1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/CodeGen/Analysis.h" 43 #include "llvm/CodeGen/FastISel.h" 44 #include "llvm/ADT/Optional.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/BranchProbabilityInfo.h" 47 #include "llvm/Analysis/Loads.h" 48 #include "llvm/CodeGen/Analysis.h" 49 #include "llvm/CodeGen/FunctionLoweringInfo.h" 50 #include "llvm/CodeGen/MachineFrameInfo.h" 51 #include "llvm/CodeGen/MachineInstrBuilder.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/StackMaps.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugInfo.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/GlobalVariable.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Target/TargetInstrInfo.h" 65 #include "llvm/Target/TargetLibraryInfo.h" 66 #include "llvm/Target/TargetLowering.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetSubtargetInfo.h" 69 using namespace llvm; 70 71 #define DEBUG_TYPE "isel" 72 73 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 74 "target-independent selector"); 75 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 76 "target-specific selector"); 77 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 78 79 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 80 /// and called function attributes. 81 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS, 82 unsigned AttrIdx) { 83 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 84 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 85 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 86 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 87 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 88 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 89 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 90 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 91 Alignment = CS->getParamAlignment(AttrIdx); 92 } 93 94 /// startNewBlock - Set the current block to which generated machine 95 /// instructions will be appended, and clear the local CSE map. 96 /// 97 void FastISel::startNewBlock() { 98 LocalValueMap.clear(); 99 100 // Instructions are appended to FuncInfo.MBB. If the basic block already 101 // contains labels or copies, use the last instruction as the last local 102 // value. 103 EmitStartPt = nullptr; 104 if (!FuncInfo.MBB->empty()) 105 EmitStartPt = &FuncInfo.MBB->back(); 106 LastLocalValue = EmitStartPt; 107 } 108 109 bool FastISel::LowerArguments() { 110 if (!FuncInfo.CanLowerReturn) 111 // Fallback to SDISel argument lowering code to deal with sret pointer 112 // parameter. 113 return false; 114 115 if (!FastLowerArguments()) 116 return false; 117 118 // Enter arguments into ValueMap for uses in non-entry BBs. 119 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 120 E = FuncInfo.Fn->arg_end(); I != E; ++I) { 121 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I); 122 assert(VI != LocalValueMap.end() && "Missed an argument?"); 123 FuncInfo.ValueMap[I] = VI->second; 124 } 125 return true; 126 } 127 128 void FastISel::flushLocalValueMap() { 129 LocalValueMap.clear(); 130 LastLocalValue = EmitStartPt; 131 recomputeInsertPt(); 132 } 133 134 bool FastISel::hasTrivialKill(const Value *V) const { 135 // Don't consider constants or arguments to have trivial kills. 136 const Instruction *I = dyn_cast<Instruction>(V); 137 if (!I) 138 return false; 139 140 // No-op casts are trivially coalesced by fast-isel. 141 if (const CastInst *Cast = dyn_cast<CastInst>(I)) 142 if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) && 143 !hasTrivialKill(Cast->getOperand(0))) 144 return false; 145 146 // GEPs with all zero indices are trivially coalesced by fast-isel. 147 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 148 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 149 return false; 150 151 // Only instructions with a single use in the same basic block are considered 152 // to have trivial kills. 153 return I->hasOneUse() && 154 !(I->getOpcode() == Instruction::BitCast || 155 I->getOpcode() == Instruction::PtrToInt || 156 I->getOpcode() == Instruction::IntToPtr) && 157 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 158 } 159 160 unsigned FastISel::getRegForValue(const Value *V) { 161 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); 162 // Don't handle non-simple values in FastISel. 163 if (!RealVT.isSimple()) 164 return 0; 165 166 // Ignore illegal types. We must do this before looking up the value 167 // in ValueMap because Arguments are given virtual registers regardless 168 // of whether FastISel can handle them. 169 MVT VT = RealVT.getSimpleVT(); 170 if (!TLI.isTypeLegal(VT)) { 171 // Handle integer promotions, though, because they're common and easy. 172 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 173 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 174 else 175 return 0; 176 } 177 178 // Look up the value to see if we already have a register for it. 179 unsigned Reg = lookUpRegForValue(V); 180 if (Reg != 0) 181 return Reg; 182 183 // In bottom-up mode, just create the virtual register which will be used 184 // to hold the value. It will be materialized later. 