1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
11 //
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time.  For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
19 //
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support.  In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
24 //
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated.  Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time.  Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
33 //
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators.  More complicated operations currently require
38 // target-specific code.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/CodeGen/FastISel.h"
43 #include "llvm/ADT/APFloat.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/DenseMap.h"
46 #include "llvm/ADT/Optional.h"
47 #include "llvm/ADT/SmallPtrSet.h"
48 #include "llvm/ADT/SmallString.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/Analysis/BranchProbabilityInfo.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/CodeGen/Analysis.h"
54 #include "llvm/CodeGen/FunctionLoweringInfo.h"
55 #include "llvm/CodeGen/ISDOpcodes.h"
56 #include "llvm/CodeGen/MachineBasicBlock.h"
57 #include "llvm/CodeGen/MachineFrameInfo.h"
58 #include "llvm/CodeGen/MachineInstr.h"
59 #include "llvm/CodeGen/MachineInstrBuilder.h"
60 #include "llvm/CodeGen/MachineMemOperand.h"
61 #include "llvm/CodeGen/MachineModuleInfo.h"
62 #include "llvm/CodeGen/MachineOperand.h"
63 #include "llvm/CodeGen/MachineRegisterInfo.h"
64 #include "llvm/CodeGen/StackMaps.h"
65 #include "llvm/CodeGen/TargetInstrInfo.h"
66 #include "llvm/CodeGen/TargetLowering.h"
67 #include "llvm/CodeGen/TargetSubtargetInfo.h"
68 #include "llvm/CodeGen/ValueTypes.h"
69 #include "llvm/IR/Argument.h"
70 #include "llvm/IR/Attributes.h"
71 #include "llvm/IR/BasicBlock.h"
72 #include "llvm/IR/CallSite.h"
73 #include "llvm/IR/CallingConv.h"
74 #include "llvm/IR/Constant.h"
75 #include "llvm/IR/Constants.h"
76 #include "llvm/IR/DataLayout.h"
77 #include "llvm/IR/DebugInfo.h"
78 #include "llvm/IR/DebugLoc.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GetElementPtrTypeIterator.h"
82 #include "llvm/IR/GlobalValue.h"
83 #include "llvm/IR/InlineAsm.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/LLVMContext.h"
89 #include "llvm/IR/Mangler.h"
90 #include "llvm/IR/Metadata.h"
91 #include "llvm/IR/Operator.h"
92 #include "llvm/IR/PatternMatch.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/MC/MCContext.h"
97 #include "llvm/MC/MCInstrDesc.h"
98 #include "llvm/MC/MCRegisterInfo.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/Debug.h"
101 #include "llvm/Support/ErrorHandling.h"
102 #include "llvm/Support/MachineValueType.h"
103 #include "llvm/Support/MathExtras.h"
104 #include "llvm/Support/raw_ostream.h"
105 #include "llvm/Target/TargetMachine.h"
106 #include "llvm/Target/TargetOptions.h"
107 #include <algorithm>
108 #include <cassert>
109 #include <cstdint>
110 #include <iterator>
111 #include <utility>
112 
113 using namespace llvm;
114 using namespace PatternMatch;
115 
116 #define DEBUG_TYPE "isel"
117 
118 // FIXME: Remove this after the feature has proven reliable.
119 static cl::opt<bool> SinkLocalValues("fast-isel-sink-local-values",
120                                      cl::init(true), cl::Hidden,
121                                      cl::desc("Sink local values in FastISel"));
122 
123 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
124                                          "target-independent selector");
125 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
126                                     "target-specific selector");
127 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
128 
129 /// Set the current block to which generated machine instructions will be
130 /// appended.
131 void FastISel::startNewBlock() {
132   assert(LocalValueMap.empty() &&
133          "local values should be cleared after finishing a BB");
134 
135   // Instructions are appended to FuncInfo.MBB. If the basic block already
136   // contains labels or copies, use the last instruction as the last local
137   // value.
138   EmitStartPt = nullptr;
139   if (!FuncInfo.MBB->empty())
140     EmitStartPt = &FuncInfo.MBB->back();
141   LastLocalValue = EmitStartPt;
142 }
143 
144 /// Flush the local CSE map and sink anything we can.
145 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
146 
147 bool FastISel::lowerArguments() {
148   if (!FuncInfo.CanLowerReturn)
149     // Fallback to SDISel argument lowering code to deal with sret pointer
150     // parameter.
151     return false;
152 
153   if (!fastLowerArguments())
154     return false;
155 
156   // Enter arguments into ValueMap for uses in non-entry BBs.
157   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
158                                     E = FuncInfo.Fn->arg_end();
159        I != E; ++I) {
160     DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I);
161     assert(VI != LocalValueMap.end() && "Missed an argument?");
162     FuncInfo.ValueMap[&*I] = VI->second;
163   }
164   return true;
165 }
166 
167 /// Return the defined register if this instruction defines exactly one
168 /// virtual register and uses no other virtual registers. Otherwise return 0.
169 static unsigned findSinkableLocalRegDef(MachineInstr &MI) {
170   unsigned RegDef = 0;
171   for (const MachineOperand &MO : MI.operands()) {
172     if (!MO.isReg())
173       continue;
174     if (MO.isDef()) {
175       if (RegDef)
176         return 0;
177       RegDef = MO.getReg();
178     } else if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
179       // This is another use of a vreg. Don't try to sink it.
180       return 0;
181     }
182   }
183   return RegDef;
184 }
185 
186 void FastISel::flushLocalValueMap() {
187   // Try to sink local values down to their first use so that we can give them a
188   // better debug location. This has the side effect of shrinking local value
189   // live ranges, which helps out fast regalloc.
190   if (SinkLocalValues && LastLocalValue != EmitStartPt) {
191     // Sink local value materialization instructions between EmitStartPt and
192     // LastLocalValue. Visit them bottom-up, starting from LastLocalValue, to
193     // avoid inserting into the range that we're iterating over.
194     MachineBasicBlock::reverse_iterator RE =
195         EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
196                     : FuncInfo.MBB->rend();
197     MachineBasicBlock::reverse_iterator RI(LastLocalValue);
198 
199     InstOrderMap OrderMap;
200     for (; RI != RE;) {
201       MachineInstr &LocalMI = *RI;
202       ++RI;
203       bool Store = true;
204       if (!LocalMI.isSafeToMove(nullptr, Store))
205         continue;
206       unsigned DefReg = findSinkableLocalRegDef(LocalMI);
207       if (DefReg == 0)
208         continue;
209 
210       sinkLocalValueMaterialization(LocalMI, DefReg, OrderMap);
211     }
212   }
213 
214   LocalValueMap.clear();
215   LastLocalValue = EmitStartPt;
216   recomputeInsertPt();
217   SavedInsertPt = FuncInfo.InsertPt;
218   LastFlushPoint = FuncInfo.InsertPt;
219 }
220 
221 static bool isRegUsedByPhiNodes(unsigned DefReg,
222                                 FunctionLoweringInfo &FuncInfo) {
223   for (auto &P : FuncInfo.PHINodesToUpdate)
224     if (P.second == DefReg)
225       return true;
226   return false;
227 }
228 
229 /// Build a map of instruction orders. Return the first terminator and its
230 /// order. Consider EH_LABEL instructions to be terminators as well, since local
231 /// values for phis after invokes must be materialized before the call.
232 void FastISel::InstOrderMap::initialize(
233     MachineBasicBlock *MBB, MachineBasicBlock::iterator LastFlushPoint) {
234   unsigned Order = 0;
235   for (MachineInstr &I : *MBB) {
236     if (!FirstTerminator &&
237         (I.isTerminator() || (I.isEHLabel() && &I != &MBB->front()))) {
238       FirstTerminator = &I;
239       FirstTerminatorOrder = Order;
240     }
241     Orders[&I] = Order++;
242 
243     // We don't need to order instructions past the last flush point.
244     if (I.getIterator() == LastFlushPoint)
245       break;
246   }
247 }
248 
249 void FastISel::sinkLocalValueMaterialization(MachineInstr &LocalMI,
250                                              unsigned DefReg,
251                                              InstOrderMap &OrderMap) {
252   // If this register is used by a register fixup, MRI will not contain all
253   // the uses until after register fixups, so don't attempt to sink or DCE
254   // this instruction. Register fixups typically come from no-op cast
255   // instructions, which replace the cast instruction vreg with the local
256   // value vreg.
257   if (FuncInfo.RegsWithFixups.count(DefReg))
258     return;
259 
260   // We can DCE this instruction if there are no uses and it wasn't a
261   // materialized for a successor PHI node.
262   bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
263   if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
264     if (EmitStartPt == &LocalMI)
265       EmitStartPt = EmitStartPt->getPrevNode();
266     LLVM_DEBUG(dbgs() << "removing dead local value materialization "
267                       << LocalMI);
268     OrderMap.Orders.erase(&LocalMI);
269     LocalMI.eraseFromParent();
270     return;
271   }
272 
273   // Number the instructions if we haven't yet so we can efficiently find the
274   // earliest use.
275   if (OrderMap.Orders.empty())
276     OrderMap.initialize(FuncInfo.MBB, LastFlushPoint);
277 
278   // Find the first user in the BB.
279   MachineInstr *FirstUser = nullptr;
280   unsigned FirstOrder = std::numeric_limits<unsigned>::max();
281   for (MachineInstr &UseInst : MRI.use_nodbg_instructions(DefReg)) {
282     auto I = OrderMap.Orders.find(&UseInst);
283     assert(I != OrderMap.Orders.end() &&
284            "local value used by instruction outside local region");
285     unsigned UseOrder = I->second;
286     if (UseOrder < FirstOrder) {
287       FirstOrder = UseOrder;
288       FirstUser = &UseInst;
289     }
290   }
291 
292   // The insertion point will be the first terminator or the first user,
293   // whichever came first. If there was no terminator, this must be a
294   // fallthrough block and the insertion point is the end of the block.
