1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/ADT/APFloat.h" 43 #include "llvm/ADT/APInt.h" 44 #include "llvm/ADT/DenseMap.h" 45 #include "llvm/ADT/Optional.h" 46 #include "llvm/ADT/SmallPtrSet.h" 47 #include "llvm/ADT/SmallString.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/Analysis/BranchProbabilityInfo.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/CodeGen/Analysis.h" 53 #include "llvm/CodeGen/FastISel.h" 54 #include "llvm/CodeGen/FunctionLoweringInfo.h" 55 #include "llvm/CodeGen/ISDOpcodes.h" 56 #include "llvm/CodeGen/MachineBasicBlock.h" 57 #include "llvm/CodeGen/MachineFrameInfo.h" 58 #include "llvm/CodeGen/MachineInstr.h" 59 #include "llvm/CodeGen/MachineInstrBuilder.h" 60 #include "llvm/CodeGen/MachineMemOperand.h" 61 #include "llvm/CodeGen/MachineModuleInfo.h" 62 #include "llvm/CodeGen/MachineOperand.h" 63 #include "llvm/CodeGen/MachineRegisterInfo.h" 64 #include "llvm/CodeGen/MachineValueType.h" 65 #include "llvm/CodeGen/StackMaps.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/IR/Argument.h" 68 #include "llvm/IR/Attributes.h" 69 #include "llvm/IR/BasicBlock.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfo.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Mangler.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/Type.h" 91 #include "llvm/IR/User.h" 92 #include "llvm/IR/Value.h" 93 #include "llvm/MC/MCContext.h" 94 #include "llvm/MC/MCInstrDesc.h" 95 #include "llvm/MC/MCRegisterInfo.h" 96 #include "llvm/Support/Casting.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/ErrorHandling.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetInstrInfo.h" 102 #include "llvm/Target/TargetLowering.h" 103 #include "llvm/Target/TargetMachine.h" 104 #include "llvm/Target/TargetOptions.h" 105 #include "llvm/Target/TargetSubtargetInfo.h" 106 #include <algorithm> 107 #include <cassert> 108 #include <cstdint> 109 #include <iterator> 110 #include <utility> 111 112 using namespace llvm; 113 114 #define DEBUG_TYPE "isel" 115 116 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 117 "target-independent selector"); 118 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 119 "target-specific selector"); 120 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 121 122 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS, 123 unsigned AttrIdx) { 124 IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 125 IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 126 IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 127 IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 128 IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 129 IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 130 IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 131 IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 132 IsSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); 133 IsSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); 134 Alignment = CS->getParamAlignment(AttrIdx); 135 } 136 137 /// Set the current block to which generated machine instructions will be 138 /// appended, and clear the local CSE map. 139 void FastISel::startNewBlock() { 140 LocalValueMap.clear(); 141 142 // Instructions are appended to FuncInfo.MBB. If the basic block already 143 // contains labels or copies, use the last instruction as the last local 144 // value. 145 EmitStartPt = nullptr; 146 if (!FuncInfo.MBB->empty()) 147 EmitStartPt = &FuncInfo.MBB->back(); 148 LastLocalValue = EmitStartPt; 149 } 150 151 bool FastISel::lowerArguments() { 152 if (!FuncInfo.CanLowerReturn) 153 // Fallback to SDISel argument lowering code to deal with sret pointer 154 // parameter. 155 return false; 156 157 if (!fastLowerArguments()) 158 return false; 159 160 // Enter arguments into ValueMap for uses in non-entry BBs. 161 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 162 E = FuncInfo.Fn->arg_end(); 163 I != E; ++I) { 164 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I); 165 assert(VI != LocalValueMap.end() && "Missed an argument?"); 166 FuncInfo.ValueMap[&*I] = VI->second; 167 } 168 return true; 169 } 170 171 void FastISel::flushLocalValueMap() { 172 LocalValueMap.clear(); 173 LastLocalValue = EmitStartPt; 174 recomputeInsertPt(); 175 SavedInsertPt = FuncInfo.InsertPt; 176 } 177 178 bool FastISel::hasTrivialKill(const Value *V) { 179 // Don't consider constants or arguments to have trivial kills. 180 const Instruction *I = dyn_cast<Instruction>(V); 181 if (!I) 182 return false; 183 184 // No-op casts are trivially coalesced by fast-isel. 185 if (const auto *Cast = dyn_cast<CastInst>(I)) 186 if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) && 187 !hasTrivialKill(Cast->getOperand(0))) 188 return false; 189 190 // Even the value might have only one use in the LLVM IR, it is possible that 191 // FastISel might fold the use into another instruction and now there is more 192 // than one use at the Machine Instruction level. 193 unsigned Reg = lookUpRegForValue(V); 194 if (Reg && !MRI.use_empty(Reg)) 195 return false; 196 197 // GEPs with all zero indices are trivially coalesced by fast-isel. 198 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 199 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 200 return false; 201 202 // Only instructions with a single use in the same basic block are considered 203 // to have trivial kills. 204 return I->hasOneUse() && 205 !(I->getOpcode() == Instruction::BitCast || 206 I->getOpcode() == Instruction::PtrToInt || 207 I->getOpcode() == Instruction::IntToPtr) && 208 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 209 } 210 211 unsigned FastISel::getRegForValue(const Value *V) { 212 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 213 // Don't handle non-simple values in FastISel. 214 if (!RealVT.isSimple()) 215 return 0; 216 217 // Ignore illegal types. We must do this before looking up the value 218 // in ValueMap because Arguments are given virtual registers regardless 219 // of whether FastISel can handle them. 220 MVT VT = RealVT.getSimpleVT(); 221 if (!TLI.isTypeLegal(VT)) { 222 // Handle integer promotions, though, because they're common and easy. 223 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 224 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 225 else 226 return 0; 227 } 228 229 // Look up the value to see if we already have a register for it. 230 unsigned Reg = lookUpRegForValue(V); 231 if (Reg) 232 return Reg; 233 234 // In bottom-up mode, just create the virtual register which will be used 235 // to hold the value. It will be materialized later. 236 if (isa<Instruction>(V) && 237 (!isa<AllocaInst>(V) || 238 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 239 return FuncInfo.InitializeRegForValue(V); 240 241 SavePoint SaveInsertPt = enterLocalValueArea(); 242 243 // Materialize the value in a register. Emit any instructions in the 244 // local value area. 245 Reg = materializeRegForValue(V, VT); 246 247 leaveLocalValueArea(SaveInsertPt); 248 249 return Reg; 250 } 251 252 unsigned FastISel::materializeConstant(const Value *V, MVT VT) { 253 unsigned Reg = 0; 254 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 255 if (CI->getValue().getActiveBits() <= 64) 256 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 257 } else if (isa<AllocaInst>(V)) 258 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 259 else if (isa<ConstantPointerNull>(V)) 260 // Translate this as an integer zero so that it can be 261 // local-CSE'd with actual integer zeros. 262 Reg = getRegForValue( 263 Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 264 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 265 if (CF->isNullValue()) 266 Reg = fastMaterializeFloatZero(CF); 267 else 268 // Try to emit the constant directly. 269 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 270 271 if (!Reg) { 272 // Try to emit the constant by using an integer constant with a cast. 273 const APFloat &Flt = CF->getValueAPF(); 274 EVT IntVT = TLI.getPointerTy(DL); 275 276 uint64_t x[2]; 277 uint32_t IntBitWidth = IntVT.getSizeInBits(); 278 bool isExact; 279 (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 280 APFloat::rmTowardZero, &isExact); 281 if (isExact) { 282 APInt IntVal(IntBitWidth, x); 283 284 unsigned IntegerReg = 285 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 286 if (IntegerReg != 0) 287 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 288 /*Kill=*/false); 289 } 290 } 291 } else if (const auto *Op = dyn_cast<Operator>(V)) { 292 if (!selectOperator(Op, Op->getOpcode())) 293 if (!isa<Instruction>(Op) || 294 !fastSelectInstruction(cast<Instruction>(Op))) 295 return 0; 296 Reg = lookUpRegForValue(Op); 297 } else if (isa<UndefValue>(V)) { 298 Reg = createResultReg(TLI.getRegClassFor(VT)); 299 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 300 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 301 } 302 return Reg; 303 } 304 305 /// Helper for getRegForValue. This function is called when the value isn't 306 /// already available in a register and must be materialized with new 307 /// instructions. 308 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 309 unsigned Reg = 0; 310 // Give the target-specific code a try first. 311 if (isa<Constant>(V)) 312 Reg = fastMaterializeConstant(cast<Constant>(V)); 313 314 // If target-specific code couldn't or didn't want to handle the value, then 315 // give target-independent code a try. 316 if (!Reg) 317 Reg = materializeConstant(V, VT); 318 319 // Don't cache constant materializations in the general ValueMap. 320 // To do so would require tracking what uses they dominate. 