1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/CodeGen/Analysis.h" 43 #include "llvm/CodeGen/FastISel.h" 44 #include "llvm/ADT/Optional.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/BranchProbabilityInfo.h" 47 #include "llvm/Analysis/Loads.h" 48 #include "llvm/CodeGen/Analysis.h" 49 #include "llvm/CodeGen/FunctionLoweringInfo.h" 50 #include "llvm/CodeGen/MachineFrameInfo.h" 51 #include "llvm/CodeGen/MachineInstrBuilder.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/StackMaps.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugInfo.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/GlobalVariable.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Target/TargetInstrInfo.h" 65 #include "llvm/Target/TargetLibraryInfo.h" 66 #include "llvm/Target/TargetLowering.h" 67 #include "llvm/Target/TargetMachine.h" 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 73 "target-independent selector"); 74 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 75 "target-specific selector"); 76 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 77 78 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 79 /// and called function attributes. 80 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS, 81 unsigned AttrIdx) { 82 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 83 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 84 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 85 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 86 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 87 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 88 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 89 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 90 Alignment = CS->getParamAlignment(AttrIdx); 91 } 92 93 /// startNewBlock - Set the current block to which generated machine 94 /// instructions will be appended, and clear the local CSE map. 95 /// 96 void FastISel::startNewBlock() { 97 LocalValueMap.clear(); 98 99 // Instructions are appended to FuncInfo.MBB. If the basic block already 100 // contains labels or copies, use the last instruction as the last local 101 // value. 102 EmitStartPt = nullptr; 103 if (!FuncInfo.MBB->empty()) 104 EmitStartPt = &FuncInfo.MBB->back(); 105 LastLocalValue = EmitStartPt; 106 } 107 108 bool FastISel::LowerArguments() { 109 if (!FuncInfo.CanLowerReturn) 110 // Fallback to SDISel argument lowering code to deal with sret pointer 111 // parameter. 112 return false; 113 114 if (!FastLowerArguments()) 115 return false; 116 117 // Enter arguments into ValueMap for uses in non-entry BBs. 118 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 119 E = FuncInfo.Fn->arg_end(); I != E; ++I) { 120 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I); 121 assert(VI != LocalValueMap.end() && "Missed an argument?"); 122 FuncInfo.ValueMap[I] = VI->second; 123 } 124 return true; 125 } 126 127 void FastISel::flushLocalValueMap() { 128 LocalValueMap.clear(); 129 LastLocalValue = EmitStartPt; 130 recomputeInsertPt(); 131 } 132 133 bool FastISel::hasTrivialKill(const Value *V) const { 134 // Don't consider constants or arguments to have trivial kills. 135 const Instruction *I = dyn_cast<Instruction>(V); 136 if (!I) 137 return false; 138 139 // No-op casts are trivially coalesced by fast-isel. 140 if (const CastInst *Cast = dyn_cast<CastInst>(I)) 141 if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) && 142 !hasTrivialKill(Cast->getOperand(0))) 143 return false; 144 145 // GEPs with all zero indices are trivially coalesced by fast-isel. 146 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 147 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 148 return false; 149 150 // Only instructions with a single use in the same basic block are considered 151 // to have trivial kills. 152 return I->hasOneUse() && 153 !(I->getOpcode() == Instruction::BitCast || 154 I->getOpcode() == Instruction::PtrToInt || 155 I->getOpcode() == Instruction::IntToPtr) && 156 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 157 } 158 159 unsigned FastISel::getRegForValue(const Value *V) { 160 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); 161 // Don't handle non-simple values in FastISel. 162 if (!RealVT.isSimple()) 163 return 0; 164 165 // Ignore illegal types. We must do this before looking up the value 166 // in ValueMap because Arguments are given virtual registers regardless 167 // of whether FastISel can handle them. 168 MVT VT = RealVT.getSimpleVT(); 169 if (!TLI.isTypeLegal(VT)) { 170 // Handle integer promotions, though, because they're common and easy. 171 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 172 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 173 else 174 return 0; 175 } 176 177 // Look up the value to see if we already have a register for it. 178 unsigned Reg = lookUpRegForValue(V); 179 if (Reg != 0) 180 return Reg; 181 182 // In bottom-up mode, just create the virtual register which will be used 183 // to hold the value. It will be materialized later. 184 if (isa<Instruction>(V) && 185 (!isa<AllocaInst>(V) || 186 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 187 return FuncInfo.InitializeRegForValue(V); 188 189 SavePoint SaveInsertPt = enterLocalValueArea(); 190 191 // Materialize the value in a register. Emit any instructions in the 192 // local value area. 193 Reg = materializeRegForValue(V, VT); 194 195 leaveLocalValueArea(SaveInsertPt); 196 197 return Reg; 198 } 199 200 /// materializeRegForValue - Helper for getRegForValue. This function is 201 /// called when the value isn't already available in a register and must 202 /// be materialized with new instructions. 203 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 204 unsigned Reg = 0; 205 206 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 207 if (CI->getValue().getActiveBits() <= 64) 208 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 209 } else if (isa<AllocaInst>(V)) { 210 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V)); 211 } else if (isa<ConstantPointerNull>(V)) { 212 // Translate this as an integer zero so that it can be 213 // local-CSE'd with actual integer zeros. 214 Reg = 215 getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 216 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 217 if (CF->isNullValue()) { 218 Reg = TargetMaterializeFloatZero(CF); 219 } else { 220 // Try to emit the constant directly. 221 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); 222 } 223 224 if (!Reg) { 225 // Try to emit the constant by using an integer constant with a cast. 226 const APFloat &Flt = CF->getValueAPF(); 227 EVT IntVT = TLI.getPointerTy(); 228 229 uint64_t x[2]; 230 uint32_t IntBitWidth = IntVT.getSizeInBits(); 231 bool isExact; 232 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 233 APFloat::rmTowardZero, &isExact); 234 if (isExact) { 235 APInt IntVal(IntBitWidth, x); 236 237 unsigned IntegerReg = 238 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 239 if (IntegerReg != 0) 240 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 241 IntegerReg, /*Kill=*/false); 242 } 243 } 244 } else if (const Operator *Op = dyn_cast<Operator>(V)) { 245 if (!SelectOperator(Op, Op->getOpcode())) 246 if (!isa<Instruction>(Op) || 247 !TargetSelectInstruction(cast<Instruction>(Op))) 248 return 0; 249 Reg = lookUpRegForValue(Op); 250 } else if (isa<UndefValue>(V)) { 251 Reg = createResultReg(TLI.getRegClassFor(VT)); 252 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 253 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 254 } 255 256 // If target-independent code couldn't handle the value, give target-specific 257 // code a try. 258 if (!Reg && isa<Constant>(V)) 259 Reg = TargetMaterializeConstant(cast<Constant>(V)); 260 261 // Don't cache constant materializations in the general ValueMap. 262 // To do so would require tracking what uses they dominate. 263 if (Reg != 0) { 264 LocalValueMap[V] = Reg; 265 LastLocalValue = MRI.getVRegDef(Reg); 266 } 267 return Reg; 268 } 269 270 unsigned FastISel::lookUpRegForValue(const Value *V) { 271 // Look up the value to see if we already have a register for it. We 272 // cache values defined by Instructions across blocks, and other values 273 // only locally. This is because Instructions already have the SSA 274 // def-dominates-use requirement enforced. 275 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 276 if (I != FuncInfo.ValueMap.end()) 277 return I->second; 278 return LocalValueMap[V]; 279 } 280 281 /// UpdateValueMap - Update the value map to include the new mapping for this 282 /// instruction, or insert an extra copy to get the result in a previous 283 /// determined register. 284 /// NOTE: This is only necessary because we might select a block that uses 285 /// a value before we select the block that defines the value. It might be 286 /// possible to fix this by selecting blocks in reverse postorder. 287 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 288 if (!isa<Instruction>(I)) { 289 LocalValueMap[I] = Reg; 290 return; 291 } 292 293 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 294 if (AssignedReg == 0) 295 // Use the new register. 