. Halt "fast" selection and bail. 388 return false; 389 390 // We only handle legal types. For example, on x86-32 the instruction 391 // selector contains all of the 64-bit instructions from x86-64, 392 // under the assumption that i64 won't be used if the target doesn't 393 // support it. 394 if (!TLI.isTypeLegal(VT)) { 395 // MVT::i1 is special. Allow AND, OR, or XOR because they 396 // don't require additional zeroing, which makes them easy. 397 if (VT == MVT::i1 && 398 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 399 ISDOpcode == ISD::XOR)) 400 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 401 else 402 return false; 403 } 404 405 // Check if the first operand is a constant, and handle it as "ri". At -O0, 406 // we don't have anything that canonicalizes operand order. 407 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 408 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 409 unsigned Op1 = getRegForValue(I->getOperand(1)); 410 if (Op1 == 0) return false; 411 412 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 413 414 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, 415 Op1IsKill, CI->getZExtValue(), 416 VT.getSimpleVT()); 417 if (ResultReg == 0) return false; 418 419 // We successfully emitted code for the given LLVM Instruction. 420 UpdateValueMap(I, ResultReg); 421 return true; 422 } 423 424 425 unsigned Op0 = getRegForValue(I->getOperand(0)); 426 if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. 427 return false; 428 429 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 430 431 // Check if the second operand is a constant and handle it appropriately. 432 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 433 uint64_t Imm = CI->getZExtValue(); 434 435 // Transform "sdiv exact X, 8" -> "sra X, 3". 436 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 437 cast<BinaryOperator>(I)->isExact() && 438 isPowerOf2_64(Imm)) { 439 Imm = Log2_64(Imm); 440 ISDOpcode = ISD::SRA; 441 } 442 443 // Transform "urem x, pow2" -> "and x, pow2-1". 444 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 445 isPowerOf2_64(Imm)) { 446 --Imm; 447 ISDOpcode = ISD::AND; 448 } 449 450 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 451 Op0IsKill, Imm, VT.getSimpleVT()); 452 if (ResultReg == 0) return false; 453 454 // We successfully emitted code for the given LLVM Instruction. 455 UpdateValueMap(I, ResultReg); 456 return true; 457 } 458 459 // Check if the second operand is a constant float. 460 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 461 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 462 ISDOpcode, Op0, Op0IsKill, CF); 463 if (ResultReg != 0) { 464 // We successfully emitted code for the given LLVM Instruction. 465 UpdateValueMap(I, ResultReg); 466 return true; 467 } 468 } 469 470 unsigned Op1 = getRegForValue(I->getOperand(1)); 471 if (Op1 == 0) 472 // Unhandled operand. Halt "fast" selection and bail. 473 return false; 474 475 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 476 477 // Now we have both operands in registers. Emit the instruction. 478 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 479 ISDOpcode, 480 Op0, Op0IsKill, 481 Op1, Op1IsKill); 482 if (ResultReg == 0) 483 // Target-specific code wasn't able to find a machine opcode for 484 // the given ISD opcode and type. Halt "fast" selection and bail. 485 return false; 486 487 // We successfully emitted code for the given LLVM Instruction. 488 UpdateValueMap(I, ResultReg); 489 return true; 490 } 491 492 bool FastISel::SelectGetElementPtr(const User *I) { 493 unsigned N = getRegForValue(I->getOperand(0)); 494 if (N == 0) 495 // Unhandled operand. Halt "fast" selection and bail. 496 return false; 497 498 bool NIsKill = hasTrivialKill(I->getOperand(0)); 499 500 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 501 // into a single N = N + TotalOffset. 502 uint64_t TotalOffs = 0; 503 // FIXME: What's a good SWAG number for MaxOffs? 504 uint64_t MaxOffs = 2048; 505 Type *Ty = I->getOperand(0)->getType(); 506 MVT VT = TLI.getPointerTy(); 507 for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1, 508 E = I->op_end(); OI != E; ++OI) { 509 const Value *Idx = *OI; 510 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 511 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 512 if (Field) { 513 // N = N + Offset 514 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 515 if (TotalOffs >= MaxOffs) { 516 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 517 if (N == 0) 518 // Unhandled operand. Halt "fast" selection and bail. 519 return false; 520 NIsKill = true; 521 TotalOffs = 0; 522 } 523 } 524 Ty = StTy->getElementType(Field); 525 } else { 526 Ty = cast<SequentialType>(Ty)->getElementType(); 527 528 // If this is a constant subscript, handle it quickly. 529 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 530 if (CI->isZero()) continue; 531 // N = N + Offset 532 TotalOffs += 533 DL.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 534 if (TotalOffs >= MaxOffs) { 535 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 536 if (N == 0) 537 // Unhandled operand. Halt "fast" selection and bail. 538 return false; 539 NIsKill = true; 540 TotalOffs = 0; 541 } 542 continue; 543 } 544 if (TotalOffs) { 545 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 546 if (N == 0) 547 // Unhandled operand. Halt "fast" selection and bail. 548 return false; 549 NIsKill = true; 550 TotalOffs = 0; 551 } 552 553 // N = N + Idx * ElementSize; 554 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 555 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 556 unsigned IdxN = Pair.first; 557 bool IdxNIsKill = Pair.second; 558 if (IdxN == 0) 559 // Unhandled operand. Halt "fast" selection and bail. 560 return false; 561 562 if (ElementSize != 1) { 563 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 564 if (IdxN == 0) 565 // Unhandled operand. Halt "fast" selection and bail. 566 return false; 567 IdxNIsKill = true; 568 } 569 N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 570 if (N == 0) 571 // Unhandled operand. Halt "fast" selection and bail. 572 return false; 573 } 574 } 575 if (TotalOffs) { 576 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 577 if (N == 0) 578 // Unhandled operand. Halt "fast" selection and bail. 579 return false; 580 } 581 582 // We successfully emitted code for the given LLVM Instruction. 583 UpdateValueMap(I, N); 584 return true; 585 } 586 587 /// \brief Add a stackmap or patchpoint intrinsic call's live variable operands 588 /// to a stackmap or patchpoint machine instruction. 589 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 590 const CallInst *CI, unsigned StartIdx) { 591 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 592 Value *Val = CI->getArgOperand(i); 593 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 594 if (auto *C = dyn_cast<ConstantInt>(Val)) { 595 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 596 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 597 } else if (isa<ConstantPointerNull>(Val)) { 598 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 599 Ops.push_back(MachineOperand::CreateImm(0)); 600 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 601 // Values coming from a stack location also require a sepcial encoding, 602 // but that is added later on by the target specific frame index 603 // elimination implementation. 604 auto SI = FuncInfo.StaticAllocaMap.find(AI); 605 if (SI != FuncInfo.StaticAllocaMap.end()) 606 Ops.push_back(MachineOperand::CreateFI(SI->second)); 607 else 608 return false; 609 } else { 610 unsigned Reg = getRegForValue(Val); 611 if (Reg == 0) 612 return false; 613 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 614 } 615 } 616 617 return true; 618 } 619 620 bool FastISel::SelectStackmap(const CallInst *I) { 621 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 622 // [live variables...]) 