1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/CodeGen/FastISel.h" 43 #include "llvm/ADT/APFloat.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/DenseMap.h" 46 #include "llvm/ADT/Optional.h" 47 #include "llvm/ADT/SmallPtrSet.h" 48 #include "llvm/ADT/SmallString.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/Statistic.h" 51 #include "llvm/Analysis/BranchProbabilityInfo.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/CodeGen/Analysis.h" 54 #include "llvm/CodeGen/FunctionLoweringInfo.h" 55 #include "llvm/CodeGen/ISDOpcodes.h" 56 #include "llvm/CodeGen/MachineBasicBlock.h" 57 #include "llvm/CodeGen/MachineFrameInfo.h" 58 #include "llvm/CodeGen/MachineInstr.h" 59 #include "llvm/CodeGen/MachineInstrBuilder.h" 60 #include "llvm/CodeGen/MachineMemOperand.h" 61 #include "llvm/CodeGen/MachineModuleInfo.h" 62 #include "llvm/CodeGen/MachineOperand.h" 63 #include "llvm/CodeGen/MachineRegisterInfo.h" 64 #include "llvm/CodeGen/StackMaps.h" 65 #include "llvm/CodeGen/TargetInstrInfo.h" 66 #include "llvm/CodeGen/TargetLowering.h" 67 #include "llvm/CodeGen/TargetSubtargetInfo.h" 68 #include "llvm/CodeGen/ValueTypes.h" 69 #include "llvm/IR/Argument.h" 70 #include "llvm/IR/Attributes.h" 71 #include "llvm/IR/BasicBlock.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DebugInfo.h" 78 #include "llvm/IR/DebugLoc.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Function.h" 81 #include "llvm/IR/GetElementPtrTypeIterator.h" 82 #include "llvm/IR/GlobalValue.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/LLVMContext.h" 89 #include "llvm/IR/Mangler.h" 90 #include "llvm/IR/Metadata.h" 91 #include "llvm/IR/Operator.h" 92 #include "llvm/IR/PatternMatch.h" 93 #include "llvm/IR/Type.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/MC/MCContext.h" 97 #include "llvm/MC/MCInstrDesc.h" 98 #include "llvm/MC/MCRegisterInfo.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/Debug.h" 101 #include "llvm/Support/ErrorHandling.h" 102 #include "llvm/Support/MachineValueType.h" 103 #include "llvm/Support/MathExtras.h" 104 #include "llvm/Support/raw_ostream.h" 105 #include "llvm/Target/TargetMachine.h" 106 #include "llvm/Target/TargetOptions.h" 107 #include <algorithm> 108 #include <cassert> 109 #include <cstdint> 110 #include <iterator> 111 #include <utility> 112 113 using namespace llvm; 114 using namespace PatternMatch; 115 116 #define DEBUG_TYPE "isel" 117 118 // FIXME: Remove this after the feature has proven reliable. 119 static cl::opt<bool> SinkLocalValues("fast-isel-sink-local-values", 120 cl::init(true), cl::Hidden, 121 cl::desc("Sink local values in FastISel")); 122 123 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 124 "target-independent selector"); 125 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 126 "target-specific selector"); 127 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 128 129 /// Set the current block to which generated machine instructions will be 130 /// appended. 131 void FastISel::startNewBlock() { 132 assert(LocalValueMap.empty() && 133 "local values should be cleared after finishing a BB"); 134 135 // Instructions are appended to FuncInfo.MBB. If the basic block already 136 // contains labels or copies, use the last instruction as the last local 137 // value. 138 EmitStartPt = nullptr; 139 if (!FuncInfo.MBB->empty()) 140 EmitStartPt = &FuncInfo.MBB->back(); 141 LastLocalValue = EmitStartPt; 142 } 143 144 /// Flush the local CSE map and sink anything we can. 145 void FastISel::finishBasicBlock() { flushLocalValueMap(); } 146 147 bool FastISel::lowerArguments() { 148 if (!FuncInfo.CanLowerReturn) 149 // Fallback to SDISel argument lowering code to deal with sret pointer 150 // parameter. 151 return false; 152 153 if (!fastLowerArguments()) 154 return false; 155 156 // Enter arguments into ValueMap for uses in non-entry BBs. 157 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 158 E = FuncInfo.Fn->arg_end(); 159 I != E; ++I) { 160 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I); 161 assert(VI != LocalValueMap.end() && "Missed an argument?"); 162 FuncInfo.ValueMap[&*I] = VI->second; 163 } 164 return true; 165 } 166 167 /// Return the defined register if this instruction defines exactly one 168 /// virtual register and uses no other virtual registers. Otherwise return 0. 169 static unsigned findSinkableLocalRegDef(MachineInstr &MI) { 170 unsigned RegDef = 0; 171 for (const MachineOperand &MO : MI.operands()) { 172 if (!MO.isReg()) 173 continue; 174 if (MO.isDef()) { 175 if (RegDef) 176 return 0; 177 RegDef = MO.getReg(); 178 } else if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 179 // This is another use of a vreg. Don't try to sink it. 180 return 0; 181 } 182 } 183 return RegDef; 184 } 185 186 void FastISel::flushLocalValueMap() { 187 // Try to sink local values down to their first use so that we can give them a 188 // better debug location. This has the side effect of shrinking local value 189 // live ranges, which helps out fast regalloc. 190 if (SinkLocalValues && LastLocalValue != EmitStartPt) { 191 // Sink local value materialization instructions between EmitStartPt and 192 // LastLocalValue. Visit them bottom-up, starting from LastLocalValue, to 193 // avoid inserting into the range that we're iterating over. 194 MachineBasicBlock::reverse_iterator RE = 195 EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) 196 : FuncInfo.MBB->rend(); 197 MachineBasicBlock::reverse_iterator RI(LastLocalValue); 198 199 InstOrderMap OrderMap; 200 for (; RI != RE;) { 201 MachineInstr &LocalMI = *RI; 202 ++RI; 203 bool Store = true; 204 if (!LocalMI.isSafeToMove(nullptr, Store)) 205 continue; 206 unsigned DefReg = findSinkableLocalRegDef(LocalMI); 207 if (DefReg == 0) 208 continue; 209 210 sinkLocalValueMaterialization(LocalMI, DefReg, OrderMap); 211 } 212 } 213 214 LocalValueMap.clear(); 215 LastLocalValue = EmitStartPt; 216 recomputeInsertPt(); 217 SavedInsertPt = FuncInfo.InsertPt; 218 LastFlushPoint = FuncInfo.InsertPt; 219 } 220 221 static bool isRegUsedByPhiNodes(unsigned DefReg, 222 FunctionLoweringInfo &FuncInfo) { 223 for (auto &P : FuncInfo.PHINodesToUpdate) 224 if (P.second == DefReg) 225 return true; 226 return false; 227 } 228 229 /// Build a map of instruction orders. Return the first terminator and its 230 /// order. Consider EH_LABEL instructions to be terminators as well, since local 231 /// values for phis after invokes must be materialized before the call. 232 void FastISel::InstOrderMap::initialize( 233 MachineBasicBlock *MBB, MachineBasicBlock::iterator LastFlushPoint) { 234 unsigned Order = 0; 235 for (MachineInstr &I : *MBB) { 236 if (!FirstTerminator && 237 (I.isTerminator() || (I.isEHLabel() && &I != &MBB->front()))) { 238 FirstTerminator = &I; 239 FirstTerminatorOrder = Order; 240 } 241 Orders[&I] = Order++; 242 243 // We don't need to order instructions past the last flush point. 244 if (I.getIterator() == LastFlushPoint) 245 break; 246 } 247 } 248 249 void FastISel::sinkLocalValueMaterialization(MachineInstr &LocalMI, 250 unsigned DefReg, 251 InstOrderMap &OrderMap) { 252 // If this register is used by a register fixup, MRI will not contain all 253 // the uses until after register fixups, so don't attempt to sink or DCE 254 // this instruction. Register fixups typically come from no-op cast 255 // instructions, which replace the cast instruction vreg with the local 256 // value vreg. 257 if (FuncInfo.RegsWithFixups.count(DefReg)) 258 return; 259 260 // We can DCE this instruction if there are no uses and it wasn't a 261 // materialized for a successor PHI node. 262 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); 263 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) { 264 if (EmitStartPt == &LocalMI) 265 EmitStartPt = EmitStartPt->getPrevNode(); 266 LLVM_DEBUG(dbgs() << "removing dead local value materialization " 267 << LocalMI); 268 OrderMap.Orders.erase(&LocalMI); 269 LocalMI.eraseFromParent(); 270 return; 271 } 272 273 // Number the instructions if we haven't yet so we can efficiently find the 274 // earliest use. 275 if (OrderMap.Orders.empty()) 276 OrderMap.initialize(FuncInfo.MBB, LastFlushPoint); 277 278 // Find the first user in the BB. 279 MachineInstr *FirstUser = nullptr; 280 unsigned FirstOrder = std::numeric_limits<unsigned>::max(); 281 for (MachineInstr &UseInst : MRI.use_nodbg_instructions(DefReg)) { 282 auto I = OrderMap.Orders.find(&UseInst); 283 assert(I != OrderMap.Orders.end() && 284 "local value used by instruction outside local region"); 285 unsigned UseOrder = I->second; 286 if (UseOrder < FirstOrder) { 287 FirstOrder = UseOrder; 288 FirstUser = &UseInst; 289 } 290 } 291 292 // The insertion point will be the first terminator or the first user, 293 // whichever came first. If there was no terminator, this must be a 294 // fallthrough block and the insertion point is the end of the block. 295 MachineBasicBlock::instr_iterator SinkPos; 296 if (UsedByPHI && OrderMap.FirstTerminatorOrder < FirstOrder) { 297 FirstOrder = OrderMap.FirstTerminatorOrder; 298 SinkPos = OrderMap.FirstTerminator->getIterator(); 299 } else if (FirstUser) { 300 SinkPos = FirstUser->getIterator(); 301 } else { 302 assert(UsedByPHI && "must be users if not used by a phi"); 303 SinkPos = FuncInfo.MBB->instr_end(); 304 } 305 306 // Collect all DBG_VALUEs before the new insertion position so that we can 307 // sink them. 308 SmallVector<MachineInstr *, 1> DbgValues; 309 for (MachineInstr &DbgVal : MRI.use_instructions(DefReg)) { 310 if (!DbgVal.isDebugValue()) 311 continue; 312 unsigned UseOrder = OrderMap.Orders[&DbgVal]; 313 if (UseOrder < FirstOrder) 314 DbgValues.push_back(&DbgVal); 315 } 316 317 // Sink LocalMI before SinkPos and assign it the same DebugLoc. 318 LLVM_DEBUG(dbgs() << "sinking local value to first use " << LocalMI); 319 FuncInfo.MBB->remove(&LocalMI); 320 FuncInfo.MBB->insert(SinkPos, &LocalMI); 321 if (SinkPos != FuncInfo.MBB->end()) 322 LocalMI.setDebugLoc(SinkPos->getDebugLoc()); 323 324 // Sink any debug values that we've collected. 325 for (MachineInstr *DI : DbgValues) { 326 FuncInfo.MBB->remove(DI); 327 FuncInfo.MBB->insert(SinkPos, DI); 328 } 329 } 330 331 bool FastISel::hasTrivialKill(const Value *V) { 332 // Don't consider constants or arguments to have trivial kills. 333 const Instruction *I = dyn_cast<Instruction>(V); 334 if (!I) 335 return false; 336 337 // No-op casts are trivially coalesced by fast-isel. 338 if (const auto *Cast = dyn_cast<CastInst>(I)) 339 if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0))) 340 return false; 341 342 // Even the value might have only one use in the LLVM IR, it is possible that 343 // FastISel might fold the use into another instruction and now there is more 344 // than one use at the Machine Instruction level. 