296 AssignedReg = Reg; 297 else if (Reg != AssignedReg) { 298 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 299 for (unsigned i = 0; i < NumRegs; i++) 300 FuncInfo.RegFixups[AssignedReg+i] = Reg+i; 301 302 AssignedReg = Reg; 303 } 304 } 305 306 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 307 unsigned IdxN = getRegForValue(Idx); 308 if (IdxN == 0) 309 // Unhandled operand. Halt "fast" selection and bail. 310 return std::pair<unsigned, bool>(0, false); 311 312 bool IdxNIsKill = hasTrivialKill(Idx); 313 314 // If the index is smaller or larger than intptr_t, truncate or extend it. 315 MVT PtrVT = TLI.getPointerTy(); 316 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 317 if (IdxVT.bitsLT(PtrVT)) { 318 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, 319 IdxN, IdxNIsKill); 320 IdxNIsKill = true; 321 } 322 else if (IdxVT.bitsGT(PtrVT)) { 323 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, 324 IdxN, IdxNIsKill); 325 IdxNIsKill = true; 326 } 327 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 328 } 329 330 void FastISel::recomputeInsertPt() { 331 if (getLastLocalValue()) { 332 FuncInfo.InsertPt = getLastLocalValue(); 333 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 334 ++FuncInfo.InsertPt; 335 } else 336 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 337 338 // Now skip past any EH_LABELs, which must remain at the beginning. 339 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 340 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 341 ++FuncInfo.InsertPt; 342 } 343 344 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 345 MachineBasicBlock::iterator E) { 346 assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!"); 347 while (I != E) { 348 MachineInstr *Dead = &*I; 349 ++I; 350 Dead->eraseFromParent(); 351 ++NumFastIselDead; 352 } 353 recomputeInsertPt(); 354 } 355 356 FastISel::SavePoint FastISel::enterLocalValueArea() { 357 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 358 DebugLoc OldDL = DbgLoc; 359 recomputeInsertPt(); 360 DbgLoc = DebugLoc(); 361 SavePoint SP = { OldInsertPt, OldDL }; 362 return SP; 363 } 364 365 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 366 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 367 LastLocalValue = std::prev(FuncInfo.InsertPt); 368 369 // Restore the previous insert position. 370 FuncInfo.InsertPt = OldInsertPt.InsertPt; 371 DbgLoc = OldInsertPt.DL; 372 } 373 374 /// SelectBinaryOp - Select and emit code for a binary operator instruction, 375 /// which has an opcode which directly corresponds to the given ISD opcode. 376 /// 377 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) { 378 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 379 if (VT == MVT::Other || !VT.isSimple()) 380 // Unhandled type. Halt "fast" selection and bail. 381 return false; 382 383 // We only handle legal types. For example, on x86-32 the instruction 384 // selector contains all of the 64-bit instructions from x86-64, 385 // under the assumption that i64 won't be used if the target doesn't 386 // support it. 387 if (!TLI.isTypeLegal(VT)) { 388 // MVT::i1 is special. Allow AND, OR, or XOR because they 389 // don't require additional zeroing, which makes them easy. 390 if (VT == MVT::i1 && 391 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 392 ISDOpcode == ISD::XOR)) 393 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 394 else 395 return false; 396 } 397 398 // Check if the first operand is a constant, and handle it as "ri". At -O0, 399 // we don't have anything that canonicalizes operand order. 400 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 401 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 402 unsigned Op1 = getRegForValue(I->getOperand(1)); 403 if (Op1 == 0) return false; 404 405 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 406 407 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, 408 Op1IsKill, CI->getZExtValue(), 409 VT.getSimpleVT()); 410 if (ResultReg == 0) return false; 411 412 // We successfully emitted code for the given LLVM Instruction. 413 UpdateValueMap(I, ResultReg); 414 return true; 415 } 416 417 418 unsigned Op0 = getRegForValue(I->getOperand(0)); 419 if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. 420 return false; 421 422 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 423 424 // Check if the second operand is a constant and handle it appropriately. 425 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 426 uint64_t Imm = CI->getZExtValue(); 427 428 // Transform "sdiv exact X, 8" -> "sra X, 3". 429 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 430 cast<BinaryOperator>(I)->isExact() && 431 isPowerOf2_64(Imm)) { 432 Imm = Log2_64(Imm); 433 ISDOpcode = ISD::SRA; 434 } 435 436 // Transform "urem x, pow2" -> "and x, pow2-1". 437 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 438 isPowerOf2_64(Imm)) { 439 --Imm; 440 ISDOpcode = ISD::AND; 441 } 442 443 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 444 Op0IsKill, Imm, VT.getSimpleVT()); 445 if (ResultReg == 0) return false; 446 447 // We successfully emitted code for the given LLVM Instruction. 448 UpdateValueMap(I, ResultReg); 449 return true; 450 } 451 452 // Check if the second operand is a constant float. 453 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 454 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 455 ISDOpcode, Op0, Op0IsKill, CF); 456 if (ResultReg != 0) { 457 // We successfully emitted code for the given LLVM Instruction. 458 UpdateValueMap(I, ResultReg); 459 return true; 460 } 461 } 462 463 unsigned Op1 = getRegForValue(I->getOperand(1)); 464 if (Op1 == 0) 465 // Unhandled operand. Halt "fast" selection and bail. 466 return false; 467 468 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 469 470 // Now we have both operands in registers. Emit the instruction. 471 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 472 ISDOpcode, 473 Op0, Op0IsKill, 474 Op1, Op1IsKill); 475 if (ResultReg == 0) 476 // Target-specific code wasn't able to find a machine opcode for 477 // the given ISD opcode and type. Halt "fast" selection and bail. 478 return false; 479 480 // We successfully emitted code for the given LLVM Instruction. 481 UpdateValueMap(I, ResultReg); 482 return true; 483 } 484 485 bool FastISel::SelectGetElementPtr(const User *I) { 486 unsigned N = getRegForValue(I->getOperand(0)); 487 if (N == 0) 488 // Unhandled operand. Halt "fast" selection and bail. 489 return false; 490 491 bool NIsKill = hasTrivialKill(I->getOperand(0)); 492 493 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 494 // into a single N = N + TotalOffset. 495 uint64_t TotalOffs = 0; 496 // FIXME: What's a good SWAG number for MaxOffs? 497 uint64_t MaxOffs = 2048; 498 Type *Ty = I->getOperand(0)->getType(); 499 MVT VT = TLI.getPointerTy(); 500 for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1, 501 E = I->op_end(); OI != E; ++OI) { 502 const Value *Idx = *OI; 503 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 504 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 505 if (Field) { 506 // N = N + Offset 507 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 508 if (TotalOffs >= MaxOffs) { 509 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 510 if (N == 0) 511 // Unhandled operand. Halt "fast" selection and bail. 512 return false; 513 NIsKill = true; 514 TotalOffs = 0; 515 } 516 } 517 Ty = StTy->getElementType(Field); 518 } else { 519 Ty = cast<SequentialType>(Ty)->getElementType(); 520 521 // If this is a constant subscript, handle it quickly. 522 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 523 if (CI->isZero()) continue; 524 // N = N + Offset 525 TotalOffs += 526 DL.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 527 if (TotalOffs >= MaxOffs) { 528 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 529 if (N == 0) 530 // Unhandled operand. Halt "fast" selection and bail. 531 return false; 532 NIsKill = true; 533 TotalOffs = 0; 534 } 535 continue; 536 } 537 if (TotalOffs) { 538 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 539 if (N == 0) 540 // Unhandled operand. Halt "fast" selection and bail. 541 return false; 542 NIsKill = true; 543 TotalOffs = 0; 544 } 545 546 // N = N + Idx * ElementSize; 547 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 548 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 549 unsigned IdxN = Pair.first; 550 bool IdxNIsKill = Pair.second; 551 if (IdxN == 0) 552 // Unhandled operand. Halt "fast" selection and bail. 553 return false; 554 555 if (ElementSize != 1) { 556 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 557 if (IdxN == 0) 558 // Unhandled operand. Halt "fast" selection and bail. 559 return false; 560 IdxNIsKill = true; 561 } 562 N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 563 if (N == 0) 564 // Unhandled operand. Halt "fast" selection and bail. 565 return false; 566 } 567 } 568 if (TotalOffs) { 569 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 570 if (N == 0) 571 // Unhandled operand. Halt "fast" selection and bail. 572 return false; 573 } 574 575 // We successfully emitted code for the given LLVM Instruction. 576 UpdateValueMap(I, N); 577 return true; 578 } 579 580 /// \brief Add a stackmap or patchpoint intrinsic call's live variable operands 581 /// to a stackmap or patchpoint machine instruction. 