321 if (Reg) { 322 LocalValueMap[V] = Reg; 323 LastLocalValue = MRI.getVRegDef(Reg); 324 } 325 return Reg; 326 } 327 328 unsigned FastISel::lookUpRegForValue(const Value *V) { 329 // Look up the value to see if we already have a register for it. We 330 // cache values defined by Instructions across blocks, and other values 331 // only locally. This is because Instructions already have the SSA 332 // def-dominates-use requirement enforced. 333 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 334 if (I != FuncInfo.ValueMap.end()) 335 return I->second; 336 return LocalValueMap[V]; 337 } 338 339 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 340 if (!isa<Instruction>(I)) { 341 LocalValueMap[I] = Reg; 342 return; 343 } 344 345 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 346 if (AssignedReg == 0) 347 // Use the new register. 348 AssignedReg = Reg; 349 else if (Reg != AssignedReg) { 350 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 351 for (unsigned i = 0; i < NumRegs; i++) 352 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 353 354 AssignedReg = Reg; 355 } 356 } 357 358 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 359 unsigned IdxN = getRegForValue(Idx); 360 if (IdxN == 0) 361 // Unhandled operand. Halt "fast" selection and bail. 362 return std::pair<unsigned, bool>(0, false); 363 364 bool IdxNIsKill = hasTrivialKill(Idx); 365 366 // If the index is smaller or larger than intptr_t, truncate or extend it. 367 MVT PtrVT = TLI.getPointerTy(DL); 368 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 369 if (IdxVT.bitsLT(PtrVT)) { 370 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 371 IdxNIsKill); 372 IdxNIsKill = true; 373 } else if (IdxVT.bitsGT(PtrVT)) { 374 IdxN = 375 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 376 IdxNIsKill = true; 377 } 378 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 379 } 380 381 void FastISel::recomputeInsertPt() { 382 if (getLastLocalValue()) { 383 FuncInfo.InsertPt = getLastLocalValue(); 384 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 385 ++FuncInfo.InsertPt; 386 } else 387 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 388 389 // Now skip past any EH_LABELs, which must remain at the beginning. 390 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 391 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 392 ++FuncInfo.InsertPt; 393 } 394 395 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 396 MachineBasicBlock::iterator E) { 397 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 398 "Invalid iterator!"); 399 while (I != E) { 400 MachineInstr *Dead = &*I; 401 ++I; 402 Dead->eraseFromParent(); 403 ++NumFastIselDead; 404 } 405 recomputeInsertPt(); 406 } 407 408 FastISel::SavePoint FastISel::enterLocalValueArea() { 409 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 410 DebugLoc OldDL = DbgLoc; 411 recomputeInsertPt(); 412 DbgLoc = DebugLoc(); 413 SavePoint SP = {OldInsertPt, OldDL}; 414 return SP; 415 } 416 417 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 418 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 419 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 420 421 // Restore the previous insert position. 422 FuncInfo.InsertPt = OldInsertPt.InsertPt; 423 DbgLoc = OldInsertPt.DL; 424 } 425 426 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 427 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 428 if (VT == MVT::Other || !VT.isSimple()) 429 // Unhandled type. Halt "fast" selection and bail. 430 return false; 431 432 // We only handle legal types. For example, on x86-32 the instruction 433 // selector contains all of the 64-bit instructions from x86-64, 434 // under the assumption that i64 won't be used if the target doesn't 435 // support it. 436 if (!TLI.isTypeLegal(VT)) { 437 // MVT::i1 is special. Allow AND, OR, or XOR because they 438 // don't require additional zeroing, which makes them easy. 439 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 440 ISDOpcode == ISD::XOR)) 441 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 442 else 443 return false; 444 } 445 446 // Check if the first operand is a constant, and handle it as "ri". At -O0, 447 // we don't have anything that canonicalizes operand order. 448 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 449 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 450 unsigned Op1 = getRegForValue(I->getOperand(1)); 451 if (!Op1) 452 return false; 453 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 454 455 unsigned ResultReg = 456 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 457 CI->getZExtValue(), VT.getSimpleVT()); 458 if (!ResultReg) 459 return false; 460 461 // We successfully emitted code for the given LLVM Instruction. 462 updateValueMap(I, ResultReg); 463 return true; 464 } 465 466 unsigned Op0 = getRegForValue(I->getOperand(0)); 467 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 468 return false; 469 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 470 471 // Check if the second operand is a constant and handle it appropriately. 472 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 473 uint64_t Imm = CI->getSExtValue(); 474 475 // Transform "sdiv exact X, 8" -> "sra X, 3". 476 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 477 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 478 Imm = Log2_64(Imm); 479 ISDOpcode = ISD::SRA; 480 } 481 482 // Transform "urem x, pow2" -> "and x, pow2-1". 483 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 484 isPowerOf2_64(Imm)) { 485 --Imm; 486 ISDOpcode = ISD::AND; 487 } 488 489 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 490 Op0IsKill, Imm, VT.getSimpleVT()); 491 if (!ResultReg) 492 return false; 493 494 // We successfully emitted code for the given LLVM Instruction. 495 updateValueMap(I, ResultReg); 496 return true; 497 } 498 499 unsigned Op1 = getRegForValue(I->getOperand(1)); 500 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 501 return false; 502 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 503 504 // Now we have both operands in registers. Emit the instruction. 505 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 506 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 507 if (!ResultReg) 508 // Target-specific code wasn't able to find a machine opcode for 509 // the given ISD opcode and type. Halt "fast" selection and bail. 510 return false; 511 512 // We successfully emitted code for the given LLVM Instruction. 513 updateValueMap(I, ResultReg); 514 return true; 515 } 516 517 bool FastISel::selectGetElementPtr(const User *I) { 518 unsigned N = getRegForValue(I->getOperand(0)); 519 if (!N) // Unhandled operand. Halt "fast" selection and bail. 520 return false; 521 bool NIsKill = hasTrivialKill(I->getOperand(0)); 522 523 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 524 // into a single N = N + TotalOffset. 525 uint64_t TotalOffs = 0; 526 // FIXME: What's a good SWAG number for MaxOffs? 527 uint64_t MaxOffs = 2048; 528 MVT VT = TLI.getPointerTy(DL); 529 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 530 GTI != E; ++GTI) { 531 const Value *Idx = GTI.getOperand(); 532 if (StructType *StTy = GTI.getStructTypeOrNull()) { 533 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 534 if (Field) { 535 // N = N + Offset 536 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 537 if (TotalOffs >= MaxOffs) { 538 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 539 if (!N) // Unhandled operand. Halt "fast" selection and bail. 540 return false; 541 NIsKill = true; 542 TotalOffs = 0; 543 } 544 } 545 } else { 546 Type *Ty = GTI.getIndexedType(); 547 548 // If this is a constant subscript, handle it quickly. 549 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 550 if (CI->isZero()) 551 continue; 552 // N = N + Offset 553 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 554 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 555 if (TotalOffs >= MaxOffs) { 556 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 557 if (!N) // Unhandled operand. Halt "fast" selection and bail. 558 return false; 559 NIsKill = true; 560 TotalOffs = 0; 561 } 562 continue; 563 } 564 if (TotalOffs) { 565 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 566 if (!N) // Unhandled operand. Halt "fast" selection and bail. 567 return false; 568 NIsKill = true; 569 TotalOffs = 0; 570 } 571 572 // N = N + Idx * ElementSize; 573 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 574 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 575 unsigned IdxN = Pair.first; 576 bool IdxNIsKill = Pair.second; 577 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 578 return false; 579 580 if (ElementSize != 1) { 581 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 582 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 583 return false; 584 IdxNIsKill = true; 585 } 586 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 587 if (!N) // Unhandled operand. Halt "fast" selection and bail. 588 return false; 589 } 590 } 591 if (TotalOffs) { 592 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 593 if (!N) // Unhandled operand. Halt "fast" selection and bail. 594 return false; 595 } 596 597 // We successfully emitted code for the given LLVM Instruction. 598 updateValueMap(I, N); 599 return true; 600 } 601 602 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 603 const CallInst *CI, unsigned StartIdx) { 604 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 605 Value *Val = CI->getArgOperand(i); 606 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 607 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 608 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 609 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 610 } else if (isa<ConstantPointerNull>(Val)) { 611 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 612 Ops.push_back(MachineOperand::CreateImm(0)); 613 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 614 // Values coming from a stack location also require a special encoding, 615 // but that is added later on by the target specific frame index 616 // elimination implementation. 