185 if (isa<Instruction>(V) && 186 (!isa<AllocaInst>(V) || 187 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 188 return FuncInfo.InitializeRegForValue(V); 189 190 SavePoint SaveInsertPt = enterLocalValueArea(); 191 192 // Materialize the value in a register. Emit any instructions in the 193 // local value area. 194 Reg = materializeRegForValue(V, VT); 195 196 leaveLocalValueArea(SaveInsertPt); 197 198 return Reg; 199 } 200 201 /// materializeRegForValue - Helper for getRegForValue. This function is 202 /// called when the value isn't already available in a register and must 203 /// be materialized with new instructions. 204 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 205 unsigned Reg = 0; 206 207 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 208 if (CI->getValue().getActiveBits() <= 64) 209 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 210 } else if (isa<AllocaInst>(V)) { 211 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V)); 212 } else if (isa<ConstantPointerNull>(V)) { 213 // Translate this as an integer zero so that it can be 214 // local-CSE'd with actual integer zeros. 215 Reg = 216 getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 217 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 218 if (CF->isNullValue()) { 219 Reg = TargetMaterializeFloatZero(CF); 220 } else { 221 // Try to emit the constant directly. 222 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); 223 } 224 225 if (!Reg) { 226 // Try to emit the constant by using an integer constant with a cast. 227 const APFloat &Flt = CF->getValueAPF(); 228 EVT IntVT = TLI.getPointerTy(); 229 230 uint64_t x[2]; 231 uint32_t IntBitWidth = IntVT.getSizeInBits(); 232 bool isExact; 233 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 234 APFloat::rmTowardZero, &isExact); 235 if (isExact) { 236 APInt IntVal(IntBitWidth, x); 237 238 unsigned IntegerReg = 239 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 240 if (IntegerReg != 0) 241 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 242 IntegerReg, /*Kill=*/false); 243 } 244 } 245 } else if (const Operator *Op = dyn_cast<Operator>(V)) { 246 if (!SelectOperator(Op, Op->getOpcode())) 247 if (!isa<Instruction>(Op) || 248 !TargetSelectInstruction(cast<Instruction>(Op))) 249 return 0; 250 Reg = lookUpRegForValue(Op); 251 } else if (isa<UndefValue>(V)) { 252 Reg = createResultReg(TLI.getRegClassFor(VT)); 253 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 254 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 255 } 256 257 // If target-independent code couldn't handle the value, give target-specific 258 // code a try. 259 if (!Reg && isa<Constant>(V)) 260 Reg = TargetMaterializeConstant(cast<Constant>(V)); 261 262 // Don't cache constant materializations in the general ValueMap. 263 // To do so would require tracking what uses they dominate. 264 if (Reg != 0) { 265 LocalValueMap[V] = Reg; 266 LastLocalValue = MRI.getVRegDef(Reg); 267 } 268 return Reg; 269 } 270 271 unsigned FastISel::lookUpRegForValue(const Value *V) { 272 // Look up the value to see if we already have a register for it. We 273 // cache values defined by Instructions across blocks, and other values 274 // only locally. This is because Instructions already have the SSA 275 // def-dominates-use requirement enforced. 276 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 277 if (I != FuncInfo.ValueMap.end()) 278 return I->second; 279 return LocalValueMap[V]; 280 } 281 282 /// UpdateValueMap - Update the value map to include the new mapping for this 283 /// instruction, or insert an extra copy to get the result in a previous 284 /// determined register. 285 /// NOTE: This is only necessary because we might select a block that uses 286 /// a value before we select the block that defines the value. It might be 287 /// possible to fix this by selecting blocks in reverse postorder. 288 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 289 if (!isa<Instruction>(I)) { 290 LocalValueMap[I] = Reg; 291 return; 292 } 293 294 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 295 if (AssignedReg == 0) 296 // Use the new register. 