582 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 583 const CallInst *CI, unsigned StartIdx) { 584 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 585 Value *Val = CI->getArgOperand(i); 586 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 587 if (auto *C = dyn_cast<ConstantInt>(Val)) { 588 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 589 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 590 } else if (isa<ConstantPointerNull>(Val)) { 591 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 592 Ops.push_back(MachineOperand::CreateImm(0)); 593 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 594 // Values coming from a stack location also require a sepcial encoding, 595 // but that is added later on by the target specific frame index 596 // elimination implementation. 597 auto SI = FuncInfo.StaticAllocaMap.find(AI); 598 if (SI != FuncInfo.StaticAllocaMap.end()) 599 Ops.push_back(MachineOperand::CreateFI(SI->second)); 600 else 601 return false; 602 } else { 603 unsigned Reg = getRegForValue(Val); 604 if (Reg == 0) 605 return false; 606 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 607 } 608 } 609 610 return true; 611 } 612 613 bool FastISel::SelectStackmap(const CallInst *I) { 614 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 615 // [live variables...]) 616 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 617 "Stackmap cannot return a value."); 618 619 // The stackmap intrinsic only records the live variables (the arguments 620 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 621 // intrinsic, this won't be lowered to a function call. This means we don't 622 // have to worry about calling conventions and target-specific lowering code. 623 // Instead we perform the call lowering right here. 624 // 625 // CALLSEQ_START(0) 626 // STACKMAP(id, nbytes, ...) 627 // CALLSEQ_END(0, 0) 628 // 629 SmallVector<MachineOperand, 32> Ops; 630 631 // Add the <id> and <numBytes> constants. 632 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 633 "Expected a constant integer."); 634 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 635 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 636 637 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 638 "Expected a constant integer."); 639 const auto *NumBytes = 640 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 641 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 642 643 // Push live variables for the stack map (skipping the first two arguments 644 // <id> and <numBytes>). 645 if (!addStackMapLiveVars(Ops, I, 2)) 646 return false; 647 648 // We are not adding any register mask info here, because the stackmap doesn't 649 // clobber anything. 650 651 // Add scratch registers as implicit def and early clobber. 652 CallingConv::ID CC = I->getCallingConv(); 653 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 654 for (unsigned i = 0; ScratchRegs[i]; ++i) 655 Ops.push_back(MachineOperand::CreateReg( 656 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 657 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 658 659 // Issue CALLSEQ_START 660 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 661 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) 662 .addImm(0); 663 664 // Issue STACKMAP. 665 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 666 TII.get(TargetOpcode::STACKMAP)); 667 for (auto const &MO : Ops) 668 MIB.addOperand(MO); 669 670 // Issue CALLSEQ_END 671 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 672 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 673 .addImm(0).addImm(0); 674 675 // Inform the Frame Information that we have a stackmap in this function. 676 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 677 678 return true; 679 } 680 681 /// \brief Lower an argument list according to the target calling convention. 682 /// 683 /// This is a helper for lowering intrinsics that follow a target calling 684 /// convention or require stack pointer adjustment. Only a subset of the 685 /// intrinsic's operands need to participate in the calling convention. 686 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 687 unsigned NumArgs, const Value *Callee, 688 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 689 ArgListTy Args; 690 Args.reserve(NumArgs); 691 692 // Populate the argument list. 693 // Attributes for args start at offset 1, after the return attribute. 694 ImmutableCallSite CS(CI); 695 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 696 ArgI != ArgE; ++ArgI) { 697 Value *V = CI->getOperand(ArgI); 698 699 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 700 701 ArgListEntry Entry; 702 Entry.Val = V; 703 Entry.Ty = V->getType(); 704 Entry.setAttributes(&CS, AttrI); 705 Args.push_back(Entry); 706 } 707 708 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 709 : CI->getType(); 710 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 711 712 return LowerCallTo(CLI); 713 } 714 715 bool FastISel::SelectPatchpoint(const CallInst *I) { 716 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 717 // i32 <numBytes>, 718 // i8* <target>, 719 // i32 <numArgs>, 720 // [Args...], 721 // [live variables...]) 722 CallingConv::ID CC = I->getCallingConv(); 723 bool IsAnyRegCC = CC == CallingConv::AnyReg; 724 bool HasDef = !I->getType()->isVoidTy(); 725 Value *Callee = I->getOperand(PatchPointOpers::TargetPos); 726 727 // Get the real number of arguments participating in the call <numArgs> 728 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 729 "Expected a constant integer."); 730 const auto *NumArgsVal = 731 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 732 unsigned NumArgs = NumArgsVal->getZExtValue(); 733 734 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 735 // This includes all meta-operands up to but not including CC. 736 unsigned NumMetaOpers = PatchPointOpers::CCPos; 737 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 738 "Not enough arguments provided to the patchpoint intrinsic"); 739 740 // For AnyRegCC the arguments are lowered later on manually. 741 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 742 CallLoweringInfo CLI; 743 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 744 return false; 745 746 assert(CLI.Call && "No call instruction specified."); 747 748 SmallVector<MachineOperand, 32> Ops; 749 750 // Add an explicit result reg if we use the anyreg calling convention. 751 if (IsAnyRegCC && HasDef) { 752 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 753 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 754 CLI.NumResultRegs = 1; 755 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 756 } 757 758 // Add the <id> and <numBytes> constants. 759 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 760 "Expected a constant integer."); 761 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 762 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 763 764 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 765 "Expected a constant integer."); 766 const auto *NumBytes = 767 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 768 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 769 770 // Assume that the callee is a constant address or null pointer. 771 // FIXME: handle function symbols in the future. 772 unsigned CalleeAddr; 773 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) 774 CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 775 else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 776 if (C->getOpcode() == Instruction::IntToPtr) 777 CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 778 else 779 llvm_unreachable("Unsupported ConstantExpr."); 780 } else if (isa<ConstantPointerNull>(Callee)) 781 CalleeAddr = 0; 782 else 783 llvm_unreachable("Unsupported callee address."); 784 785 Ops.push_back(MachineOperand::CreateImm(CalleeAddr)); 786 787 // Adjust <numArgs> to account for any arguments that have been passed on 788 // the stack instead. 789 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 790 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 791 792 // Add the calling convention 793 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 794 795 // Add the arguments we omitted previously. The register allocator should 796 // place these in any free register. 797 if (IsAnyRegCC) { 798 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 799 unsigned Reg = getRegForValue(I->getArgOperand(i)); 800 if (!Reg) 801 return false; 802 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 803 } 804 } 805 806 // Push the arguments from the call instruction. 807 for (auto Reg : CLI.OutRegs) 808 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 809 810 // Push live variables for the stack map. 811 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 812 return false; 813 814 // Push the register mask info. 815 Ops.push_back(MachineOperand::CreateRegMask(TRI.getCallPreservedMask(CC))); 816 817 // Add scratch registers as implicit def and early clobber. 818 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 819 for (unsigned i = 0; ScratchRegs[i]; ++i) 820 Ops.push_back(MachineOperand::CreateReg( 821 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 822 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 823 824 // Add implicit defs (return values). 825 for (auto Reg : CLI.InRegs) 826 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 827 /*IsImpl=*/true)); 828 829 // Insert the patchpoint instruction before the call generated by the target. 