345 unsigned Reg = lookUpRegForValue(V); 346 if (Reg && !MRI.use_empty(Reg)) 347 return false; 348 349 // GEPs with all zero indices are trivially coalesced by fast-isel. 350 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 351 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 352 return false; 353 354 // Only instructions with a single use in the same basic block are considered 355 // to have trivial kills. 356 return I->hasOneUse() && 357 !(I->getOpcode() == Instruction::BitCast || 358 I->getOpcode() == Instruction::PtrToInt || 359 I->getOpcode() == Instruction::IntToPtr) && 360 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 361 } 362 363 unsigned FastISel::getRegForValue(const Value *V) { 364 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 365 // Don't handle non-simple values in FastISel. 366 if (!RealVT.isSimple()) 367 return 0; 368 369 // Ignore illegal types. We must do this before looking up the value 370 // in ValueMap because Arguments are given virtual registers regardless 371 // of whether FastISel can handle them. 372 MVT VT = RealVT.getSimpleVT(); 373 if (!TLI.isTypeLegal(VT)) { 374 // Handle integer promotions, though, because they're common and easy. 375 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 376 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 377 else 378 return 0; 379 } 380 381 // Look up the value to see if we already have a register for it. 382 unsigned Reg = lookUpRegForValue(V); 383 if (Reg) 384 return Reg; 385 386 // In bottom-up mode, just create the virtual register which will be used 387 // to hold the value. It will be materialized later. 388 if (isa<Instruction>(V) && 389 (!isa<AllocaInst>(V) || 390 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 391 return FuncInfo.InitializeRegForValue(V); 392 393 SavePoint SaveInsertPt = enterLocalValueArea(); 394 395 // Materialize the value in a register. Emit any instructions in the 396 // local value area. 397 Reg = materializeRegForValue(V, VT); 398 399 leaveLocalValueArea(SaveInsertPt); 400 401 return Reg; 402 } 403 404 unsigned FastISel::materializeConstant(const Value *V, MVT VT) { 405 unsigned Reg = 0; 406 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 407 if (CI->getValue().getActiveBits() <= 64) 408 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 409 } else if (isa<AllocaInst>(V)) 410 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 411 else if (isa<ConstantPointerNull>(V)) 412 // Translate this as an integer zero so that it can be 413 // local-CSE'd with actual integer zeros. 414 Reg = getRegForValue( 415 Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 416 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 417 if (CF->isNullValue()) 418 Reg = fastMaterializeFloatZero(CF); 419 else 420 // Try to emit the constant directly. 421 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 422 423 if (!Reg) { 424 // Try to emit the constant by using an integer constant with a cast. 425 const APFloat &Flt = CF->getValueAPF(); 426 EVT IntVT = TLI.getPointerTy(DL); 427 uint32_t IntBitWidth = IntVT.getSizeInBits(); 428 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); 429 bool isExact; 430 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); 431 if (isExact) { 432 unsigned IntegerReg = 433 getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); 434 if (IntegerReg != 0) 435 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 436 /*Kill=*/false); 437 } 438 } 439 } else if (const auto *Op = dyn_cast<Operator>(V)) { 440 if (!selectOperator(Op, Op->getOpcode())) 441 if (!isa<Instruction>(Op) || 442 !fastSelectInstruction(cast<Instruction>(Op))) 443 return 0; 444 Reg = lookUpRegForValue(Op); 445 } else if (isa<UndefValue>(V)) { 446 Reg = createResultReg(TLI.getRegClassFor(VT)); 447 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 448 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 449 } 450 return Reg; 451 } 452 453 /// Helper for getRegForValue. This function is called when the value isn't 454 /// already available in a register and must be materialized with new 455 /// instructions. 456 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 457 unsigned Reg = 0; 458 // Give the target-specific code a try first. 459 if (isa<Constant>(V)) 460 Reg = fastMaterializeConstant(cast<Constant>(V)); 461 462 // If target-specific code couldn't or didn't want to handle the value, then 463 // give target-independent code a try. 464 if (!Reg) 465 Reg = materializeConstant(V, VT); 466 467 // Don't cache constant materializations in the general ValueMap. 468 // To do so would require tracking what uses they dominate. 469 if (Reg) { 470 LocalValueMap[V] = Reg; 471 LastLocalValue = MRI.getVRegDef(Reg); 472 } 473 return Reg; 474 } 475 476 unsigned FastISel::lookUpRegForValue(const Value *V) { 477 // Look up the value to see if we already have a register for it. We 478 // cache values defined by Instructions across blocks, and other values 479 // only locally. This is because Instructions already have the SSA 480 // def-dominates-use requirement enforced. 481 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 482 if (I != FuncInfo.ValueMap.end()) 483 return I->second; 484 return LocalValueMap[V]; 485 } 486 487 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 488 if (!isa<Instruction>(I)) { 489 LocalValueMap[I] = Reg; 490 return; 491 } 492 493 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 494 if (AssignedReg == 0) 495 // Use the new register. 496 AssignedReg = Reg; 497 else if (Reg != AssignedReg) { 498 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 499 for (unsigned i = 0; i < NumRegs; i++) { 500 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 501 FuncInfo.RegsWithFixups.insert(Reg + i); 502 } 503 504 AssignedReg = Reg; 505 } 506 } 507 508 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 509 unsigned IdxN = getRegForValue(Idx); 510 if (IdxN == 0) 511 // Unhandled operand. Halt "fast" selection and bail. 512 return std::pair<unsigned, bool>(0, false); 513 514 bool IdxNIsKill = hasTrivialKill(Idx); 515 516 // If the index is smaller or larger than intptr_t, truncate or extend it. 517 MVT PtrVT = TLI.getPointerTy(DL); 518 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 519 if (IdxVT.bitsLT(PtrVT)) { 520 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 521 IdxNIsKill); 522 IdxNIsKill = true; 523 } else if (IdxVT.bitsGT(PtrVT)) { 524 IdxN = 525 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 526 IdxNIsKill = true; 527 } 528 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 529 } 530 531 void FastISel::recomputeInsertPt() { 532 if (getLastLocalValue()) { 533 FuncInfo.InsertPt = getLastLocalValue(); 534 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 535 ++FuncInfo.InsertPt; 536 } else 537 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 538 539 // Now skip past any EH_LABELs, which must remain at the beginning. 540 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 541 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 542 ++FuncInfo.InsertPt; 543 } 544 545 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 546 MachineBasicBlock::iterator E) { 547 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 548 "Invalid iterator!"); 549 while (I != E) { 550 MachineInstr *Dead = &*I; 551 ++I; 552 Dead->eraseFromParent(); 553 ++NumFastIselDead; 554 } 555 recomputeInsertPt(); 556 } 557 558 FastISel::SavePoint FastISel::enterLocalValueArea() { 559 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 560 DebugLoc OldDL = DbgLoc; 561 recomputeInsertPt(); 562 DbgLoc = DebugLoc(); 563 SavePoint SP = {OldInsertPt, OldDL}; 564 return SP; 565 } 566 567 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 568 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 569 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 570 571 // Restore the previous insert position. 572 FuncInfo.InsertPt = OldInsertPt.InsertPt; 573 DbgLoc = OldInsertPt.DL; 574 } 575 576 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 577 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 578 if (VT == MVT::Other || !VT.isSimple()) 579 // Unhandled type. Halt "fast" selection and bail. 580 return false; 581 582 // We only handle legal types. For example, on x86-32 the instruction 583 // selector contains all of the 64-bit instructions from x86-64, 584 // under the assumption that i64 won't be used if the target doesn't 585 // support it. 586 if (!TLI.isTypeLegal(VT)) { 587 // MVT::i1 is special. Allow AND, OR, or XOR because they 588 // don't require additional zeroing, which makes them easy. 589 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 590 ISDOpcode == ISD::XOR)) 591 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 592 else 593 return false; 594 } 595 596 // Check if the first operand is a constant, and handle it as "ri". At -O0, 597 // we don't have anything that canonicalizes operand order. 598 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 599 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 600 unsigned Op1 = getRegForValue(I->getOperand(1)); 601 if (!Op1) 602 return false; 603 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 604 605 unsigned ResultReg = 606 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 607 CI->getZExtValue(), VT.getSimpleVT()); 608 if (!ResultReg) 609 return false; 610 611 // We successfully emitted code for the given LLVM Instruction. 612 updateValueMap(I, ResultReg); 613 return true; 614 } 615 616 unsigned Op0 = getRegForValue(I->getOperand(0)); 617 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 618 return false; 619 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 620 621 // Check if the second operand is a constant and handle it appropriately. 622 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 623 uint64_t Imm = CI->getSExtValue(); 624 625 // Transform "sdiv exact X, 8" -> "sra X, 3". 626 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 627 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 628 Imm = Log2_64(Imm); 629 ISDOpcode = ISD::SRA; 630 } 631 632 // Transform "urem x, pow2" -> "and x, pow2-1". 633 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 634 isPowerOf2_64(Imm)) { 635 --Imm; 636 ISDOpcode = ISD::AND; 637 } 638 639 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 640 Op0IsKill, Imm, VT.getSimpleVT()); 641 if (!ResultReg) 642 return false; 643 644 // We successfully emitted code for the given LLVM Instruction. 645 updateValueMap(I, ResultReg); 646 return true; 647 } 648 649 unsigned Op1 = getRegForValue(I->getOperand(1)); 650 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 651 return false; 652 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 653 654 // Now we have both operands in registers. Emit the instruction. 