617 auto SI = FuncInfo.StaticAllocaMap.find(AI); 618 if (SI != FuncInfo.StaticAllocaMap.end()) 619 Ops.push_back(MachineOperand::CreateFI(SI->second)); 620 else 621 return false; 622 } else { 623 unsigned Reg = getRegForValue(Val); 624 if (!Reg) 625 return false; 626 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 627 } 628 } 629 return true; 630 } 631 632 bool FastISel::selectStackmap(const CallInst *I) { 633 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 634 // [live variables...]) 635 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 636 "Stackmap cannot return a value."); 637 638 // The stackmap intrinsic only records the live variables (the arguments 639 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 640 // intrinsic, this won't be lowered to a function call. This means we don't 641 // have to worry about calling conventions and target-specific lowering code. 642 // Instead we perform the call lowering right here. 643 // 644 // CALLSEQ_START(0...) 645 // STACKMAP(id, nbytes, ...) 646 // CALLSEQ_END(0, 0) 647 // 648 SmallVector<MachineOperand, 32> Ops; 649 650 // Add the <id> and <numBytes> constants. 651 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 652 "Expected a constant integer."); 653 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 654 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 655 656 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 657 "Expected a constant integer."); 658 const auto *NumBytes = 659 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 660 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 661 662 // Push live variables for the stack map (skipping the first two arguments 663 // <id> and <numBytes>). 664 if (!addStackMapLiveVars(Ops, I, 2)) 665 return false; 666 667 // We are not adding any register mask info here, because the stackmap doesn't 668 // clobber anything. 669 670 // Add scratch registers as implicit def and early clobber. 671 CallingConv::ID CC = I->getCallingConv(); 672 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 673 for (unsigned i = 0; ScratchRegs[i]; ++i) 674 Ops.push_back(MachineOperand::CreateReg( 675 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 676 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 677 678 // Issue CALLSEQ_START 679 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 680 auto Builder = 681 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 682 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 683 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 684 Builder.addImm(0); 685 686 // Issue STACKMAP. 687 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 688 TII.get(TargetOpcode::STACKMAP)); 689 for (auto const &MO : Ops) 690 MIB.add(MO); 691 692 // Issue CALLSEQ_END 693 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 694 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 695 .addImm(0) 696 .addImm(0); 697 698 // Inform the Frame Information that we have a stackmap in this function. 699 FuncInfo.MF->getFrameInfo().setHasStackMap(); 700 701 return true; 702 } 703 704 /// \brief Lower an argument list according to the target calling convention. 705 /// 706 /// This is a helper for lowering intrinsics that follow a target calling 707 /// convention or require stack pointer adjustment. Only a subset of the 708 /// intrinsic's operands need to participate in the calling convention. 709 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 710 unsigned NumArgs, const Value *Callee, 711 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 712 ArgListTy Args; 713 Args.reserve(NumArgs); 714 715 // Populate the argument list. 716 // Attributes for args start at offset 1, after the return attribute. 717 ImmutableCallSite CS(CI); 718 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 719 ArgI != ArgE; ++ArgI) { 720 Value *V = CI->getOperand(ArgI); 721 722 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 723 724 ArgListEntry Entry; 725 Entry.Val = V; 726 Entry.Ty = V->getType(); 727 Entry.setAttributes(&CS, AttrI); 728 Args.push_back(Entry); 729 } 730 731 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 732 : CI->getType(); 733 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 734 735 return lowerCallTo(CLI); 736 } 737 738 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 739 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 740 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 741 SmallString<32> MangledName; 742 Mangler::getNameWithPrefix(MangledName, Target, DL); 743 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 744 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 745 } 746 747 bool FastISel::selectPatchpoint(const CallInst *I) { 748 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 749 // i32 <numBytes>, 750 // i8* <target>, 751 // i32 <numArgs>, 752 // [Args...], 753 // [live variables...]) 754 CallingConv::ID CC = I->getCallingConv(); 755 bool IsAnyRegCC = CC == CallingConv::AnyReg; 756 bool HasDef = !I->getType()->isVoidTy(); 757 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 758 759 // Get the real number of arguments participating in the call <numArgs> 760 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 761 "Expected a constant integer."); 762 const auto *NumArgsVal = 763 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 764 unsigned NumArgs = NumArgsVal->getZExtValue(); 765 766 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 767 // This includes all meta-operands up to but not including CC. 768 unsigned NumMetaOpers = PatchPointOpers::CCPos; 769 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 770 "Not enough arguments provided to the patchpoint intrinsic"); 771 772 // For AnyRegCC the arguments are lowered later on manually. 773 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 774 CallLoweringInfo CLI; 775 CLI.setIsPatchPoint(); 776 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 777 return false; 778 779 assert(CLI.Call && "No call instruction specified."); 780 781 SmallVector<MachineOperand, 32> Ops; 782 783 // Add an explicit result reg if we use the anyreg calling convention. 784 if (IsAnyRegCC && HasDef) { 785 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 786 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 787 CLI.NumResultRegs = 1; 788 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 789 } 790 791 // Add the <id> and <numBytes> constants. 792 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 793 "Expected a constant integer."); 794 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 795 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 796 797 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 798 "Expected a constant integer."); 799 const auto *NumBytes = 800 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 801 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 802 803 // Add the call target. 804 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 805 uint64_t CalleeConstAddr = 806 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 807 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 808 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 809 if (C->getOpcode() == Instruction::IntToPtr) { 810 uint64_t CalleeConstAddr = 811 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 812 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 813 } else 814 llvm_unreachable("Unsupported ConstantExpr."); 815 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 816 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 817 } else if (isa<ConstantPointerNull>(Callee)) 818 Ops.push_back(MachineOperand::CreateImm(0)); 819 else 820 llvm_unreachable("Unsupported callee address."); 821 822 // Adjust <numArgs> to account for any arguments that have been passed on 823 // the stack instead. 824 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 825 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 826 827 // Add the calling convention 828 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 829 830 // Add the arguments we omitted previously. The register allocator should 831 // place these in any free register. 832 if (IsAnyRegCC) { 833 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 834 unsigned Reg = getRegForValue(I->getArgOperand(i)); 835 if (!Reg) 836 return false; 837 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 838 } 839 } 840 841 // Push the arguments from the call instruction. 842 for (auto Reg : CLI.OutRegs) 843 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 844 845 // Push live variables for the stack map. 846 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 847 return false; 848 849 // Push the register mask info. 850 Ops.push_back(MachineOperand::CreateRegMask( 851 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 852 853 // Add scratch registers as implicit def and early clobber. 854 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 855 for (unsigned i = 0; ScratchRegs[i]; ++i) 856 Ops.push_back(MachineOperand::CreateReg( 857 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 858 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 859 860 // Add implicit defs (return values). 861 for (auto Reg : CLI.InRegs) 862 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 863 /*IsImpl=*/true)); 864 865 // Insert the patchpoint instruction before the call generated by the target. 866 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 867 TII.get(TargetOpcode::PATCHPOINT)); 868 869 for (auto &MO : Ops) 870 MIB.add(MO); 871 872 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 873 874 // Delete the original call instruction. 