830 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 831 TII.get(TargetOpcode::PATCHPOINT)); 832 833 for (auto &MO : Ops) 834 MIB.addOperand(MO); 835 836 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 837 838 // Delete the original call instruction. 839 CLI.Call->eraseFromParent(); 840 841 // Inform the Frame Information that we have a patchpoint in this function. 842 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 843 844 if (CLI.NumResultRegs) 845 UpdateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 846 return true; 847 } 848 849 /// Returns an AttributeSet representing the attributes applied to the return 850 /// value of the given call. 851 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 852 SmallVector<Attribute::AttrKind, 2> Attrs; 853 if (CLI.RetSExt) 854 Attrs.push_back(Attribute::SExt); 855 if (CLI.RetZExt) 856 Attrs.push_back(Attribute::ZExt); 857 if (CLI.IsInReg) 858 Attrs.push_back(Attribute::InReg); 859 860 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 861 Attrs); 862 } 863 864 bool FastISel::LowerCallTo(const CallInst *CI, const char *SymName, 865 unsigned NumArgs) { 866 ImmutableCallSite CS(CI); 867 868 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 869 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 870 Type *RetTy = FTy->getReturnType(); 871 872 ArgListTy Args; 873 Args.reserve(NumArgs); 874 875 // Populate the argument list. 876 // Attributes for args start at offset 1, after the return attribute. 877 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 878 Value *V = CI->getOperand(ArgI); 879 880 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 881 882 ArgListEntry Entry; 883 Entry.Val = V; 884 Entry.Ty = V->getType(); 885 Entry.setAttributes(&CS, ArgI + 1); 886 Args.push_back(Entry); 887 } 888 889 CallLoweringInfo CLI; 890 CLI.setCallee(RetTy, FTy, SymName, std::move(Args), CS, NumArgs); 891 892 return LowerCallTo(CLI); 893 } 894 895 bool FastISel::LowerCallTo(CallLoweringInfo &CLI) { 896 // Handle the incoming return values from the call. 897 CLI.clearIns(); 898 SmallVector<EVT, 4> RetTys; 899 ComputeValueVTs(TLI, CLI.RetTy, RetTys); 900 901 SmallVector<ISD::OutputArg, 4> Outs; 902 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI); 903 904 bool CanLowerReturn = TLI.CanLowerReturn(CLI.CallConv, *FuncInfo.MF, 905 CLI.IsVarArg, Outs, 906 CLI.RetTy->getContext()); 907 908 // FIXME: sret demotion isn't supported yet - bail out. 909 if (!CanLowerReturn) 910 return false; 911 912 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 913 EVT VT = RetTys[I]; 914 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 915 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 916 for (unsigned i = 0; i != NumRegs; ++i) { 917 ISD::InputArg MyFlags; 918 MyFlags.VT = RegisterVT; 919 MyFlags.ArgVT = VT; 920 MyFlags.Used = CLI.IsReturnValueUsed; 921 if (CLI.RetSExt) 922 MyFlags.Flags.setSExt(); 923 if (CLI.RetZExt) 924 MyFlags.Flags.setZExt(); 925 if (CLI.IsInReg) 926 MyFlags.Flags.setInReg(); 927 CLI.Ins.push_back(MyFlags); 928 } 929 } 930 931 // Handle all of the outgoing arguments. 932 CLI.clearOuts(); 933 for (auto &Arg : CLI.getArgs()) { 934 Type *FinalType = Arg.Ty; 935 if (Arg.isByVal) 936 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 937 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 938 FinalType, CLI.CallConv, CLI.IsVarArg); 939 940 ISD::ArgFlagsTy Flags; 941 if (Arg.isZExt) 942 Flags.setZExt(); 943 if (Arg.isSExt) 944 Flags.setSExt(); 945 if (Arg.isInReg) 946 Flags.setInReg(); 947 if (Arg.isSRet) 948 Flags.setSRet(); 949 if (Arg.isByVal) 950 Flags.setByVal(); 951 if (Arg.isInAlloca) { 952 Flags.setInAlloca(); 953 // Set the byval flag for CCAssignFn callbacks that don't know about 954 // inalloca. This way we can know how many bytes we should've allocated 955 // and how many bytes a callee cleanup function will pop. If we port 956 // inalloca to more targets, we'll have to add custom inalloca handling in 957 // the various CC lowering callbacks. 958 Flags.setByVal(); 959 } 960 if (Arg.isByVal || Arg.isInAlloca) { 961 PointerType *Ty = cast<PointerType>(Arg.Ty); 962 Type *ElementTy = Ty->getElementType(); 963 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 964 // For ByVal, alignment should come from FE. BE will guess if this info is 965 // not there, but there are cases it cannot get right. 966 unsigned FrameAlign = Arg.Alignment; 967 if (!FrameAlign) 968 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 969 Flags.setByValSize(FrameSize); 970 Flags.setByValAlign(FrameAlign); 971 } 972 if (Arg.isNest) 973 Flags.setNest(); 974 if (NeedsRegBlock) 975 Flags.setInConsecutiveRegs(); 976 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 977 Flags.setOrigAlign(OriginalAlignment); 978 979 CLI.OutVals.push_back(Arg.Val); 980 CLI.OutFlags.push_back(Flags); 981 } 982 983 if (!FastLowerCall(CLI)) 984 return false; 985 986 // Set all unused physreg defs as dead. 987 assert(CLI.Call && "No call instruction specified."); 988 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 989 990 if (CLI.NumResultRegs && CLI.CS) 991 UpdateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 992 993 return true; 994 } 995 996 bool FastISel::LowerCall(const CallInst *CI) { 997 ImmutableCallSite CS(CI); 998 999 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 1000 FunctionType *FuncTy = cast<FunctionType>(PT->getElementType()); 1001 Type *RetTy = FuncTy->getReturnType(); 1002 1003 ArgListTy Args; 1004 ArgListEntry Entry; 1005 Args.reserve(CS.arg_size()); 1006 1007 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1008 i != e; ++i) { 1009 Value *V = *i; 1010 1011 // Skip empty types 1012 if (V->getType()->isEmptyTy()) 1013 continue; 1014 1015 Entry.Val = V; 1016 Entry.Ty = V->getType(); 1017 1018 // Skip the first return-type Attribute to get to params. 1019 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 1020 Args.push_back(Entry); 1021 } 1022 1023 // Check if target-independent constraints permit a tail call here. 1024 // Target-dependent constraints are checked within FastLowerCall. 1025 bool IsTailCall = CI->isTailCall(); 1026 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1027 IsTailCall = false; 1028 1029 CallLoweringInfo CLI; 1030 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1031 .setTailCall(IsTailCall); 1032 1033 return LowerCallTo(CLI); 1034 } 1035 1036 bool FastISel::SelectCall(const User *I) { 1037 const CallInst *Call = cast<CallInst>(I); 1038 1039 // Handle simple inline asms. 1040 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1041 // Don't attempt to handle constraints. 1042 if (!IA->getConstraintString().empty()) 1043 return false; 1044 1045 unsigned ExtraInfo = 0; 1046 if (IA->hasSideEffects()) 1047 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1048 if (IA->isAlignStack()) 1049 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1050 1051 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1052 TII.get(TargetOpcode::INLINEASM)) 1053 .addExternalSymbol(IA->getAsmString().c_str()) 1054 .addImm(ExtraInfo); 1055 return true; 1056 } 1057 1058 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1059 ComputeUsesVAFloatArgument(*Call, &MMI); 1060 1061 // Handle intrinsic function calls. 1062 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1063 return SelectIntrinsicCall(II); 1064 1065 // Usually, it does not make sense to initialize a value, 1066 // make an unrelated function call and use the value, because 1067 // it tends to be spilled on the stack. So, we move the pointer 1068 // to the last local value to the beginning of the block, so that 1069 // all the values which have already been materialized, 1070 // appear after the call. It also makes sense to skip intrinsics 1071 // since they tend to be inlined. 1072 flushLocalValueMap(); 1073 1074 return LowerCall(Call); 1075 } 1076 1077 bool FastISel::SelectIntrinsicCall(const IntrinsicInst *II) { 1078 switch (II->getIntrinsicID()) { 1079 default: break; 1080 // At -O0 we don't care about the lifetime intrinsics. 1081 case Intrinsic::lifetime_start: 1082 case Intrinsic::lifetime_end: 1083 // The donothing intrinsic does, well, nothing. 1084 case Intrinsic::donothing: 1085 return true; 1086 case Intrinsic::dbg_declare: { 1087 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1088 DIVariable DIVar(DI->getVariable()); 1089 assert((!DIVar || DIVar.isVariable()) && 1090 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1091 if (!DIVar || !FuncInfo.MF->getMMI().hasDebugInfo()) { 1092 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1093 return true; 1094 } 1095 1096 const Value *Address = DI->getAddress(); 1097 if (!Address || isa<UndefValue>(Address)) { 1098 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1099 return true; 1100 } 1101 1102 unsigned Offset = 0; 1103 Optional<MachineOperand> Op; 1104 if (const Argument *Arg = dyn_cast<Argument>(Address)) 1105 // Some arguments' frame index is recorded during argument lowering. 