297 AssignedReg = Reg; 298 else if (Reg != AssignedReg) { 299 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 300 for (unsigned i = 0; i < NumRegs; i++) 301 FuncInfo.RegFixups[AssignedReg+i] = Reg+i; 302 303 AssignedReg = Reg; 304 } 305 } 306 307 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 308 unsigned IdxN = getRegForValue(Idx); 309 if (IdxN == 0) 310 // Unhandled operand. Halt "fast" selection and bail. 311 return std::pair<unsigned, bool>(0, false); 312 313 bool IdxNIsKill = hasTrivialKill(Idx); 314 315 // If the index is smaller or larger than intptr_t, truncate or extend it. 316 MVT PtrVT = TLI.getPointerTy(); 317 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 318 if (IdxVT.bitsLT(PtrVT)) { 319 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, 320 IdxN, IdxNIsKill); 321 IdxNIsKill = true; 322 } 323 else if (IdxVT.bitsGT(PtrVT)) { 324 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, 325 IdxN, IdxNIsKill); 326 IdxNIsKill = true; 327 } 328 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 329 } 330 331 void FastISel::recomputeInsertPt() { 332 if (getLastLocalValue()) { 333 FuncInfo.InsertPt = getLastLocalValue(); 334 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 335 ++FuncInfo.InsertPt; 336 } else 337 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 338 339 // Now skip past any EH_LABELs, which must remain at the beginning. 340 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 341 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 342 ++FuncInfo.InsertPt; 343 } 344 345 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 346 MachineBasicBlock::iterator E) { 347 assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!"); 348 while (I != E) { 349 MachineInstr *Dead = &*I; 350 ++I; 351 Dead->eraseFromParent(); 352 ++NumFastIselDead; 353 } 354 recomputeInsertPt(); 355 } 356 357 FastISel::SavePoint FastISel::enterLocalValueArea() { 358 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 359 DebugLoc OldDL = DbgLoc; 360 recomputeInsertPt(); 361 DbgLoc = DebugLoc(); 362 SavePoint SP = { OldInsertPt, OldDL }; 363 return SP; 364 } 365 366 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 367 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 368 LastLocalValue = std::prev(FuncInfo.InsertPt); 369 370 // Restore the previous insert position. 371 FuncInfo.InsertPt = OldInsertPt.InsertPt; 372 DbgLoc = OldInsertPt.DL; 373 } 374 375 /// SelectBinaryOp - Select and emit code for a binary operator instruction, 376 /// which has an opcode which directly corresponds to the given ISD opcode. 377 /// 378 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) { 379 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 380 if (VT == MVT::Other || !VT.isSimple()) 381 // Unhandled type. Halt "fast" selection and bail. 382 return false; 383 384 // We only handle legal types. For example, on x86-32 the instruction 385 // selector contains all of the 64-bit instructions from x86-64, 386 // under the assumption that i64 won't be used if the target doesn't 387 // support it. 388 if (!TLI.isTypeLegal(VT)) { 389 // MVT::i1 is special. Allow AND, OR, or XOR because they 390 // don't require additional zeroing, which makes them easy. 391 if (VT == MVT::i1 && 392 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 393 ISDOpcode == ISD::XOR)) 394 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 395 else 396 return false; 397 } 398 399 // Check if the first operand is a constant, and handle it as "ri". At -O0, 400 // we don't have anything that canonicalizes operand order. 401 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 402 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 403 unsigned Op1 = getRegForValue(I->getOperand(1)); 404 if (Op1 == 0) return false; 405 406 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 407 408 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, 409 Op1IsKill, CI->getZExtValue(), 410 VT.getSimpleVT()); 411 if (ResultReg == 0) return false; 412 413 // We successfully emitted code for the given LLVM Instruction. 414 UpdateValueMap(I, ResultReg); 415 return true; 416 } 417 418 419 unsigned Op0 = getRegForValue(I->getOperand(0)); 420 if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. 421 return false; 422 423 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 424 425 // Check if the second operand is a constant and handle it appropriately. 426 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 427 uint64_t Imm = CI->getZExtValue(); 428 429 // Transform "sdiv exact X, 8" -> "sra X, 3". 430 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 431 cast<BinaryOperator>(I)->isExact() && 432 isPowerOf2_64(Imm)) { 433 Imm = Log2_64(Imm); 434 ISDOpcode = ISD::SRA; 435 } 436 437 // Transform "urem x, pow2" -> "and x, pow2-1". 438 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 439 isPowerOf2_64(Imm)) { 440 --Imm; 441 ISDOpcode = ISD::AND; 442 } 443 444 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 445 Op0IsKill, Imm, VT.getSimpleVT()); 446 if (ResultReg == 0) return false; 447 448 // We successfully emitted code for the given LLVM Instruction. 