295   MachineBasicBlock::instr_iterator SinkPos;
296   if (UsedByPHI && OrderMap.FirstTerminatorOrder < FirstOrder) {
297     FirstOrder = OrderMap.FirstTerminatorOrder;
298     SinkPos = OrderMap.FirstTerminator->getIterator();
299   } else if (FirstUser) {
300     SinkPos = FirstUser->getIterator();
301   } else {
302     assert(UsedByPHI && "must be users if not used by a phi");
303     SinkPos = FuncInfo.MBB->instr_end();
304   }
305 
306   // Collect all DBG_VALUEs before the new insertion position so that we can
307   // sink them.
308   SmallVector<MachineInstr *, 1> DbgValues;
309   for (MachineInstr &DbgVal : MRI.use_instructions(DefReg)) {
310     if (!DbgVal.isDebugValue())
311       continue;
312     unsigned UseOrder = OrderMap.Orders[&DbgVal];
313     if (UseOrder < FirstOrder)
314       DbgValues.push_back(&DbgVal);
315   }
316 
317   // Sink LocalMI before SinkPos and assign it the same DebugLoc.
318   LLVM_DEBUG(dbgs() << "sinking local value to first use " << LocalMI);
319   FuncInfo.MBB->remove(&LocalMI);
320   FuncInfo.MBB->insert(SinkPos, &LocalMI);
321   if (SinkPos != FuncInfo.MBB->end())
322     LocalMI.setDebugLoc(SinkPos->getDebugLoc());
323 
324   // Sink any debug values that we've collected.
325   for (MachineInstr *DI : DbgValues) {
326     FuncInfo.MBB->remove(DI);
327     FuncInfo.MBB->insert(SinkPos, DI);
328   }
329 }
330 
331 bool FastISel::hasTrivialKill(const Value *V) {
332   // Don't consider constants or arguments to have trivial kills.
333   const Instruction *I = dyn_cast<Instruction>(V);
334   if (!I)
335     return false;
336 
337   // No-op casts are trivially coalesced by fast-isel.
338   if (const auto *Cast = dyn_cast<CastInst>(I))
339     if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0)))
340       return false;
341 
342   // Even the value might have only one use in the LLVM IR, it is possible that
343   // FastISel might fold the use into another instruction and now there is more
344   // than one use at the Machine Instruction level.
345   unsigned Reg = lookUpRegForValue(V);
346   if (Reg && !MRI.use_empty(Reg))
347     return false;
348 
349   // GEPs with all zero indices are trivially coalesced by fast-isel.
350   if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
351     if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
352       return false;
353 
354   // Only instructions with a single use in the same basic block are considered
355   // to have trivial kills.
356   return I->hasOneUse() &&
357          !(I->getOpcode() == Instruction::BitCast ||
358            I->getOpcode() == Instruction::PtrToInt ||
359            I->getOpcode() == Instruction::IntToPtr) &&
360          cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
361 }
362 
363 unsigned FastISel::getRegForValue(const Value *V) {
364   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
365   // Don't handle non-simple values in FastISel.
366   if (!RealVT.isSimple())
367     return 0;
368 
369   // Ignore illegal types. We must do this before looking up the value
370   // in ValueMap because Arguments are given virtual registers regardless
371   // of whether FastISel can handle them.
372   MVT VT = RealVT.getSimpleVT();
373   if (!TLI.isTypeLegal(VT)) {
374     // Handle integer promotions, though, because they're common and easy.
375     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
376       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
377     else
378       return 0;
379   }
380 
381   // Look up the value to see if we already have a register for it.
382   unsigned Reg = lookUpRegForValue(V);
383   if (Reg)
384     return Reg;
385 
386   // In bottom-up mode, just create the virtual register which will be used
387   // to hold the value. It will be materialized later.
388   if (isa<Instruction>(V) &&
389       (!isa<AllocaInst>(V) ||
390        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
391     return FuncInfo.InitializeRegForValue(V);
392 
393   SavePoint SaveInsertPt = enterLocalValueArea();
394 
395   // Materialize the value in a register. Emit any instructions in the
396   // local value area.
397   Reg = materializeRegForValue(V, VT);
398 
399   leaveLocalValueArea(SaveInsertPt);
400 
401   return Reg;
402 }
403 
404 unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
405   unsigned Reg = 0;
406   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
407     if (CI->getValue().getActiveBits() <= 64)
408       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
409   } else if (isa<AllocaInst>(V))
410     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
411   else if (isa<ConstantPointerNull>(V))
412     // Translate this as an integer zero so that it can be
413     // local-CSE'd with actual integer zeros.
414     Reg = getRegForValue(
415         Constant::getNullValue(DL.getIntPtrType(V->getContext())));
416   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
417     if (CF->isNullValue())
418       Reg = fastMaterializeFloatZero(CF);
419     else
420       // Try to emit the constant directly.
421       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
422 
423     if (!Reg) {
424       // Try to emit the constant by using an integer constant with a cast.
425       const APFloat &Flt = CF->getValueAPF();
426       EVT IntVT = TLI.getPointerTy(DL);
427       uint32_t IntBitWidth = IntVT.getSizeInBits();
428       APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
429       bool isExact;
430       (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
431       if (isExact) {
432         unsigned IntegerReg =
433             getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
434         if (IntegerReg != 0)
435           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
436                            /*Kill=*/false);
437       }
438     }
439   } else if (const auto *Op = dyn_cast<Operator>(V)) {
440     if (!selectOperator(Op, Op->getOpcode()))
441       if (!isa<Instruction>(Op) ||
442           !fastSelectInstruction(cast<Instruction>(Op)))
443         return 0;
444     Reg = lookUpRegForValue(Op);
445   } else if (isa<UndefValue>(V)) {
446     Reg = createResultReg(TLI.getRegClassFor(VT));
447     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
448             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
449   }
450   return Reg;
451 }
452 
453 /// Helper for getRegForValue. This function is called when the value isn't
454 /// already available in a register and must be materialized with new
455 /// instructions.
456 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
457   unsigned Reg = 0;
458   // Give the target-specific code a try first.
459   if (isa<Constant>(V))
460     Reg = fastMaterializeConstant(cast<Constant>(V));
461 
462   // If target-specific code couldn't or didn't want to handle the value, then
463   // give target-independent code a try.
464   if (!Reg)
465     Reg = materializeConstant(V, VT);
466 
467   // Don't cache constant materializations in the general ValueMap.
468   // To do so would require tracking what uses they dominate.
469   if (Reg) {
470     LocalValueMap[V] = Reg;
471     LastLocalValue = MRI.getVRegDef(Reg);
472   }
473   return Reg;
474 }
475 
476 unsigned FastISel::lookUpRegForValue(const Value *V) {
477   // Look up the value to see if we already have a register for it. We
478   // cache values defined by Instructions across blocks, and other values
479   // only locally. This is because Instructions already have the SSA
480   // def-dominates-use requirement enforced.
481   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
482   if (I != FuncInfo.ValueMap.end())
483     return I->second;
484   return LocalValueMap[V];
485 }
486 
487 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
488   if (!isa<Instruction>(I)) {
489     LocalValueMap[I] = Reg;
490     return;
491   }
492 
493   unsigned &AssignedReg = FuncInfo.ValueMap[I];
494   if (AssignedReg == 0)
495     // Use the new register.
496     AssignedReg = Reg;
497   else if (Reg != AssignedReg) {
498     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
499     for (unsigned i = 0; i < NumRegs; i++) {
500       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
501       FuncInfo.RegsWithFixups.insert(Reg + i);
502     }
503 
504     AssignedReg = Reg;
505   }
506 }
507 
508 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
509   unsigned IdxN = getRegForValue(Idx);
510   if (IdxN == 0)
511     // Unhandled operand. Halt "fast" selection and bail.
512     return std::pair<unsigned, bool>(0, false);
513 
514   bool IdxNIsKill = hasTrivialKill(Idx);
515 
516   // If the index is smaller or larger than intptr_t, truncate or extend it.
517   MVT PtrVT = TLI.getPointerTy(DL);
518   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
519   if (IdxVT.bitsLT(PtrVT)) {
520     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
521                       IdxNIsKill);
522     IdxNIsKill = true;
523   } else if (IdxVT.bitsGT(PtrVT)) {
524     IdxN =
525         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
526     IdxNIsKill = true;
527   }
528   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
529 }
530 
531 void FastISel::recomputeInsertPt() {
532   if (getLastLocalValue()) {
533     FuncInfo.InsertPt = getLastLocalValue();
534     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
535     ++FuncInfo.InsertPt;
536   } else
537     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
538 
539   // Now skip past any EH_LABELs, which must remain at the beginning.
540   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
541          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
542     ++FuncInfo.InsertPt;
543 }
544 
545 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
546                               MachineBasicBlock::iterator E) {
547   assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
548          "Invalid iterator!");
549   while (I != E) {
550     MachineInstr *Dead = &*I;
551     ++I;
552     Dead->eraseFromParent();
553     ++NumFastIselDead;
554   }
555   recomputeInsertPt();
556 }
557 
558 FastISel::SavePoint FastISel::enterLocalValueArea() {
559   MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
560   DebugLoc OldDL = DbgLoc;
561   recomputeInsertPt();
562   DbgLoc = DebugLoc();
563   SavePoint SP = {OldInsertPt, OldDL};
564   return SP;
565 }
566 
567 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
568   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
569     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
570 
571   // Restore the previous insert position.