623 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 624 "Stackmap cannot return a value."); 625 626 // The stackmap intrinsic only records the live variables (the arguments 627 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 628 // intrinsic, this won't be lowered to a function call. This means we don't 629 // have to worry about calling conventions and target-specific lowering code. 630 // Instead we perform the call lowering right here. 631 // 632 // CALLSEQ_START(0) 633 // STACKMAP(id, nbytes, ...) 634 // CALLSEQ_END(0, 0) 635 // 636 SmallVector<MachineOperand, 32> Ops; 637 638 // Add the <id> and <numBytes> constants. 639 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 640 "Expected a constant integer."); 641 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 642 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 643 644 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 645 "Expected a constant integer."); 646 const auto *NumBytes = 647 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 648 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 649 650 // Push live variables for the stack map (skipping the first two arguments 651 // <id> and <numBytes>). 652 if (!addStackMapLiveVars(Ops, I, 2)) 653 return false; 654 655 // We are not adding any register mask info here, because the stackmap doesn't 656 // clobber anything. 657 658 // Add scratch registers as implicit def and early clobber. 659 CallingConv::ID CC = I->getCallingConv(); 660 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 661 for (unsigned i = 0; ScratchRegs[i]; ++i) 662 Ops.push_back(MachineOperand::CreateReg( 663 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 664 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 665 666 // Issue CALLSEQ_START 667 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 668 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) 669 .addImm(0); 670 671 // Issue STACKMAP. 672 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 673 TII.get(TargetOpcode::STACKMAP)); 674 for (auto const &MO : Ops) 675 MIB.addOperand(MO); 676 677 // Issue CALLSEQ_END 678 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 679 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 680 .addImm(0).addImm(0); 681 682 // Inform the Frame Information that we have a stackmap in this function. 683 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 684 685 return true; 686 } 687 688 /// \brief Lower an argument list according to the target calling convention. 689 /// 690 /// This is a helper for lowering intrinsics that follow a target calling 691 /// convention or require stack pointer adjustment. Only a subset of the 692 /// intrinsic's operands need to participate in the calling convention. 693 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 694 unsigned NumArgs, const Value *Callee, 695 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 696 ArgListTy Args; 697 Args.reserve(NumArgs); 698 699 // Populate the argument list. 700 // Attributes for args start at offset 1, after the return attribute. 701 ImmutableCallSite CS(CI); 702 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 703 ArgI != ArgE; ++ArgI) { 704 Value *V = CI->getOperand(ArgI); 705 706 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 707 708 ArgListEntry Entry; 709 Entry.Val = V; 710 Entry.Ty = V->getType(); 711 Entry.setAttributes(&CS, AttrI); 712 Args.push_back(Entry); 713 } 714 715 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 716 : CI->getType(); 717 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 718 719 return LowerCallTo(CLI); 720 } 721 722 bool FastISel::SelectPatchpoint(const CallInst *I) { 723 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 724 // i32 <numBytes>, 725 // i8* <target>, 726 // i32 <numArgs>, 727 // [Args...], 728 // [live variables...]) 729 CallingConv::ID CC = I->getCallingConv(); 730 bool IsAnyRegCC = CC == CallingConv::AnyReg; 731 bool HasDef = !I->getType()->isVoidTy(); 732 Value *Callee = I->getOperand(PatchPointOpers::TargetPos); 733 734 // Get the real number of arguments participating in the call <numArgs> 735 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 736 "Expected a constant integer."); 737 const auto *NumArgsVal = 738 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 739 unsigned NumArgs = NumArgsVal->getZExtValue(); 740 741 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 742 // This includes all meta-operands up to but not including CC. 743 unsigned NumMetaOpers = PatchPointOpers::CCPos; 744 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 745 "Not enough arguments provided to the patchpoint intrinsic"); 746 747 // For AnyRegCC the arguments are lowered later on manually. 748 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 749 CallLoweringInfo CLI; 750 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 751 return false; 752 753 assert(CLI.Call && "No call instruction specified."); 754 755 SmallVector<MachineOperand, 32> Ops; 756 757 // Add an explicit result reg if we use the anyreg calling convention. 758 if (IsAnyRegCC && HasDef) { 759 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 760 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 761 CLI.NumResultRegs = 1; 762 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 763 } 764 765 // Add the <id> and <numBytes> constants. 766 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 767 "Expected a constant integer."); 768 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 769 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 770 771 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 772 "Expected a constant integer."); 773 const auto *NumBytes = 774 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 775 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 776 777 // Assume that the callee is a constant address or null pointer. 778 // FIXME: handle function symbols in the future. 779 uint64_t CalleeAddr; 780 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) 781 CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 782 else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 783 if (C->getOpcode() == Instruction::IntToPtr) 784 CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 785 else 786 llvm_unreachable("Unsupported ConstantExpr."); 787 } else if (isa<ConstantPointerNull>(Callee)) 788 CalleeAddr = 0; 789 else 790 llvm_unreachable("Unsupported callee address."); 791 792 Ops.push_back(MachineOperand::CreateImm(CalleeAddr)); 793 794 // Adjust <numArgs> to account for any arguments that have been passed on 795 // the stack instead. 796 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 797 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 798 799 // Add the calling convention 800 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 801 802 // Add the arguments we omitted previously. The register allocator should 803 // place these in any free register. 804 if (IsAnyRegCC) { 805 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 806 unsigned Reg = getRegForValue(I->getArgOperand(i)); 807 if (!Reg) 808 return false; 809 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 810 } 811 } 812 813 // Push the arguments from the call instruction. 814 for (auto Reg : CLI.OutRegs) 815 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 816 817 // Push live variables for the stack map. 818 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 819 return false; 820 821 // Push the register mask info. 822 Ops.push_back(MachineOperand::CreateRegMask(TRI.getCallPreservedMask(CC))); 823 824 // Add scratch registers as implicit def and early clobber. 