449 UpdateValueMap(I, ResultReg); 450 return true; 451 } 452 453 // Check if the second operand is a constant float. 454 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 455 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 456 ISDOpcode, Op0, Op0IsKill, CF); 457 if (ResultReg != 0) { 458 // We successfully emitted code for the given LLVM Instruction. 459 UpdateValueMap(I, ResultReg); 460 return true; 461 } 462 } 463 464 unsigned Op1 = getRegForValue(I->getOperand(1)); 465 if (Op1 == 0) 466 // Unhandled operand. Halt "fast" selection and bail. 467 return false; 468 469 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 470 471 // Now we have both operands in registers. Emit the instruction. 472 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 473 ISDOpcode, 474 Op0, Op0IsKill, 475 Op1, Op1IsKill); 476 if (ResultReg == 0) 477 // Target-specific code wasn't able to find a machine opcode for 478 // the given ISD opcode and type. Halt "fast" selection and bail. 479 return false; 480 481 // We successfully emitted code for the given LLVM Instruction. 482 UpdateValueMap(I, ResultReg); 483 return true; 484 } 485 486 bool FastISel::SelectGetElementPtr(const User *I) { 487 unsigned N = getRegForValue(I->getOperand(0)); 488 if (N == 0) 489 // Unhandled operand. Halt "fast" selection and bail. 490 return false; 491 492 bool NIsKill = hasTrivialKill(I->getOperand(0)); 493 494 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 495 // into a single N = N + TotalOffset. 496 uint64_t TotalOffs = 0; 497 // FIXME: What's a good SWAG number for MaxOffs? 498 uint64_t MaxOffs = 2048; 499 Type *Ty = I->getOperand(0)->getType(); 500 MVT VT = TLI.getPointerTy(); 501 for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1, 502 E = I->op_end(); OI != E; ++OI) { 503 const Value *Idx = *OI; 504 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 505 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 506 if (Field) { 507 // N = N + Offset 508 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 509 if (TotalOffs >= MaxOffs) { 510 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 511 if (N == 0) 512 // Unhandled operand. Halt "fast" selection and bail. 513 return false; 514 NIsKill = true; 515 TotalOffs = 0; 516 } 517 } 518 Ty = StTy->getElementType(Field); 519 } else { 520 Ty = cast<SequentialType>(Ty)->getElementType(); 521 522 // If this is a constant subscript, handle it quickly. 523 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 524 if (CI->isZero()) continue; 525 // N = N + Offset 526 TotalOffs += 527 DL.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 528 if (TotalOffs >= MaxOffs) { 529 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 530 if (N == 0) 531 // Unhandled operand. Halt "fast" selection and bail. 532 return false; 533 NIsKill = true; 534 TotalOffs = 0; 535 } 536 continue; 537 } 538 if (TotalOffs) { 539 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 540 if (N == 0) 541 // Unhandled operand. Halt "fast" selection and bail. 542 return false; 543 NIsKill = true; 544 TotalOffs = 0; 545 } 546 547 // N = N + Idx * ElementSize; 548 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 549 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 550 unsigned IdxN = Pair.first; 551 bool IdxNIsKill = Pair.second; 552 if (IdxN == 0) 553 // Unhandled operand. Halt "fast" selection and bail. 554 return false; 555 556 if (ElementSize != 1) { 557 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 558 if (IdxN == 0) 559 // Unhandled operand. Halt "fast" selection and bail. 560 return false; 561 IdxNIsKill = true; 562 } 563 N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 564 if (N == 0) 565 // Unhandled operand. Halt "fast" selection and bail. 566 return false; 567 } 568 } 569 if (TotalOffs) { 570 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 571 if (N == 0) 572 // Unhandled operand. Halt "fast" selection and bail. 573 return false; 574 } 575 576 // We successfully emitted code for the given LLVM Instruction. 577 UpdateValueMap(I, N); 578 return true; 579 } 580 581 /// \brief Add a stackmap or patchpoint intrinsic call's live variable operands 582 /// to a stackmap or patchpoint machine instruction. 