572   FuncInfo.InsertPt = OldInsertPt.InsertPt;
573   DbgLoc = OldInsertPt.DL;
574 }
575 
576 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
577   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
578   if (VT == MVT::Other || !VT.isSimple())
579     // Unhandled type. Halt "fast" selection and bail.
580     return false;
581 
582   // We only handle legal types. For example, on x86-32 the instruction
583   // selector contains all of the 64-bit instructions from x86-64,
584   // under the assumption that i64 won't be used if the target doesn't
585   // support it.
586   if (!TLI.isTypeLegal(VT)) {
587     // MVT::i1 is special. Allow AND, OR, or XOR because they
588     // don't require additional zeroing, which makes them easy.
589     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
590                           ISDOpcode == ISD::XOR))
591       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
592     else
593       return false;
594   }
595 
596   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
597   // we don't have anything that canonicalizes operand order.
598   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
599     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
600       unsigned Op1 = getRegForValue(I->getOperand(1));
601       if (!Op1)
602         return false;
603       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
604 
605       unsigned ResultReg =
606           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
607                        CI->getZExtValue(), VT.getSimpleVT());
608       if (!ResultReg)
609         return false;
610 
611       // We successfully emitted code for the given LLVM Instruction.
612       updateValueMap(I, ResultReg);
613       return true;
614     }
615 
616   unsigned Op0 = getRegForValue(I->getOperand(0));
617   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
618     return false;
619   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
620 
621   // Check if the second operand is a constant and handle it appropriately.
622   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
623     uint64_t Imm = CI->getSExtValue();
624 
625     // Transform "sdiv exact X, 8" -> "sra X, 3".
626     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
627         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
628       Imm = Log2_64(Imm);
629       ISDOpcode = ISD::SRA;
630     }
631 
632     // Transform "urem x, pow2" -> "and x, pow2-1".
633     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
634         isPowerOf2_64(Imm)) {
635       --Imm;
636       ISDOpcode = ISD::AND;
637     }
638 
639     unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
640                                       Op0IsKill, Imm, VT.getSimpleVT());
641     if (!ResultReg)
642       return false;
643 
644     // We successfully emitted code for the given LLVM Instruction.
645     updateValueMap(I, ResultReg);
646     return true;
647   }
648 
649   unsigned Op1 = getRegForValue(I->getOperand(1));
650   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
651     return false;
652   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
653 
654   // Now we have both operands in registers. Emit the instruction.
655   unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
656                                    ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
657   if (!ResultReg)
658     // Target-specific code wasn't able to find a machine opcode for
659     // the given ISD opcode and type. Halt "fast" selection and bail.
660     return false;
661 
662   // We successfully emitted code for the given LLVM Instruction.
663   updateValueMap(I, ResultReg);
664   return true;
665 }
666 
667 bool FastISel::selectGetElementPtr(const User *I) {
668   unsigned N = getRegForValue(I->getOperand(0));
669   if (!N) // Unhandled operand. Halt "fast" selection and bail.
670     return false;
671   bool NIsKill = hasTrivialKill(I->getOperand(0));
672 
673   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
674   // into a single N = N + TotalOffset.
675   uint64_t TotalOffs = 0;
676   // FIXME: What's a good SWAG number for MaxOffs?
677   uint64_t MaxOffs = 2048;
678   MVT VT = TLI.getPointerTy(DL);
679   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
680        GTI != E; ++GTI) {
681     const Value *Idx = GTI.getOperand();
682     if (StructType *StTy = GTI.getStructTypeOrNull()) {
683       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
684       if (Field) {
685         // N = N + Offset
686         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
687         if (TotalOffs >= MaxOffs) {
688           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
689           if (!N) // Unhandled operand. Halt "fast" selection and bail.
690             return false;
691           NIsKill = true;
692           TotalOffs = 0;
693         }
694       }
695     } else {
696       Type *Ty = GTI.getIndexedType();
697 
698       // If this is a constant subscript, handle it quickly.
699       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
700         if (CI->isZero())
701           continue;
702         // N = N + Offset
703         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
704         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
705         if (TotalOffs >= MaxOffs) {
706           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
707           if (!N) // Unhandled operand. Halt "fast" selection and bail.
708             return false;
709           NIsKill = true;
710           TotalOffs = 0;
711         }
712         continue;
713       }
714       if (TotalOffs) {
715         N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
716         if (!N) // Unhandled operand. Halt "fast" selection and bail.
717           return false;
718         NIsKill = true;
719         TotalOffs = 0;
720       }
721 
722       // N = N + Idx * ElementSize;
723       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
724       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
725       unsigned IdxN = Pair.first;
726       bool IdxNIsKill = Pair.second;
727       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
728         return false;
729 
730       if (ElementSize != 1) {
731         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
732         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
733           return false;
734         IdxNIsKill = true;
735       }
736       N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
737       if (!N) // Unhandled operand. Halt "fast" selection and bail.
738         return false;
739     }
740   }
741   if (TotalOffs) {
742     N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
743     if (!N) // Unhandled operand. Halt "fast" selection and bail.
744       return false;
745   }
746 
747   // We successfully emitted code for the given LLVM Instruction.
748   updateValueMap(I, N);
749   return true;
750 }
751 
752 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
753                                    const CallInst *CI, unsigned StartIdx) {
754   for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
755     Value *Val = CI->getArgOperand(i);
756     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
757     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
758       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
759       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
760     } else if (isa<ConstantPointerNull>(Val)) {
761       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
762       Ops.push_back(MachineOperand::CreateImm(0));
763     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
764       // Values coming from a stack location also require a special encoding,
765       // but that is added later on by the target specific frame index
766       // elimination implementation.
767       auto SI = FuncInfo.StaticAllocaMap.find(AI);
768       if (SI != FuncInfo.StaticAllocaMap.end())
769         Ops.push_back(MachineOperand::CreateFI(SI->second));
770       else
771         return false;
772     } else {
773       unsigned Reg = getRegForValue(Val);
774       if (!Reg)
775         return false;
776       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
777     }
778   }
779   return true;
780 }
781 
782 bool FastISel::selectStackmap(const CallInst *I) {
783   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
784   //                                  [live variables...])
785   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
786          "Stackmap cannot return a value.");
787 
788   // The stackmap intrinsic only records the live variables (the arguments
789   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
790   // intrinsic, this won't be lowered to a function call. This means we don't
791   // have to worry about calling conventions and target-specific lowering code.
792   // Instead we perform the call lowering right here.
793   //
794   // CALLSEQ_START(0, 0...)
795   // STACKMAP(id, nbytes, ...)
796   // CALLSEQ_END(0, 0)
797   //
798   SmallVector<MachineOperand, 32> Ops;
799 
800   // Add the <id> and <numBytes> constants.
801   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
802          "Expected a constant integer.");
803   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
804   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
805 
806   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
807          "Expected a constant integer.");
808   const auto *NumBytes =
809       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
810   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
811 
812   // Push live variables for the stack map (skipping the first two arguments
813   // <id> and <numBytes>).
814   if (!addStackMapLiveVars(Ops, I, 2))
815     return false;
816 
817   // We are not adding any register mask info here, because the stackmap doesn't
818   // clobber anything.
819 
820   // Add scratch registers as implicit def and early clobber.
821   CallingConv::ID CC = I->getCallingConv();
822   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
823   for (unsigned i = 0; ScratchRegs[i]; ++i)
824     Ops.push_back(MachineOperand::CreateReg(
825         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
826         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
827 
828   // Issue CALLSEQ_START
829   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
830   auto Builder =
831       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
832   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
833   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
834     Builder.addImm(0);
835 
836   // Issue STACKMAP.
837   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
838                                     TII.get(TargetOpcode::STACKMAP));
839   for (auto const &MO : Ops)
840     MIB.add(MO);
841 
842   // Issue CALLSEQ_END
843   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
844   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
845       .addImm(0)
846       .addImm(0);
847 
848   // Inform the Frame Information that we have a stackmap in this function.
849   FuncInfo.MF->getFrameInfo().setHasStackMap();
850 
851   return true;
852 }
853 
854 /// Lower an argument list according to the target calling convention.
855 ///
856 /// This is a helper for lowering intrinsics that follow a target calling
857 /// convention or require stack pointer adjustment. Only a subset of the
858 /// intrinsic's operands need to participate in the calling convention.
859 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
860                                  unsigned NumArgs, const Value *Callee,
861                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
862   ArgListTy Args;
863   Args.reserve(NumArgs);
864 
865   // Populate the argument list.
866   ImmutableCallSite CS(CI);
867   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
868     Value *V = CI->getOperand(ArgI);
869 
870     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
871 
872     ArgListEntry Entry;
873     Entry.Val = V;
874     Entry.Ty = V->getType();
875     Entry.setAttributes(&CS, ArgI);
876     Args.push_back(Entry);
877   }
878 
879   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
880                                : CI->getType();
881   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
882 
883   return lowerCallTo(CLI);
884 }
885 
886 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
887     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
888     StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
889   SmallString<32> MangledName;
890   Mangler::getNameWithPrefix(MangledName, Target, DL);
891   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
892   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
893 }
894 
895 bool FastISel::selectPatchpoint(const CallInst *I) {
896   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
897   //                                                 i32 <numBytes>,
898   //                                                 i8* <target>,
899   //                                                 i32 <numArgs>,
900   //                                                 [Args...],
901   //                                                 [live variables...])
902   CallingConv::ID CC = I->getCallingConv();
903   bool IsAnyRegCC = CC == CallingConv::AnyReg;
904   bool HasDef = !I->getType()->isVoidTy();
905   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
906 
907   // Get the real number of arguments participating in the call <numArgs>
908   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
909          "Expected a constant integer.");
910   const auto *NumArgsVal =
911       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
912   unsigned NumArgs = NumArgsVal->getZExtValue();
913 
914   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
915   // This includes all meta-operands up to but not including CC.