875 CLI.Call->eraseFromParent(); 876 877 // Inform the Frame Information that we have a patchpoint in this function. 878 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 879 880 if (CLI.NumResultRegs) 881 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 882 return true; 883 } 884 885 /// Returns an AttributeSet representing the attributes applied to the return 886 /// value of the given call. 887 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 888 SmallVector<Attribute::AttrKind, 2> Attrs; 889 if (CLI.RetSExt) 890 Attrs.push_back(Attribute::SExt); 891 if (CLI.RetZExt) 892 Attrs.push_back(Attribute::ZExt); 893 if (CLI.IsInReg) 894 Attrs.push_back(Attribute::InReg); 895 896 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 897 Attrs); 898 } 899 900 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 901 unsigned NumArgs) { 902 MCContext &Ctx = MF->getContext(); 903 SmallString<32> MangledName; 904 Mangler::getNameWithPrefix(MangledName, SymName, DL); 905 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 906 return lowerCallTo(CI, Sym, NumArgs); 907 } 908 909 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 910 unsigned NumArgs) { 911 ImmutableCallSite CS(CI); 912 913 FunctionType *FTy = CS.getFunctionType(); 914 Type *RetTy = CS.getType(); 915 916 ArgListTy Args; 917 Args.reserve(NumArgs); 918 919 // Populate the argument list. 920 // Attributes for args start at offset 1, after the return attribute. 921 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 922 Value *V = CI->getOperand(ArgI); 923 924 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 925 926 ArgListEntry Entry; 927 Entry.Val = V; 928 Entry.Ty = V->getType(); 929 Entry.setAttributes(&CS, ArgI + 1); 930 Args.push_back(Entry); 931 } 932 933 CallLoweringInfo CLI; 934 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs); 935 936 return lowerCallTo(CLI); 937 } 938 939 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 940 // Handle the incoming return values from the call. 941 CLI.clearIns(); 942 SmallVector<EVT, 4> RetTys; 943 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 944 945 SmallVector<ISD::OutputArg, 4> Outs; 946 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 947 948 bool CanLowerReturn = TLI.CanLowerReturn( 949 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 950 951 // FIXME: sret demotion isn't supported yet - bail out. 952 if (!CanLowerReturn) 953 return false; 954 955 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 956 EVT VT = RetTys[I]; 957 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 958 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 959 for (unsigned i = 0; i != NumRegs; ++i) { 960 ISD::InputArg MyFlags; 961 MyFlags.VT = RegisterVT; 962 MyFlags.ArgVT = VT; 963 MyFlags.Used = CLI.IsReturnValueUsed; 964 if (CLI.RetSExt) 965 MyFlags.Flags.setSExt(); 966 if (CLI.RetZExt) 967 MyFlags.Flags.setZExt(); 968 if (CLI.IsInReg) 969 MyFlags.Flags.setInReg(); 970 CLI.Ins.push_back(MyFlags); 971 } 972 } 973 974 // Handle all of the outgoing arguments. 975 CLI.clearOuts(); 976 for (auto &Arg : CLI.getArgs()) { 977 Type *FinalType = Arg.Ty; 978 if (Arg.IsByVal) 979 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 980 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 981 FinalType, CLI.CallConv, CLI.IsVarArg); 982 983 ISD::ArgFlagsTy Flags; 984 if (Arg.IsZExt) 985 Flags.setZExt(); 986 if (Arg.IsSExt) 987 Flags.setSExt(); 988 if (Arg.IsInReg) 989 Flags.setInReg(); 990 if (Arg.IsSRet) 991 Flags.setSRet(); 992 if (Arg.IsSwiftSelf) 993 Flags.setSwiftSelf(); 994 if (Arg.IsSwiftError) 995 Flags.setSwiftError(); 996 if (Arg.IsByVal) 997 Flags.setByVal(); 998 if (Arg.IsInAlloca) { 999 Flags.setInAlloca(); 1000 // Set the byval flag for CCAssignFn callbacks that don't know about 1001 // inalloca. This way we can know how many bytes we should've allocated 1002 // and how many bytes a callee cleanup function will pop. If we port 1003 // inalloca to more targets, we'll have to add custom inalloca handling in 1004 // the various CC lowering callbacks. 1005 Flags.setByVal(); 1006 } 1007 if (Arg.IsByVal || Arg.IsInAlloca) { 1008 PointerType *Ty = cast<PointerType>(Arg.Ty); 1009 Type *ElementTy = Ty->getElementType(); 1010 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 1011 // For ByVal, alignment should come from FE. BE will guess if this info is 1012 // not there, but there are cases it cannot get right. 1013 unsigned FrameAlign = Arg.Alignment; 1014 if (!FrameAlign) 1015 FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL); 1016 Flags.setByValSize(FrameSize); 1017 Flags.setByValAlign(FrameAlign); 1018 } 1019 if (Arg.IsNest) 1020 Flags.setNest(); 1021 if (NeedsRegBlock) 1022 Flags.setInConsecutiveRegs(); 1023 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 1024 Flags.setOrigAlign(OriginalAlignment); 1025 1026 CLI.OutVals.push_back(Arg.Val); 1027 CLI.OutFlags.push_back(Flags); 1028 } 1029 1030 if (!fastLowerCall(CLI)) 1031 return false; 1032 1033 // Set all unused physreg defs as dead. 1034 assert(CLI.Call && "No call instruction specified."); 1035 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1036 1037 if (CLI.NumResultRegs && CLI.CS) 1038 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 1039 1040 return true; 1041 } 1042 1043 bool FastISel::lowerCall(const CallInst *CI) { 1044 ImmutableCallSite CS(CI); 1045 1046 FunctionType *FuncTy = CS.getFunctionType(); 1047 Type *RetTy = CS.getType(); 1048 1049 ArgListTy Args; 1050 ArgListEntry Entry; 1051 Args.reserve(CS.arg_size()); 1052 1053 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1054 i != e; ++i) { 1055 Value *V = *i; 1056 1057 // Skip empty types 1058 if (V->getType()->isEmptyTy()) 1059 continue; 1060 1061 Entry.Val = V; 1062 Entry.Ty = V->getType(); 1063 1064 // Skip the first return-type Attribute to get to params. 1065 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 1066 Args.push_back(Entry); 1067 } 1068 1069 // Check if target-independent constraints permit a tail call here. 1070 // Target-dependent constraints are checked within fastLowerCall. 1071 bool IsTailCall = CI->isTailCall(); 1072 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1073 IsTailCall = false; 1074 1075 CallLoweringInfo CLI; 1076 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1077 .setTailCall(IsTailCall); 1078 1079 return lowerCallTo(CLI); 1080 } 1081 1082 bool FastISel::selectCall(const User *I) { 1083 const CallInst *Call = cast<CallInst>(I); 1084 1085 // Handle simple inline asms. 1086 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1087 // If the inline asm has side effects, then make sure that no local value 1088 // lives across by flushing the local value map. 1089 if (IA->hasSideEffects()) 1090 flushLocalValueMap(); 1091 1092 // Don't attempt to handle constraints. 1093 if (!IA->getConstraintString().empty()) 1094 return false; 1095 1096 unsigned ExtraInfo = 0; 1097 if (IA->hasSideEffects()) 1098 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1099 if (IA->isAlignStack()) 1100 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1101 1102 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1103 TII.get(TargetOpcode::INLINEASM)) 1104 .addExternalSymbol(IA->getAsmString().c_str()) 1105 .addImm(ExtraInfo); 1106 return true; 1107 } 1108 1109 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1110 computeUsesVAFloatArgument(*Call, MMI); 1111 1112 // Handle intrinsic function calls. 1113 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1114 return selectIntrinsicCall(II); 1115 1116 // Usually, it does not make sense to initialize a value, 1117 // make an unrelated function call and use the value, because 1118 // it tends to be spilled on the stack. So, we move the pointer 1119 // to the last local value to the beginning of the block, so that 1120 // all the values which have already been materialized, 1121 // appear after the call. It also makes sense to skip intrinsics 1122 // since they tend to be inlined. 1123 flushLocalValueMap(); 1124 1125 return lowerCall(Call); 1126 } 1127 1128 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1129 switch (II->getIntrinsicID()) { 1130 default: 1131 break; 1132 // At -O0 we don't care about the lifetime intrinsics. 1133 case Intrinsic::lifetime_start: 1134 case Intrinsic::lifetime_end: 1135 // The donothing intrinsic does, well, nothing. 1136 case Intrinsic::donothing: 1137 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1138 case Intrinsic::assume: 1139 return true; 1140 case Intrinsic::dbg_declare: { 1141 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1142 assert(DI->getVariable() && "Missing variable"); 1143 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1144 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1145 return true; 1146 } 1147 1148 const Value *Address = DI->getAddress(); 1149 if (!Address || isa<UndefValue>(Address)) { 1150 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1151 return true; 1152 } 1153 1154 unsigned Offset = 0; 1155 Optional<MachineOperand> Op; 1156 if (const auto *Arg = dyn_cast<Argument>(Address)) 1157 // Some arguments' frame index is recorded during argument lowering. 1158 Offset = FuncInfo.getArgumentFrameIndex(Arg); 1159 if (Offset) 1160 Op = MachineOperand::CreateFI(Offset); 1161 if (!Op) 1162 if (unsigned Reg = lookUpRegForValue(Address)) 1163 Op = MachineOperand::CreateReg(Reg, false); 1164 1165 // If we have a VLA that has a "use" in a metadata node that's then used 1166 // here but it has no other uses, then we have a problem. E.g., 1167 // 1168 // int foo (const int *x) { 1169 // char a[*x]; 1170 // return 0; 1171 // } 1172 // 1173 // If we assign 'a' a vreg and fast isel later on has to use the selection 1174 // DAG isel, it will want to copy the value to the vreg. However, there are 1175 // no uses, which goes counter to what selection DAG isel expects. 