655 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 656 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 657 if (!ResultReg) 658 // Target-specific code wasn't able to find a machine opcode for 659 // the given ISD opcode and type. Halt "fast" selection and bail. 660 return false; 661 662 // We successfully emitted code for the given LLVM Instruction. 663 updateValueMap(I, ResultReg); 664 return true; 665 } 666 667 bool FastISel::selectGetElementPtr(const User *I) { 668 unsigned N = getRegForValue(I->getOperand(0)); 669 if (!N) // Unhandled operand. Halt "fast" selection and bail. 670 return false; 671 bool NIsKill = hasTrivialKill(I->getOperand(0)); 672 673 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 674 // into a single N = N + TotalOffset. 675 uint64_t TotalOffs = 0; 676 // FIXME: What's a good SWAG number for MaxOffs? 677 uint64_t MaxOffs = 2048; 678 MVT VT = TLI.getPointerTy(DL); 679 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 680 GTI != E; ++GTI) { 681 const Value *Idx = GTI.getOperand(); 682 if (StructType *StTy = GTI.getStructTypeOrNull()) { 683 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 684 if (Field) { 685 // N = N + Offset 686 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 687 if (TotalOffs >= MaxOffs) { 688 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 689 if (!N) // Unhandled operand. Halt "fast" selection and bail. 690 return false; 691 NIsKill = true; 692 TotalOffs = 0; 693 } 694 } 695 } else { 696 Type *Ty = GTI.getIndexedType(); 697 698 // If this is a constant subscript, handle it quickly. 699 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 700 if (CI->isZero()) 701 continue; 702 // N = N + Offset 703 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 704 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 705 if (TotalOffs >= MaxOffs) { 706 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 707 if (!N) // Unhandled operand. Halt "fast" selection and bail. 708 return false; 709 NIsKill = true; 710 TotalOffs = 0; 711 } 712 continue; 713 } 714 if (TotalOffs) { 715 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 716 if (!N) // Unhandled operand. Halt "fast" selection and bail. 717 return false; 718 NIsKill = true; 719 TotalOffs = 0; 720 } 721 722 // N = N + Idx * ElementSize; 723 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 724 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 725 unsigned IdxN = Pair.first; 726 bool IdxNIsKill = Pair.second; 727 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 728 return false; 729 730 if (ElementSize != 1) { 731 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 732 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 733 return false; 734 IdxNIsKill = true; 735 } 736 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 737 if (!N) // Unhandled operand. Halt "fast" selection and bail. 738 return false; 739 } 740 } 741 if (TotalOffs) { 742 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 743 if (!N) // Unhandled operand. Halt "fast" selection and bail. 744 return false; 745 } 746 747 // We successfully emitted code for the given LLVM Instruction. 748 updateValueMap(I, N); 749 return true; 750 } 751 752 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 753 const CallInst *CI, unsigned StartIdx) { 754 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 755 Value *Val = CI->getArgOperand(i); 756 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 757 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 758 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 759 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 760 } else if (isa<ConstantPointerNull>(Val)) { 761 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 762 Ops.push_back(MachineOperand::CreateImm(0)); 763 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 764 // Values coming from a stack location also require a special encoding, 765 // but that is added later on by the target specific frame index 766 // elimination implementation. 767 auto SI = FuncInfo.StaticAllocaMap.find(AI); 768 if (SI != FuncInfo.StaticAllocaMap.end()) 769 Ops.push_back(MachineOperand::CreateFI(SI->second)); 770 else 771 return false; 772 } else { 773 unsigned Reg = getRegForValue(Val); 774 if (!Reg) 775 return false; 776 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 777 } 778 } 779 return true; 780 } 781 782 bool FastISel::selectStackmap(const CallInst *I) { 783 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 784 // [live variables...]) 785 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 786 "Stackmap cannot return a value."); 787 788 // The stackmap intrinsic only records the live variables (the arguments 789 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 790 // intrinsic, this won't be lowered to a function call. This means we don't 791 // have to worry about calling conventions and target-specific lowering code. 792 // Instead we perform the call lowering right here. 793 // 794 // CALLSEQ_START(0, 0...) 795 // STACKMAP(id, nbytes, ...) 796 // CALLSEQ_END(0, 0) 797 // 798 SmallVector<MachineOperand, 32> Ops; 799 800 // Add the <id> and <numBytes> constants. 801 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 802 "Expected a constant integer."); 803 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 804 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 805 806 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 807 "Expected a constant integer."); 808 const auto *NumBytes = 809 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 810 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 811 812 // Push live variables for the stack map (skipping the first two arguments 813 // <id> and <numBytes>). 814 if (!addStackMapLiveVars(Ops, I, 2)) 815 return false; 816 817 // We are not adding any register mask info here, because the stackmap doesn't 818 // clobber anything. 819 820 // Add scratch registers as implicit def and early clobber. 821 CallingConv::ID CC = I->getCallingConv(); 822 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 823 for (unsigned i = 0; ScratchRegs[i]; ++i) 824 Ops.push_back(MachineOperand::CreateReg( 825 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 826 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 827 828 // Issue CALLSEQ_START 829 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 830 auto Builder = 831 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 832 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 833 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 834 Builder.addImm(0); 835 836 // Issue STACKMAP. 837 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 838 TII.get(TargetOpcode::STACKMAP)); 839 for (auto const &MO : Ops) 840 MIB.add(MO); 841 842 // Issue CALLSEQ_END 843 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 844 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 845 .addImm(0) 846 .addImm(0); 847 848 // Inform the Frame Information that we have a stackmap in this function. 849 FuncInfo.MF->getFrameInfo().setHasStackMap(); 850 851 return true; 852 } 853 854 /// Lower an argument list according to the target calling convention. 855 /// 856 /// This is a helper for lowering intrinsics that follow a target calling 857 /// convention or require stack pointer adjustment. Only a subset of the 858 /// intrinsic's operands need to participate in the calling convention. 859 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 860 unsigned NumArgs, const Value *Callee, 861 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 862 ArgListTy Args; 863 Args.reserve(NumArgs); 864 865 // Populate the argument list. 866 ImmutableCallSite CS(CI); 867 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { 868 Value *V = CI->getOperand(ArgI); 869 870 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 871 872 ArgListEntry Entry; 873 Entry.Val = V; 874 Entry.Ty = V->getType(); 875 Entry.setAttributes(&CS, ArgI); 876 Args.push_back(Entry); 877 } 878 879 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 880 : CI->getType(); 881 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 882 883 return lowerCallTo(CLI); 884 } 885 886 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 887 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 888 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 889 SmallString<32> MangledName; 890 Mangler::getNameWithPrefix(MangledName, Target, DL); 891 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 892 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 893 } 894 895 bool FastISel::selectPatchpoint(const CallInst *I) { 896 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 897 // i32 <numBytes>, 898 // i8* <target>, 899 // i32 <numArgs>, 900 // [Args...], 901 // [live variables...]) 902 CallingConv::ID CC = I->getCallingConv(); 903 bool IsAnyRegCC = CC == CallingConv::AnyReg; 904 bool HasDef = !I->getType()->isVoidTy(); 905 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 906 907 // Get the real number of arguments participating in the call <numArgs> 908 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 909 "Expected a constant integer."); 910 const auto *NumArgsVal = 911 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 912 unsigned NumArgs = NumArgsVal->getZExtValue(); 913 914 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 915 // This includes all meta-operands up to but not including CC. 916 unsigned NumMetaOpers = PatchPointOpers::CCPos; 917 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 918 "Not enough arguments provided to the patchpoint intrinsic"); 919 920 // For AnyRegCC the arguments are lowered later on manually. 921 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 922 CallLoweringInfo CLI; 923 CLI.setIsPatchPoint(); 924 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 925 return false; 926 927 assert(CLI.Call && "No call instruction specified."); 928 929 SmallVector<MachineOperand, 32> Ops; 930 931 // Add an explicit result reg if we use the anyreg calling convention. 932 if (IsAnyRegCC && HasDef) { 933 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 934 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 935 CLI.NumResultRegs = 1; 936 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 937 } 938 939 // Add the <id> and <numBytes> constants. 940 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 941 "Expected a constant integer."); 942 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 943 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 944 945 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 946 "Expected a constant integer."); 947 const auto *NumBytes = 948 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 949 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 950 951 // Add the call target. 