916   unsigned NumMetaOpers = PatchPointOpers::CCPos;
917   assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
918          "Not enough arguments provided to the patchpoint intrinsic");
919 
920   // For AnyRegCC the arguments are lowered later on manually.
921   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
922   CallLoweringInfo CLI;
923   CLI.setIsPatchPoint();
924   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
925     return false;
926 
927   assert(CLI.Call && "No call instruction specified.");
928 
929   SmallVector<MachineOperand, 32> Ops;
930 
931   // Add an explicit result reg if we use the anyreg calling convention.
932   if (IsAnyRegCC && HasDef) {
933     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
934     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
935     CLI.NumResultRegs = 1;
936     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true));
937   }
938 
939   // Add the <id> and <numBytes> constants.
940   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
941          "Expected a constant integer.");
942   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
943   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
944 
945   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
946          "Expected a constant integer.");
947   const auto *NumBytes =
948       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
949   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
950 
951   // Add the call target.
952   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
953     uint64_t CalleeConstAddr =
954       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
955     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
956   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
957     if (C->getOpcode() == Instruction::IntToPtr) {
958       uint64_t CalleeConstAddr =
959         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
960       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
961     } else
962       llvm_unreachable("Unsupported ConstantExpr.");
963   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
964     Ops.push_back(MachineOperand::CreateGA(GV, 0));
965   } else if (isa<ConstantPointerNull>(Callee))
966     Ops.push_back(MachineOperand::CreateImm(0));
967   else
968     llvm_unreachable("Unsupported callee address.");
969 
970   // Adjust <numArgs> to account for any arguments that have been passed on
971   // the stack instead.
972   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
973   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
974 
975   // Add the calling convention
976   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
977 
978   // Add the arguments we omitted previously. The register allocator should
979   // place these in any free register.
980   if (IsAnyRegCC) {
981     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
982       unsigned Reg = getRegForValue(I->getArgOperand(i));
983       if (!Reg)
984         return false;
985       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
986     }
987   }
988 
989   // Push the arguments from the call instruction.
990   for (auto Reg : CLI.OutRegs)
991     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
992 
993   // Push live variables for the stack map.
994   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
995     return false;
996 
997   // Push the register mask info.
998   Ops.push_back(MachineOperand::CreateRegMask(
999       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
1000 
1001   // Add scratch registers as implicit def and early clobber.
1002   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
1003   for (unsigned i = 0; ScratchRegs[i]; ++i)
1004     Ops.push_back(MachineOperand::CreateReg(
1005         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
1006         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
1007 
1008   // Add implicit defs (return values).
1009   for (auto Reg : CLI.InRegs)
1010     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true,
1011                                             /*IsImpl=*/true));
1012 
1013   // Insert the patchpoint instruction before the call generated by the target.
1014   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
1015                                     TII.get(TargetOpcode::PATCHPOINT));
1016 
1017   for (auto &MO : Ops)
1018     MIB.add(MO);
1019 
1020   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1021 
1022   // Delete the original call instruction.
1023   CLI.Call->eraseFromParent();
1024 
1025   // Inform the Frame Information that we have a patchpoint in this function.
1026   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
1027 
1028   if (CLI.NumResultRegs)
1029     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
1030   return true;
1031 }
1032 
1033 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
1034   const auto &Triple = TM.getTargetTriple();
1035   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
1036     return true; // don't do anything to this instruction.
1037   SmallVector<MachineOperand, 8> Ops;
1038   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
1039                                           /*IsDef=*/false));
1040   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
1041                                           /*IsDef=*/false));
1042   MachineInstrBuilder MIB =
1043       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1044               TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
1045   for (auto &MO : Ops)
1046     MIB.add(MO);
1047 
1048   // Insert the Patchable Event Call instruction, that gets lowered properly.
1049   return true;
1050 }
1051 
1052 bool FastISel::selectXRayTypedEvent(const CallInst *I) {
1053   const auto &Triple = TM.getTargetTriple();
1054   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
1055     return true; // don't do anything to this instruction.
1056   SmallVector<MachineOperand, 8> Ops;
1057   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
1058                                           /*IsDef=*/false));
1059   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
1060                                           /*IsDef=*/false));
1061   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
1062                                           /*IsDef=*/false));
1063   MachineInstrBuilder MIB =
1064       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1065               TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
1066   for (auto &MO : Ops)
1067     MIB.add(MO);
1068 
1069   // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
1070   return true;
1071 }
1072 
1073 /// Returns an AttributeList representing the attributes applied to the return
1074 /// value of the given call.
1075 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
1076   SmallVector<Attribute::AttrKind, 2> Attrs;
1077   if (CLI.RetSExt)
1078     Attrs.push_back(Attribute::SExt);
1079   if (CLI.RetZExt)
1080     Attrs.push_back(Attribute::ZExt);
1081   if (CLI.IsInReg)
1082     Attrs.push_back(Attribute::InReg);
1083 
1084   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
1085                             Attrs);
1086 }
1087 
1088 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
1089                            unsigned NumArgs) {
1090   MCContext &Ctx = MF->getContext();
1091   SmallString<32> MangledName;
1092   Mangler::getNameWithPrefix(MangledName, SymName, DL);
1093   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
1094   return lowerCallTo(CI, Sym, NumArgs);
1095 }
1096 
1097 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
1098                            unsigned NumArgs) {
1099   ImmutableCallSite CS(CI);
1100 
1101   FunctionType *FTy = CS.getFunctionType();
1102   Type *RetTy = CS.getType();
1103 
1104   ArgListTy Args;
1105   Args.reserve(NumArgs);
1106 
1107   // Populate the argument list.
1108   // Attributes for args start at offset 1, after the return attribute.
1109   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
1110     Value *V = CI->getOperand(ArgI);
1111 
1112     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
1113 
1114     ArgListEntry Entry;
1115     Entry.Val = V;
1116     Entry.Ty = V->getType();
1117     Entry.setAttributes(&CS, ArgI);
1118     Args.push_back(Entry);
1119   }
1120   TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args);
1121 
1122   CallLoweringInfo CLI;
1123   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs);
1124 
1125   return lowerCallTo(CLI);
1126 }
1127 
1128 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
1129   // Handle the incoming return values from the call.
1130   CLI.clearIns();
1131   SmallVector<EVT, 4> RetTys;
1132   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
1133 
1134   SmallVector<ISD::OutputArg, 4> Outs;
1135   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1136 
1137   bool CanLowerReturn = TLI.CanLowerReturn(
1138       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
1139 
1140   // FIXME: sret demotion isn't supported yet - bail out.
1141   if (!CanLowerReturn)
1142     return false;
1143 
1144   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
1145     EVT VT = RetTys[I];
1146     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1147     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1148     for (unsigned i = 0; i != NumRegs; ++i) {
1149       ISD::InputArg MyFlags;
1150       MyFlags.VT = RegisterVT;
1151       MyFlags.ArgVT = VT;
1152       MyFlags.Used = CLI.IsReturnValueUsed;
1153       if (CLI.RetSExt)
1154         MyFlags.Flags.setSExt();
1155       if (CLI.RetZExt)
1156         MyFlags.Flags.setZExt();
1157       if (CLI.IsInReg)
1158         MyFlags.Flags.setInReg();
1159       CLI.Ins.push_back(MyFlags);
1160     }
1161   }
1162 
1163   // Handle all of the outgoing arguments.
1164   CLI.clearOuts();
1165   for (auto &Arg : CLI.getArgs()) {
1166     Type *FinalType = Arg.Ty;
1167     if (Arg.IsByVal)
1168       FinalType = cast<PointerType>(Arg.Ty)->getElementType();
1169     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1170         FinalType, CLI.CallConv, CLI.IsVarArg);
1171 
1172     ISD::ArgFlagsTy Flags;
1173     if (Arg.IsZExt)
1174       Flags.setZExt();
1175     if (Arg.IsSExt)
1176       Flags.setSExt();
1177     if (Arg.IsInReg)
1178       Flags.setInReg();
1179     if (Arg.IsSRet)
1180       Flags.setSRet();
1181     if (Arg.IsSwiftSelf)
1182       Flags.setSwiftSelf();
1183     if (Arg.IsSwiftError)
1184       Flags.setSwiftError();
1185     if (Arg.IsByVal)
1186       Flags.setByVal();
1187     if (Arg.IsInAlloca) {
1188       Flags.setInAlloca();
1189       // Set the byval flag for CCAssignFn callbacks that don't know about
1190       // inalloca. This way we can know how many bytes we should've allocated
1191       // and how many bytes a callee cleanup function will pop.  If we port
1192       // inalloca to more targets, we'll have to add custom inalloca handling in
1193       // the various CC lowering callbacks.
1194       Flags.setByVal();
1195     }
1196     if (Arg.IsByVal || Arg.IsInAlloca) {
1197       PointerType *Ty = cast<PointerType>(Arg.Ty);
1198       Type *ElementTy = Ty->getElementType();
1199       unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
1200       // For ByVal, alignment should come from FE. BE will guess if this info is
1201       // not there, but there are cases it cannot get right.
1202       unsigned FrameAlign = Arg.Alignment;
1203       if (!FrameAlign)
1204         FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL);
1205       Flags.setByValSize(FrameSize);
1206       Flags.setByValAlign(FrameAlign);
1207     }
1208     if (Arg.IsNest)
1209       Flags.setNest();
1210     if (NeedsRegBlock)
1211       Flags.setInConsecutiveRegs();
1212     unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty);
1213     Flags.setOrigAlign(OriginalAlignment);
1214 
1215     CLI.OutVals.push_back(Arg.Val);
1216     CLI.OutFlags.push_back(Flags);
1217   }
1218 
1219   if (!fastLowerCall(CLI))
1220     return false;
1221 
1222   // Set all unused physreg defs as dead.