583 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 584 const CallInst *CI, unsigned StartIdx) { 585 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 586 Value *Val = CI->getArgOperand(i); 587 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 588 if (auto *C = dyn_cast<ConstantInt>(Val)) { 589 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 590 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 591 } else if (isa<ConstantPointerNull>(Val)) { 592 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 593 Ops.push_back(MachineOperand::CreateImm(0)); 594 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 595 // Values coming from a stack location also require a sepcial encoding, 596 // but that is added later on by the target specific frame index 597 // elimination implementation. 598 auto SI = FuncInfo.StaticAllocaMap.find(AI); 599 if (SI != FuncInfo.StaticAllocaMap.end()) 600 Ops.push_back(MachineOperand::CreateFI(SI->second)); 601 else 602 return false; 603 } else { 604 unsigned Reg = getRegForValue(Val); 605 if (Reg == 0) 606 return false; 607 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 608 } 609 } 610 611 return true; 612 } 613 614 bool FastISel::SelectStackmap(const CallInst *I) { 615 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 616 // [live variables...]) 617 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 618 "Stackmap cannot return a value."); 619 620 // The stackmap intrinsic only records the live variables (the arguments 621 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 622 // intrinsic, this won't be lowered to a function call. This means we don't 623 // have to worry about calling conventions and target-specific lowering code. 624 // Instead we perform the call lowering right here. 625 // 626 // CALLSEQ_START(0) 627 // STACKMAP(id, nbytes, ...) 628 // CALLSEQ_END(0, 0) 629 // 630 SmallVector<MachineOperand, 32> Ops; 631 632 // Add the <id> and <numBytes> constants. 633 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 634 "Expected a constant integer."); 635 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 636 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 637 638 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 639 "Expected a constant integer."); 640 const auto *NumBytes = 641 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 642 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 643 644 // Push live variables for the stack map (skipping the first two arguments 645 // <id> and <numBytes>). 646 if (!addStackMapLiveVars(Ops, I, 2)) 647 return false; 648 649 // We are not adding any register mask info here, because the stackmap doesn't 650 // clobber anything. 651 652 // Add scratch registers as implicit def and early clobber. 653 CallingConv::ID CC = I->getCallingConv(); 654 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 655 for (unsigned i = 0; ScratchRegs[i]; ++i) 656 Ops.push_back(MachineOperand::CreateReg( 657 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 658 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 659 660 // Issue CALLSEQ_START 661 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 662 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) 663 .addImm(0); 664 665 // Issue STACKMAP. 666 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 667 TII.get(TargetOpcode::STACKMAP)); 668 for (auto const &MO : Ops) 669 MIB.addOperand(MO); 670 671 // Issue CALLSEQ_END 672 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 673 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 674 .addImm(0).addImm(0); 675 676 // Inform the Frame Information that we have a stackmap in this function. 677 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 678 679 return true; 680 } 681 682 /// \brief Lower an argument list according to the target calling convention. 683 /// 684 /// This is a helper for lowering intrinsics that follow a target calling 685 /// convention or require stack pointer adjustment. Only a subset of the 686 /// intrinsic's operands need to participate in the calling convention. 687 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 688 unsigned NumArgs, const Value *Callee, 689 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 690 ArgListTy Args; 691 Args.reserve(NumArgs); 692 693 // Populate the argument list. 694 // Attributes for args start at offset 1, after the return attribute. 695 ImmutableCallSite CS(CI); 696 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 697 ArgI != ArgE; ++ArgI) { 698 Value *V = CI->getOperand(ArgI); 699 700 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 701 702 ArgListEntry Entry; 703 Entry.Val = V; 704 Entry.Ty = V->getType(); 705 Entry.setAttributes(&CS, AttrI); 706 Args.push_back(Entry); 707 } 708 709 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 710 : CI->getType(); 711 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 712 713 return LowerCallTo(CLI); 714 } 715 716 bool FastISel::SelectPatchpoint(const CallInst *I) { 717 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 718 // i32 <numBytes>, 719 // i8* <target>, 720 // i32 <numArgs>, 721 // [Args...], 722 // [live variables...]) 