952 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 953 uint64_t CalleeConstAddr = 954 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 955 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 956 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 957 if (C->getOpcode() == Instruction::IntToPtr) { 958 uint64_t CalleeConstAddr = 959 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 960 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 961 } else 962 llvm_unreachable("Unsupported ConstantExpr."); 963 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 964 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 965 } else if (isa<ConstantPointerNull>(Callee)) 966 Ops.push_back(MachineOperand::CreateImm(0)); 967 else 968 llvm_unreachable("Unsupported callee address."); 969 970 // Adjust <numArgs> to account for any arguments that have been passed on 971 // the stack instead. 972 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 973 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 974 975 // Add the calling convention 976 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 977 978 // Add the arguments we omitted previously. The register allocator should 979 // place these in any free register. 980 if (IsAnyRegCC) { 981 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 982 unsigned Reg = getRegForValue(I->getArgOperand(i)); 983 if (!Reg) 984 return false; 985 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 986 } 987 } 988 989 // Push the arguments from the call instruction. 990 for (auto Reg : CLI.OutRegs) 991 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 992 993 // Push live variables for the stack map. 994 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 995 return false; 996 997 // Push the register mask info. 998 Ops.push_back(MachineOperand::CreateRegMask( 999 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 1000 1001 // Add scratch registers as implicit def and early clobber. 1002 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 1003 for (unsigned i = 0; ScratchRegs[i]; ++i) 1004 Ops.push_back(MachineOperand::CreateReg( 1005 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 1006 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 1007 1008 // Add implicit defs (return values). 1009 for (auto Reg : CLI.InRegs) 1010 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 1011 /*IsImpl=*/true)); 1012 1013 // Insert the patchpoint instruction before the call generated by the target. 1014 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 1015 TII.get(TargetOpcode::PATCHPOINT)); 1016 1017 for (auto &MO : Ops) 1018 MIB.add(MO); 1019 1020 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1021 1022 // Delete the original call instruction. 1023 CLI.Call->eraseFromParent(); 1024 1025 // Inform the Frame Information that we have a patchpoint in this function. 1026 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 1027 1028 if (CLI.NumResultRegs) 1029 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 1030 return true; 1031 } 1032 1033 bool FastISel::selectXRayCustomEvent(const CallInst *I) { 1034 const auto &Triple = TM.getTargetTriple(); 1035 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 1036 return true; // don't do anything to this instruction. 1037 SmallVector<MachineOperand, 8> Ops; 1038 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 1039 /*IsDef=*/false)); 1040 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 1041 /*IsDef=*/false)); 1042 MachineInstrBuilder MIB = 1043 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1044 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); 1045 for (auto &MO : Ops) 1046 MIB.add(MO); 1047 1048 // Insert the Patchable Event Call instruction, that gets lowered properly. 1049 return true; 1050 } 1051 1052 bool FastISel::selectXRayTypedEvent(const CallInst *I) { 1053 const auto &Triple = TM.getTargetTriple(); 1054 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 1055 return true; // don't do anything to this instruction. 1056 SmallVector<MachineOperand, 8> Ops; 1057 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 1058 /*IsDef=*/false)); 1059 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 1060 /*IsDef=*/false)); 1061 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)), 1062 /*IsDef=*/false)); 1063 MachineInstrBuilder MIB = 1064 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1065 TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL)); 1066 for (auto &MO : Ops) 1067 MIB.add(MO); 1068 1069 // Insert the Patchable Typed Event Call instruction, that gets lowered properly. 1070 return true; 1071 } 1072 1073 /// Returns an AttributeList representing the attributes applied to the return 1074 /// value of the given call. 1075 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 1076 SmallVector<Attribute::AttrKind, 2> Attrs; 1077 if (CLI.RetSExt) 1078 Attrs.push_back(Attribute::SExt); 1079 if (CLI.RetZExt) 1080 Attrs.push_back(Attribute::ZExt); 1081 if (CLI.IsInReg) 1082 Attrs.push_back(Attribute::InReg); 1083 1084 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 1085 Attrs); 1086 } 1087 1088 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 1089 unsigned NumArgs) { 1090 MCContext &Ctx = MF->getContext(); 1091 SmallString<32> MangledName; 1092 Mangler::getNameWithPrefix(MangledName, SymName, DL); 1093 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 1094 return lowerCallTo(CI, Sym, NumArgs); 1095 } 1096 1097 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 1098 unsigned NumArgs) { 1099 ImmutableCallSite CS(CI); 1100 1101 FunctionType *FTy = CS.getFunctionType(); 1102 Type *RetTy = CS.getType(); 1103 1104 ArgListTy Args; 1105 Args.reserve(NumArgs); 1106 1107 // Populate the argument list. 1108 // Attributes for args start at offset 1, after the return attribute. 1109 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 1110 Value *V = CI->getOperand(ArgI); 1111 1112 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 1113 1114 ArgListEntry Entry; 1115 Entry.Val = V; 1116 Entry.Ty = V->getType(); 1117 Entry.setAttributes(&CS, ArgI); 1118 Args.push_back(Entry); 1119 } 1120 TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args); 1121 1122 CallLoweringInfo CLI; 1123 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs); 1124 1125 return lowerCallTo(CLI); 1126 } 1127 1128 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 1129 // Handle the incoming return values from the call. 1130 CLI.clearIns(); 1131 SmallVector<EVT, 4> RetTys; 1132 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 1133 1134 SmallVector<ISD::OutputArg, 4> Outs; 1135 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 1136 1137 bool CanLowerReturn = TLI.CanLowerReturn( 1138 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 1139 1140 // FIXME: sret demotion isn't supported yet - bail out. 1141 if (!CanLowerReturn) 1142 return false; 1143 1144 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 1145 EVT VT = RetTys[I]; 1146 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 1147 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 1148 for (unsigned i = 0; i != NumRegs; ++i) { 1149 ISD::InputArg MyFlags; 1150 MyFlags.VT = RegisterVT; 1151 MyFlags.ArgVT = VT; 1152 MyFlags.Used = CLI.IsReturnValueUsed; 1153 if (CLI.RetSExt) 1154 MyFlags.Flags.setSExt(); 1155 if (CLI.RetZExt) 1156 MyFlags.Flags.setZExt(); 1157 if (CLI.IsInReg) 1158 MyFlags.Flags.setInReg(); 1159 CLI.Ins.push_back(MyFlags); 1160 } 1161 } 1162 1163 // Handle all of the outgoing arguments. 1164 CLI.clearOuts(); 1165 for (auto &Arg : CLI.getArgs()) { 1166 Type *FinalType = Arg.Ty; 1167 if (Arg.IsByVal) 1168 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 1169 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1170 FinalType, CLI.CallConv, CLI.IsVarArg); 1171 1172 ISD::ArgFlagsTy Flags; 1173 if (Arg.IsZExt) 1174 Flags.setZExt(); 1175 if (Arg.IsSExt) 1176 Flags.setSExt(); 1177 if (Arg.IsInReg) 1178 Flags.setInReg(); 1179 if (Arg.IsSRet) 1180 Flags.setSRet(); 1181 if (Arg.IsSwiftSelf) 1182 Flags.setSwiftSelf(); 1183 if (Arg.IsSwiftError) 1184 Flags.setSwiftError(); 1185 if (Arg.IsByVal) 1186 Flags.setByVal(); 1187 if (Arg.IsInAlloca) { 1188 Flags.setInAlloca(); 1189 // Set the byval flag for CCAssignFn callbacks that don't know about 1190 // inalloca. This way we can know how many bytes we should've allocated 1191 // and how many bytes a callee cleanup function will pop. If we port 1192 // inalloca to more targets, we'll have to add custom inalloca handling in 1193 // the various CC lowering callbacks. 1194 Flags.setByVal(); 1195 } 1196 if (Arg.IsByVal || Arg.IsInAlloca) { 1197 PointerType *Ty = cast<PointerType>(Arg.Ty); 1198 Type *ElementTy = Ty->getElementType(); 1199 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 1200 // For ByVal, alignment should come from FE. BE will guess if this info is 1201 // not there, but there are cases it cannot get right. 1202 unsigned FrameAlign = Arg.Alignment; 1203 if (!FrameAlign) 1204 FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL); 1205 Flags.setByValSize(FrameSize); 1206 Flags.setByValAlign(FrameAlign); 1207 } 1208 if (Arg.IsNest) 1209 Flags.setNest(); 1210 if (NeedsRegBlock) 1211 Flags.setInConsecutiveRegs(); 1212 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 1213 Flags.setOrigAlign(OriginalAlignment); 1214 1215 CLI.OutVals.push_back(Arg.Val); 1216 CLI.OutFlags.push_back(Flags); 1217 } 1218 1219 if (!fastLowerCall(CLI)) 1220 return false; 1221 1222 // Set all unused physreg defs as dead. 1223 assert(CLI.Call && "No call instruction specified."); 1224 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1225 1226 if (CLI.NumResultRegs && CLI.CS) 1227 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 1228 1229 return true; 1230 } 1231 1232 bool FastISel::lowerCall(const CallInst *CI) { 1233 ImmutableCallSite CS(CI); 1234 1235 FunctionType *FuncTy = CS.getFunctionType(); 1236 Type *RetTy = CS.getType(); 1237 1238 ArgListTy Args; 1239 ArgListEntry Entry; 1240 Args.reserve(CS.arg_size()); 1241 1242 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1243 i != e; ++i) { 1244 Value *V = *i; 1245 1246 // Skip empty types 1247 if (V->getType()->isEmptyTy()) 1248 continue; 1249 1250 Entry.Val = V; 1251 Entry.Ty = V->getType(); 1252 1253 // Skip the first return-type Attribute to get to params. 1254 Entry.setAttributes(&CS, i - CS.arg_begin()); 1255 Args.push_back(Entry); 1256 } 1257 1258 // Check if target-independent constraints permit a tail call here. 1259 // Target-dependent constraints are checked within fastLowerCall. 