825 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 826 for (unsigned i = 0; ScratchRegs[i]; ++i) 827 Ops.push_back(MachineOperand::CreateReg( 828 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 829 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 830 831 // Add implicit defs (return values). 832 for (auto Reg : CLI.InRegs) 833 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 834 /*IsImpl=*/true)); 835 836 // Insert the patchpoint instruction before the call generated by the target. 837 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 838 TII.get(TargetOpcode::PATCHPOINT)); 839 840 for (auto &MO : Ops) 841 MIB.addOperand(MO); 842 843 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 844 845 // Delete the original call instruction. 846 CLI.Call->eraseFromParent(); 847 848 // Inform the Frame Information that we have a patchpoint in this function. 849 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 850 851 if (CLI.NumResultRegs) 852 UpdateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 853 return true; 854 } 855 856 /// Returns an AttributeSet representing the attributes applied to the return 857 /// value of the given call. 858 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 859 SmallVector<Attribute::AttrKind, 2> Attrs; 860 if (CLI.RetSExt) 861 Attrs.push_back(Attribute::SExt); 862 if (CLI.RetZExt) 863 Attrs.push_back(Attribute::ZExt); 864 if (CLI.IsInReg) 865 Attrs.push_back(Attribute::InReg); 866 867 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 868 Attrs); 869 } 870 871 bool FastISel::LowerCallTo(const CallInst *CI, const char *SymName, 872 unsigned NumArgs) { 873 ImmutableCallSite CS(CI); 874 875 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 876 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 877 Type *RetTy = FTy->getReturnType(); 878 879 ArgListTy Args; 880 Args.reserve(NumArgs); 881 882 // Populate the argument list. 883 // Attributes for args start at offset 1, after the return attribute. 884 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 885 Value *V = CI->getOperand(ArgI); 886 887 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 888 889 ArgListEntry Entry; 890 Entry.Val = V; 891 Entry.Ty = V->getType(); 892 Entry.setAttributes(&CS, ArgI + 1); 893 Args.push_back(Entry); 894 } 895 896 CallLoweringInfo CLI; 897 CLI.setCallee(RetTy, FTy, SymName, std::move(Args), CS, NumArgs); 898 899 return LowerCallTo(CLI); 900 } 901 902 bool FastISel::LowerCallTo(CallLoweringInfo &CLI) { 903 // Handle the incoming return values from the call. 904 CLI.clearIns(); 905 SmallVector<EVT, 4> RetTys; 906 ComputeValueVTs(TLI, CLI.RetTy, RetTys); 907 908 SmallVector<ISD::OutputArg, 4> Outs; 909 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI); 910 911 bool CanLowerReturn = TLI.CanLowerReturn(CLI.CallConv, *FuncInfo.MF, 912 CLI.IsVarArg, Outs, 913 CLI.RetTy->getContext()); 914 915 // FIXME: sret demotion isn't supported yet - bail out. 916 if (!CanLowerReturn) 917 return false; 918 919 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 920 EVT VT = RetTys[I]; 921 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 922 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 923 for (unsigned i = 0; i != NumRegs; ++i) { 924 ISD::InputArg MyFlags; 925 MyFlags.VT = RegisterVT; 926 MyFlags.ArgVT = VT; 927 MyFlags.Used = CLI.IsReturnValueUsed; 928 if (CLI.RetSExt) 929 MyFlags.Flags.setSExt(); 930 if (CLI.RetZExt) 931 MyFlags.Flags.setZExt(); 932 if (CLI.IsInReg) 933 MyFlags.Flags.setInReg(); 934 CLI.Ins.push_back(MyFlags); 935 } 936 } 937 938 // Handle all of the outgoing arguments. 939 CLI.clearOuts(); 940 for (auto &Arg : CLI.getArgs()) { 941 Type *FinalType = Arg.Ty; 942 if (Arg.isByVal) 943 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 944 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 945 FinalType, CLI.CallConv, CLI.IsVarArg); 946 947 ISD::ArgFlagsTy Flags; 948 if (Arg.isZExt) 949 Flags.setZExt(); 950 if (Arg.isSExt) 951 Flags.setSExt(); 952 if (Arg.isInReg) 953 Flags.setInReg(); 954 if (Arg.isSRet) 955 Flags.setSRet(); 956 if (Arg.isByVal) 957 Flags.setByVal(); 958 if (Arg.isInAlloca) { 959 Flags.setInAlloca(); 960 // Set the byval flag for CCAssignFn callbacks that don't know about 961 // inalloca. This way we can know how many bytes we should've allocated 962 // and how many bytes a callee cleanup function will pop. If we port 963 // inalloca to more targets, we'll have to add custom inalloca handling in 964 // the various CC lowering callbacks. 965 Flags.setByVal(); 966 } 967 if (Arg.isByVal || Arg.isInAlloca) { 968 PointerType *Ty = cast<PointerType>(Arg.Ty); 969 Type *ElementTy = Ty->getElementType(); 970 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 971 // For ByVal, alignment should come from FE. BE will guess if this info is 972 // not there, but there are cases it cannot get right. 973 unsigned FrameAlign = Arg.Alignment; 974 if (!FrameAlign) 975 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 976 Flags.setByValSize(FrameSize); 977 Flags.setByValAlign(FrameAlign); 978 } 979 if (Arg.isNest) 980 Flags.setNest(); 981 if (NeedsRegBlock) 982 Flags.setInConsecutiveRegs(); 983 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 984 Flags.setOrigAlign(OriginalAlignment); 985 986 CLI.OutVals.push_back(Arg.Val); 987 CLI.OutFlags.push_back(Flags); 988 } 989 990 if (!FastLowerCall(CLI)) 991 return false; 992 993 // Set all unused physreg defs as dead. 994 assert(CLI.Call && "No call instruction specified."); 995 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 996 997 if (CLI.NumResultRegs && CLI.CS) 998 UpdateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 999 1000 return true; 1001 } 1002 1003 bool FastISel::LowerCall(const CallInst *CI) { 1004 ImmutableCallSite CS(CI); 1005 1006 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 1007 FunctionType *FuncTy = cast<FunctionType>(PT->getElementType()); 1008 Type *RetTy = FuncTy->getReturnType(); 1009 1010 ArgListTy Args; 1011 ArgListEntry Entry; 1012 Args.reserve(CS.arg_size()); 1013 1014 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1015 i != e; ++i) { 1016 Value *V = *i; 1017 1018 // Skip empty types 1019 if (V->getType()->isEmptyTy()) 1020 continue; 1021 1022 Entry.Val = V; 1023 Entry.Ty = V->getType(); 1024 1025 // Skip the first return-type Attribute to get to params. 1026 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 1027 Args.push_back(Entry); 1028 } 1029 1030 // Check if target-independent constraints permit a tail call here. 1031 // Target-dependent constraints are checked within FastLowerCall. 1032 bool IsTailCall = CI->isTailCall(); 1033 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1034 IsTailCall = false; 1035 1036 CallLoweringInfo CLI; 1037 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1038 .setTailCall(IsTailCall); 1039 1040 return LowerCallTo(CLI); 1041 } 1042 1043 bool FastISel::SelectCall(const User *I) { 1044 const CallInst *Call = cast<CallInst>(I); 1045 1046 // Handle simple inline asms. 1047 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1048 // If the inline asm has side effects, then make sure that no local value 1049 // lives across by flushing the local value map. 1050 if (IA->hasSideEffects()) 1051 flushLocalValueMap(); 1052 1053 // Don't attempt to handle constraints. 1054 if (!IA->getConstraintString().empty()) 1055 return false; 1056 1057 unsigned ExtraInfo = 0; 1058 if (IA->hasSideEffects()) 1059 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1060 if (IA->isAlignStack()) 1061 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1062 1063 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1064 TII.get(TargetOpcode::INLINEASM)) 1065 .addExternalSymbol(IA->getAsmString().c_str()) 1066 .addImm(ExtraInfo); 1067 return true; 1068 } 1069 1070 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1071 ComputeUsesVAFloatArgument(*Call, &MMI); 1072 1073 // Handle intrinsic function calls. 