1176 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1177 (!isa<AllocaInst>(Address) || 1178 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1179 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1180 false); 1181 1182 if (Op) { 1183 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1184 "Expected inlined-at fields to agree"); 1185 if (Op->isReg()) { 1186 Op->setIsDebug(true); 1187 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1188 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0, 1189 DI->getVariable(), DI->getExpression()); 1190 } else 1191 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1192 TII.get(TargetOpcode::DBG_VALUE)) 1193 .add(*Op) 1194 .addImm(0) 1195 .addMetadata(DI->getVariable()) 1196 .addMetadata(DI->getExpression()); 1197 } else { 1198 // We can't yet handle anything else here because it would require 1199 // generating code, thus altering codegen because of debug info. 1200 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1201 } 1202 return true; 1203 } 1204 case Intrinsic::dbg_value: { 1205 // This form of DBG_VALUE is target-independent. 1206 const DbgValueInst *DI = cast<DbgValueInst>(II); 1207 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1208 const Value *V = DI->getValue(); 1209 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1210 "Expected inlined-at fields to agree"); 1211 if (!V) { 1212 // Currently the optimizer can produce this; insert an undef to 1213 // help debugging. Probably the optimizer should not do this. 1214 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1215 .addReg(0U) 1216 .addImm(DI->getOffset()) 1217 .addMetadata(DI->getVariable()) 1218 .addMetadata(DI->getExpression()); 1219 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1220 if (CI->getBitWidth() > 64) 1221 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1222 .addCImm(CI) 1223 .addImm(DI->getOffset()) 1224 .addMetadata(DI->getVariable()) 1225 .addMetadata(DI->getExpression()); 1226 else 1227 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1228 .addImm(CI->getZExtValue()) 1229 .addImm(DI->getOffset()) 1230 .addMetadata(DI->getVariable()) 1231 .addMetadata(DI->getExpression()); 1232 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1233 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1234 .addFPImm(CF) 1235 .addImm(DI->getOffset()) 1236 .addMetadata(DI->getVariable()) 1237 .addMetadata(DI->getExpression()); 1238 } else if (unsigned Reg = lookUpRegForValue(V)) { 1239 // FIXME: This does not handle register-indirect values at offset 0. 1240 bool IsIndirect = DI->getOffset() != 0; 1241 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1242 DI->getOffset(), DI->getVariable(), DI->getExpression()); 1243 } else { 1244 // We can't yet handle anything else here because it would require 1245 // generating code, thus altering codegen because of debug info. 1246 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1247 } 1248 return true; 1249 } 1250 case Intrinsic::objectsize: { 1251 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1252 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1253 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1254 unsigned ResultReg = getRegForValue(ResCI); 1255 if (!ResultReg) 1256 return false; 1257 updateValueMap(II, ResultReg); 1258 return true; 1259 } 1260 case Intrinsic::invariant_group_barrier: 1261 case Intrinsic::expect: { 1262 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1263 if (!ResultReg) 1264 return false; 1265 updateValueMap(II, ResultReg); 1266 return true; 1267 } 1268 case Intrinsic::experimental_stackmap: 1269 return selectStackmap(II); 1270 case Intrinsic::experimental_patchpoint_void: 1271 case Intrinsic::experimental_patchpoint_i64: 1272 return selectPatchpoint(II); 1273 } 1274 1275 return fastLowerIntrinsicCall(II); 1276 } 1277 1278 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1279 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1280 EVT DstVT = TLI.getValueType(DL, I->getType()); 1281 1282 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1283 !DstVT.isSimple()) 1284 // Unhandled type. Halt "fast" selection and bail. 1285 return false; 1286 1287 // Check if the destination type is legal. 1288 if (!TLI.isTypeLegal(DstVT)) 1289 return false; 1290 1291 // Check if the source operand is legal. 1292 if (!TLI.isTypeLegal(SrcVT)) 1293 return false; 1294 1295 unsigned InputReg = getRegForValue(I->getOperand(0)); 1296 if (!InputReg) 1297 // Unhandled operand. Halt "fast" selection and bail. 1298 return false; 1299 1300 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1301 1302 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1303 Opcode, InputReg, InputRegIsKill); 1304 if (!ResultReg) 1305 return false; 1306 1307 updateValueMap(I, ResultReg); 1308 return true; 1309 } 1310 1311 bool FastISel::selectBitCast(const User *I) { 1312 // If the bitcast doesn't change the type, just use the operand value. 1313 if (I->getType() == I->getOperand(0)->getType()) { 1314 unsigned Reg = getRegForValue(I->getOperand(0)); 1315 if (!Reg) 1316 return false; 1317 updateValueMap(I, Reg); 1318 return true; 1319 } 1320 1321 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1322 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1323 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1324 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1325 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1326 // Unhandled type. Halt "fast" selection and bail. 1327 return false; 1328 1329 MVT SrcVT = SrcEVT.getSimpleVT(); 1330 MVT DstVT = DstEVT.getSimpleVT(); 1331 unsigned Op0 = getRegForValue(I->getOperand(0)); 1332 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1333 return false; 1334 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1335 1336 // First, try to perform the bitcast by inserting a reg-reg copy. 1337 unsigned ResultReg = 0; 1338 if (SrcVT == DstVT) { 1339 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1340 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1341 // Don't attempt a cross-class copy. It will likely fail. 1342 if (SrcClass == DstClass) { 1343 ResultReg = createResultReg(DstClass); 1344 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1345 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1346 } 1347 } 1348 1349 // If the reg-reg copy failed, select a BITCAST opcode. 1350 if (!ResultReg) 1351 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1352 1353 if (!ResultReg) 1354 return false; 1355 1356 updateValueMap(I, ResultReg); 1357 return true; 1358 } 1359 1360 // Remove local value instructions starting from the instruction after 1361 // SavedLastLocalValue to the current function insert point. 1362 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1363 { 1364 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1365 if (CurLastLocalValue != SavedLastLocalValue) { 1366 // Find the first local value instruction to be deleted. 1367 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1368 // Otherwise it's the first instruction in the block. 1369 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1370 if (SavedLastLocalValue) 1371 ++FirstDeadInst; 1372 else 1373 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1374 setLastLocalValue(SavedLastLocalValue); 1375 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1376 } 1377 } 1378 1379 bool FastISel::selectInstruction(const Instruction *I) { 1380 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1381 // Just before the terminator instruction, insert instructions to 1382 // feed PHI nodes in successor blocks. 1383 if (isa<TerminatorInst>(I)) { 1384 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1385 // PHI node handling may have generated local value instructions, 1386 // even though it failed to handle all PHI nodes. 1387 // We remove these instructions because SelectionDAGISel will generate 1388 // them again. 1389 removeDeadLocalValueCode(SavedLastLocalValue); 1390 return false; 1391 } 1392 } 1393 1394 // FastISel does not handle any operand bundles except OB_funclet. 1395 if (ImmutableCallSite CS = ImmutableCallSite(I)) 1396 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) 1397 if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1398 return false; 1399 1400 DbgLoc = I->getDebugLoc(); 1401 1402 SavedInsertPt = FuncInfo.InsertPt; 1403 1404 if (const auto *Call = dyn_cast<CallInst>(I)) { 1405 const Function *F = Call->getCalledFunction(); 1406 LibFunc Func; 1407 1408 // As a special case, don't handle calls to builtin library functions that 1409 // may be translated directly to target instructions. 1410 if (F && !F->hasLocalLinkage() && F->hasName() && 1411 LibInfo->getLibFunc(F->getName(), Func) && 1412 LibInfo->hasOptimizedCodeGen(Func)) 1413 return false; 1414 1415 // Don't handle Intrinsic::trap if a trap function is specified. 1416 if (F && F->getIntrinsicID() == Intrinsic::trap && 1417 Call->hasFnAttr("trap-func-name")) 1418 return false; 1419 } 1420 1421 // First, try doing target-independent selection. 1422 if (!SkipTargetIndependentISel) { 1423 if (selectOperator(I, I->getOpcode())) { 1424 ++NumFastIselSuccessIndependent; 1425 DbgLoc = DebugLoc(); 1426 return true; 1427 } 1428 // Remove dead code. 1429 recomputeInsertPt(); 1430 if (SavedInsertPt != FuncInfo.InsertPt) 1431 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1432 SavedInsertPt = FuncInfo.InsertPt; 1433 } 1434 // Next, try calling the target to attempt to handle the instruction. 1435 if (fastSelectInstruction(I)) { 1436 ++NumFastIselSuccessTarget; 1437 DbgLoc = DebugLoc(); 1438 return true; 1439 } 1440 // Remove dead code. 1441 recomputeInsertPt(); 1442 if (SavedInsertPt != FuncInfo.InsertPt) 1443 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1444 1445 DbgLoc = DebugLoc(); 1446 // Undo phi node updates, because they will be added again by SelectionDAG. 