723 CallingConv::ID CC = I->getCallingConv(); 724 bool IsAnyRegCC = CC == CallingConv::AnyReg; 725 bool HasDef = !I->getType()->isVoidTy(); 726 Value *Callee = I->getOperand(PatchPointOpers::TargetPos); 727 728 // Get the real number of arguments participating in the call <numArgs> 729 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 730 "Expected a constant integer."); 731 const auto *NumArgsVal = 732 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 733 unsigned NumArgs = NumArgsVal->getZExtValue(); 734 735 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 736 // This includes all meta-operands up to but not including CC. 737 unsigned NumMetaOpers = PatchPointOpers::CCPos; 738 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 739 "Not enough arguments provided to the patchpoint intrinsic"); 740 741 // For AnyRegCC the arguments are lowered later on manually. 742 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 743 CallLoweringInfo CLI; 744 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 745 return false; 746 747 assert(CLI.Call && "No call instruction specified."); 748 749 SmallVector<MachineOperand, 32> Ops; 750 751 // Add an explicit result reg if we use the anyreg calling convention. 752 if (IsAnyRegCC && HasDef) { 753 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 754 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 755 CLI.NumResultRegs = 1; 756 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 757 } 758 759 // Add the <id> and <numBytes> constants. 760 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 761 "Expected a constant integer."); 762 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 763 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 764 765 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 766 "Expected a constant integer."); 767 const auto *NumBytes = 768 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 769 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 770 771 // Assume that the callee is a constant address or null pointer. 772 // FIXME: handle function symbols in the future. 773 uint64_t CalleeAddr; 774 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) 775 CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 776 else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 777 if (C->getOpcode() == Instruction::IntToPtr) 778 CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 779 else 780 llvm_unreachable("Unsupported ConstantExpr."); 781 } else if (isa<ConstantPointerNull>(Callee)) 782 CalleeAddr = 0; 783 else 784 llvm_unreachable("Unsupported callee address."); 785 786 Ops.push_back(MachineOperand::CreateImm(CalleeAddr)); 787 788 // Adjust <numArgs> to account for any arguments that have been passed on 789 // the stack instead. 790 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 791 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 792 793 // Add the calling convention 794 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 795 796 // Add the arguments we omitted previously. The register allocator should 797 // place these in any free register. 798 if (IsAnyRegCC) { 799 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 800 unsigned Reg = getRegForValue(I->getArgOperand(i)); 801 if (!Reg) 802 return false; 803 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 804 } 805 } 806 807 // Push the arguments from the call instruction. 808 for (auto Reg : CLI.OutRegs) 809 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 810 811 // Push live variables for the stack map. 812 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 813 return false; 814 815 // Push the register mask info. 816 Ops.push_back(MachineOperand::CreateRegMask(TRI.getCallPreservedMask(CC))); 817 818 // Add scratch registers as implicit def and early clobber. 819 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 820 for (unsigned i = 0; ScratchRegs[i]; ++i) 821 Ops.push_back(MachineOperand::CreateReg( 822 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 823 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 824 825 // Add implicit defs (return values). 826 for (auto Reg : CLI.InRegs) 827 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 828 /*IsImpl=*/true)); 829 830 // Insert the patchpoint instruction before the call generated by the target. 831 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 832 TII.get(TargetOpcode::PATCHPOINT)); 833 834 for (auto &MO : Ops) 835 MIB.addOperand(MO); 836 837 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 838 839 // Delete the original call instruction. 840 CLI.Call->eraseFromParent(); 841 842 // Inform the Frame Information that we have a patchpoint in this function. 