1223   assert(CLI.Call && "No call instruction specified.");
1224   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1225 
1226   if (CLI.NumResultRegs && CLI.CS)
1227     updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
1228 
1229   return true;
1230 }
1231 
1232 bool FastISel::lowerCall(const CallInst *CI) {
1233   ImmutableCallSite CS(CI);
1234 
1235   FunctionType *FuncTy = CS.getFunctionType();
1236   Type *RetTy = CS.getType();
1237 
1238   ArgListTy Args;
1239   ArgListEntry Entry;
1240   Args.reserve(CS.arg_size());
1241 
1242   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1243        i != e; ++i) {
1244     Value *V = *i;
1245 
1246     // Skip empty types
1247     if (V->getType()->isEmptyTy())
1248       continue;
1249 
1250     Entry.Val = V;
1251     Entry.Ty = V->getType();
1252 
1253     // Skip the first return-type Attribute to get to params.
1254     Entry.setAttributes(&CS, i - CS.arg_begin());
1255     Args.push_back(Entry);
1256   }
1257 
1258   // Check if target-independent constraints permit a tail call here.
1259   // Target-dependent constraints are checked within fastLowerCall.
1260   bool IsTailCall = CI->isTailCall();
1261   if (IsTailCall && !isInTailCallPosition(CS, TM))
1262     IsTailCall = false;
1263 
1264   CallLoweringInfo CLI;
1265   CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
1266       .setTailCall(IsTailCall);
1267 
1268   return lowerCallTo(CLI);
1269 }
1270 
1271 bool FastISel::selectCall(const User *I) {
1272   const CallInst *Call = cast<CallInst>(I);
1273 
1274   // Handle simple inline asms.
1275   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
1276     // If the inline asm has side effects, then make sure that no local value
1277     // lives across by flushing the local value map.
1278     if (IA->hasSideEffects())
1279       flushLocalValueMap();
1280 
1281     // Don't attempt to handle constraints.
1282     if (!IA->getConstraintString().empty())
1283       return false;
1284 
1285     unsigned ExtraInfo = 0;
1286     if (IA->hasSideEffects())
1287       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1288     if (IA->isAlignStack())
1289       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1290 
1291     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1292             TII.get(TargetOpcode::INLINEASM))
1293         .addExternalSymbol(IA->getAsmString().c_str())
1294         .addImm(ExtraInfo);
1295     return true;
1296   }
1297 
1298   MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
1299   computeUsesVAFloatArgument(*Call, MMI);
1300 
1301   // Handle intrinsic function calls.
1302   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1303     return selectIntrinsicCall(II);
1304 
1305   // Usually, it does not make sense to initialize a value,
1306   // make an unrelated function call and use the value, because
1307   // it tends to be spilled on the stack. So, we move the pointer
1308   // to the last local value to the beginning of the block, so that
1309   // all the values which have already been materialized,
1310   // appear after the call. It also makes sense to skip intrinsics
1311   // since they tend to be inlined.
1312   flushLocalValueMap();
1313 
1314   return lowerCall(Call);
1315 }
1316 
1317 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1318   switch (II->getIntrinsicID()) {
1319   default:
1320     break;
1321   // At -O0 we don't care about the lifetime intrinsics.
1322   case Intrinsic::lifetime_start:
1323   case Intrinsic::lifetime_end:
1324   // The donothing intrinsic does, well, nothing.
1325   case Intrinsic::donothing:
1326   // Neither does the sideeffect intrinsic.
1327   case Intrinsic::sideeffect:
1328   // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1329   case Intrinsic::assume:
1330     return true;
1331   case Intrinsic::dbg_declare: {
1332     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1333     assert(DI->getVariable() && "Missing variable");
1334     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1335       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1336       return true;
1337     }
1338 
1339     const Value *Address = DI->getAddress();
1340     if (!Address || isa<UndefValue>(Address)) {
1341       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1342       return true;
1343     }
1344 
1345     // Byval arguments with frame indices were already handled after argument
1346     // lowering and before isel.
1347     const auto *Arg =
1348         dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
1349     if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
1350       return true;
1351 
1352     Optional<MachineOperand> Op;
1353     if (unsigned Reg = lookUpRegForValue(Address))
1354       Op = MachineOperand::CreateReg(Reg, false);
1355 
1356     // If we have a VLA that has a "use" in a metadata node that's then used
1357     // here but it has no other uses, then we have a problem. E.g.,
1358     //
1359     //   int foo (const int *x) {
1360     //     char a[*x];
1361     //     return 0;
1362     //   }
1363     //
1364     // If we assign 'a' a vreg and fast isel later on has to use the selection
1365     // DAG isel, it will want to copy the value to the vreg. However, there are
1366     // no uses, which goes counter to what selection DAG isel expects.
1367     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1368         (!isa<AllocaInst>(Address) ||
1369          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1370       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1371                                      false);
1372 
1373     if (Op) {
1374       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1375              "Expected inlined-at fields to agree");
1376       // A dbg.declare describes the address of a source variable, so lower it
1377       // into an indirect DBG_VALUE.
1378       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1379               TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true,
1380               *Op, DI->getVariable(), DI->getExpression());
1381     } else {
1382       // We can't yet handle anything else here because it would require
1383       // generating code, thus altering codegen because of debug info.
1384       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1385     }
1386     return true;
1387   }
1388   case Intrinsic::dbg_value: {
1389     // This form of DBG_VALUE is target-independent.
1390     const DbgValueInst *DI = cast<DbgValueInst>(II);
1391     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1392     const Value *V = DI->getValue();
1393     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1394            "Expected inlined-at fields to agree");
1395     if (!V) {
1396       // Currently the optimizer can produce this; insert an undef to
1397       // help debugging.  Probably the optimizer should not do this.
1398       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
1399               DI->getVariable(), DI->getExpression());
1400     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1401       if (CI->getBitWidth() > 64)
1402         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1403             .addCImm(CI)
1404             .addImm(0U)
1405             .addMetadata(DI->getVariable())
1406             .addMetadata(DI->getExpression());
1407       else
1408         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1409             .addImm(CI->getZExtValue())
1410             .addImm(0U)
1411             .addMetadata(DI->getVariable())
1412             .addMetadata(DI->getExpression());
1413     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1414       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1415           .addFPImm(CF)
1416           .addImm(0U)
1417           .addMetadata(DI->getVariable())
1418           .addMetadata(DI->getExpression());
1419     } else if (unsigned Reg = lookUpRegForValue(V)) {
1420       // FIXME: This does not handle register-indirect values at offset 0.
1421       bool IsIndirect = false;
1422       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1423               DI->getVariable(), DI->getExpression());
1424     } else {
1425       // We can't yet handle anything else here because it would require
1426       // generating code, thus altering codegen because of debug info.
1427       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1428     }
1429     return true;
1430   }
1431   case Intrinsic::dbg_label: {
1432     const DbgLabelInst *DI = cast<DbgLabelInst>(II);
1433     assert(DI->getLabel() && "Missing label");
1434     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1435       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1436       return true;
1437     }
1438 
1439     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1440             TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
1441     return true;
1442   }
1443   case Intrinsic::objectsize: {
1444     ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1445     unsigned long long Res = CI->isZero() ? -1ULL : 0;
1446     Constant *ResCI = ConstantInt::get(II->getType(), Res);
1447     unsigned ResultReg = getRegForValue(ResCI);
1448     if (!ResultReg)
1449       return false;
1450     updateValueMap(II, ResultReg);
1451     return true;
1452   }
1453   case Intrinsic::is_constant: {
1454     Constant *ResCI = ConstantInt::get(II->getType(), 0);
1455     unsigned ResultReg = getRegForValue(ResCI);
1456     if (!ResultReg)
1457       return false;
1458     updateValueMap(II, ResultReg);
1459     return true;
1460   }
1461   case Intrinsic::launder_invariant_group:
1462   case Intrinsic::strip_invariant_group:
1463   case Intrinsic::expect: {
1464     unsigned ResultReg = getRegForValue(II->getArgOperand(0));
1465     if (!ResultReg)
1466       return false;
1467     updateValueMap(II, ResultReg);
1468     return true;
1469   }
1470   case Intrinsic::experimental_stackmap:
1471     return selectStackmap(II);
1472   case Intrinsic::experimental_patchpoint_void:
1473   case Intrinsic::experimental_patchpoint_i64:
1474     return selectPatchpoint(II);
1475 
1476   case Intrinsic::xray_customevent:
1477     return selectXRayCustomEvent(II);
1478   case Intrinsic::xray_typedevent:
1479     return selectXRayTypedEvent(II);
1480   }
1481 
1482   return fastLowerIntrinsicCall(II);
1483 }
1484 
1485 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1486   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1487   EVT DstVT = TLI.getValueType(DL, I->getType());
1488 
1489   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1490       !DstVT.isSimple())
1491     // Unhandled type. Halt "fast" selection and bail.
1492     return false;
1493 
1494   // Check if the destination type is legal.
1495   if (!TLI.isTypeLegal(DstVT))
1496     return false;
1497 
1498   // Check if the source operand is legal.
1499   if (!TLI.isTypeLegal(SrcVT))
1500     return false;
1501 
1502   unsigned InputReg = getRegForValue(I->getOperand(0));
1503   if (!InputReg)
1504     // Unhandled operand.  Halt "fast" selection and bail.
1505     return false;
1506 
1507   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
1508 
1509   unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1510                                   Opcode, InputReg, InputRegIsKill);
1511   if (!ResultReg)
1512     return false;
1513 
1514   updateValueMap(I, ResultReg);
1515   return true;
1516 }
1517 
1518 bool FastISel::selectBitCast(const User *I) {
1519   // If the bitcast doesn't change the type, just use the operand value.