1447 if (isa<TerminatorInst>(I)) { 1448 // PHI node handling may have generated local value instructions. 1449 // We remove them because SelectionDAGISel will generate them again. 1450 removeDeadLocalValueCode(SavedLastLocalValue); 1451 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1452 } 1453 return false; 1454 } 1455 1456 /// Emit an unconditional branch to the given block, unless it is the immediate 1457 /// (fall-through) successor, and update the CFG. 1458 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1459 const DebugLoc &DbgLoc) { 1460 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1461 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1462 // For more accurate line information if this is the only instruction 1463 // in the block then emit it, otherwise we have the unconditional 1464 // fall-through case, which needs no instructions. 1465 } else { 1466 // The unconditional branch case. 1467 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1468 SmallVector<MachineOperand, 0>(), DbgLoc); 1469 } 1470 if (FuncInfo.BPI) { 1471 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1472 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1473 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1474 } else 1475 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1476 } 1477 1478 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1479 MachineBasicBlock *TrueMBB, 1480 MachineBasicBlock *FalseMBB) { 1481 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1482 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1483 // successor/predecessor lists. 1484 if (TrueMBB != FalseMBB) { 1485 if (FuncInfo.BPI) { 1486 auto BranchProbability = 1487 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1488 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1489 } else 1490 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1491 } 1492 1493 fastEmitBranch(FalseMBB, DbgLoc); 1494 } 1495 1496 /// Emit an FNeg operation. 1497 bool FastISel::selectFNeg(const User *I) { 1498 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1499 if (!OpReg) 1500 return false; 1501 bool OpRegIsKill = hasTrivialKill(I); 1502 1503 // If the target has ISD::FNEG, use it. 1504 EVT VT = TLI.getValueType(DL, I->getType()); 1505 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1506 OpReg, OpRegIsKill); 1507 if (ResultReg) { 1508 updateValueMap(I, ResultReg); 1509 return true; 1510 } 1511 1512 // Bitcast the value to integer, twiddle the sign bit with xor, 1513 // and then bitcast it back to floating-point. 1514 if (VT.getSizeInBits() > 64) 1515 return false; 1516 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1517 if (!TLI.isTypeLegal(IntVT)) 1518 return false; 1519 1520 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1521 ISD::BITCAST, OpReg, OpRegIsKill); 1522 if (!IntReg) 1523 return false; 1524 1525 unsigned IntResultReg = fastEmit_ri_( 1526 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1527 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1528 if (!IntResultReg) 1529 return false; 1530 1531 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1532 IntResultReg, /*IsKill=*/true); 1533 if (!ResultReg) 1534 return false; 1535 1536 updateValueMap(I, ResultReg); 1537 return true; 1538 } 1539 1540 bool FastISel::selectExtractValue(const User *U) { 1541 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1542 if (!EVI) 1543 return false; 1544 1545 // Make sure we only try to handle extracts with a legal result. But also 1546 // allow i1 because it's easy. 1547 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1548 if (!RealVT.isSimple()) 1549 return false; 1550 MVT VT = RealVT.getSimpleVT(); 1551 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1552 return false; 1553 1554 const Value *Op0 = EVI->getOperand(0); 1555 Type *AggTy = Op0->getType(); 1556 1557 // Get the base result register. 1558 unsigned ResultReg; 1559 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1560 if (I != FuncInfo.ValueMap.end()) 1561 ResultReg = I->second; 1562 else if (isa<Instruction>(Op0)) 1563 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1564 else 1565 return false; // fast-isel can't handle aggregate constants at the moment 1566 1567 // Get the actual result register, which is an offset from the base register. 1568 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1569 1570 SmallVector<EVT, 4> AggValueVTs; 1571 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1572 1573 for (unsigned i = 0; i < VTIndex; i++) 1574 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1575 1576 updateValueMap(EVI, ResultReg); 1577 return true; 1578 } 1579 1580 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1581 switch (Opcode) { 1582 case Instruction::Add: 1583 return selectBinaryOp(I, ISD::ADD); 1584 case Instruction::FAdd: 1585 return selectBinaryOp(I, ISD::FADD); 1586 case Instruction::Sub: 1587 return selectBinaryOp(I, ISD::SUB); 1588 case Instruction::FSub: 1589 // FNeg is currently represented in LLVM IR as a special case of FSub. 1590 if (BinaryOperator::isFNeg(I)) 1591 return selectFNeg(I); 1592 return selectBinaryOp(I, ISD::FSUB); 1593 case Instruction::Mul: 1594 return selectBinaryOp(I, ISD::MUL); 1595 case Instruction::FMul: 1596 return selectBinaryOp(I, ISD::FMUL); 1597 case Instruction::SDiv: 1598 return selectBinaryOp(I, ISD::SDIV); 1599 case Instruction::UDiv: 1600 return selectBinaryOp(I, ISD::UDIV); 1601 case Instruction::FDiv: 1602 return selectBinaryOp(I, ISD::FDIV); 1603 case Instruction::SRem: 1604 return selectBinaryOp(I, ISD::SREM); 1605 case Instruction::URem: 1606 return selectBinaryOp(I, ISD::UREM); 1607 case Instruction::FRem: 1608 return selectBinaryOp(I, ISD::FREM); 1609 case Instruction::Shl: 1610 return selectBinaryOp(I, ISD::SHL); 1611 case Instruction::LShr: 1612 return selectBinaryOp(I, ISD::SRL); 1613 case Instruction::AShr: 1614 return selectBinaryOp(I, ISD::SRA); 1615 case Instruction::And: 1616 return selectBinaryOp(I, ISD::AND); 1617 case Instruction::Or: 1618 return selectBinaryOp(I, ISD::OR); 1619 case Instruction::Xor: 1620 return selectBinaryOp(I, ISD::XOR); 1621 1622 case Instruction::GetElementPtr: 1623 return selectGetElementPtr(I); 1624 1625 case Instruction::Br: { 1626 const BranchInst *BI = cast<BranchInst>(I); 1627 1628 if (BI->isUnconditional()) { 1629 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1630 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1631 fastEmitBranch(MSucc, BI->getDebugLoc()); 1632 return true; 1633 } 1634 1635 // Conditional branches are not handed yet. 1636 // Halt "fast" selection and bail. 1637 return false; 1638 } 1639 1640 case Instruction::Unreachable: 1641 if (TM.Options.TrapUnreachable) 1642 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1643 else 1644 return true; 1645 1646 case Instruction::Alloca: 1647 // FunctionLowering has the static-sized case covered. 1648 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1649 return true; 1650 1651 // Dynamic-sized alloca is not handled yet. 1652 return false; 1653 1654 case Instruction::Call: 1655 return selectCall(I); 1656 1657 case Instruction::BitCast: 1658 return selectBitCast(I); 1659 1660 case Instruction::FPToSI: 1661 return selectCast(I, ISD::FP_TO_SINT); 1662 case Instruction::ZExt: 1663 return selectCast(I, ISD::ZERO_EXTEND); 1664 case Instruction::SExt: 1665 return selectCast(I, ISD::SIGN_EXTEND); 1666 case Instruction::Trunc: 1667 return selectCast(I, ISD::TRUNCATE); 1668 case Instruction::SIToFP: 1669 return selectCast(I, ISD::SINT_TO_FP); 1670 1671 case Instruction::IntToPtr: // Deliberate fall-through. 1672 case Instruction::PtrToInt: { 1673 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1674 EVT DstVT = TLI.getValueType(DL, I->getType()); 1675 if (DstVT.bitsGT(SrcVT)) 1676 return selectCast(I, ISD::ZERO_EXTEND); 1677 if (DstVT.bitsLT(SrcVT)) 1678 return selectCast(I, ISD::TRUNCATE); 1679 unsigned Reg = getRegForValue(I->getOperand(0)); 1680 if (!Reg) 1681 return false; 1682 updateValueMap(I, Reg); 1683 return true; 1684 } 1685 1686 case Instruction::ExtractValue: 1687 return selectExtractValue(I); 1688 1689 case Instruction::PHI: 1690 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1691 1692 default: 1693 // Unhandled instruction. Halt "fast" selection and bail. 1694 return false; 1695 } 1696 } 1697 1698 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1699 const TargetLibraryInfo *LibInfo, 1700 bool SkipTargetIndependentISel) 1701 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1702 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1703 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1704 TII(*MF->getSubtarget().getInstrInfo()), 1705 TLI(*MF->getSubtarget().getTargetLowering()), 1706 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1707 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1708 1709 FastISel::~FastISel() = default; 1710 1711 bool FastISel::fastLowerArguments() { return false; } 1712 1713 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1714 1715 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1716 return false; 1717 } 1718 1719 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1720 1721 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1722 bool /*Op0IsKill*/) { 1723 return 0; 1724 } 1725 1726 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1727 bool /*Op0IsKill*/, unsigned /*Op1*/, 1728 bool /*Op1IsKill*/) { 1729 return 0; 1730 } 1731 1732 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1733 return 0; 1734 } 1735 1736 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1737 const ConstantFP * /*FPImm*/) { 1738 return 0; 1739 } 1740 1741 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1742 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1743 return 0; 1744 } 1745 1746 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1747 /// instruction with an immediate operand using fastEmit_ri. 1748 /// If that fails, it materializes the immediate into a register and try 1749 /// fastEmit_rr instead. 