1074 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1075 return SelectIntrinsicCall(II); 1076 1077 // Usually, it does not make sense to initialize a value, 1078 // make an unrelated function call and use the value, because 1079 // it tends to be spilled on the stack. So, we move the pointer 1080 // to the last local value to the beginning of the block, so that 1081 // all the values which have already been materialized, 1082 // appear after the call. It also makes sense to skip intrinsics 1083 // since they tend to be inlined. 1084 flushLocalValueMap(); 1085 1086 return LowerCall(Call); 1087 } 1088 1089 bool FastISel::SelectIntrinsicCall(const IntrinsicInst *II) { 1090 switch (II->getIntrinsicID()) { 1091 default: break; 1092 // At -O0 we don't care about the lifetime intrinsics. 1093 case Intrinsic::lifetime_start: 1094 case Intrinsic::lifetime_end: 1095 // The donothing intrinsic does, well, nothing. 1096 case Intrinsic::donothing: 1097 return true; 1098 case Intrinsic::dbg_declare: { 1099 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1100 DIVariable DIVar(DI->getVariable()); 1101 assert((!DIVar || DIVar.isVariable()) && 1102 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1103 if (!DIVar || !FuncInfo.MF->getMMI().hasDebugInfo()) { 1104 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1105 return true; 1106 } 1107 1108 const Value *Address = DI->getAddress(); 1109 if (!Address || isa<UndefValue>(Address)) { 1110 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1111 return true; 1112 } 1113 1114 unsigned Offset = 0; 1115 Optional<MachineOperand> Op; 1116 if (const Argument *Arg = dyn_cast<Argument>(Address)) 1117 // Some arguments' frame index is recorded during argument lowering. 1118 Offset = FuncInfo.getArgumentFrameIndex(Arg); 1119 if (Offset) 1120 Op = MachineOperand::CreateFI(Offset); 1121 if (!Op) 1122 if (unsigned Reg = lookUpRegForValue(Address)) 1123 Op = MachineOperand::CreateReg(Reg, false); 1124 1125 // If we have a VLA that has a "use" in a metadata node that's then used 1126 // here but it has no other uses, then we have a problem. E.g., 1127 // 1128 // int foo (const int *x) { 1129 // char a[*x]; 1130 // return 0; 1131 // } 1132 // 1133 // If we assign 'a' a vreg and fast isel later on has to use the selection 1134 // DAG isel, it will want to copy the value to the vreg. However, there are 1135 // no uses, which goes counter to what selection DAG isel expects. 1136 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1137 (!isa<AllocaInst>(Address) || 1138 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1139 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1140 false); 1141 1142 if (Op) { 1143 if (Op->isReg()) { 1144 Op->setIsDebug(true); 1145 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1146 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0, 1147 DI->getVariable()); 1148 } else 1149 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1150 TII.get(TargetOpcode::DBG_VALUE)) 1151 .addOperand(*Op) 1152 .addImm(0) 1153 .addMetadata(DI->getVariable()); 1154 } else { 1155 // We can't yet handle anything else here because it would require 1156 // generating code, thus altering codegen because of debug info. 1157 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1158 } 1159 return true; 1160 } 1161 case Intrinsic::dbg_value: { 1162 // This form of DBG_VALUE is target-independent. 1163 const DbgValueInst *DI = cast<DbgValueInst>(II); 1164 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1165 const Value *V = DI->getValue(); 1166 if (!V) { 1167 // Currently the optimizer can produce this; insert an undef to 1168 // help debugging. Probably the optimizer should not do this. 1169 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1170 .addReg(0U).addImm(DI->getOffset()) 1171 .addMetadata(DI->getVariable()); 1172 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1173 if (CI->getBitWidth() > 64) 1174 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1175 .addCImm(CI).addImm(DI->getOffset()) 1176 .addMetadata(DI->getVariable()); 1177 else 1178 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1179 .addImm(CI->getZExtValue()).addImm(DI->getOffset()) 1180 .addMetadata(DI->getVariable()); 1181 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 1182 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1183 .addFPImm(CF).addImm(DI->getOffset()) 1184 .addMetadata(DI->getVariable()); 1185 } else if (unsigned Reg = lookUpRegForValue(V)) { 1186 // FIXME: This does not handle register-indirect values at offset 0. 1187 bool IsIndirect = DI->getOffset() != 0; 1188 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, 1189 Reg, DI->getOffset(), DI->getVariable()); 1190 } else { 1191 // We can't yet handle anything else here because it would require 1192 // generating code, thus altering codegen because of debug info. 1193 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1194 } 1195 return true; 1196 } 1197 case Intrinsic::objectsize: { 1198 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1199 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1200 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1201 unsigned ResultReg = getRegForValue(ResCI); 1202 if (ResultReg == 0) 1203 return false; 1204 UpdateValueMap(II, ResultReg); 1205 return true; 1206 } 1207 case Intrinsic::expect: { 1208 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1209 if (ResultReg == 0) 1210 return false; 1211 UpdateValueMap(II, ResultReg); 1212 return true; 1213 } 1214 case Intrinsic::experimental_stackmap: 1215 return SelectStackmap(II); 1216 case Intrinsic::experimental_patchpoint_void: 1217 case Intrinsic::experimental_patchpoint_i64: 1218 return SelectPatchpoint(II); 1219 } 1220 1221 return FastLowerIntrinsicCall(II); 1222 } 1223 1224 bool FastISel::SelectCast(const User *I, unsigned Opcode) { 1225 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1226 EVT DstVT = TLI.getValueType(I->getType()); 1227 1228 if (SrcVT == MVT::Other || !SrcVT.isSimple() || 1229 DstVT == MVT::Other || !DstVT.isSimple()) 1230 // Unhandled type. Halt "fast" selection and bail. 1231 return false; 1232 1233 // Check if the destination type is legal. 1234 if (!TLI.isTypeLegal(DstVT)) 1235 return false; 1236 1237 // Check if the source operand is legal. 1238 if (!TLI.isTypeLegal(SrcVT)) 1239 return false; 1240 1241 unsigned InputReg = getRegForValue(I->getOperand(0)); 1242 if (!InputReg) 1243 // Unhandled operand. Halt "fast" selection and bail. 1244 return false; 1245 1246 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1247 1248 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), 1249 DstVT.getSimpleVT(), 1250 Opcode, 1251 InputReg, InputRegIsKill); 1252 if (!ResultReg) 1253 return false; 1254 1255 UpdateValueMap(I, ResultReg); 1256 return true; 1257 } 1258 1259 bool FastISel::SelectBitCast(const User *I) { 1260 // If the bitcast doesn't change the type, just use the operand value. 1261 if (I->getType() == I->getOperand(0)->getType()) { 1262 unsigned Reg = getRegForValue(I->getOperand(0)); 1263 if (Reg == 0) 1264 return false; 1265 UpdateValueMap(I, Reg); 1266 return true; 1267 } 1268 1269 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1270 EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType()); 1271 EVT DstEVT = TLI.getValueType(I->getType()); 1272 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1273 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1274 // Unhandled type. Halt "fast" selection and bail. 1275 return false; 1276 1277 MVT SrcVT = SrcEVT.getSimpleVT(); 1278 MVT DstVT = DstEVT.getSimpleVT(); 1279 unsigned Op0 = getRegForValue(I->getOperand(0)); 1280 if (Op0 == 0) 1281 // Unhandled operand. Halt "fast" selection and bail. 1282 return false; 1283 1284 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1285 1286 // First, try to perform the bitcast by inserting a reg-reg copy. 1287 unsigned ResultReg = 0; 1288 if (SrcVT == DstVT) { 1289 const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); 1290 const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); 1291 // Don't attempt a cross-class copy. It will likely fail. 1292 if (SrcClass == DstClass) { 1293 ResultReg = createResultReg(DstClass); 1294 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1295 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1296 } 1297 } 1298 1299 // If the reg-reg copy failed, select a BITCAST opcode. 