1106 Offset = FuncInfo.getArgumentFrameIndex(Arg); 1107 if (Offset) 1108 Op = MachineOperand::CreateFI(Offset); 1109 if (!Op) 1110 if (unsigned Reg = lookUpRegForValue(Address)) 1111 Op = MachineOperand::CreateReg(Reg, false); 1112 1113 // If we have a VLA that has a "use" in a metadata node that's then used 1114 // here but it has no other uses, then we have a problem. E.g., 1115 // 1116 // int foo (const int *x) { 1117 // char a[*x]; 1118 // return 0; 1119 // } 1120 // 1121 // If we assign 'a' a vreg and fast isel later on has to use the selection 1122 // DAG isel, it will want to copy the value to the vreg. However, there are 1123 // no uses, which goes counter to what selection DAG isel expects. 1124 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1125 (!isa<AllocaInst>(Address) || 1126 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1127 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1128 false); 1129 1130 if (Op) { 1131 if (Op->isReg()) { 1132 Op->setIsDebug(true); 1133 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1134 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0, 1135 DI->getVariable()); 1136 } else 1137 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1138 TII.get(TargetOpcode::DBG_VALUE)) 1139 .addOperand(*Op) 1140 .addImm(0) 1141 .addMetadata(DI->getVariable()); 1142 } else { 1143 // We can't yet handle anything else here because it would require 1144 // generating code, thus altering codegen because of debug info. 1145 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1146 } 1147 return true; 1148 } 1149 case Intrinsic::dbg_value: { 1150 // This form of DBG_VALUE is target-independent. 1151 const DbgValueInst *DI = cast<DbgValueInst>(II); 1152 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1153 const Value *V = DI->getValue(); 1154 if (!V) { 1155 // Currently the optimizer can produce this; insert an undef to 1156 // help debugging. Probably the optimizer should not do this. 1157 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1158 .addReg(0U).addImm(DI->getOffset()) 1159 .addMetadata(DI->getVariable()); 1160 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1161 if (CI->getBitWidth() > 64) 1162 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1163 .addCImm(CI).addImm(DI->getOffset()) 1164 .addMetadata(DI->getVariable()); 1165 else 1166 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1167 .addImm(CI->getZExtValue()).addImm(DI->getOffset()) 1168 .addMetadata(DI->getVariable()); 1169 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 1170 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1171 .addFPImm(CF).addImm(DI->getOffset()) 1172 .addMetadata(DI->getVariable()); 1173 } else if (unsigned Reg = lookUpRegForValue(V)) { 1174 // FIXME: This does not handle register-indirect values at offset 0. 1175 bool IsIndirect = DI->getOffset() != 0; 1176 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, 1177 Reg, DI->getOffset(), DI->getVariable()); 1178 } else { 1179 // We can't yet handle anything else here because it would require 1180 // generating code, thus altering codegen because of debug info. 1181 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1182 } 1183 return true; 1184 } 1185 case Intrinsic::objectsize: { 1186 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1187 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1188 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1189 unsigned ResultReg = getRegForValue(ResCI); 1190 if (ResultReg == 0) 1191 return false; 1192 UpdateValueMap(II, ResultReg); 1193 return true; 1194 } 1195 case Intrinsic::expect: { 1196 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1197 if (ResultReg == 0) 1198 return false; 1199 UpdateValueMap(II, ResultReg); 1200 return true; 1201 } 1202 case Intrinsic::experimental_stackmap: 1203 return SelectStackmap(II); 1204 case Intrinsic::experimental_patchpoint_void: 1205 case Intrinsic::experimental_patchpoint_i64: 1206 return SelectPatchpoint(II); 1207 } 1208 1209 return FastLowerIntrinsicCall(II); 1210 } 1211 1212 bool FastISel::SelectCast(const User *I, unsigned Opcode) { 1213 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1214 EVT DstVT = TLI.getValueType(I->getType()); 1215 1216 if (SrcVT == MVT::Other || !SrcVT.isSimple() || 1217 DstVT == MVT::Other || !DstVT.isSimple()) 1218 // Unhandled type. Halt "fast" selection and bail. 1219 return false; 1220 1221 // Check if the destination type is legal. 1222 if (!TLI.isTypeLegal(DstVT)) 1223 return false; 1224 1225 // Check if the source operand is legal. 1226 if (!TLI.isTypeLegal(SrcVT)) 1227 return false; 1228 1229 unsigned InputReg = getRegForValue(I->getOperand(0)); 1230 if (!InputReg) 1231 // Unhandled operand. Halt "fast" selection and bail. 1232 return false; 1233 1234 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1235 1236 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), 1237 DstVT.getSimpleVT(), 1238 Opcode, 1239 InputReg, InputRegIsKill); 1240 if (!ResultReg) 1241 return false; 1242 1243 UpdateValueMap(I, ResultReg); 1244 return true; 1245 } 1246 1247 bool FastISel::SelectBitCast(const User *I) { 1248 // If the bitcast doesn't change the type, just use the operand value. 1249 if (I->getType() == I->getOperand(0)->getType()) { 1250 unsigned Reg = getRegForValue(I->getOperand(0)); 1251 if (Reg == 0) 1252 return false; 1253 UpdateValueMap(I, Reg); 1254 return true; 1255 } 1256 1257 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1258 EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType()); 1259 EVT DstEVT = TLI.getValueType(I->getType()); 1260 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1261 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1262 // Unhandled type. Halt "fast" selection and bail. 1263 return false; 1264 1265 MVT SrcVT = SrcEVT.getSimpleVT(); 1266 MVT DstVT = DstEVT.getSimpleVT(); 1267 unsigned Op0 = getRegForValue(I->getOperand(0)); 1268 if (Op0 == 0) 1269 // Unhandled operand. Halt "fast" selection and bail. 1270 return false; 1271 1272 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1273 1274 // First, try to perform the bitcast by inserting a reg-reg copy. 1275 unsigned ResultReg = 0; 1276 if (SrcVT == DstVT) { 1277 const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); 1278 const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); 1279 // Don't attempt a cross-class copy. It will likely fail. 1280 if (SrcClass == DstClass) { 1281 ResultReg = createResultReg(DstClass); 1282 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1283 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1284 } 1285 } 1286 1287 // If the reg-reg copy failed, select a BITCAST opcode. 1288 if (!ResultReg) 1289 ResultReg = FastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1290 1291 if (!ResultReg) 1292 return false; 1293 1294 UpdateValueMap(I, ResultReg); 1295 return true; 1296 } 1297 1298 bool 1299 FastISel::SelectInstruction(const Instruction *I) { 1300 // Just before the terminator instruction, insert instructions to 1301 // feed PHI nodes in successor blocks. 1302 if (isa<TerminatorInst>(I)) 1303 if (!HandlePHINodesInSuccessorBlocks(I->getParent())) 1304 return false; 1305 1306 DbgLoc = I->getDebugLoc(); 1307 1308 MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt; 1309 1310 if (const CallInst *Call = dyn_cast<CallInst>(I)) { 1311 const Function *F = Call->getCalledFunction(); 1312 LibFunc::Func Func; 1313 1314 // As a special case, don't handle calls to builtin library functions that 1315 // may be translated directly to target instructions. 1316 if (F && !F->hasLocalLinkage() && F->hasName() && 1317 LibInfo->getLibFunc(F->getName(), Func) && 1318 LibInfo->hasOptimizedCodeGen(Func)) 1319 return false; 1320 1321 // Don't handle Intrinsic::trap if a trap funciton is specified. 1322 if (F && F->getIntrinsicID() == Intrinsic::trap && 1323 !TM.Options.getTrapFunctionName().empty()) 1324 return false; 1325 } 1326 1327 // First, try doing target-independent selection. 1328 if (SelectOperator(I, I->getOpcode())) { 1329 ++NumFastIselSuccessIndependent; 1330 DbgLoc = DebugLoc(); 1331 return true; 1332 } 1333 // Remove dead code. However, ignore call instructions since we've flushed 1334 // the local value map and recomputed the insert point. 1335 if (!isa<CallInst>(I)) { 1336 recomputeInsertPt(); 1337 if (SavedInsertPt != FuncInfo.InsertPt) 1338 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1339 } 1340 1341 // Next, try calling the target to attempt to handle the instruction. 1342 SavedInsertPt = FuncInfo.InsertPt; 1343 if (TargetSelectInstruction(I)) { 1344 ++NumFastIselSuccessTarget; 1345 DbgLoc = DebugLoc(); 1346 return true; 1347 } 1348 // Check for dead code and remove as necessary. 1349 recomputeInsertPt(); 1350 if (SavedInsertPt != FuncInfo.InsertPt) 1351 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1352 1353 DbgLoc = DebugLoc(); 1354 return false; 1355 } 1356 1357 /// FastEmitBranch - Emit an unconditional branch to the given block, 1358 /// unless it is the immediate (fall-through) successor, and update 1359 /// the CFG. 1360 void 1361 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) { 1362 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1363 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1364 // For more accurate line information if this is the only instruction 1365 // in the block then emit it, otherwise we have the unconditional 1366 // fall-through case, which needs no instructions. 