1260 bool IsTailCall = CI->isTailCall(); 1261 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1262 IsTailCall = false; 1263 1264 CallLoweringInfo CLI; 1265 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1266 .setTailCall(IsTailCall); 1267 1268 return lowerCallTo(CLI); 1269 } 1270 1271 bool FastISel::selectCall(const User *I) { 1272 const CallInst *Call = cast<CallInst>(I); 1273 1274 // Handle simple inline asms. 1275 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1276 // If the inline asm has side effects, then make sure that no local value 1277 // lives across by flushing the local value map. 1278 if (IA->hasSideEffects()) 1279 flushLocalValueMap(); 1280 1281 // Don't attempt to handle constraints. 1282 if (!IA->getConstraintString().empty()) 1283 return false; 1284 1285 unsigned ExtraInfo = 0; 1286 if (IA->hasSideEffects()) 1287 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1288 if (IA->isAlignStack()) 1289 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1290 1291 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1292 TII.get(TargetOpcode::INLINEASM)) 1293 .addExternalSymbol(IA->getAsmString().c_str()) 1294 .addImm(ExtraInfo); 1295 return true; 1296 } 1297 1298 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1299 computeUsesVAFloatArgument(*Call, MMI); 1300 1301 // Handle intrinsic function calls. 1302 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1303 return selectIntrinsicCall(II); 1304 1305 // Usually, it does not make sense to initialize a value, 1306 // make an unrelated function call and use the value, because 1307 // it tends to be spilled on the stack. So, we move the pointer 1308 // to the last local value to the beginning of the block, so that 1309 // all the values which have already been materialized, 1310 // appear after the call. It also makes sense to skip intrinsics 1311 // since they tend to be inlined. 1312 flushLocalValueMap(); 1313 1314 return lowerCall(Call); 1315 } 1316 1317 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1318 switch (II->getIntrinsicID()) { 1319 default: 1320 break; 1321 // At -O0 we don't care about the lifetime intrinsics. 1322 case Intrinsic::lifetime_start: 1323 case Intrinsic::lifetime_end: 1324 // The donothing intrinsic does, well, nothing. 1325 case Intrinsic::donothing: 1326 // Neither does the sideeffect intrinsic. 1327 case Intrinsic::sideeffect: 1328 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1329 case Intrinsic::assume: 1330 return true; 1331 case Intrinsic::dbg_declare: { 1332 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1333 assert(DI->getVariable() && "Missing variable"); 1334 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1335 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1336 return true; 1337 } 1338 1339 const Value *Address = DI->getAddress(); 1340 if (!Address || isa<UndefValue>(Address)) { 1341 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1342 return true; 1343 } 1344 1345 // Byval arguments with frame indices were already handled after argument 1346 // lowering and before isel. 1347 const auto *Arg = 1348 dyn_cast<Argument>(Address->stripInBoundsConstantOffsets()); 1349 if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX) 1350 return true; 1351 1352 Optional<MachineOperand> Op; 1353 if (unsigned Reg = lookUpRegForValue(Address)) 1354 Op = MachineOperand::CreateReg(Reg, false); 1355 1356 // If we have a VLA that has a "use" in a metadata node that's then used 1357 // here but it has no other uses, then we have a problem. E.g., 1358 // 1359 // int foo (const int *x) { 1360 // char a[*x]; 1361 // return 0; 1362 // } 1363 // 1364 // If we assign 'a' a vreg and fast isel later on has to use the selection 1365 // DAG isel, it will want to copy the value to the vreg. However, there are 1366 // no uses, which goes counter to what selection DAG isel expects. 1367 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1368 (!isa<AllocaInst>(Address) || 1369 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1370 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1371 false); 1372 1373 if (Op) { 1374 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1375 "Expected inlined-at fields to agree"); 1376 // A dbg.declare describes the address of a source variable, so lower it 1377 // into an indirect DBG_VALUE. 1378 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1379 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, 1380 *Op, DI->getVariable(), DI->getExpression()); 1381 } else { 1382 // We can't yet handle anything else here because it would require 1383 // generating code, thus altering codegen because of debug info. 1384 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1385 } 1386 return true; 1387 } 1388 case Intrinsic::dbg_value: { 1389 // This form of DBG_VALUE is target-independent. 1390 const DbgValueInst *DI = cast<DbgValueInst>(II); 1391 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1392 const Value *V = DI->getValue(); 1393 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1394 "Expected inlined-at fields to agree"); 1395 if (!V) { 1396 // Currently the optimizer can produce this; insert an undef to 1397 // help debugging. Probably the optimizer should not do this. 1398 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U, 1399 DI->getVariable(), DI->getExpression()); 1400 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1401 if (CI->getBitWidth() > 64) 1402 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1403 .addCImm(CI) 1404 .addImm(0U) 1405 .addMetadata(DI->getVariable()) 1406 .addMetadata(DI->getExpression()); 1407 else 1408 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1409 .addImm(CI->getZExtValue()) 1410 .addImm(0U) 1411 .addMetadata(DI->getVariable()) 1412 .addMetadata(DI->getExpression()); 1413 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1414 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1415 .addFPImm(CF) 1416 .addImm(0U) 1417 .addMetadata(DI->getVariable()) 1418 .addMetadata(DI->getExpression()); 1419 } else if (unsigned Reg = lookUpRegForValue(V)) { 1420 // FIXME: This does not handle register-indirect values at offset 0. 1421 bool IsIndirect = false; 1422 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1423 DI->getVariable(), DI->getExpression()); 1424 } else { 1425 // We can't yet handle anything else here because it would require 1426 // generating code, thus altering codegen because of debug info. 1427 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1428 } 1429 return true; 1430 } 1431 case Intrinsic::dbg_label: { 1432 const DbgLabelInst *DI = cast<DbgLabelInst>(II); 1433 assert(DI->getLabel() && "Missing label"); 1434 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1435 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1436 return true; 1437 } 1438 1439 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1440 TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel()); 1441 return true; 1442 } 1443 case Intrinsic::objectsize: { 1444 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1445 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1446 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1447 unsigned ResultReg = getRegForValue(ResCI); 1448 if (!ResultReg) 1449 return false; 1450 updateValueMap(II, ResultReg); 1451 return true; 1452 } 1453 case Intrinsic::is_constant: { 1454 Constant *ResCI = ConstantInt::get(II->getType(), 0); 1455 unsigned ResultReg = getRegForValue(ResCI); 1456 if (!ResultReg) 1457 return false; 1458 updateValueMap(II, ResultReg); 1459 return true; 1460 } 1461 case Intrinsic::launder_invariant_group: 1462 case Intrinsic::strip_invariant_group: 1463 case Intrinsic::expect: { 1464 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1465 if (!ResultReg) 1466 return false; 1467 updateValueMap(II, ResultReg); 1468 return true; 1469 } 1470 case Intrinsic::experimental_stackmap: 1471 return selectStackmap(II); 1472 case Intrinsic::experimental_patchpoint_void: 1473 case Intrinsic::experimental_patchpoint_i64: 1474 return selectPatchpoint(II); 1475 1476 case Intrinsic::xray_customevent: 1477 return selectXRayCustomEvent(II); 1478 case Intrinsic::xray_typedevent: 1479 return selectXRayTypedEvent(II); 1480 } 1481 1482 return fastLowerIntrinsicCall(II); 1483 } 1484 1485 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1486 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1487 EVT DstVT = TLI.getValueType(DL, I->getType()); 1488 1489 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1490 !DstVT.isSimple()) 1491 // Unhandled type. Halt "fast" selection and bail. 1492 return false; 1493 1494 // Check if the destination type is legal. 1495 if (!TLI.isTypeLegal(DstVT)) 1496 return false; 1497 1498 // Check if the source operand is legal. 1499 if (!TLI.isTypeLegal(SrcVT)) 1500 return false; 1501 1502 unsigned InputReg = getRegForValue(I->getOperand(0)); 1503 if (!InputReg) 1504 // Unhandled operand. Halt "fast" selection and bail. 1505 return false; 1506 1507 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1508 1509 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1510 Opcode, InputReg, InputRegIsKill); 1511 if (!ResultReg) 1512 return false; 1513 1514 updateValueMap(I, ResultReg); 1515 return true; 1516 } 1517 1518 bool FastISel::selectBitCast(const User *I) { 1519 // If the bitcast doesn't change the type, just use the operand value. 1520 if (I->getType() == I->getOperand(0)->getType()) { 1521 unsigned Reg = getRegForValue(I->getOperand(0)); 1522 if (!Reg) 1523 return false; 1524 updateValueMap(I, Reg); 1525 return true; 1526 } 1527 1528 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1529 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1530 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1531 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1532 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1533 // Unhandled type. Halt "fast" selection and bail. 1534 return false; 1535 1536 MVT SrcVT = SrcEVT.getSimpleVT(); 1537 MVT DstVT = DstEVT.getSimpleVT(); 1538 unsigned Op0 = getRegForValue(I->getOperand(0)); 1539 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1540 return false; 1541 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1542 1543 // First, try to perform the bitcast by inserting a reg-reg copy. 1544 unsigned ResultReg = 0; 1545 if (SrcVT == DstVT) { 1546 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1547 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1548 // Don't attempt a cross-class copy. It will likely fail. 1549 if (SrcClass == DstClass) { 1550 ResultReg = createResultReg(DstClass); 1551 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1552 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1553 } 1554 } 1555 1556 // If the reg-reg copy failed, select a BITCAST opcode. 1557 if (!ResultReg) 1558 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1559 1560 if (!ResultReg) 1561 return false; 1562 1563 updateValueMap(I, ResultReg); 1564 return true; 1565 } 1566 1567 // Remove local value instructions starting from the instruction after 1568 // SavedLastLocalValue to the current function insert point. 