1300 if (!ResultReg) 1301 ResultReg = FastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1302 1303 if (!ResultReg) 1304 return false; 1305 1306 UpdateValueMap(I, ResultReg); 1307 return true; 1308 } 1309 1310 bool 1311 FastISel::SelectInstruction(const Instruction *I) { 1312 // Just before the terminator instruction, insert instructions to 1313 // feed PHI nodes in successor blocks. 1314 if (isa<TerminatorInst>(I)) 1315 if (!HandlePHINodesInSuccessorBlocks(I->getParent())) 1316 return false; 1317 1318 DbgLoc = I->getDebugLoc(); 1319 1320 MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt; 1321 1322 if (const CallInst *Call = dyn_cast<CallInst>(I)) { 1323 const Function *F = Call->getCalledFunction(); 1324 LibFunc::Func Func; 1325 1326 // As a special case, don't handle calls to builtin library functions that 1327 // may be translated directly to target instructions. 1328 if (F && !F->hasLocalLinkage() && F->hasName() && 1329 LibInfo->getLibFunc(F->getName(), Func) && 1330 LibInfo->hasOptimizedCodeGen(Func)) 1331 return false; 1332 1333 // Don't handle Intrinsic::trap if a trap funciton is specified. 1334 if (F && F->getIntrinsicID() == Intrinsic::trap && 1335 !TM.Options.getTrapFunctionName().empty()) 1336 return false; 1337 } 1338 1339 // First, try doing target-independent selection. 1340 if (SelectOperator(I, I->getOpcode())) { 1341 ++NumFastIselSuccessIndependent; 1342 DbgLoc = DebugLoc(); 1343 return true; 1344 } 1345 // Remove dead code. However, ignore call instructions since we've flushed 1346 // the local value map and recomputed the insert point. 1347 if (!isa<CallInst>(I)) { 1348 recomputeInsertPt(); 1349 if (SavedInsertPt != FuncInfo.InsertPt) 1350 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1351 } 1352 1353 // Next, try calling the target to attempt to handle the instruction. 1354 SavedInsertPt = FuncInfo.InsertPt; 1355 if (TargetSelectInstruction(I)) { 1356 ++NumFastIselSuccessTarget; 1357 DbgLoc = DebugLoc(); 1358 return true; 1359 } 1360 // Check for dead code and remove as necessary. 1361 recomputeInsertPt(); 1362 if (SavedInsertPt != FuncInfo.InsertPt) 1363 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1364 1365 DbgLoc = DebugLoc(); 1366 return false; 1367 } 1368 1369 /// FastEmitBranch - Emit an unconditional branch to the given block, 1370 /// unless it is the immediate (fall-through) successor, and update 1371 /// the CFG. 1372 void 1373 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) { 1374 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1375 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1376 // For more accurate line information if this is the only instruction 1377 // in the block then emit it, otherwise we have the unconditional 1378 // fall-through case, which needs no instructions. 1379 } else { 1380 // The unconditional branch case. 1381 TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr, 1382 SmallVector<MachineOperand, 0>(), DbgLoc); 1383 } 1384 uint32_t BranchWeight = 0; 1385 if (FuncInfo.BPI) 1386 BranchWeight = FuncInfo.BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(), 1387 MSucc->getBasicBlock()); 1388 FuncInfo.MBB->addSuccessor(MSucc, BranchWeight); 1389 } 1390 1391 /// SelectFNeg - Emit an FNeg operation. 1392 /// 1393 bool 1394 FastISel::SelectFNeg(const User *I) { 1395 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1396 if (OpReg == 0) return false; 1397 1398 bool OpRegIsKill = hasTrivialKill(I); 1399 1400 // If the target has ISD::FNEG, use it. 1401 EVT VT = TLI.getValueType(I->getType()); 1402 unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), 1403 ISD::FNEG, OpReg, OpRegIsKill); 1404 if (ResultReg != 0) { 1405 UpdateValueMap(I, ResultReg); 1406 return true; 1407 } 1408 1409 // Bitcast the value to integer, twiddle the sign bit with xor, 1410 // and then bitcast it back to floating-point. 1411 if (VT.getSizeInBits() > 64) return false; 1412 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1413 if (!TLI.isTypeLegal(IntVT)) 1414 return false; 1415 1416 unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1417 ISD::BITCAST, OpReg, OpRegIsKill); 1418 if (IntReg == 0) 1419 return false; 1420 1421 unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, 1422 IntReg, /*Kill=*/true, 1423 UINT64_C(1) << (VT.getSizeInBits()-1), 1424 IntVT.getSimpleVT()); 1425 if (IntResultReg == 0) 1426 return false; 1427 1428 ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), 1429 ISD::BITCAST, IntResultReg, /*Kill=*/true); 1430 if (ResultReg == 0) 1431 return false; 1432 1433 UpdateValueMap(I, ResultReg); 1434 return true; 1435 } 1436 1437 bool 1438 FastISel::SelectExtractValue(const User *U) { 1439 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1440 if (!EVI) 1441 return false; 1442 1443 // Make sure we only try to handle extracts with a legal result. But also 1444 // allow i1 because it's easy. 1445 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true); 1446 if (!RealVT.isSimple()) 1447 return false; 1448 MVT VT = RealVT.getSimpleVT(); 1449 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1450 return false; 1451 1452 const Value *Op0 = EVI->getOperand(0); 1453 Type *AggTy = Op0->getType(); 1454 1455 // Get the base result register. 1456 unsigned ResultReg; 1457 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1458 if (I != FuncInfo.ValueMap.end()) 1459 ResultReg = I->second; 1460 else if (isa<Instruction>(Op0)) 1461 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1462 else 1463 return false; // fast-isel can't handle aggregate constants at the moment 1464 1465 // Get the actual result register, which is an offset from the base register. 1466 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1467 1468 SmallVector<EVT, 4> AggValueVTs; 1469 ComputeValueVTs(TLI, AggTy, AggValueVTs); 1470 1471 for (unsigned i = 0; i < VTIndex; i++) 1472 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1473 1474 UpdateValueMap(EVI, ResultReg); 1475 return true; 1476 } 1477 1478 bool 1479 FastISel::SelectOperator(const User *I, unsigned Opcode) { 1480 switch (Opcode) { 1481 case Instruction::Add: 1482 return SelectBinaryOp(I, ISD::ADD); 1483 case Instruction::FAdd: 1484 return SelectBinaryOp(I, ISD::FADD); 1485 case Instruction::Sub: 1486 return SelectBinaryOp(I, ISD::SUB); 1487 case Instruction::FSub: 1488 // FNeg is currently represented in LLVM IR as a special case of FSub. 1489 if (BinaryOperator::isFNeg(I)) 1490 return SelectFNeg(I); 1491 return SelectBinaryOp(I, ISD::FSUB); 1492 case Instruction::Mul: 1493 return SelectBinaryOp(I, ISD::MUL); 1494 case Instruction::FMul: 1495 return SelectBinaryOp(I, ISD::FMUL); 1496 case Instruction::SDiv: 1497 return SelectBinaryOp(I, ISD::SDIV); 1498 case Instruction::UDiv: 1499 return SelectBinaryOp(I, ISD::UDIV); 1500 case Instruction::FDiv: 1501 return SelectBinaryOp(I, ISD::FDIV); 1502 case Instruction::SRem: 1503 return SelectBinaryOp(I, ISD::SREM); 1504 case Instruction::URem: 1505 return SelectBinaryOp(I, ISD::UREM); 1506 case Instruction::FRem: 1507 return SelectBinaryOp(I, ISD::FREM); 1508 case Instruction::Shl: 1509 return SelectBinaryOp(I, ISD::SHL); 1510 case Instruction::LShr: 1511 return SelectBinaryOp(I, ISD::SRL); 1512 case Instruction::AShr: 1513 return SelectBinaryOp(I, ISD::SRA); 1514 case Instruction::And: 1515 return SelectBinaryOp(I, ISD::AND); 1516 case Instruction::Or: 1517 return SelectBinaryOp(I, ISD::OR); 1518 case Instruction::Xor: 1519 return SelectBinaryOp(I, ISD::XOR); 1520 1521 case Instruction::GetElementPtr: 1522 return SelectGetElementPtr(I); 1523 1524 case Instruction::Br: { 1525 const BranchInst *BI = cast<BranchInst>(I); 1526 1527 if (BI->isUnconditional()) { 1528 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1529 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1530 FastEmitBranch(MSucc, BI->getDebugLoc()); 1531 return true; 1532 } 1533 1534 // Conditional branches are not handed yet. 1535 // Halt "fast" selection and bail. 1536 return false; 1537 } 1538 1539 case Instruction::Unreachable: 1540 if (TM.Options.TrapUnreachable) 1541 return FastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1542 else 1543 return true; 1544 1545 case Instruction::Alloca: 1546 // FunctionLowering has the static-sized case covered. 