1520   if (I->getType() == I->getOperand(0)->getType()) {
1521     unsigned Reg = getRegForValue(I->getOperand(0));
1522     if (!Reg)
1523       return false;
1524     updateValueMap(I, Reg);
1525     return true;
1526   }
1527 
1528   // Bitcasts of other values become reg-reg copies or BITCAST operators.
1529   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1530   EVT DstEVT = TLI.getValueType(DL, I->getType());
1531   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1532       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1533     // Unhandled type. Halt "fast" selection and bail.
1534     return false;
1535 
1536   MVT SrcVT = SrcEVT.getSimpleVT();
1537   MVT DstVT = DstEVT.getSimpleVT();
1538   unsigned Op0 = getRegForValue(I->getOperand(0));
1539   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1540     return false;
1541   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
1542 
1543   // First, try to perform the bitcast by inserting a reg-reg copy.
1544   unsigned ResultReg = 0;
1545   if (SrcVT == DstVT) {
1546     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1547     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1548     // Don't attempt a cross-class copy. It will likely fail.
1549     if (SrcClass == DstClass) {
1550       ResultReg = createResultReg(DstClass);
1551       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1552               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1553     }
1554   }
1555 
1556   // If the reg-reg copy failed, select a BITCAST opcode.
1557   if (!ResultReg)
1558     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
1559 
1560   if (!ResultReg)
1561     return false;
1562 
1563   updateValueMap(I, ResultReg);
1564   return true;
1565 }
1566 
1567 // Remove local value instructions starting from the instruction after
1568 // SavedLastLocalValue to the current function insert point.
1569 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1570 {
1571   MachineInstr *CurLastLocalValue = getLastLocalValue();
1572   if (CurLastLocalValue != SavedLastLocalValue) {
1573     // Find the first local value instruction to be deleted.
1574     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1575     // Otherwise it's the first instruction in the block.
1576     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1577     if (SavedLastLocalValue)
1578       ++FirstDeadInst;
1579     else
1580       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1581     setLastLocalValue(SavedLastLocalValue);
1582     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1583   }
1584 }
1585 
1586 bool FastISel::selectInstruction(const Instruction *I) {
1587   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1588   // Just before the terminator instruction, insert instructions to
1589   // feed PHI nodes in successor blocks.
1590   if (I->isTerminator()) {
1591     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1592       // PHI node handling may have generated local value instructions,
1593       // even though it failed to handle all PHI nodes.
1594       // We remove these instructions because SelectionDAGISel will generate
1595       // them again.
1596       removeDeadLocalValueCode(SavedLastLocalValue);
1597       return false;
1598     }
1599   }
1600 
1601   // FastISel does not handle any operand bundles except OB_funclet.
1602   if (ImmutableCallSite CS = ImmutableCallSite(I))
1603     for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i)
1604       if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1605         return false;
1606 
1607   DbgLoc = I->getDebugLoc();
1608 
1609   SavedInsertPt = FuncInfo.InsertPt;
1610 
1611   if (const auto *Call = dyn_cast<CallInst>(I)) {
1612     const Function *F = Call->getCalledFunction();
1613     LibFunc Func;
1614 
1615     // As a special case, don't handle calls to builtin library functions that
1616     // may be translated directly to target instructions.
1617     if (F && !F->hasLocalLinkage() && F->hasName() &&
1618         LibInfo->getLibFunc(F->getName(), Func) &&
1619         LibInfo->hasOptimizedCodeGen(Func))
1620       return false;
1621 
1622     // Don't handle Intrinsic::trap if a trap function is specified.
1623     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1624         Call->hasFnAttr("trap-func-name"))
1625       return false;
1626   }
1627 
1628   // First, try doing target-independent selection.
1629   if (!SkipTargetIndependentISel) {
1630     if (selectOperator(I, I->getOpcode())) {
1631       ++NumFastIselSuccessIndependent;
1632       DbgLoc = DebugLoc();
1633       return true;
1634     }
1635     // Remove dead code.
1636     recomputeInsertPt();
1637     if (SavedInsertPt != FuncInfo.InsertPt)
1638       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1639     SavedInsertPt = FuncInfo.InsertPt;
1640   }
1641   // Next, try calling the target to attempt to handle the instruction.
1642   if (fastSelectInstruction(I)) {
1643     ++NumFastIselSuccessTarget;
1644     DbgLoc = DebugLoc();
1645     return true;
1646   }
1647   // Remove dead code.
1648   recomputeInsertPt();
1649   if (SavedInsertPt != FuncInfo.InsertPt)
1650     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1651 
1652   DbgLoc = DebugLoc();
1653   // Undo phi node updates, because they will be added again by SelectionDAG.
1654   if (I->isTerminator()) {
1655     // PHI node handling may have generated local value instructions.
1656     // We remove them because SelectionDAGISel will generate them again.
1657     removeDeadLocalValueCode(SavedLastLocalValue);
1658     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1659   }
1660   return false;
1661 }
1662 
1663 /// Emit an unconditional branch to the given block, unless it is the immediate
1664 /// (fall-through) successor, and update the CFG.
1665 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1666                               const DebugLoc &DbgLoc) {
1667   if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
1668       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1669     // For more accurate line information if this is the only instruction
1670     // in the block then emit it, otherwise we have the unconditional
1671     // fall-through case, which needs no instructions.
1672   } else {
1673     // The unconditional branch case.
1674     TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1675                      SmallVector<MachineOperand, 0>(), DbgLoc);
1676   }
1677   if (FuncInfo.BPI) {
1678     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1679         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1680     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1681   } else
1682     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1683 }
1684 
1685 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1686                                 MachineBasicBlock *TrueMBB,
1687                                 MachineBasicBlock *FalseMBB) {
1688   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1689   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1690   // successor/predecessor lists.
1691   if (TrueMBB != FalseMBB) {
1692     if (FuncInfo.BPI) {
1693       auto BranchProbability =
1694           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1695       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1696     } else
1697       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1698   }
1699 
1700   fastEmitBranch(FalseMBB, DbgLoc);
1701 }
1702 
1703 /// Emit an FNeg operation.
1704 bool FastISel::selectFNeg(const User *I) {
1705   Value *X;
1706   if (!match(I, m_FNeg(m_Value(X))))
1707     return false;
1708   unsigned OpReg = getRegForValue(X);
1709   if (!OpReg)
1710     return false;
1711   bool OpRegIsKill = hasTrivialKill(I);
1712 
1713   // If the target has ISD::FNEG, use it.
1714   EVT VT = TLI.getValueType(DL, I->getType());
1715   unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1716                                   OpReg, OpRegIsKill);
1717   if (ResultReg) {
1718     updateValueMap(I, ResultReg);
1719     return true;
1720   }
1721 
1722   // Bitcast the value to integer, twiddle the sign bit with xor,
1723   // and then bitcast it back to floating-point.
1724   if (VT.getSizeInBits() > 64)
1725     return false;
1726   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1727   if (!TLI.isTypeLegal(IntVT))
1728     return false;
1729 
1730   unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1731                                ISD::BITCAST, OpReg, OpRegIsKill);
1732   if (!IntReg)
1733     return false;
1734 
1735   unsigned IntResultReg = fastEmit_ri_(
1736       IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
1737       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1738   if (!IntResultReg)
1739     return false;
1740 
1741   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1742                          IntResultReg, /*IsKill=*/true);
1743   if (!ResultReg)
1744     return false;
1745 
1746   updateValueMap(I, ResultReg);
1747   return true;
1748 }
1749 
1750 bool FastISel::selectExtractValue(const User *U) {
1751   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1752   if (!EVI)
1753     return false;
1754 
1755   // Make sure we only try to handle extracts with a legal result.  But also
1756   // allow i1 because it's easy.
1757   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1758   if (!RealVT.isSimple())
1759     return false;
1760   MVT VT = RealVT.getSimpleVT();
1761   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1762     return false;
1763 
1764   const Value *Op0 = EVI->getOperand(0);
1765   Type *AggTy = Op0->getType();
1766 
1767   // Get the base result register.
1768   unsigned ResultReg;
1769   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
1770   if (I != FuncInfo.ValueMap.end())
1771     ResultReg = I->second;
1772   else if (isa<Instruction>(Op0))
1773     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1774   else
1775     return false; // fast-isel can't handle aggregate constants at the moment
1776 
1777   // Get the actual result register, which is an offset from the base register.
1778   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1779 
1780   SmallVector<EVT, 4> AggValueVTs;
1781   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1782 
1783   for (unsigned i = 0; i < VTIndex; i++)
1784     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1785 
1786   updateValueMap(EVI, ResultReg);
1787   return true;
1788 }
1789 
1790 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1791   switch (Opcode) {
1792   case Instruction::Add:
1793     return selectBinaryOp(I, ISD::ADD);
1794   case Instruction::FAdd:
1795     return selectBinaryOp(I, ISD::FADD);
1796   case Instruction::Sub:
1797     return selectBinaryOp(I, ISD::SUB);
1798   case Instruction::FSub:
1799     // FNeg is currently represented in LLVM IR as a special case of FSub.