1367 } else { 1368 // The unconditional branch case. 1369 TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr, 1370 SmallVector<MachineOperand, 0>(), DbgLoc); 1371 } 1372 uint32_t BranchWeight = 0; 1373 if (FuncInfo.BPI) 1374 BranchWeight = FuncInfo.BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(), 1375 MSucc->getBasicBlock()); 1376 FuncInfo.MBB->addSuccessor(MSucc, BranchWeight); 1377 } 1378 1379 /// SelectFNeg - Emit an FNeg operation. 1380 /// 1381 bool 1382 FastISel::SelectFNeg(const User *I) { 1383 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1384 if (OpReg == 0) return false; 1385 1386 bool OpRegIsKill = hasTrivialKill(I); 1387 1388 // If the target has ISD::FNEG, use it. 1389 EVT VT = TLI.getValueType(I->getType()); 1390 unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), 1391 ISD::FNEG, OpReg, OpRegIsKill); 1392 if (ResultReg != 0) { 1393 UpdateValueMap(I, ResultReg); 1394 return true; 1395 } 1396 1397 // Bitcast the value to integer, twiddle the sign bit with xor, 1398 // and then bitcast it back to floating-point. 1399 if (VT.getSizeInBits() > 64) return false; 1400 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1401 if (!TLI.isTypeLegal(IntVT)) 1402 return false; 1403 1404 unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1405 ISD::BITCAST, OpReg, OpRegIsKill); 1406 if (IntReg == 0) 1407 return false; 1408 1409 unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, 1410 IntReg, /*Kill=*/true, 1411 UINT64_C(1) << (VT.getSizeInBits()-1), 1412 IntVT.getSimpleVT()); 1413 if (IntResultReg == 0) 1414 return false; 1415 1416 ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), 1417 ISD::BITCAST, IntResultReg, /*Kill=*/true); 1418 if (ResultReg == 0) 1419 return false; 1420 1421 UpdateValueMap(I, ResultReg); 1422 return true; 1423 } 1424 1425 bool 1426 FastISel::SelectExtractValue(const User *U) { 1427 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1428 if (!EVI) 1429 return false; 1430 1431 // Make sure we only try to handle extracts with a legal result. But also 1432 // allow i1 because it's easy. 1433 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true); 1434 if (!RealVT.isSimple()) 1435 return false; 1436 MVT VT = RealVT.getSimpleVT(); 1437 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1438 return false; 1439 1440 const Value *Op0 = EVI->getOperand(0); 1441 Type *AggTy = Op0->getType(); 1442 1443 // Get the base result register. 1444 unsigned ResultReg; 1445 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1446 if (I != FuncInfo.ValueMap.end()) 1447 ResultReg = I->second; 1448 else if (isa<Instruction>(Op0)) 1449 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1450 else 1451 return false; // fast-isel can't handle aggregate constants at the moment 1452 1453 // Get the actual result register, which is an offset from the base register. 1454 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1455 1456 SmallVector<EVT, 4> AggValueVTs; 1457 ComputeValueVTs(TLI, AggTy, AggValueVTs); 1458 1459 for (unsigned i = 0; i < VTIndex; i++) 1460 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1461 1462 UpdateValueMap(EVI, ResultReg); 1463 return true; 1464 } 1465 1466 bool 1467 FastISel::SelectOperator(const User *I, unsigned Opcode) { 1468 switch (Opcode) { 1469 case Instruction::Add: 1470 return SelectBinaryOp(I, ISD::ADD); 1471 case Instruction::FAdd: 1472 return SelectBinaryOp(I, ISD::FADD); 1473 case Instruction::Sub: 1474 return SelectBinaryOp(I, ISD::SUB); 1475 case Instruction::FSub: 1476 // FNeg is currently represented in LLVM IR as a special case of FSub. 1477 if (BinaryOperator::isFNeg(I)) 1478 return SelectFNeg(I); 1479 return SelectBinaryOp(I, ISD::FSUB); 1480 case Instruction::Mul: 1481 return SelectBinaryOp(I, ISD::MUL); 1482 case Instruction::FMul: 1483 return SelectBinaryOp(I, ISD::FMUL); 1484 case Instruction::SDiv: 1485 return SelectBinaryOp(I, ISD::SDIV); 1486 case Instruction::UDiv: 1487 return SelectBinaryOp(I, ISD::UDIV); 1488 case Instruction::FDiv: 1489 return SelectBinaryOp(I, ISD::FDIV); 1490 case Instruction::SRem: 1491 return SelectBinaryOp(I, ISD::SREM); 1492 case Instruction::URem: 1493 return SelectBinaryOp(I, ISD::UREM); 1494 case Instruction::FRem: 1495 return SelectBinaryOp(I, ISD::FREM); 1496 case Instruction::Shl: 1497 return SelectBinaryOp(I, ISD::SHL); 1498 case Instruction::LShr: 1499 return SelectBinaryOp(I, ISD::SRL); 1500 case Instruction::AShr: 1501 return SelectBinaryOp(I, ISD::SRA); 1502 case Instruction::And: 1503 return SelectBinaryOp(I, ISD::AND); 1504 case Instruction::Or: 1505 return SelectBinaryOp(I, ISD::OR); 1506 case Instruction::Xor: 1507 return SelectBinaryOp(I, ISD::XOR); 1508 1509 case Instruction::GetElementPtr: 1510 return SelectGetElementPtr(I); 1511 1512 case Instruction::Br: { 1513 const BranchInst *BI = cast<BranchInst>(I); 1514 1515 if (BI->isUnconditional()) { 1516 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1517 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1518 FastEmitBranch(MSucc, BI->getDebugLoc()); 1519 return true; 1520 } 1521 1522 // Conditional branches are not handed yet. 1523 // Halt "fast" selection and bail. 1524 return false; 1525 } 1526 1527 case Instruction::Unreachable: 1528 if (TM.Options.TrapUnreachable) 1529 return FastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1530 else 1531 return true; 1532 1533 case Instruction::Alloca: 1534 // FunctionLowering has the static-sized case covered. 1535 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1536 return true; 1537 1538 // Dynamic-sized alloca is not handled yet. 1539 return false; 1540 1541 case Instruction::Call: 1542 return SelectCall(I); 1543 1544 case Instruction::BitCast: 1545 return SelectBitCast(I); 1546 1547 case Instruction::FPToSI: 1548 return SelectCast(I, ISD::FP_TO_SINT); 1549 case Instruction::ZExt: 1550 return SelectCast(I, ISD::ZERO_EXTEND); 1551 case Instruction::SExt: 1552 return SelectCast(I, ISD::SIGN_EXTEND); 1553 case Instruction::Trunc: 1554 return SelectCast(I, ISD::TRUNCATE); 1555 case Instruction::SIToFP: 1556 return SelectCast(I, ISD::SINT_TO_FP); 1557 1558 case Instruction::IntToPtr: // Deliberate fall-through. 1559 case Instruction::PtrToInt: { 1560 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1561 EVT DstVT = TLI.getValueType(I->getType()); 1562 if (DstVT.bitsGT(SrcVT)) 1563 return SelectCast(I, ISD::ZERO_EXTEND); 1564 if (DstVT.bitsLT(SrcVT)) 1565 return SelectCast(I, ISD::TRUNCATE); 1566 unsigned Reg = getRegForValue(I->getOperand(0)); 1567 if (Reg == 0) return false; 1568 UpdateValueMap(I, Reg); 1569 return true; 1570 } 1571 1572 case Instruction::ExtractValue: 1573 return SelectExtractValue(I); 1574 1575 case Instruction::PHI: 1576 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1577 1578 default: 1579 // Unhandled instruction. Halt "fast" selection and bail. 1580 return false; 1581 } 1582 } 1583 1584 FastISel::FastISel(FunctionLoweringInfo &funcInfo, 1585 const TargetLibraryInfo *libInfo) 1586 : FuncInfo(funcInfo), 1587 MF(funcInfo.MF), 1588 MRI(FuncInfo.MF->getRegInfo()), 1589 MFI(*FuncInfo.MF->getFrameInfo()), 1590 MCP(*FuncInfo.MF->getConstantPool()), 1591 TM(FuncInfo.MF->getTarget()), 1592 DL(*TM.getDataLayout()), 1593 TII(*TM.getInstrInfo()), 1594 TLI(*TM.getTargetLowering()), 1595 TRI(*TM.getRegisterInfo()), 1596 LibInfo(libInfo) { 1597 } 1598 1599 FastISel::~FastISel() {} 1600 1601 bool FastISel::FastLowerArguments() { 1602 return false; 1603 } 1604 1605 bool FastISel::FastLowerCall(CallLoweringInfo &/*CLI*/) { 1606 return false; 1607 } 1608 1609 bool FastISel::FastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1610 return false; 1611 } 1612 1613 unsigned FastISel::FastEmit_(MVT, MVT, 1614 unsigned) { 1615 return 0; 1616 } 1617 1618 unsigned FastISel::FastEmit_r(MVT, MVT, 1619 unsigned, 1620 unsigned /*Op0*/, bool /*Op0IsKill*/) { 1621 return 0; 1622 } 1623 1624 unsigned FastISel::FastEmit_rr(MVT, MVT, 1625 unsigned, 1626 unsigned /*Op0*/, bool /*Op0IsKill*/, 1627 unsigned /*Op1*/, bool /*Op1IsKill*/) { 1628 return 0; 1629 } 1630 1631 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1632 return 0; 1633 } 1634 1635 unsigned FastISel::FastEmit_f(MVT, MVT, 1636 unsigned, const ConstantFP * /*FPImm*/) { 1637 return 0; 1638 } 1639 1640 unsigned FastISel::FastEmit_ri(MVT, MVT, 1641 unsigned, 1642 unsigned /*Op0*/, bool /*Op0IsKill*/, 1643 uint64_t /*Imm*/) { 1644 return 0; 1645 } 1646 1647 unsigned FastISel::FastEmit_rf(MVT, MVT, 1648 unsigned, 1649 unsigned /*Op0*/, bool /*Op0IsKill*/, 1650 const ConstantFP * /*FPImm*/) { 1651 return 0; 1652 } 1653 1654 unsigned FastISel::FastEmit_rri(MVT, MVT, 1655 unsigned, 1656 unsigned /*Op0*/, bool /*Op0IsKill*/, 1657 unsigned /*Op1*/, bool /*Op1IsKill*/, 1658 uint64_t /*Imm*/) { 1659 return 0; 1660 } 1661 1662 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries 1663 /// to emit an instruction with an immediate operand using FastEmit_ri. 1664 /// If that fails, it materializes the immediate into a register and try 1665 /// FastEmit_rr instead. 1666 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode, 1667 unsigned Op0, bool Op0IsKill, 1668 uint64_t Imm, MVT ImmType) { 1669 // If this is a multiply by a power of two, emit this as a shift left. 1670 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1671 Opcode = ISD::SHL; 1672 Imm = Log2_64(Imm); 1673 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1674 // div x, 8 -> srl x, 3 1675 Opcode = ISD::SRL; 1676 Imm = Log2_64(Imm); 1677 } 1678 1679 // Horrible hack (to be removed), check to make sure shift amounts are 1680 // in-range. 