1547 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1548 return true; 1549 1550 // Dynamic-sized alloca is not handled yet. 1551 return false; 1552 1553 case Instruction::Call: 1554 return SelectCall(I); 1555 1556 case Instruction::BitCast: 1557 return SelectBitCast(I); 1558 1559 case Instruction::FPToSI: 1560 return SelectCast(I, ISD::FP_TO_SINT); 1561 case Instruction::ZExt: 1562 return SelectCast(I, ISD::ZERO_EXTEND); 1563 case Instruction::SExt: 1564 return SelectCast(I, ISD::SIGN_EXTEND); 1565 case Instruction::Trunc: 1566 return SelectCast(I, ISD::TRUNCATE); 1567 case Instruction::SIToFP: 1568 return SelectCast(I, ISD::SINT_TO_FP); 1569 1570 case Instruction::IntToPtr: // Deliberate fall-through. 1571 case Instruction::PtrToInt: { 1572 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1573 EVT DstVT = TLI.getValueType(I->getType()); 1574 if (DstVT.bitsGT(SrcVT)) 1575 return SelectCast(I, ISD::ZERO_EXTEND); 1576 if (DstVT.bitsLT(SrcVT)) 1577 return SelectCast(I, ISD::TRUNCATE); 1578 unsigned Reg = getRegForValue(I->getOperand(0)); 1579 if (Reg == 0) return false; 1580 UpdateValueMap(I, Reg); 1581 return true; 1582 } 1583 1584 case Instruction::ExtractValue: 1585 return SelectExtractValue(I); 1586 1587 case Instruction::PHI: 1588 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1589 1590 default: 1591 // Unhandled instruction. Halt "fast" selection and bail. 1592 return false; 1593 } 1594 } 1595 1596 FastISel::FastISel(FunctionLoweringInfo &funcInfo, 1597 const TargetLibraryInfo *libInfo) 1598 : FuncInfo(funcInfo), MF(funcInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1599 MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1600 TM(FuncInfo.MF->getTarget()), DL(*TM.getSubtargetImpl()->getDataLayout()), 1601 TII(*TM.getSubtargetImpl()->getInstrInfo()), 1602 TLI(*TM.getSubtargetImpl()->getTargetLowering()), 1603 TRI(*TM.getSubtargetImpl()->getRegisterInfo()), LibInfo(libInfo) {} 1604 1605 FastISel::~FastISel() {} 1606 1607 bool FastISel::FastLowerArguments() { 1608 return false; 1609 } 1610 1611 bool FastISel::FastLowerCall(CallLoweringInfo &/*CLI*/) { 1612 return false; 1613 } 1614 1615 bool FastISel::FastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1616 return false; 1617 } 1618 1619 unsigned FastISel::FastEmit_(MVT, MVT, 1620 unsigned) { 1621 return 0; 1622 } 1623 1624 unsigned FastISel::FastEmit_r(MVT, MVT, 1625 unsigned, 1626 unsigned /*Op0*/, bool /*Op0IsKill*/) { 1627 return 0; 1628 } 1629 1630 unsigned FastISel::FastEmit_rr(MVT, MVT, 1631 unsigned, 1632 unsigned /*Op0*/, bool /*Op0IsKill*/, 1633 unsigned /*Op1*/, bool /*Op1IsKill*/) { 1634 return 0; 1635 } 1636 1637 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1638 return 0; 1639 } 1640 1641 unsigned FastISel::FastEmit_f(MVT, MVT, 1642 unsigned, const ConstantFP * /*FPImm*/) { 1643 return 0; 1644 } 1645 1646 unsigned FastISel::FastEmit_ri(MVT, MVT, 1647 unsigned, 1648 unsigned /*Op0*/, bool /*Op0IsKill*/, 1649 uint64_t /*Imm*/) { 1650 return 0; 1651 } 1652 1653 unsigned FastISel::FastEmit_rf(MVT, MVT, 1654 unsigned, 1655 unsigned /*Op0*/, bool /*Op0IsKill*/, 1656 const ConstantFP * /*FPImm*/) { 1657 return 0; 1658 } 1659 1660 unsigned FastISel::FastEmit_rri(MVT, MVT, 1661 unsigned, 1662 unsigned /*Op0*/, bool /*Op0IsKill*/, 1663 unsigned /*Op1*/, bool /*Op1IsKill*/, 1664 uint64_t /*Imm*/) { 1665 return 0; 1666 } 1667 1668 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries 1669 /// to emit an instruction with an immediate operand using FastEmit_ri. 1670 /// If that fails, it materializes the immediate into a register and try 1671 /// FastEmit_rr instead. 1672 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode, 1673 unsigned Op0, bool Op0IsKill, 1674 uint64_t Imm, MVT ImmType) { 1675 // If this is a multiply by a power of two, emit this as a shift left. 1676 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1677 Opcode = ISD::SHL; 1678 Imm = Log2_64(Imm); 1679 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1680 // div x, 8 -> srl x, 3 1681 Opcode = ISD::SRL; 1682 Imm = Log2_64(Imm); 1683 } 1684 1685 // Horrible hack (to be removed), check to make sure shift amounts are 1686 // in-range. 1687 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1688 Imm >= VT.getSizeInBits()) 1689 return 0; 1690 1691 // First check if immediate type is legal. If not, we can't use the ri form. 1692 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1693 if (ResultReg != 0) 1694 return ResultReg; 1695 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1696 if (MaterialReg == 0) { 1697 // This is a bit ugly/slow, but failing here means falling out of 1698 // fast-isel, which would be very slow. 1699 IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(), 1700 VT.getSizeInBits()); 1701 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1702 if (MaterialReg == 0) return 0; 1703 } 1704 return FastEmit_rr(VT, VT, Opcode, 1705 Op0, Op0IsKill, 1706 MaterialReg, /*Kill=*/true); 1707 } 1708 1709 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { 1710 return MRI.createVirtualRegister(RC); 1711 } 1712 1713 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, 1714 unsigned Op, unsigned OpNum) { 1715 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1716 const TargetRegisterClass *RegClass = 1717 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1718 if (!MRI.constrainRegClass(Op, RegClass)) { 1719 // If it's not legal to COPY between the register classes, something 1720 // has gone very wrong before we got here. 1721 unsigned NewOp = createResultReg(RegClass); 1722 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1723 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1724 return NewOp; 1725 } 1726 } 1727 return Op; 1728 } 1729 1730 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, 1731 const TargetRegisterClass* RC) { 1732 unsigned ResultReg = createResultReg(RC); 1733 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1734 1735 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1736 return ResultReg; 1737 } 1738 1739 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, 1740 const TargetRegisterClass *RC, 1741 unsigned Op0, bool Op0IsKill) { 1742 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1743 1744 unsigned ResultReg = createResultReg(RC); 1745 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1746 1747 if (II.getNumDefs() >= 1) 1748 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1749 .addReg(Op0, Op0IsKill * RegState::Kill); 1750 else { 1751 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1752 .addReg(Op0, Op0IsKill * RegState::Kill); 1753 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1754 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1755 } 1756 1757 return ResultReg; 1758 } 1759 1760 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 1761 const TargetRegisterClass *RC, 