1800     return selectFNeg(I) || selectBinaryOp(I, ISD::FSUB);
1801   case Instruction::Mul:
1802     return selectBinaryOp(I, ISD::MUL);
1803   case Instruction::FMul:
1804     return selectBinaryOp(I, ISD::FMUL);
1805   case Instruction::SDiv:
1806     return selectBinaryOp(I, ISD::SDIV);
1807   case Instruction::UDiv:
1808     return selectBinaryOp(I, ISD::UDIV);
1809   case Instruction::FDiv:
1810     return selectBinaryOp(I, ISD::FDIV);
1811   case Instruction::SRem:
1812     return selectBinaryOp(I, ISD::SREM);
1813   case Instruction::URem:
1814     return selectBinaryOp(I, ISD::UREM);
1815   case Instruction::FRem:
1816     return selectBinaryOp(I, ISD::FREM);
1817   case Instruction::Shl:
1818     return selectBinaryOp(I, ISD::SHL);
1819   case Instruction::LShr:
1820     return selectBinaryOp(I, ISD::SRL);
1821   case Instruction::AShr:
1822     return selectBinaryOp(I, ISD::SRA);
1823   case Instruction::And:
1824     return selectBinaryOp(I, ISD::AND);
1825   case Instruction::Or:
1826     return selectBinaryOp(I, ISD::OR);
1827   case Instruction::Xor:
1828     return selectBinaryOp(I, ISD::XOR);
1829 
1830   case Instruction::GetElementPtr:
1831     return selectGetElementPtr(I);
1832 
1833   case Instruction::Br: {
1834     const BranchInst *BI = cast<BranchInst>(I);
1835 
1836     if (BI->isUnconditional()) {
1837       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1838       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1839       fastEmitBranch(MSucc, BI->getDebugLoc());
1840       return true;
1841     }
1842 
1843     // Conditional branches are not handed yet.
1844     // Halt "fast" selection and bail.
1845     return false;
1846   }
1847 
1848   case Instruction::Unreachable:
1849     if (TM.Options.TrapUnreachable)
1850       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1851     else
1852       return true;
1853 
1854   case Instruction::Alloca:
1855     // FunctionLowering has the static-sized case covered.
1856     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1857       return true;
1858 
1859     // Dynamic-sized alloca is not handled yet.
1860     return false;
1861 
1862   case Instruction::Call:
1863     return selectCall(I);
1864 
1865   case Instruction::BitCast:
1866     return selectBitCast(I);
1867 
1868   case Instruction::FPToSI:
1869     return selectCast(I, ISD::FP_TO_SINT);
1870   case Instruction::ZExt:
1871     return selectCast(I, ISD::ZERO_EXTEND);
1872   case Instruction::SExt:
1873     return selectCast(I, ISD::SIGN_EXTEND);
1874   case Instruction::Trunc:
1875     return selectCast(I, ISD::TRUNCATE);
1876   case Instruction::SIToFP:
1877     return selectCast(I, ISD::SINT_TO_FP);
1878 
1879   case Instruction::IntToPtr: // Deliberate fall-through.
1880   case Instruction::PtrToInt: {
1881     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1882     EVT DstVT = TLI.getValueType(DL, I->getType());
1883     if (DstVT.bitsGT(SrcVT))
1884       return selectCast(I, ISD::ZERO_EXTEND);
1885     if (DstVT.bitsLT(SrcVT))
1886       return selectCast(I, ISD::TRUNCATE);
1887     unsigned Reg = getRegForValue(I->getOperand(0));
1888     if (!Reg)
1889       return false;
1890     updateValueMap(I, Reg);
1891     return true;
1892   }
1893 
1894   case Instruction::ExtractValue:
1895     return selectExtractValue(I);
1896 
1897   case Instruction::PHI:
1898     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1899 
1900   default:
1901     // Unhandled instruction. Halt "fast" selection and bail.
1902     return false;
1903   }
1904 }
1905 
1906 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1907                    const TargetLibraryInfo *LibInfo,
1908                    bool SkipTargetIndependentISel)
1909     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1910       MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1911       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1912       TII(*MF->getSubtarget().getInstrInfo()),
1913       TLI(*MF->getSubtarget().getTargetLowering()),
1914       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1915       SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1916 
1917 FastISel::~FastISel() = default;
1918 
1919 bool FastISel::fastLowerArguments() { return false; }
1920 
1921 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1922 
1923 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1924   return false;
1925 }
1926 
1927 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1928 
1929 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
1930                               bool /*Op0IsKill*/) {
1931   return 0;
1932 }
1933 
1934 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1935                                bool /*Op0IsKill*/, unsigned /*Op1*/,
1936                                bool /*Op1IsKill*/) {
1937   return 0;
1938 }
1939 
1940 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1941   return 0;
1942 }
1943 
1944 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1945                               const ConstantFP * /*FPImm*/) {
1946   return 0;
1947 }
1948 
1949 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1950                                bool /*Op0IsKill*/, uint64_t /*Imm*/) {
1951   return 0;
1952 }
1953 
1954 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1955 /// instruction with an immediate operand using fastEmit_ri.
1956 /// If that fails, it materializes the immediate into a register and try
1957 /// fastEmit_rr instead.
1958 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1959                                 bool Op0IsKill, uint64_t Imm, MVT ImmType) {
1960   // If this is a multiply by a power of two, emit this as a shift left.
1961   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1962     Opcode = ISD::SHL;
1963     Imm = Log2_64(Imm);
1964   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1965     // div x, 8 -> srl x, 3
1966     Opcode = ISD::SRL;
1967     Imm = Log2_64(Imm);
1968   }
1969 
1970   // Horrible hack (to be removed), check to make sure shift amounts are
1971   // in-range.
1972   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1973       Imm >= VT.getSizeInBits())
1974     return 0;
1975 
1976   // First check if immediate type is legal. If not, we can't use the ri form.
1977   unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1978   if (ResultReg)
1979     return ResultReg;
1980   unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1981   bool IsImmKill = true;
1982   if (!MaterialReg) {
1983     // This is a bit ugly/slow, but failing here means falling out of
1984     // fast-isel, which would be very slow.
1985     IntegerType *ITy =
1986         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1987     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1988     if (!MaterialReg)
1989       return 0;
1990     // FIXME: If the materialized register here has no uses yet then this
1991     // will be the first use and we should be able to mark it as killed.
1992     // However, the local value area for materialising constant expressions
1993     // grows down, not up, which means that any constant expressions we generate
1994     // later which also use 'Imm' could be after this instruction and therefore
1995     // after this kill.
1996     IsImmKill = false;
1997   }
1998   return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill);
1999 }
2000 
2001 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
2002   return MRI.createVirtualRegister(RC);
2003 }
2004 
2005 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
2006                                             unsigned OpNum) {
2007   if (TargetRegisterInfo::isVirtualRegister(Op)) {
2008     const TargetRegisterClass *RegClass =
2009         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
2010     if (!MRI.constrainRegClass(Op, RegClass)) {
2011       // If it's not legal to COPY between the register classes, something
2012       // has gone very wrong before we got here.
2013       unsigned NewOp = createResultReg(RegClass);
2014       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2015               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
2016       return NewOp;
2017     }
2018   }
2019   return Op;
2020 }
2021 
2022 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
2023                                  const TargetRegisterClass *RC) {
2024   unsigned ResultReg = createResultReg(RC);
2025   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2026 
2027   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
2028   return ResultReg;
2029 }
2030 
2031 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2032                                   const TargetRegisterClass *RC, unsigned Op0,
2033                                   bool Op0IsKill) {
2034   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2035 
2036   unsigned ResultReg = createResultReg(RC);
2037   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2038 
2039   if (II.getNumDefs() >= 1)
2040     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2041         .addReg(Op0, getKillRegState(Op0IsKill));
2042   else {
2043     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2044         .addReg(Op0, getKillRegState(Op0IsKill));
2045     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2046             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2047   }
2048 
2049   return ResultReg;
2050 }
2051 
2052 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2053                                    const TargetRegisterClass *RC, unsigned Op0,
2054                                    bool Op0IsKill, unsigned Op1,
2055                                    bool Op1IsKill) {
2056   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2057 
2058   unsigned ResultReg = createResultReg(RC);
2059   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2060   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2061 
2062   if (II.getNumDefs() >= 1)
2063     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2064         .addReg(Op0, getKillRegState(Op0IsKill))
2065         .addReg(Op1, getKillRegState(Op1IsKill));
2066   else {
2067     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2068         .addReg(Op0, getKillRegState(Op0IsKill))
2069         .addReg(Op1, getKillRegState(Op1IsKill));
2070     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2071             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2072   }
2073   return ResultReg;
2074 }
2075 
2076 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
2077                                     const TargetRegisterClass *RC, unsigned Op0,
2078                                     bool Op0IsKill, unsigned Op1,
2079                                     bool Op1IsKill, unsigned Op2,
2080                                     bool Op2IsKill) {
2081   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2082 
2083   unsigned ResultReg = createResultReg(RC);
2084   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2085   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2086   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
2087 
2088   if (II.getNumDefs() >= 1)
2089     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2090         .addReg(Op0, getKillRegState(Op0IsKill))
2091         .addReg(Op1, getKillRegState(Op1IsKill))
2092         .addReg(Op2, getKillRegState(Op2IsKill));
2093   else {
2094     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2095         .addReg(Op0, getKillRegState(Op0IsKill))
2096         .addReg(Op1, getKillRegState(Op1IsKill))
2097         .addReg(Op2, getKillRegState(Op2IsKill));
2098     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2099             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2100   }
2101   return ResultReg;
2102 }
2103 
2104 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2105                                    const TargetRegisterClass *RC, unsigned Op0,
2106                                    bool Op0IsKill, uint64_t Imm) {
2107   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2108 
2109   unsigned ResultReg = createResultReg(RC);
2110   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2111 
2112   if (II.getNumDefs() >= 1)
2113     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2114         .addReg(Op0, getKillRegState(Op0IsKill))
2115         .addImm(Imm);
2116   else {
2117     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2118         .addReg(Op0, getKillRegState(Op0IsKill))
2119         .addImm(Imm);
2120     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2121             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2122   }
2123   return ResultReg;
2124 }
2125 
2126 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2127                                     const TargetRegisterClass *RC, unsigned Op0,
2128                                     bool Op0IsKill, uint64_t Imm1,
2129                                     uint64_t Imm2) {
2130   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2131 
2132   unsigned ResultReg = createResultReg(RC);
2133   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2134 
2135   if (II.getNumDefs() >= 1)
2136     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2137         .addReg(Op0, getKillRegState(Op0IsKill))
2138         .addImm(Imm1)
2139         .addImm(Imm2);
2140   else {
2141     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2142         .addReg(Op0, getKillRegState(Op0IsKill))
2143         .addImm(Imm1)
2144         .addImm(Imm2);
2145     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2146             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2147   }
2148   return ResultReg;
2149 }
2150 
2151 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2152                                   const TargetRegisterClass *RC,
2153                                   const ConstantFP *FPImm) {
2154   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2155 
2156   unsigned ResultReg = createResultReg(RC);
2157 
2158   if (II.getNumDefs() >= 1)
2159     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2160         .addFPImm(FPImm);
2161   else {
2162     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2163         .addFPImm(FPImm);
2164     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2165             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2166   }
2167   return ResultReg;
2168 }
2169 
2170 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2171                                     const TargetRegisterClass *RC, unsigned Op0,
2172                                     bool Op0IsKill, unsigned Op1,
2173                                     bool Op1IsKill, uint64_t Imm) {
2174   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2175 
2176   unsigned ResultReg = createResultReg(RC);
2177   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2178   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2179 
2180   if (II.getNumDefs() >= 1)
2181     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2182         .addReg(Op0, getKillRegState(Op0IsKill))
2183         .addReg(Op1, getKillRegState(Op1IsKill))
2184         .addImm(Imm);
2185   else {
2186     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2187         .addReg(Op0, getKillRegState(Op0IsKill))
2188         .addReg(Op1, getKillRegState(Op1IsKill))
2189         .addImm(Imm);
2190     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2191             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2192   }
2193   return ResultReg;
2194 }
2195 
2196 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2197                                   const TargetRegisterClass *RC, uint64_t Imm) {
2198   unsigned ResultReg = createResultReg(RC);
2199   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2200 
2201   if (II.getNumDefs() >= 1)
2202     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2203         .addImm(Imm);
2204   else {
2205     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
2206     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2207             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2208   }
2209   return ResultReg;
2210 }
2211 
2212 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2213                                               bool Op0IsKill, uint32_t Idx) {
2214   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2215   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
2216          "Cannot yet extract from physregs");
2217   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2218   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2219   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
2220           ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
2221   return ResultReg;
2222 }
2223 
2224 /// Emit MachineInstrs to compute the value of Op with all but the least
2225 /// significant bit set to zero.