1750 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1751 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1752 // If this is a multiply by a power of two, emit this as a shift left. 1753 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1754 Opcode = ISD::SHL; 1755 Imm = Log2_64(Imm); 1756 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1757 // div x, 8 -> srl x, 3 1758 Opcode = ISD::SRL; 1759 Imm = Log2_64(Imm); 1760 } 1761 1762 // Horrible hack (to be removed), check to make sure shift amounts are 1763 // in-range. 1764 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1765 Imm >= VT.getSizeInBits()) 1766 return 0; 1767 1768 // First check if immediate type is legal. If not, we can't use the ri form. 1769 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1770 if (ResultReg) 1771 return ResultReg; 1772 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1773 bool IsImmKill = true; 1774 if (!MaterialReg) { 1775 // This is a bit ugly/slow, but failing here means falling out of 1776 // fast-isel, which would be very slow. 1777 IntegerType *ITy = 1778 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1779 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1780 if (!MaterialReg) 1781 return 0; 1782 // FIXME: If the materialized register here has no uses yet then this 1783 // will be the first use and we should be able to mark it as killed. 1784 // However, the local value area for materialising constant expressions 1785 // grows down, not up, which means that any constant expressions we generate 1786 // later which also use 'Imm' could be after this instruction and therefore 1787 // after this kill. 1788 IsImmKill = false; 1789 } 1790 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); 1791 } 1792 1793 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { 1794 return MRI.createVirtualRegister(RC); 1795 } 1796 1797 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 1798 unsigned OpNum) { 1799 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1800 const TargetRegisterClass *RegClass = 1801 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1802 if (!MRI.constrainRegClass(Op, RegClass)) { 1803 // If it's not legal to COPY between the register classes, something 1804 // has gone very wrong before we got here. 1805 unsigned NewOp = createResultReg(RegClass); 1806 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1807 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1808 return NewOp; 1809 } 1810 } 1811 return Op; 1812 } 1813 1814 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1815 const TargetRegisterClass *RC) { 1816 unsigned ResultReg = createResultReg(RC); 1817 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1818 1819 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1820 return ResultReg; 1821 } 1822 1823 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 1824 const TargetRegisterClass *RC, unsigned Op0, 1825 bool Op0IsKill) { 1826 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1827 1828 unsigned ResultReg = createResultReg(RC); 1829 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1830 1831 if (II.getNumDefs() >= 1) 1832 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1833 .addReg(Op0, getKillRegState(Op0IsKill)); 1834 else { 1835 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1836 .addReg(Op0, getKillRegState(Op0IsKill)); 1837 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1838 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1839 } 1840 1841 return ResultReg; 1842 } 1843 1844 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 1845 const TargetRegisterClass *RC, unsigned Op0, 1846 bool Op0IsKill, unsigned Op1, 1847 bool Op1IsKill) { 1848 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1849 1850 unsigned ResultReg = createResultReg(RC); 1851 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1852 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1853 1854 if (II.getNumDefs() >= 1) 1855 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1856 .addReg(Op0, getKillRegState(Op0IsKill)) 1857 .addReg(Op1, getKillRegState(Op1IsKill)); 1858 else { 1859 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1860 .addReg(Op0, getKillRegState(Op0IsKill)) 1861 .addReg(Op1, getKillRegState(Op1IsKill)); 1862 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1863 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1864 } 1865 return ResultReg; 1866 } 1867 1868 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 1869 const TargetRegisterClass *RC, unsigned Op0, 1870 bool Op0IsKill, unsigned Op1, 1871 bool Op1IsKill, unsigned Op2, 1872 bool Op2IsKill) { 1873 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1874 1875 unsigned ResultReg = createResultReg(RC); 1876 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1877 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1878 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1879 1880 if (II.getNumDefs() >= 1) 1881 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1882 .addReg(Op0, getKillRegState(Op0IsKill)) 1883 .addReg(Op1, getKillRegState(Op1IsKill)) 1884 .addReg(Op2, getKillRegState(Op2IsKill)); 1885 else { 1886 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1887 .addReg(Op0, getKillRegState(Op0IsKill)) 1888 .addReg(Op1, getKillRegState(Op1IsKill)) 1889 .addReg(Op2, getKillRegState(Op2IsKill)); 1890 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1891 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1892 } 1893 return ResultReg; 1894 } 1895 1896 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 1897 const TargetRegisterClass *RC, unsigned Op0, 1898 bool Op0IsKill, uint64_t Imm) { 1899 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1900 1901 unsigned ResultReg = createResultReg(RC); 1902 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1903 1904 if (II.getNumDefs() >= 1) 1905 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1906 .addReg(Op0, getKillRegState(Op0IsKill)) 1907 .addImm(Imm); 1908 else { 1909 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1910 .addReg(Op0, getKillRegState(Op0IsKill)) 1911 .addImm(Imm); 1912 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1913 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1914 } 1915 return ResultReg; 1916 } 1917 1918 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 1919 const TargetRegisterClass *RC, unsigned Op0, 1920 bool Op0IsKill, uint64_t Imm1, 1921 uint64_t Imm2) { 1922 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1923 1924 unsigned ResultReg = createResultReg(RC); 1925 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1926 1927 if (II.getNumDefs() >= 1) 1928 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1929 .addReg(Op0, getKillRegState(Op0IsKill)) 1930 .addImm(Imm1) 1931 .addImm(Imm2); 1932 else { 1933 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1934 .addReg(Op0, getKillRegState(Op0IsKill)) 1935 .addImm(Imm1) 1936 .addImm(Imm2); 1937 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1938 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1939 } 1940 return ResultReg; 1941 } 1942 1943 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 1944 const TargetRegisterClass *RC, 1945 const ConstantFP *FPImm) { 1946 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1947 1948 unsigned ResultReg = createResultReg(RC); 1949 1950 if (II.getNumDefs() >= 1) 1951 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1952 .addFPImm(FPImm); 1953 else { 1954 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1955 .addFPImm(FPImm); 1956 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1957 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1958 } 1959 return ResultReg; 1960 } 1961 1962 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 1963 const TargetRegisterClass *RC, unsigned Op0, 1964 bool Op0IsKill, unsigned Op1, 1965 bool Op1IsKill, uint64_t Imm) { 1966 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1967 1968 unsigned ResultReg = createResultReg(RC); 1969 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1970 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1971 1972 if (II.getNumDefs() >= 1) 1973 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1974 .addReg(Op0, getKillRegState(Op0IsKill)) 1975 .addReg(Op1, getKillRegState(Op1IsKill)) 1976 .addImm(Imm); 1977 else { 1978 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1979 .addReg(Op0, getKillRegState(Op0IsKill)) 1980 .addReg(Op1, getKillRegState(Op1IsKill)) 1981 .addImm(Imm); 1982 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1983 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1984 } 1985 return ResultReg; 1986 } 1987 1988 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 1989 const TargetRegisterClass *RC, uint64_t Imm) { 1990 unsigned ResultReg = createResultReg(RC); 1991 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1992 1993 if (II.getNumDefs() >= 1) 1994 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1995 .addImm(Imm); 1996 else { 1997 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 1998 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1999 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2000 } 2001 return ResultReg; 2002 } 2003 2004 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 2005 bool Op0IsKill, uint32_t Idx) { 2006 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 2007 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 2008 "Cannot yet extract from physregs"); 2009 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2010 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2011 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 2012 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 2013 return ResultReg; 2014 } 2015 2016 /// Emit MachineInstrs to compute the value of Op with all but the least 2017 /// significant bit set to zero. 2018 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 2019 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 2020 } 2021 2022 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2023 /// Emit code to ensure constants are copied into registers when needed. 