843 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 844 845 if (CLI.NumResultRegs) 846 UpdateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 847 return true; 848 } 849 850 /// Returns an AttributeSet representing the attributes applied to the return 851 /// value of the given call. 852 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 853 SmallVector<Attribute::AttrKind, 2> Attrs; 854 if (CLI.RetSExt) 855 Attrs.push_back(Attribute::SExt); 856 if (CLI.RetZExt) 857 Attrs.push_back(Attribute::ZExt); 858 if (CLI.IsInReg) 859 Attrs.push_back(Attribute::InReg); 860 861 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 862 Attrs); 863 } 864 865 bool FastISel::LowerCallTo(const CallInst *CI, const char *SymName, 866 unsigned NumArgs) { 867 ImmutableCallSite CS(CI); 868 869 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 870 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 871 Type *RetTy = FTy->getReturnType(); 872 873 ArgListTy Args; 874 Args.reserve(NumArgs); 875 876 // Populate the argument list. 877 // Attributes for args start at offset 1, after the return attribute. 878 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 879 Value *V = CI->getOperand(ArgI); 880 881 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 882 883 ArgListEntry Entry; 884 Entry.Val = V; 885 Entry.Ty = V->getType(); 886 Entry.setAttributes(&CS, ArgI + 1); 887 Args.push_back(Entry); 888 } 889 890 CallLoweringInfo CLI; 891 CLI.setCallee(RetTy, FTy, SymName, std::move(Args), CS, NumArgs); 892 893 return LowerCallTo(CLI); 894 } 895 896 bool FastISel::LowerCallTo(CallLoweringInfo &CLI) { 897 // Handle the incoming return values from the call. 898 CLI.clearIns(); 899 SmallVector<EVT, 4> RetTys; 900 ComputeValueVTs(TLI, CLI.RetTy, RetTys); 901 902 SmallVector<ISD::OutputArg, 4> Outs; 903 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI); 904 905 bool CanLowerReturn = TLI.CanLowerReturn(CLI.CallConv, *FuncInfo.MF, 906 CLI.IsVarArg, Outs, 907 CLI.RetTy->getContext()); 908 909 // FIXME: sret demotion isn't supported yet - bail out. 910 if (!CanLowerReturn) 911 return false; 912 913 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 914 EVT VT = RetTys[I]; 915 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 916 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 917 for (unsigned i = 0; i != NumRegs; ++i) { 918 ISD::InputArg MyFlags; 919 MyFlags.VT = RegisterVT; 920 MyFlags.ArgVT = VT; 921 MyFlags.Used = CLI.IsReturnValueUsed; 922 if (CLI.RetSExt) 923 MyFlags.Flags.setSExt(); 924 if (CLI.RetZExt) 925 MyFlags.Flags.setZExt(); 926 if (CLI.IsInReg) 927 MyFlags.Flags.setInReg(); 928 CLI.Ins.push_back(MyFlags); 929 } 930 } 931 932 // Handle all of the outgoing arguments. 933 CLI.clearOuts(); 934 for (auto &Arg : CLI.getArgs()) { 935 Type *FinalType = Arg.Ty; 936 if (Arg.isByVal) 937 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 938 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 939 FinalType, CLI.CallConv, CLI.IsVarArg); 940 941 ISD::ArgFlagsTy Flags; 942 if (Arg.isZExt) 943 Flags.setZExt(); 944 if (Arg.isSExt) 945 Flags.setSExt(); 946 if (Arg.isInReg) 947 Flags.setInReg(); 948 if (Arg.isSRet) 949 Flags.setSRet(); 950 if (Arg.isByVal) 951 Flags.setByVal(); 952 if (Arg.isInAlloca) { 953 Flags.setInAlloca(); 954 // Set the byval flag for CCAssignFn callbacks that don't know about 955 // inalloca. This way we can know how many bytes we should've allocated 956 // and how many bytes a callee cleanup function will pop. If we port 957 // inalloca to more targets, we'll have to add custom inalloca handling in 958 // the various CC lowering callbacks. 959 Flags.setByVal(); 960 } 961 if (Arg.isByVal || Arg.isInAlloca) { 962 PointerType *Ty = cast<PointerType>(Arg.Ty); 963 Type *ElementTy = Ty->getElementType(); 964 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 965 // For ByVal, alignment should come from FE. BE will guess if this info is 966 // not there, but there are cases it cannot get right. 967 unsigned FrameAlign = Arg.Alignment; 968 if (!FrameAlign) 969 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 970 Flags.setByValSize(FrameSize); 971 Flags.setByValAlign(FrameAlign); 972 } 973 if (Arg.isNest) 974 Flags.setNest(); 975 if (NeedsRegBlock) 976 Flags.setInConsecutiveRegs(); 977 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 978 Flags.setOrigAlign(OriginalAlignment); 979 980 CLI.OutVals.push_back(Arg.Val); 981 CLI.OutFlags.push_back(Flags); 982 } 983 984 if (!FastLowerCall(CLI)) 985 return false; 986 987 // Set all unused physreg defs as dead. 988 assert(CLI.Call && "No call instruction specified."); 989 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 990 991 if (CLI.NumResultRegs && CLI.CS) 992 UpdateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 993 994 return true; 995 } 996 997 bool FastISel::LowerCall(const CallInst *CI) { 998 ImmutableCallSite CS(CI); 999 1000 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 1001 FunctionType *FuncTy = cast<FunctionType>(PT->getElementType()); 1002 Type *RetTy = FuncTy->getReturnType(); 1003 1004 ArgListTy Args; 1005 ArgListEntry Entry; 1006 Args.reserve(CS.arg_size()); 1007 1008 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1009 i != e; ++i) { 1010 Value *V = *i; 1011 1012 // Skip empty types 1013 if (V->getType()->isEmptyTy()) 1014 continue; 1015 1016 Entry.Val = V; 1017 Entry.Ty = V->getType(); 1018 1019 // Skip the first return-type Attribute to get to params. 