2226 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
2227   return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
2228 }
2229 
2230 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2231 /// Emit code to ensure constants are copied into registers when needed.
2232 /// Remember the virtual registers that need to be added to the Machine PHI
2233 /// nodes as input.  We cannot just directly add them, because expansion
2234 /// might result in multiple MBB's for one BB.  As such, the start of the
2235 /// BB might correspond to a different MBB than the end.
2236 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2237   const Instruction *TI = LLVMBB->getTerminator();
2238 
2239   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2240   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2241 
2242   // Check successor nodes' PHI nodes that expect a constant to be available
2243   // from this block.
2244   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2245     const BasicBlock *SuccBB = TI->getSuccessor(succ);
2246     if (!isa<PHINode>(SuccBB->begin()))
2247       continue;
2248     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2249 
2250     // If this terminator has multiple identical successors (common for
2251     // switches), only handle each succ once.
2252     if (!SuccsHandled.insert(SuccMBB).second)
2253       continue;
2254 
2255     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2256 
2257     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2258     // nodes and Machine PHI nodes, but the incoming operands have not been
2259     // emitted yet.
2260     for (const PHINode &PN : SuccBB->phis()) {
2261       // Ignore dead phi's.
2262       if (PN.use_empty())
2263         continue;
2264 
2265       // Only handle legal types. Two interesting things to note here. First,
2266       // by bailing out early, we may leave behind some dead instructions,
2267       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2268       // own moves. Second, this check is necessary because FastISel doesn't
2269       // use CreateRegs to create registers, so it always creates
2270       // exactly one register for each non-void instruction.
2271       EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2272       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2273         // Handle integer promotions, though, because they're common and easy.
2274         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2275           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2276           return false;
2277         }
2278       }
2279 
2280       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2281 
2282       // Set the DebugLoc for the copy. Prefer the location of the operand
2283       // if there is one; use the location of the PHI otherwise.
2284       DbgLoc = PN.getDebugLoc();
2285       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2286         DbgLoc = Inst->getDebugLoc();
2287 
2288       unsigned Reg = getRegForValue(PHIOp);
2289       if (!Reg) {
2290         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2291         return false;
2292       }
2293       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2294       DbgLoc = DebugLoc();
2295     }
2296   }
2297 
2298   return true;
2299 }
2300 
2301 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2302   assert(LI->hasOneUse() &&
2303          "tryToFoldLoad expected a LoadInst with a single use");
2304   // We know that the load has a single use, but don't know what it is.  If it
2305   // isn't one of the folded instructions, then we can't succeed here.  Handle
2306   // this by scanning the single-use users of the load until we get to FoldInst.
2307   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2308 
2309   const Instruction *TheUser = LI->user_back();
2310   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2311          // Stay in the right block.
2312          TheUser->getParent() == FoldInst->getParent() &&
2313          --MaxUsers) { // Don't scan too far.
2314     // If there are multiple or no uses of this instruction, then bail out.
2315     if (!TheUser->hasOneUse())
2316       return false;
2317 
2318     TheUser = TheUser->user_back();
2319   }
2320 
2321   // If we didn't find the fold instruction, then we failed to collapse the
2322   // sequence.
2323   if (TheUser != FoldInst)
2324     return false;
2325 
2326   // Don't try to fold volatile loads.  Target has to deal with alignment
2327   // constraints.
2328   if (LI->isVolatile())
2329     return false;
2330 
2331   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2332   // then there actually was no reference to it.  Perhaps the load is referenced
2333   // by a dead instruction.
2334   unsigned LoadReg = getRegForValue(LI);
2335   if (!LoadReg)
2336     return false;
2337 
2338   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2339   // may mean that the instruction got lowered to multiple MIs, or the use of
2340   // the loaded value ended up being multiple operands of the result.
2341   if (!MRI.hasOneUse(LoadReg))
2342     return false;
2343 
2344   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2345   MachineInstr *User = RI->getParent();
2346 
2347   // Set the insertion point properly.  Folding the load can cause generation of
2348   // other random instructions (like sign extends) for addressing modes; make
2349   // sure they get inserted in a logical place before the new instruction.
2350   FuncInfo.InsertPt = User;
2351   FuncInfo.MBB = User->getParent();
2352 
2353   // Ask the target to try folding the load.
2354   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2355 }
2356 
2357 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2358   // Must be an add.
2359   if (!isa<AddOperator>(Add))
2360     return false;
2361   // Type size needs to match.
2362   if (DL.getTypeSizeInBits(GEP->getType()) !=
2363       DL.getTypeSizeInBits(Add->getType()))
2364     return false;
2365   // Must be in the same basic block.
2366   if (isa<Instruction>(Add) &&
2367       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2368     return false;
2369   // Must have a constant operand.
2370   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2371 }
2372 
2373 MachineMemOperand *
2374 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2375   const Value *Ptr;
2376   Type *ValTy;
2377   unsigned Alignment;
2378   MachineMemOperand::Flags Flags;
2379   bool IsVolatile;
2380 
2381   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2382     Alignment = LI->getAlignment();
2383     IsVolatile = LI->isVolatile();
2384     Flags = MachineMemOperand::MOLoad;
2385     Ptr = LI->getPointerOperand();
2386     ValTy = LI->getType();
2387   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2388     Alignment = SI->getAlignment();
2389     IsVolatile = SI->isVolatile();
2390     Flags = MachineMemOperand::MOStore;
2391     Ptr = SI->getPointerOperand();
2392     ValTy = SI->getValueOperand()->getType();
2393   } else
2394     return nullptr;
2395 
2396   bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr;
2397   bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
2398   bool IsDereferenceable =
2399       I->getMetadata(LLVMContext::MD_dereferenceable) != nullptr;
2400   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2401 
2402   AAMDNodes AAInfo;
2403   I->getAAMetadata(AAInfo);
2404 
2405   if (Alignment == 0) // Ensure that codegen never sees alignment 0.
2406     Alignment = DL.getABITypeAlignment(ValTy);
2407 
2408   unsigned Size = DL.getTypeStoreSize(ValTy);
2409 
2410   if (IsVolatile)
2411     Flags |= MachineMemOperand::MOVolatile;
2412   if (IsNonTemporal)
2413     Flags |= MachineMemOperand::MONonTemporal;
2414   if (IsDereferenceable)
2415     Flags |= MachineMemOperand::MODereferenceable;
2416   if (IsInvariant)
2417     Flags |= MachineMemOperand::MOInvariant;
2418 
2419   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2420                                            Alignment, AAInfo, Ranges);
2421 }
2422 
2423 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2424   // If both operands are the same, then try to optimize or fold the cmp.
2425   CmpInst::Predicate Predicate = CI->getPredicate();
2426   if (CI->getOperand(0) != CI->getOperand(1))
2427     return Predicate;
2428 
2429   switch (Predicate) {
2430   default: llvm_unreachable("Invalid predicate!");
2431   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2432   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2433   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2434   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2435   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2436   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2437   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2438   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2439   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2440   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2441   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2442   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2443   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2444   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2445   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2446   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2447 
2448   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2449   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2450   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2451   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2452   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2453   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2454   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2455   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2456   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2457   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2458   }
2459 
2460   return Predicate;
2461 }
2462