1762 unsigned Op0, bool Op0IsKill, 1763 unsigned Op1, bool Op1IsKill) { 1764 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1765 1766 unsigned ResultReg = createResultReg(RC); 1767 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1768 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1769 1770 if (II.getNumDefs() >= 1) 1771 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1772 .addReg(Op0, Op0IsKill * RegState::Kill) 1773 .addReg(Op1, Op1IsKill * RegState::Kill); 1774 else { 1775 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1776 .addReg(Op0, Op0IsKill * RegState::Kill) 1777 .addReg(Op1, Op1IsKill * RegState::Kill); 1778 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1779 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1780 } 1781 return ResultReg; 1782 } 1783 1784 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 1785 const TargetRegisterClass *RC, 1786 unsigned Op0, bool Op0IsKill, 1787 unsigned Op1, bool Op1IsKill, 1788 unsigned Op2, bool Op2IsKill) { 1789 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1790 1791 unsigned ResultReg = createResultReg(RC); 1792 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1793 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1794 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1795 1796 if (II.getNumDefs() >= 1) 1797 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1798 .addReg(Op0, Op0IsKill * RegState::Kill) 1799 .addReg(Op1, Op1IsKill * RegState::Kill) 1800 .addReg(Op2, Op2IsKill * RegState::Kill); 1801 else { 1802 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1803 .addReg(Op0, Op0IsKill * RegState::Kill) 1804 .addReg(Op1, Op1IsKill * RegState::Kill) 1805 .addReg(Op2, Op2IsKill * RegState::Kill); 1806 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1807 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1808 } 1809 return ResultReg; 1810 } 1811 1812 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 1813 const TargetRegisterClass *RC, 1814 unsigned Op0, bool Op0IsKill, 1815 uint64_t Imm) { 1816 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1817 1818 unsigned ResultReg = createResultReg(RC); 1819 RC = TII.getRegClass(II, II.getNumDefs(), &TRI, *FuncInfo.MF); 1820 MRI.constrainRegClass(Op0, RC); 1821 1822 if (II.getNumDefs() >= 1) 1823 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1824 .addReg(Op0, Op0IsKill * RegState::Kill) 1825 .addImm(Imm); 1826 else { 1827 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1828 .addReg(Op0, Op0IsKill * RegState::Kill) 1829 .addImm(Imm); 1830 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1831 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1832 } 1833 return ResultReg; 1834 } 1835 1836 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode, 1837 const TargetRegisterClass *RC, 1838 unsigned Op0, bool Op0IsKill, 1839 uint64_t Imm1, uint64_t Imm2) { 1840 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1841 1842 unsigned ResultReg = createResultReg(RC); 1843 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1844 1845 if (II.getNumDefs() >= 1) 1846 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1847 .addReg(Op0, Op0IsKill * RegState::Kill) 1848 .addImm(Imm1) 1849 .addImm(Imm2); 1850 else { 1851 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1852 .addReg(Op0, Op0IsKill * RegState::Kill) 1853 .addImm(Imm1) 1854 .addImm(Imm2); 1855 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1856 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1857 } 1858 return ResultReg; 1859 } 1860 1861 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 1862 const TargetRegisterClass *RC, 1863 unsigned Op0, bool Op0IsKill, 1864 const ConstantFP *FPImm) { 1865 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1866 1867 unsigned ResultReg = createResultReg(RC); 1868 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1869 1870 if (II.getNumDefs() >= 1) 1871 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1872 .addReg(Op0, Op0IsKill * RegState::Kill) 1873 .addFPImm(FPImm); 1874 else { 1875 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1876 .addReg(Op0, Op0IsKill * RegState::Kill) 1877 .addFPImm(FPImm); 1878 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1879 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1880 } 1881 return ResultReg; 1882 } 1883 1884 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 1885 const TargetRegisterClass *RC, 1886 unsigned Op0, bool Op0IsKill, 1887 unsigned Op1, bool Op1IsKill, 1888 uint64_t Imm) { 1889 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1890 1891 unsigned ResultReg = createResultReg(RC); 1892 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1893 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1894 1895 if (II.getNumDefs() >= 1) 1896 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1897 .addReg(Op0, Op0IsKill * RegState::Kill) 1898 .addReg(Op1, Op1IsKill * RegState::Kill) 1899 .addImm(Imm); 1900 else { 1901 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1902 .addReg(Op0, Op0IsKill * RegState::Kill) 1903 .addReg(Op1, Op1IsKill * RegState::Kill) 1904 .addImm(Imm); 1905 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1906 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1907 } 1908 return ResultReg; 1909 } 1910 1911 unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode, 1912 const TargetRegisterClass *RC, 1913 unsigned Op0, bool Op0IsKill, 1914 unsigned Op1, bool Op1IsKill, 1915 uint64_t Imm1, uint64_t Imm2) { 1916 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1917 1918 unsigned ResultReg = createResultReg(RC); 1919 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1920 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1921 1922 if (II.getNumDefs() >= 1) 1923 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1924 .addReg(Op0, Op0IsKill * RegState::Kill) 1925 .addReg(Op1, Op1IsKill * RegState::Kill) 1926 .addImm(Imm1).addImm(Imm2); 1927 else { 1928 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1929 .addReg(Op0, Op0IsKill * RegState::Kill) 1930 .addReg(Op1, Op1IsKill * RegState::Kill) 1931 .addImm(Imm1).addImm(Imm2); 1932 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1933 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1934 } 1935 return ResultReg; 1936 } 1937 1938 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, 1939 const TargetRegisterClass *RC, 1940 uint64_t Imm) { 1941 unsigned ResultReg = createResultReg(RC); 1942 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1943 1944 if (II.getNumDefs() >= 1) 1945 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg).addImm(Imm); 1946 else { 1947 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 1948 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1949 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1950 } 1951 return ResultReg; 1952 } 1953 1954 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 1955 const TargetRegisterClass *RC, 1956 uint64_t Imm1, uint64_t Imm2) { 1957 unsigned ResultReg = createResultReg(RC); 1958 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1959 1960 if (II.getNumDefs() >= 1) 1961 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1962 .addImm(Imm1).addImm(Imm2); 1963 else { 1964 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1).addImm(Imm2); 1965 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1966 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1967 } 1968 return ResultReg; 1969 } 1970 1971 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT, 1972 unsigned Op0, bool Op0IsKill, 1973 uint32_t Idx) { 1974 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1975 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1976 "Cannot yet extract from physregs"); 1977 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 1978 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 1979 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 1980 DbgLoc, TII.get(TargetOpcode::COPY), ResultReg) 1981 .addReg(Op0, getKillRegState(Op0IsKill), Idx); 1982 return ResultReg; 1983 } 1984 1985 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op 1986 /// with all but the least significant bit set to zero. 1987 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 1988 return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 1989 } 1990 1991 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 1992 /// Emit code to ensure constants are copied into registers when needed. 