2024 /// Remember the virtual registers that need to be added to the Machine PHI 2025 /// nodes as input. We cannot just directly add them, because expansion 2026 /// might result in multiple MBB's for one BB. As such, the start of the 2027 /// BB might correspond to a different MBB than the end. 2028 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2029 const TerminatorInst *TI = LLVMBB->getTerminator(); 2030 2031 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2032 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2033 2034 // Check successor nodes' PHI nodes that expect a constant to be available 2035 // from this block. 2036 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2037 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2038 if (!isa<PHINode>(SuccBB->begin())) 2039 continue; 2040 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2041 2042 // If this terminator has multiple identical successors (common for 2043 // switches), only handle each succ once. 2044 if (!SuccsHandled.insert(SuccMBB).second) 2045 continue; 2046 2047 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2048 2049 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2050 // nodes and Machine PHI nodes, but the incoming operands have not been 2051 // emitted yet. 2052 for (BasicBlock::const_iterator I = SuccBB->begin(); 2053 const auto *PN = dyn_cast<PHINode>(I); ++I) { 2054 2055 // Ignore dead phi's. 2056 if (PN->use_empty()) 2057 continue; 2058 2059 // Only handle legal types. Two interesting things to note here. First, 2060 // by bailing out early, we may leave behind some dead instructions, 2061 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2062 // own moves. Second, this check is necessary because FastISel doesn't 2063 // use CreateRegs to create registers, so it always creates 2064 // exactly one register for each non-void instruction. 2065 EVT VT = TLI.getValueType(DL, PN->getType(), /*AllowUnknown=*/true); 2066 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2067 // Handle integer promotions, though, because they're common and easy. 2068 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2069 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2070 return false; 2071 } 2072 } 2073 2074 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 2075 2076 // Set the DebugLoc for the copy. Prefer the location of the operand 2077 // if there is one; use the location of the PHI otherwise. 2078 DbgLoc = PN->getDebugLoc(); 2079 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2080 DbgLoc = Inst->getDebugLoc(); 2081 2082 unsigned Reg = getRegForValue(PHIOp); 2083 if (!Reg) { 2084 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2085 return false; 2086 } 2087 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2088 DbgLoc = DebugLoc(); 2089 } 2090 } 2091 2092 return true; 2093 } 2094 2095 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2096 assert(LI->hasOneUse() && 2097 "tryToFoldLoad expected a LoadInst with a single use"); 2098 // We know that the load has a single use, but don't know what it is. If it 2099 // isn't one of the folded instructions, then we can't succeed here. Handle 2100 // this by scanning the single-use users of the load until we get to FoldInst. 2101 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2102 2103 const Instruction *TheUser = LI->user_back(); 2104 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2105 // Stay in the right block. 2106 TheUser->getParent() == FoldInst->getParent() && 2107 --MaxUsers) { // Don't scan too far. 2108 // If there are multiple or no uses of this instruction, then bail out. 2109 if (!TheUser->hasOneUse()) 2110 return false; 2111 2112 TheUser = TheUser->user_back(); 2113 } 2114 2115 // If we didn't find the fold instruction, then we failed to collapse the 2116 // sequence. 2117 if (TheUser != FoldInst) 2118 return false; 2119 2120 // Don't try to fold volatile loads. Target has to deal with alignment 2121 // constraints. 2122 if (LI->isVolatile()) 2123 return false; 2124 2125 // Figure out which vreg this is going into. If there is no assigned vreg yet 2126 // then there actually was no reference to it. Perhaps the load is referenced 2127 // by a dead instruction. 2128 unsigned LoadReg = getRegForValue(LI); 2129 if (!LoadReg) 2130 return false; 2131 2132 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2133 // may mean that the instruction got lowered to multiple MIs, or the use of 2134 // the loaded value ended up being multiple operands of the result. 2135 if (!MRI.hasOneUse(LoadReg)) 2136 return false; 2137 2138 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2139 MachineInstr *User = RI->getParent(); 2140 2141 // Set the insertion point properly. Folding the load can cause generation of 2142 // other random instructions (like sign extends) for addressing modes; make 2143 // sure they get inserted in a logical place before the new instruction. 2144 FuncInfo.InsertPt = User; 2145 FuncInfo.MBB = User->getParent(); 2146 2147 // Ask the target to try folding the load. 2148 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2149 } 2150 2151 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2152 // Must be an add. 2153 if (!isa<AddOperator>(Add)) 2154 return false; 2155 // Type size needs to match. 2156 if (DL.getTypeSizeInBits(GEP->getType()) != 2157 DL.getTypeSizeInBits(Add->getType())) 2158 return false; 2159 // Must be in the same basic block. 2160 if (isa<Instruction>(Add) && 2161 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2162 return false; 2163 // Must have a constant operand. 2164 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2165 } 2166 2167 MachineMemOperand * 2168 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2169 const Value *Ptr; 2170 Type *ValTy; 2171 unsigned Alignment; 2172 MachineMemOperand::Flags Flags; 2173 bool IsVolatile; 2174 2175 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2176 Alignment = LI->getAlignment(); 2177 IsVolatile = LI->isVolatile(); 2178 Flags = MachineMemOperand::MOLoad; 2179 Ptr = LI->getPointerOperand(); 2180 ValTy = LI->getType(); 2181 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2182 Alignment = SI->getAlignment(); 2183 IsVolatile = SI->isVolatile(); 2184 Flags = MachineMemOperand::MOStore; 2185 Ptr = SI->getPointerOperand(); 2186 ValTy = SI->getValueOperand()->getType(); 2187 } else 2188 return nullptr; 2189 2190 bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2191 bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2192 bool IsDereferenceable = 2193 I->getMetadata(LLVMContext::MD_dereferenceable) != nullptr; 2194 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2195 2196 AAMDNodes AAInfo; 2197 I->getAAMetadata(AAInfo); 2198 2199 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2200 Alignment = DL.getABITypeAlignment(ValTy); 2201 2202 unsigned Size = DL.getTypeStoreSize(ValTy); 2203 2204 if (IsVolatile) 2205 Flags |= MachineMemOperand::MOVolatile; 2206 if (IsNonTemporal) 2207 Flags |= MachineMemOperand::MONonTemporal; 2208 if (IsDereferenceable) 2209 Flags |= MachineMemOperand::MODereferenceable; 2210 if (IsInvariant) 2211 Flags |= MachineMemOperand::MOInvariant; 2212 2213 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2214 Alignment, AAInfo, Ranges); 2215 } 2216 2217 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2218 // If both operands are the same, then try to optimize or fold the cmp. 2219 CmpInst::Predicate Predicate = CI->getPredicate(); 2220 if (CI->getOperand(0) != CI->getOperand(1)) 2221 return Predicate; 2222 2223 switch (Predicate) { 2224 default: llvm_unreachable("Invalid predicate!"); 2225 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2226 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2227 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2228 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2229 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2230 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2231 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2232 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2233 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2234 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2235 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2236 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2237 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2238 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2239 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2240 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2241 2242 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2243 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2244 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2245 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2246 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2247 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2248 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2249 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2250 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2251 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2252 } 2253 2254 return Predicate; 2255 } 2256