1681 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1682 Imm >= VT.getSizeInBits()) 1683 return 0; 1684 1685 // First check if immediate type is legal. If not, we can't use the ri form. 1686 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1687 if (ResultReg != 0) 1688 return ResultReg; 1689 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1690 if (MaterialReg == 0) { 1691 // This is a bit ugly/slow, but failing here means falling out of 1692 // fast-isel, which would be very slow. 1693 IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(), 1694 VT.getSizeInBits()); 1695 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1696 assert (MaterialReg != 0 && "Unable to materialize imm."); 1697 if (MaterialReg == 0) return 0; 1698 } 1699 return FastEmit_rr(VT, VT, Opcode, 1700 Op0, Op0IsKill, 1701 MaterialReg, /*Kill=*/true); 1702 } 1703 1704 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { 1705 return MRI.createVirtualRegister(RC); 1706 } 1707 1708 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, 1709 unsigned Op, unsigned OpNum) { 1710 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1711 const TargetRegisterClass *RegClass = 1712 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1713 if (!MRI.constrainRegClass(Op, RegClass)) { 1714 // If it's not legal to COPY between the register classes, something 1715 // has gone very wrong before we got here. 1716 unsigned NewOp = createResultReg(RegClass); 1717 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1718 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1719 return NewOp; 1720 } 1721 } 1722 return Op; 1723 } 1724 1725 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, 1726 const TargetRegisterClass* RC) { 1727 unsigned ResultReg = createResultReg(RC); 1728 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1729 1730 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1731 return ResultReg; 1732 } 1733 1734 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, 1735 const TargetRegisterClass *RC, 1736 unsigned Op0, bool Op0IsKill) { 1737 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1738 1739 unsigned ResultReg = createResultReg(RC); 1740 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1741 1742 if (II.getNumDefs() >= 1) 1743 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1744 .addReg(Op0, Op0IsKill * RegState::Kill); 1745 else { 1746 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1747 .addReg(Op0, Op0IsKill * RegState::Kill); 1748 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1749 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1750 } 1751 1752 return ResultReg; 1753 } 1754 1755 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 1756 const TargetRegisterClass *RC, 1757 unsigned Op0, bool Op0IsKill, 1758 unsigned Op1, bool Op1IsKill) { 1759 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1760 1761 unsigned ResultReg = createResultReg(RC); 1762 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1763 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1764 1765 if (II.getNumDefs() >= 1) 1766 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1767 .addReg(Op0, Op0IsKill * RegState::Kill) 1768 .addReg(Op1, Op1IsKill * RegState::Kill); 1769 else { 1770 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1771 .addReg(Op0, Op0IsKill * RegState::Kill) 1772 .addReg(Op1, Op1IsKill * RegState::Kill); 1773 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1774 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1775 } 1776 return ResultReg; 1777 } 1778 1779 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 1780 const TargetRegisterClass *RC, 1781 unsigned Op0, bool Op0IsKill, 1782 unsigned Op1, bool Op1IsKill, 1783 unsigned Op2, bool Op2IsKill) { 1784 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1785 1786 unsigned ResultReg = createResultReg(RC); 1787 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1788 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1789 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1790 1791 if (II.getNumDefs() >= 1) 1792 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1793 .addReg(Op0, Op0IsKill * RegState::Kill) 1794 .addReg(Op1, Op1IsKill * RegState::Kill) 1795 .addReg(Op2, Op2IsKill * RegState::Kill); 1796 else { 1797 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1798 .addReg(Op0, Op0IsKill * RegState::Kill) 1799 .addReg(Op1, Op1IsKill * RegState::Kill) 1800 .addReg(Op2, Op2IsKill * RegState::Kill); 1801 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1802 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1803 } 1804 return ResultReg; 1805 } 1806 1807 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 1808 const TargetRegisterClass *RC, 1809 unsigned Op0, bool Op0IsKill, 1810 uint64_t Imm) { 1811 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1812 1813 unsigned ResultReg = createResultReg(RC); 1814 RC = TII.getRegClass(II, II.getNumDefs(), &TRI, *FuncInfo.MF); 1815 MRI.constrainRegClass(Op0, RC); 1816 1817 if (II.getNumDefs() >= 1) 1818 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1819 .addReg(Op0, Op0IsKill * RegState::Kill) 1820 .addImm(Imm); 1821 else { 1822 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1823 .addReg(Op0, Op0IsKill * RegState::Kill) 1824 .addImm(Imm); 1825 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1826 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1827 } 1828 return ResultReg; 1829 } 1830 1831 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode, 1832 const TargetRegisterClass *RC, 1833 unsigned Op0, bool Op0IsKill, 1834 uint64_t Imm1, uint64_t Imm2) { 1835 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1836 1837 unsigned ResultReg = createResultReg(RC); 1838 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1839 1840 if (II.getNumDefs() >= 1) 1841 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1842 .addReg(Op0, Op0IsKill * RegState::Kill) 1843 .addImm(Imm1) 1844 .addImm(Imm2); 1845 else { 1846 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1847 .addReg(Op0, Op0IsKill * RegState::Kill) 1848 .addImm(Imm1) 1849 .addImm(Imm2); 1850 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1851 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1852 } 1853 return ResultReg; 1854 } 1855 1856 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 1857 const TargetRegisterClass *RC, 1858 unsigned Op0, bool Op0IsKill, 1859 const ConstantFP *FPImm) { 1860 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1861 1862 unsigned ResultReg = createResultReg(RC); 1863 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1864 1865 if (II.getNumDefs() >= 1) 1866 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1867 .addReg(Op0, Op0IsKill * RegState::Kill) 1868 .addFPImm(FPImm); 1869 else { 1870 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1871 .addReg(Op0, Op0IsKill * RegState::Kill) 1872 .addFPImm(FPImm); 1873 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1874 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1875 } 1876 return ResultReg; 1877 } 1878 1879 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 1880 const TargetRegisterClass *RC, 1881 unsigned Op0, bool Op0IsKill, 1882 unsigned Op1, bool Op1IsKill, 1883 uint64_t Imm) { 1884 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1885 1886 unsigned ResultReg = createResultReg(RC); 1887 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1888 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1889 1890 if (II.getNumDefs() >= 1) 1891 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1892 .addReg(Op0, Op0IsKill * RegState::Kill) 1893 .addReg(Op1, Op1IsKill * RegState::Kill) 1894 .addImm(Imm); 1895 else { 1896 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1897 .addReg(Op0, Op0IsKill * RegState::Kill) 1898 .addReg(Op1, Op1IsKill * RegState::Kill) 1899 .addImm(Imm); 1900 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1901 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1902 } 1903 return ResultReg; 1904 } 1905 1906 unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode, 1907 const TargetRegisterClass *RC, 1908 unsigned Op0, bool Op0IsKill, 1909 unsigned Op1, bool Op1IsKill, 1910 uint64_t Imm1, uint64_t Imm2) { 1911 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1912 1913 unsigned ResultReg = createResultReg(RC); 1914 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1915 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1916 1917 if (II.getNumDefs() >= 1) 1918 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1919 .addReg(Op0, Op0IsKill * RegState::Kill) 1920 .addReg(Op1, Op1IsKill * RegState::Kill) 1921 .addImm(Imm1).addImm(Imm2); 1922 else { 1923 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1924 .addReg(Op0, Op0IsKill * RegState::Kill) 1925 .addReg(Op1, Op1IsKill * RegState::Kill) 1926 .addImm(Imm1).addImm(Imm2); 1927 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1928 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1929 } 1930 return ResultReg; 1931 } 1932 1933 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, 1934 const