1569 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1570 { 1571 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1572 if (CurLastLocalValue != SavedLastLocalValue) { 1573 // Find the first local value instruction to be deleted. 1574 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1575 // Otherwise it's the first instruction in the block. 1576 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1577 if (SavedLastLocalValue) 1578 ++FirstDeadInst; 1579 else 1580 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1581 setLastLocalValue(SavedLastLocalValue); 1582 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1583 } 1584 } 1585 1586 bool FastISel::selectInstruction(const Instruction *I) { 1587 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1588 // Just before the terminator instruction, insert instructions to 1589 // feed PHI nodes in successor blocks. 1590 if (I->isTerminator()) { 1591 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1592 // PHI node handling may have generated local value instructions, 1593 // even though it failed to handle all PHI nodes. 1594 // We remove these instructions because SelectionDAGISel will generate 1595 // them again. 1596 removeDeadLocalValueCode(SavedLastLocalValue); 1597 return false; 1598 } 1599 } 1600 1601 // FastISel does not handle any operand bundles except OB_funclet. 1602 if (ImmutableCallSite CS = ImmutableCallSite(I)) 1603 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) 1604 if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1605 return false; 1606 1607 DbgLoc = I->getDebugLoc(); 1608 1609 SavedInsertPt = FuncInfo.InsertPt; 1610 1611 if (const auto *Call = dyn_cast<CallInst>(I)) { 1612 const Function *F = Call->getCalledFunction(); 1613 LibFunc Func; 1614 1615 // As a special case, don't handle calls to builtin library functions that 1616 // may be translated directly to target instructions. 1617 if (F && !F->hasLocalLinkage() && F->hasName() && 1618 LibInfo->getLibFunc(F->getName(), Func) && 1619 LibInfo->hasOptimizedCodeGen(Func)) 1620 return false; 1621 1622 // Don't handle Intrinsic::trap if a trap function is specified. 1623 if (F && F->getIntrinsicID() == Intrinsic::trap && 1624 Call->hasFnAttr("trap-func-name")) 1625 return false; 1626 } 1627 1628 // First, try doing target-independent selection. 1629 if (!SkipTargetIndependentISel) { 1630 if (selectOperator(I, I->getOpcode())) { 1631 ++NumFastIselSuccessIndependent; 1632 DbgLoc = DebugLoc(); 1633 return true; 1634 } 1635 // Remove dead code. 1636 recomputeInsertPt(); 1637 if (SavedInsertPt != FuncInfo.InsertPt) 1638 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1639 SavedInsertPt = FuncInfo.InsertPt; 1640 } 1641 // Next, try calling the target to attempt to handle the instruction. 1642 if (fastSelectInstruction(I)) { 1643 ++NumFastIselSuccessTarget; 1644 DbgLoc = DebugLoc(); 1645 return true; 1646 } 1647 // Remove dead code. 1648 recomputeInsertPt(); 1649 if (SavedInsertPt != FuncInfo.InsertPt) 1650 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1651 1652 DbgLoc = DebugLoc(); 1653 // Undo phi node updates, because they will be added again by SelectionDAG. 1654 if (I->isTerminator()) { 1655 // PHI node handling may have generated local value instructions. 1656 // We remove them because SelectionDAGISel will generate them again. 1657 removeDeadLocalValueCode(SavedLastLocalValue); 1658 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1659 } 1660 return false; 1661 } 1662 1663 /// Emit an unconditional branch to the given block, unless it is the immediate 1664 /// (fall-through) successor, and update the CFG. 1665 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1666 const DebugLoc &DbgLoc) { 1667 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1668 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1669 // For more accurate line information if this is the only instruction 1670 // in the block then emit it, otherwise we have the unconditional 1671 // fall-through case, which needs no instructions. 1672 } else { 1673 // The unconditional branch case. 1674 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1675 SmallVector<MachineOperand, 0>(), DbgLoc); 1676 } 1677 if (FuncInfo.BPI) { 1678 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1679 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1680 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1681 } else 1682 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1683 } 1684 1685 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1686 MachineBasicBlock *TrueMBB, 1687 MachineBasicBlock *FalseMBB) { 1688 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1689 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1690 // successor/predecessor lists. 1691 if (TrueMBB != FalseMBB) { 1692 if (FuncInfo.BPI) { 1693 auto BranchProbability = 1694 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1695 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1696 } else 1697 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1698 } 1699 1700 fastEmitBranch(FalseMBB, DbgLoc); 1701 } 1702 1703 /// Emit an FNeg operation. 1704 bool FastISel::selectFNeg(const User *I) { 1705 Value *X; 1706 if (!match(I, m_FNeg(m_Value(X)))) 1707 return false; 1708 unsigned OpReg = getRegForValue(X); 1709 if (!OpReg) 1710 return false; 1711 bool OpRegIsKill = hasTrivialKill(I); 1712 1713 // If the target has ISD::FNEG, use it. 1714 EVT VT = TLI.getValueType(DL, I->getType()); 1715 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1716 OpReg, OpRegIsKill); 1717 if (ResultReg) { 1718 updateValueMap(I, ResultReg); 1719 return true; 1720 } 1721 1722 // Bitcast the value to integer, twiddle the sign bit with xor, 1723 // and then bitcast it back to floating-point. 1724 if (VT.getSizeInBits() > 64) 1725 return false; 1726 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1727 if (!TLI.isTypeLegal(IntVT)) 1728 return false; 1729 1730 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1731 ISD::BITCAST, OpReg, OpRegIsKill); 1732 if (!IntReg) 1733 return false; 1734 1735 unsigned IntResultReg = fastEmit_ri_( 1736 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1737 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1738 if (!IntResultReg) 1739 return false; 1740 1741 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1742 IntResultReg, /*IsKill=*/true); 1743 if (!ResultReg) 1744 return false; 1745 1746 updateValueMap(I, ResultReg); 1747 return true; 1748 } 1749 1750 bool FastISel::selectExtractValue(const User *U) { 1751 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1752 if (!EVI) 1753 return false; 1754 1755 // Make sure we only try to handle extracts with a legal result. But also 1756 // allow i1 because it's easy. 1757 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1758 if (!RealVT.isSimple()) 1759 return false; 1760 MVT VT = RealVT.getSimpleVT(); 1761 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1762 return false; 1763 1764 const Value *Op0 = EVI->getOperand(0); 1765 Type *AggTy = Op0->getType(); 1766 1767 // Get the base result register. 1768 unsigned ResultReg; 1769 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1770 if (I != FuncInfo.ValueMap.end()) 1771 ResultReg = I->second; 1772 else if (isa<Instruction>(Op0)) 1773 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1774 else 1775 return false; // fast-isel can't handle aggregate constants at the moment 1776 1777 // Get the actual result register, which is an offset from the base register. 1778 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1779 1780 SmallVector<EVT, 4> AggValueVTs; 1781 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1782 1783 for (unsigned i = 0; i < VTIndex; i++) 1784 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1785 1786 updateValueMap(EVI, ResultReg); 1787 return true; 1788 } 1789 1790 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1791 switch (Opcode) { 1792 case Instruction::Add: 1793 return selectBinaryOp(I, ISD::ADD); 1794 case Instruction::FAdd: 1795 return selectBinaryOp(I, ISD::FADD); 1796 case Instruction::Sub: 1797 return selectBinaryOp(I, ISD::SUB); 1798 case Instruction::FSub: 1799 // FNeg is currently represented in LLVM IR as a special case of FSub. 1800 return selectFNeg(I) || selectBinaryOp(I, ISD::FSUB); 1801 case Instruction::Mul: 1802 return selectBinaryOp(I, ISD::MUL); 1803 case Instruction::FMul: 1804 return selectBinaryOp(I, ISD::FMUL); 1805 case Instruction::SDiv: 1806 return selectBinaryOp(I, ISD::SDIV); 1807 case Instruction::UDiv: 1808 return selectBinaryOp(I, ISD::UDIV); 1809 case Instruction::FDiv: 1810 return selectBinaryOp(I, ISD::FDIV); 1811 case Instruction::SRem: 1812 return selectBinaryOp(I, ISD::SREM); 1813 case Instruction::URem: 1814 return selectBinaryOp(I, ISD::UREM); 1815 case Instruction::FRem: 1816 return selectBinaryOp(I, ISD::FREM); 1817 case Instruction::Shl: 1818 return selectBinaryOp(I, ISD::SHL); 1819 case Instruction::LShr: 1820 return selectBinaryOp(I, ISD::SRL); 1821 case Instruction::AShr: 1822 return selectBinaryOp(I, ISD::SRA); 1823 case Instruction::And: 1824 return selectBinaryOp(I, ISD::AND); 1825 case Instruction::Or: 1826 return selectBinaryOp(I, ISD::OR); 1827 case Instruction::Xor: 1828 return selectBinaryOp(I, ISD::XOR); 1829 1830 case Instruction::GetElementPtr: 1831 return selectGetElementPtr(I); 1832 1833 case Instruction::Br: { 1834 const BranchInst *BI = cast<BranchInst>(I); 1835 1836 if (BI->isUnconditional()) { 1837 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1838 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1839 fastEmitBranch(MSucc, BI->getDebugLoc()); 1840 return true; 1841 } 1842 1843 // Conditional branches are not handed yet. 1844 // Halt "fast" selection and bail. 1845 return false; 1846 } 1847 1848 case Instruction::Unreachable: 1849 if (TM.Options.TrapUnreachable) 1850 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1851 else 1852 return true; 1853 1854 case Instruction::Alloca: 1855 // FunctionLowering has the static-sized case covered. 1856 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1857 return true; 1858 1859 // Dynamic-sized alloca is not handled yet. 1860 return false; 1861 1862 case Instruction::Call: 1863 return selectCall(I); 1864 1865 case Instruction::BitCast: 1866 return selectBitCast(I); 1867 1868 case Instruction::FPToSI: 1869 return selectCast(I, ISD::FP_TO_SINT); 1870 case Instruction::ZExt: 1871 return selectCast(I, ISD::ZERO_EXTEND); 1872 case Instruction::SExt: 1873 return selectCast(I, ISD::SIGN_EXTEND); 1874 case Instruction::Trunc: 1875 return selectCast(I, ISD::TRUNCATE); 1876 case Instruction::SIToFP: 1877 return selectCast(I, ISD::SINT_TO_FP); 1878 1879 case Instruction::IntToPtr: // Deliberate fall-through. 