1993 /// Remember the virtual registers that need to be added to the Machine PHI 1994 /// nodes as input. We cannot just directly add them, because expansion 1995 /// might result in multiple MBB's for one BB. As such, the start of the 1996 /// BB might correspond to a different MBB than the end. 1997 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 1998 const TerminatorInst *TI = LLVMBB->getTerminator(); 1999 2000 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2001 unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2002 2003 // Check successor nodes' PHI nodes that expect a constant to be available 2004 // from this block. 2005 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2006 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2007 if (!isa<PHINode>(SuccBB->begin())) continue; 2008 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2009 2010 // If this terminator has multiple identical successors (common for 2011 // switches), only handle each succ once. 2012 if (!SuccsHandled.insert(SuccMBB)) continue; 2013 2014 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2015 2016 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2017 // nodes and Machine PHI nodes, but the incoming operands have not been 2018 // emitted yet. 2019 for (BasicBlock::const_iterator I = SuccBB->begin(); 2020 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2021 2022 // Ignore dead phi's. 2023 if (PN->use_empty()) continue; 2024 2025 // Only handle legal types. Two interesting things to note here. First, 2026 // by bailing out early, we may leave behind some dead instructions, 2027 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2028 // own moves. Second, this check is necessary because FastISel doesn't 2029 // use CreateRegs to create registers, so it always creates 2030 // exactly one register for each non-void instruction. 2031 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 2032 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2033 // Handle integer promotions, though, because they're common and easy. 2034 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 2035 VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT); 2036 else { 2037 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 2038 return false; 2039 } 2040 } 2041 2042 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 2043 2044 // Set the DebugLoc for the copy. Prefer the location of the operand 2045 // if there is one; use the location of the PHI otherwise. 2046 DbgLoc = PN->getDebugLoc(); 2047 if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp)) 2048 DbgLoc = Inst->getDebugLoc(); 2049 2050 unsigned Reg = getRegForValue(PHIOp); 2051 if (Reg == 0) { 2052 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 2053 return false; 2054 } 2055 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 2056 DbgLoc = DebugLoc(); 2057 } 2058 } 2059 2060 return true; 2061 } 2062 2063 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2064 assert(LI->hasOneUse() && 2065 "tryToFoldLoad expected a LoadInst with a single use"); 2066 // We know that the load has a single use, but don't know what it is. If it 2067 // isn't one of the folded instructions, then we can't succeed here. Handle 2068 // this by scanning the single-use users of the load until we get to FoldInst. 2069 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2070 2071 const Instruction *TheUser = LI->user_back(); 2072 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2073 // Stay in the right block. 2074 TheUser->getParent() == FoldInst->getParent() && 2075 --MaxUsers) { // Don't scan too far. 2076 // If there are multiple or no uses of this instruction, then bail out. 2077 if (!TheUser->hasOneUse()) 2078 return false; 2079 2080 TheUser = TheUser->user_back(); 2081 } 2082 2083 // If we didn't find the fold instruction, then we failed to collapse the 2084 // sequence. 2085 if (TheUser != FoldInst) 2086 return false; 2087 2088 // Don't try to fold volatile loads. Target has to deal with alignment 2089 // constraints. 2090 if (LI->isVolatile()) 2091 return false; 2092 2093 // Figure out which vreg this is going into. If there is no assigned vreg yet 2094 // then there actually was no reference to it. Perhaps the load is referenced 2095 // by a dead instruction. 2096 unsigned LoadReg = getRegForValue(LI); 2097 if (LoadReg == 0) 2098 return false; 2099 2100 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2101 // may mean that the instruction got lowered to multiple MIs, or the use of 2102 // the loaded value ended up being multiple operands of the result. 2103 if (!MRI.hasOneUse(LoadReg)) 2104 return false; 2105 2106 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2107 MachineInstr *User = RI->getParent(); 2108 2109 // Set the insertion point properly. Folding the load can cause generation of 2110 // other random instructions (like sign extends) for addressing modes; make 2111 // sure they get inserted in a logical place before the new instruction. 2112 FuncInfo.InsertPt = User; 2113 FuncInfo.MBB = User->getParent(); 2114 2115 // Ask the target to try folding the load. 2116 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2117 } 2118 2119 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2120 // Must be an add. 2121 if (!isa<AddOperator>(Add)) 2122 return false; 2123 // Type size needs to match. 2124 if (DL.getTypeSizeInBits(GEP->getType()) != 2125 DL.getTypeSizeInBits(Add->getType())) 2126 return false; 2127 // Must be in the same basic block. 2128 if (isa<Instruction>(Add) && 2129 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2130 return false; 2131 // Must have a constant operand. 2132 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2133 } 2134 2135 MachineMemOperand * 2136 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2137 const Value *Ptr; 2138 Type *ValTy; 2139 unsigned Alignment; 2140 unsigned Flags; 2141 bool IsVolatile; 2142 2143 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2144 Alignment = LI->getAlignment(); 2145 IsVolatile = LI->isVolatile(); 2146 Flags = MachineMemOperand::MOLoad; 2147 Ptr = LI->getPointerOperand(); 2148 ValTy = LI->getType(); 2149 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2150 Alignment = SI->getAlignment(); 2151 IsVolatile = SI->isVolatile(); 2152 Flags = MachineMemOperand::MOStore; 2153 Ptr = SI->getPointerOperand(); 2154 ValTy = SI->getValueOperand()->getType(); 2155 } else { 2156 return nullptr; 2157 } 2158 2159 bool IsNonTemporal = I->getMetadata("nontemporal") != nullptr; 2160 bool IsInvariant = I->getMetadata("invariant.load") != nullptr; 2161 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2162 2163 AAMDNodes AAInfo; 2164 I->getAAMetadata(AAInfo); 2165 2166 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2167 Alignment = DL.getABITypeAlignment(ValTy); 2168 2169 unsigned Size = 2170 TM.getSubtargetImpl()->getDataLayout()->getTypeStoreSize(ValTy); 2171 2172 if (IsVolatile) 2173 Flags |= MachineMemOperand::MOVolatile; 2174 if (IsNonTemporal) 2175 Flags |= MachineMemOperand::MONonTemporal; 2176 if (IsInvariant) 2177 Flags |= MachineMemOperand::MOInvariant; 2178 2179 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2180 Alignment, AAInfo, Ranges); 2181 } 2182