TargetRegisterClass *RC, 1935 uint64_t Imm) { 1936 unsigned ResultReg = createResultReg(RC); 1937 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1938 1939 if (II.getNumDefs() >= 1) 1940 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg).addImm(Imm); 1941 else { 1942 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 1943 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1944 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1945 } 1946 return ResultReg; 1947 } 1948 1949 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 1950 const TargetRegisterClass *RC, 1951 uint64_t Imm1, uint64_t Imm2) { 1952 unsigned ResultReg = createResultReg(RC); 1953 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1954 1955 if (II.getNumDefs() >= 1) 1956 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1957 .addImm(Imm1).addImm(Imm2); 1958 else { 1959 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1).addImm(Imm2); 1960 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1961 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1962 } 1963 return ResultReg; 1964 } 1965 1966 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT, 1967 unsigned Op0, bool Op0IsKill, 1968 uint32_t Idx) { 1969 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1970 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1971 "Cannot yet extract from physregs"); 1972 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 1973 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 1974 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 1975 DbgLoc, TII.get(TargetOpcode::COPY), ResultReg) 1976 .addReg(Op0, getKillRegState(Op0IsKill), Idx); 1977 return ResultReg; 1978 } 1979 1980 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op 1981 /// with all but the least significant bit set to zero. 1982 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 1983 return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 1984 } 1985 1986 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 1987 /// Emit code to ensure constants are copied into registers when needed. 1988 /// Remember the virtual registers that need to be added to the Machine PHI 1989 /// nodes as input. We cannot just directly add them, because expansion 1990 /// might result in multiple MBB's for one BB. As such, the start of the 1991 /// BB might correspond to a different MBB than the end. 1992 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 1993 const TerminatorInst *TI = LLVMBB->getTerminator(); 1994 1995 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 1996 unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 1997 1998 // Check successor nodes' PHI nodes that expect a constant to be available 1999 // from this block. 2000 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2001 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2002 if (!isa<PHINode>(SuccBB->begin())) continue; 2003 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2004 2005 // If this terminator has multiple identical successors (common for 2006 // switches), only handle each succ once. 2007 if (!SuccsHandled.insert(SuccMBB)) continue; 2008 2009 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2010 2011 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2012 // nodes and Machine PHI nodes, but the incoming operands have not been 2013 // emitted yet. 2014 for (BasicBlock::const_iterator I = SuccBB->begin(); 2015 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2016 2017 // Ignore dead phi's. 2018 if (PN->use_empty()) continue; 2019 2020 // Only handle legal types. Two interesting things to note here. First, 2021 // by bailing out early, we may leave behind some dead instructions, 2022 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2023 // own moves. Second, this check is necessary because FastISel doesn't 2024 // use CreateRegs to create registers, so it always creates 2025 // exactly one register for each non-void instruction. 2026 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 2027 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2028 // Handle integer promotions, though, because they're common and easy. 2029 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 2030 VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT); 2031 else { 2032 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 2033 return false; 2034 } 2035 } 2036 2037 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 2038 2039 // Set the DebugLoc for the copy. Prefer the location of the operand 2040 // if there is one; use the location of the PHI otherwise. 2041 DbgLoc = PN->getDebugLoc(); 2042 if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp)) 2043 DbgLoc = Inst->getDebugLoc(); 2044 2045 unsigned Reg = getRegForValue(PHIOp); 2046 if (Reg == 0) { 2047 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 2048 return false; 2049 } 2050 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 2051 DbgLoc = DebugLoc(); 2052 } 2053 } 2054 2055 return true; 2056 } 2057 2058 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2059 assert(LI->hasOneUse() && 2060 "tryToFoldLoad expected a LoadInst with a single use"); 2061 // We know that the load has a single use, but don't know what it is. If it 2062 // isn't one of the folded instructions, then we can't succeed here. Handle 2063 // this by scanning the single-use users of the load until we get to FoldInst. 2064 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2065 2066 const Instruction *TheUser = LI->user_back(); 2067 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2068 // Stay in the right block. 2069 TheUser->getParent() == FoldInst->getParent() && 2070 --MaxUsers) { // Don't scan too far. 2071 // If there are multiple or no uses of this instruction, then bail out. 2072 if (!TheUser->hasOneUse()) 2073 return false; 2074 2075 TheUser = TheUser->user_back(); 2076 } 2077 2078 // If we didn't find the fold instruction, then we failed to collapse the 2079 // sequence. 2080 if (TheUser != FoldInst) 2081 return false; 2082 2083 // Don't try to fold volatile loads. Target has to deal with alignment 2084 // constraints. 2085 if (LI->isVolatile()) 2086 return false; 2087 2088 // Figure out which vreg this is going into. If there is no assigned vreg yet 2089 // then there actually was no reference to it. Perhaps the load is referenced 2090 // by a dead instruction. 2091 unsigned LoadReg = getRegForValue(LI); 2092 if (LoadReg == 0) 2093 return false; 2094 2095 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2096 // may mean that the instruction got lowered to multiple MIs, or the use of 2097 // the loaded value ended up being multiple operands of the result. 2098 if (!MRI.hasOneUse(LoadReg)) 2099 return false; 2100 2101 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2102 MachineInstr *User = RI->getParent(); 2103 2104 // Set the insertion point properly. Folding the load can cause generation of 2105 // other random instructions (like sign extends) for addressing modes; make 2106 // sure they get inserted in a logical place before the new instruction. 2107 FuncInfo.InsertPt = User; 2108 FuncInfo.MBB = User->getParent(); 2109 2110 // Ask the target to try folding the load. 2111 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2112 } 2113 2114 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2115 // Must be an add. 2116 if (!isa<AddOperator>(Add)) 2117 return false; 2118 // Type size needs to match. 2119 if (DL.getTypeSizeInBits(GEP->getType()) != 2120 DL.getTypeSizeInBits(Add->getType())) 2121 return false; 2122 // Must be in the same basic block. 2123 if (isa<Instruction>(Add) && 2124 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2125 return false; 2126 // Must have a constant operand. 2127 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2128 } 2129 2130 MachineMemOperand * 2131 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2132 const Value *Ptr; 2133 Type *ValTy; 2134 unsigned Alignment; 2135 unsigned Flags; 2136 bool IsVolatile; 2137 2138 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2139 Alignment = LI->getAlignment(); 2140 IsVolatile = LI->isVolatile(); 2141 Flags = MachineMemOperand::MOLoad; 2142 Ptr = LI->getPointerOperand(); 2143 ValTy = LI->getType(); 2144 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2145 Alignment = SI->getAlignment(); 2146 IsVolatile = SI->isVolatile(); 2147 Flags = MachineMemOperand::MOStore; 2148 Ptr = SI->getPointerOperand(); 2149 ValTy = SI->getValueOperand()->getType(); 2150 } else { 2151 return nullptr; 2152 } 2153 2154 bool IsNonTemporal = I->getMetadata("nontemporal") != nullptr; 2155 bool IsInvariant = I->getMetadata("invariant.load") != nullptr; 2156 const MDNode *TBAAInfo = I->getMetadata(LLVMContext::MD_tbaa); 2157 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2158 2159 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2160 Alignment = DL.getABITypeAlignment(ValTy); 2161 2162 unsigned Size = TM.getDataLayout()->getTypeStoreSize(ValTy); 2163 2164 if (IsVolatile) 2165 Flags |= MachineMemOperand::MOVolatile; 2166 if (IsNonTemporal) 2167 Flags |= MachineMemOperand::MONonTemporal; 2168 if (IsInvariant) 2169 Flags |= MachineMemOperand::MOInvariant; 2170 2171 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2172 Alignment, TBAAInfo, Ranges); 2173 } 2174