1880 case Instruction::PtrToInt: { 1881 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1882 EVT DstVT = TLI.getValueType(DL, I->getType()); 1883 if (DstVT.bitsGT(SrcVT)) 1884 return selectCast(I, ISD::ZERO_EXTEND); 1885 if (DstVT.bitsLT(SrcVT)) 1886 return selectCast(I, ISD::TRUNCATE); 1887 unsigned Reg = getRegForValue(I->getOperand(0)); 1888 if (!Reg) 1889 return false; 1890 updateValueMap(I, Reg); 1891 return true; 1892 } 1893 1894 case Instruction::ExtractValue: 1895 return selectExtractValue(I); 1896 1897 case Instruction::PHI: 1898 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1899 1900 default: 1901 // Unhandled instruction. Halt "fast" selection and bail. 1902 return false; 1903 } 1904 } 1905 1906 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1907 const TargetLibraryInfo *LibInfo, 1908 bool SkipTargetIndependentISel) 1909 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1910 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1911 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1912 TII(*MF->getSubtarget().getInstrInfo()), 1913 TLI(*MF->getSubtarget().getTargetLowering()), 1914 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1915 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1916 1917 FastISel::~FastISel() = default; 1918 1919 bool FastISel::fastLowerArguments() { return false; } 1920 1921 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1922 1923 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1924 return false; 1925 } 1926 1927 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1928 1929 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1930 bool /*Op0IsKill*/) { 1931 return 0; 1932 } 1933 1934 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1935 bool /*Op0IsKill*/, unsigned /*Op1*/, 1936 bool /*Op1IsKill*/) { 1937 return 0; 1938 } 1939 1940 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1941 return 0; 1942 } 1943 1944 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1945 const ConstantFP * /*FPImm*/) { 1946 return 0; 1947 } 1948 1949 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1950 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1951 return 0; 1952 } 1953 1954 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1955 /// instruction with an immediate operand using fastEmit_ri. 1956 /// If that fails, it materializes the immediate into a register and try 1957 /// fastEmit_rr instead. 1958 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1959 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1960 // If this is a multiply by a power of two, emit this as a shift left. 1961 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1962 Opcode = ISD::SHL; 1963 Imm = Log2_64(Imm); 1964 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1965 // div x, 8 -> srl x, 3 1966 Opcode = ISD::SRL; 1967 Imm = Log2_64(Imm); 1968 } 1969 1970 // Horrible hack (to be removed), check to make sure shift amounts are 1971 // in-range. 1972 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1973 Imm >= VT.getSizeInBits()) 1974 return 0; 1975 1976 // First check if immediate type is legal. If not, we can't use the ri form. 1977 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1978 if (ResultReg) 1979 return ResultReg; 1980 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1981 bool IsImmKill = true; 1982 if (!MaterialReg) { 1983 // This is a bit ugly/slow, but failing here means falling out of 1984 // fast-isel, which would be very slow. 1985 IntegerType *ITy = 1986 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1987 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1988 if (!MaterialReg) 1989 return 0; 1990 // FIXME: If the materialized register here has no uses yet then this 1991 // will be the first use and we should be able to mark it as killed. 1992 // However, the local value area for materialising constant expressions 1993 // grows down, not up, which means that any constant expressions we generate 1994 // later which also use 'Imm' could be after this instruction and therefore 1995 // after this kill. 1996 IsImmKill = false; 1997 } 1998 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); 1999 } 2000 2001 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { 2002 return MRI.createVirtualRegister(RC); 2003 } 2004 2005 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 2006 unsigned OpNum) { 2007 if (TargetRegisterInfo::isVirtualRegister(Op)) { 2008 const TargetRegisterClass *RegClass = 2009 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 2010 if (!MRI.constrainRegClass(Op, RegClass)) { 2011 // If it's not legal to COPY between the register classes, something 2012 // has gone very wrong before we got here. 2013 unsigned NewOp = createResultReg(RegClass); 2014 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2015 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 2016 return NewOp; 2017 } 2018 } 2019 return Op; 2020 } 2021 2022 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, 2023 const TargetRegisterClass *RC) { 2024 unsigned ResultReg = createResultReg(RC); 2025 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2026 2027 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 2028 return ResultReg; 2029 } 2030 2031 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2032 const TargetRegisterClass *RC, unsigned Op0, 2033 bool Op0IsKill) { 2034 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2035 2036 unsigned ResultReg = createResultReg(RC); 2037 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2038 2039 if (II.getNumDefs() >= 1) 2040 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2041 .addReg(Op0, getKillRegState(Op0IsKill)); 2042 else { 2043 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2044 .addReg(Op0, getKillRegState(Op0IsKill)); 2045 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2046 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2047 } 2048 2049 return ResultReg; 2050 } 2051 2052 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2053 const TargetRegisterClass *RC, unsigned Op0, 2054 bool Op0IsKill, unsigned Op1, 2055 bool Op1IsKill) { 2056 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2057 2058 unsigned ResultReg = createResultReg(RC); 2059 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2060 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2061 2062 if (II.getNumDefs() >= 1) 2063 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2064 .addReg(Op0, getKillRegState(Op0IsKill)) 2065 .addReg(Op1, getKillRegState(Op1IsKill)); 2066 else { 2067 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2068 .addReg(Op0, getKillRegState(Op0IsKill)) 2069 .addReg(Op1, getKillRegState(Op1IsKill)); 2070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2071 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2072 } 2073 return ResultReg; 2074 } 2075 2076 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 2077 const TargetRegisterClass *RC, unsigned Op0, 2078 bool Op0IsKill, unsigned Op1, 2079 bool Op1IsKill, unsigned Op2, 2080 bool Op2IsKill) { 2081 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2082 2083 unsigned ResultReg = createResultReg(RC); 2084 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2085 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2086 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 2087 2088 if (II.getNumDefs() >= 1) 2089 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2090 .addReg(Op0, getKillRegState(Op0IsKill)) 2091 .addReg(Op1, getKillRegState(Op1IsKill)) 2092 .addReg(Op2, getKillRegState(Op2IsKill)); 2093 else { 2094 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2095 .addReg(Op0, getKillRegState(Op0IsKill)) 2096 .addReg(Op1, getKillRegState(Op1IsKill)) 2097 .addReg(Op2, getKillRegState(Op2IsKill)); 2098 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2099 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2100 } 2101 return ResultReg; 2102 } 2103 2104 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2105 const TargetRegisterClass *RC, unsigned Op0, 2106 bool Op0IsKill, uint64_t Imm) { 2107 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2108 2109 unsigned ResultReg = createResultReg(RC); 2110 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2111 2112 if (II.getNumDefs() >= 1) 2113 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2114 .addReg(Op0, getKillRegState(Op0IsKill)) 2115 .addImm(Imm); 2116 else { 2117 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2118 .addReg(Op0, getKillRegState(Op0IsKill)) 2119 .addImm(Imm); 2120 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2121 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2122 } 2123 return ResultReg; 2124 } 2125 2126 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 2127 const TargetRegisterClass *RC, unsigned Op0, 2128 bool Op0IsKill, uint64_t Imm1, 2129 uint64_t Imm2) { 2130 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2131 2132 unsigned ResultReg = createResultReg(RC); 2133 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2134 2135 if (II.getNumDefs() >= 1) 2136 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2137 .addReg(Op0, getKillRegState(Op0IsKill)) 2138 .addImm(Imm1) 2139 .addImm(Imm2); 2140 else { 2141 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2142 .addReg(Op0, getKillRegState(Op0IsKill)) 2143 .addImm(Imm1) 2144 .addImm(Imm2); 2145 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2146 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2147 } 2148 return ResultReg; 2149 } 2150 2151 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 2152 const TargetRegisterClass *RC, 2153 const ConstantFP *FPImm) { 2154 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2155 2156 unsigned ResultReg = createResultReg(RC); 2157 2158 if (II.getNumDefs() >= 1) 2159 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2160 .addFPImm(FPImm); 2161 else { 2162 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2163 .addFPImm(FPImm); 2164 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2165 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2166 } 2167 return ResultReg; 2168 } 2169 2170 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 2171 const TargetRegisterClass *RC, unsigned Op0, 2172 bool Op0IsKill, unsigned Op1, 2173 bool Op1IsKill, uint64_t Imm) { 2174 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2175 2176 unsigned ResultReg = createResultReg(RC); 2177 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2178 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2179 2180 if (II.getNumDefs() >= 1) 2181 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2182 .addReg(Op0, getKillRegState(Op0IsKill)) 2183 .addReg(Op1, getKillRegState(Op1IsKill)) 2184 .addImm(Imm); 2185 else { 2186 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2187 .addReg(Op0, getKillRegState(Op0IsKill)) 2188 .addReg(Op1, getKillRegState(Op1IsKill)) 2189 .addImm(Imm); 2190 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2191 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2192 } 2193 return ResultReg; 2194 } 2195 2196 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 2197 const TargetRegisterClass *RC, uint64_t Imm) { 2198 unsigned ResultReg = createResultReg(RC); 2199 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2200 2201 if (II.getNumDefs() >= 1) 2202 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2203 .addImm(Imm); 2204 else { 2205 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 2206 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2207 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2208 } 2209 return ResultReg; 2210 } 2211 2212 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 2213 bool Op0IsKill, uint32_t Idx) { 2214 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 2215 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 2216 "Cannot yet extract from physregs"); 2217 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2218 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2219 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 2220 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 2221 return ResultReg; 2222 } 2223 2224 /// Emit MachineInstrs to compute the value of Op with all but the least 2225 /// significant bit set to zero. 2226 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 2227 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 2228 } 2229 2230 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2231 /// Emit code to ensure constants are copied into registers when needed. 2232 /// Remember the virtual registers that need to be added to the Machine PHI 2233 /// nodes as input. We cannot just directly add them, because expansion 2234 /// might result in multiple MBB's for one BB. As such, the start of the 2235 /// BB might correspond to a different MBB than the end. 2236 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2237 const Instruction *TI = LLVMBB->getTerminator(); 2238 2239 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2240 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2241 2242 // Check successor nodes' PHI nodes that expect a constant to be available 2243 // from this block. 2244 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2245 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2246 if (!isa<PHINode>(SuccBB->begin())) 2247 continue; 2248 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2249 2250 // If this terminator has multiple identical successors (common for 2251 // switches), only handle each succ once. 2252 if (!SuccsHandled.insert(SuccMBB).second) 2253 continue; 2254 2255 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2256 2257 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2258 // nodes and Machine PHI nodes, but the incoming operands have not been 2259 // emitted yet. 2260 for (const PHINode &PN : SuccBB->phis()) { 2261 // Ignore dead phi's. 2262 if (PN.use_empty()) 2263 continue; 2264 2265 // Only handle legal types. Two interesting things to note here. First, 2266 // by bailing out early, we may leave behind some dead instructions, 2267 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2268 // own moves. Second, this check is necessary because FastISel doesn't 2269 // use CreateRegs to create registers, so it always creates 2270 // exactly one register for each non-void instruction. 2271 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); 2272 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2273 // Handle integer promotions, though, because they're common and easy. 2274 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2275 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2276 return false; 2277 } 2278 } 2279 2280 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 2281 2282 // Set the DebugLoc for the copy. Prefer the location of the operand 2283 // if there is one; use the location of the PHI otherwise. 2284 DbgLoc = PN.getDebugLoc(); 2285 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2286 DbgLoc = Inst->getDebugLoc(); 2287 2288 unsigned Reg = getRegForValue(PHIOp); 2289 if (!Reg) { 2290 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2291 return false; 2292 } 2293 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2294 DbgLoc = DebugLoc(); 2295 } 2296 } 2297 2298 return true; 2299 } 2300 2301 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2302 assert(LI->hasOneUse() && 2303 "tryToFoldLoad expected a LoadInst with a single use"); 2304 // We know that the load has a single use, but don't know what it is. If it 2305 // isn't one of the folded instructions, then we can't succeed here. Handle 2306 // this by scanning the single-use users of the load until we get to FoldInst. 2307 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2308 2309 const Instruction *TheUser = LI->user_back(); 2310 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2311 // Stay in the right block. 2312 TheUser->getParent() == FoldInst->getParent() && 2313 --MaxUsers) { // Don't scan too far. 2314 // If there are multiple or no uses of this instruction, then bail out. 2315 if (!TheUser->hasOneUse()) 2316 return false; 2317 2318 TheUser = TheUser->user_back(); 2319 } 2320 2321 // If we didn't find the fold instruction, then we failed to collapse the 2322 // sequence. 2323 if (TheUser != FoldInst) 2324 return false; 2325 2326 // Don't try to fold volatile loads. Target has to deal with alignment 2327 // constraints. 2328 if (LI->isVolatile()) 2329 return false; 2330 2331 // Figure out which vreg this is going into. If there is no assigned vreg yet 2332 // then there actually was no reference to it. Perhaps the load is referenced 2333 // by a dead instruction. 2334 unsigned LoadReg = getRegForValue(LI); 2335 if (!LoadReg) 2336 return false; 2337 2338 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2339 // may mean that the instruction got lowered to multiple MIs, or the use of 2340 // the loaded value ended up being multiple operands of the result. 2341 if (!MRI.hasOneUse(LoadReg)) 2342 return false; 2343 2344 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2345 MachineInstr *User = RI->getParent(); 2346 2347 // Set the insertion point properly. Folding the load can cause generation of 2348 // other random instructions (like sign extends) for addressing modes; make 2349 // sure they get inserted in a logical place before the new instruction. 2350 FuncInfo.InsertPt = User; 2351 FuncInfo.MBB = User->getParent(); 2352 2353 // Ask the target to try folding the load. 2354 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2355 } 2356 2357 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2358 // Must be an add. 2359 if (!isa<AddOperator>(Add)) 2360 return false; 2361 // Type size needs to match. 2362 if (DL.getTypeSizeInBits(GEP->getType()) != 2363 DL.getTypeSizeInBits(Add->getType())) 2364 return false; 2365 // Must be in the same basic block. 2366 if (isa<Instruction>(Add) && 2367 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2368 return false; 2369 // Must have a constant operand. 2370 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2371 } 2372 2373 MachineMemOperand * 2374 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2375 const Value *Ptr; 2376 Type *ValTy; 2377 unsigned Alignment; 2378 MachineMemOperand::Flags Flags; 2379 bool IsVolatile; 2380 2381 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2382 Alignment = LI->getAlignment(); 2383 IsVolatile = LI->isVolatile(); 2384 Flags = MachineMemOperand::MOLoad; 2385 Ptr = LI->getPointerOperand(); 2386 ValTy = LI->getType(); 2387 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2388 Alignment = SI->getAlignment(); 2389 IsVolatile = SI->isVolatile(); 2390 Flags = MachineMemOperand::MOStore; 2391 Ptr = SI->getPointerOperand(); 2392 ValTy = SI->getValueOperand()->getType(); 2393 } else 2394 return nullptr; 2395 2396 bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2397 bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2398 bool IsDereferenceable = 2399 I->getMetadata(LLVMContext::MD_dereferenceable) != nullptr; 2400 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2401 2402 AAMDNodes AAInfo; 2403 I->getAAMetadata(AAInfo); 2404 2405 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2406 Alignment = DL.getABITypeAlignment(ValTy); 2407 2408 unsigned Size = DL.getTypeStoreSize(ValTy); 2409 2410 if (IsVolatile) 2411 Flags |= MachineMemOperand::MOVolatile; 2412 if (IsNonTemporal) 2413 Flags |= MachineMemOperand::MONonTemporal; 2414 if (IsDereferenceable) 2415 Flags |= MachineMemOperand::MODereferenceable; 2416 if (IsInvariant) 2417 Flags |= MachineMemOperand::MOInvariant; 2418 2419 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2420 Alignment, AAInfo, Ranges); 2421 } 2422 2423 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2424 // If both operands are the same, then try to optimize or fold the cmp. 2425 CmpInst::Predicate Predicate = CI->getPredicate(); 2426 if (CI->getOperand(0) != CI->getOperand(1)) 2427 return Predicate; 2428 2429 switch (Predicate) { 2430 default: llvm_unreachable("Invalid predicate!"); 2431 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2432 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2433 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2434 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2435 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2436 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2437 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2438 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2439 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2440 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2441 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2442 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2443 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2444 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2445 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2446 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2447 2448 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2449 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2450 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2451 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2452 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2453 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2454 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2455 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2456 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2457 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2458 } 2459 2460 return Predicate; 2461 } 2462