1020 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 1021 Args.push_back(Entry); 1022 } 1023 1024 // Check if target-independent constraints permit a tail call here. 1025 // Target-dependent constraints are checked within FastLowerCall. 1026 bool IsTailCall = CI->isTailCall(); 1027 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1028 IsTailCall = false; 1029 1030 CallLoweringInfo CLI; 1031 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1032 .setTailCall(IsTailCall); 1033 1034 return LowerCallTo(CLI); 1035 } 1036 1037 bool FastISel::SelectCall(const User *I) { 1038 const CallInst *Call = cast<CallInst>(I); 1039 1040 // Handle simple inline asms. 1041 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1042 // If the inline asm has side effects, then make sure that no local value 1043 // lives across by flushing the local value map. 1044 if (IA->hasSideEffects()) 1045 flushLocalValueMap(); 1046 1047 // Don't attempt to handle constraints. 1048 if (!IA->getConstraintString().empty()) 1049 return false; 1050 1051 unsigned ExtraInfo = 0; 1052 if (IA->hasSideEffects()) 1053 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1054 if (IA->isAlignStack()) 1055 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1056 1057 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1058 TII.get(TargetOpcode::INLINEASM)) 1059 .addExternalSymbol(IA->getAsmString().c_str()) 1060 .addImm(ExtraInfo); 1061 return true; 1062 } 1063 1064 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1065 ComputeUsesVAFloatArgument(*Call, &MMI); 1066 1067 // Handle intrinsic function calls. 1068 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1069 return SelectIntrinsicCall(II); 1070 1071 // Usually, it does not make sense to initialize a value, 1072 // make an unrelated function call and use the value, because 1073 // it tends to be spilled on the stack. So, we move the pointer 1074 // to the last local value to the beginning of the block, so that 1075 // all the values which have already been materialized, 1076 // appear after the call. It also makes sense to skip intrinsics 1077 // since they tend to be inlined. 1078 flushLocalValueMap(); 1079 1080 return LowerCall(Call); 1081 } 1082 1083 bool FastISel::SelectIntrinsicCall(const IntrinsicInst *II) { 1084 switch (II->getIntrinsicID()) { 1085 default: break; 1086 // At -O0 we don't care about the lifetime intrinsics. 1087 case Intrinsic::lifetime_start: 1088 case Intrinsic::lifetime_end: 1089 // The donothing intrinsic does, well, nothing. 1090 case Intrinsic::donothing: 1091 return true; 1092 case Intrinsic::dbg_declare: { 1093 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1094 DIVariable DIVar(DI->getVariable()); 1095 assert((!DIVar || DIVar.isVariable()) && 1096 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1097 if (!DIVar || !FuncInfo.MF->getMMI().hasDebugInfo()) { 1098 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1099 return true; 1100 } 1101 1102 const Value *Address = DI->getAddress(); 1103 if (!Address || isa<UndefValue>(Address)) { 1104 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1105 return true; 1106 } 1107 1108 unsigned Offset = 0; 1109 Optional<MachineOperand> Op; 1110 if (const Argument *Arg = dyn_cast<Argument>(Address)) 1111 // Some arguments' frame index is recorded during argument lowering. 1112 Offset = FuncInfo.getArgumentFrameIndex(Arg); 1113 if (Offset) 1114 Op = MachineOperand::CreateFI(Offset); 1115 if (!Op) 1116 if (unsigned Reg = lookUpRegForValue(Address)) 1117 Op = MachineOperand::CreateReg(Reg, false); 1118 1119 // If we have a VLA that has a "use" in a metadata node that's then used 1120 // here but it has no other uses, then we have a problem. E.g., 1121 // 1122 // int foo (const int *x) { 1123 // char a[*x]; 1124 // return 0; 1125 // } 1126 // 1127 // If we assign 'a' a vreg and fast isel later on has to use the selection 1128 // DAG isel, it will want to copy the value to the vreg. However, there are 1129 // no uses, which goes counter to what selection DAG isel expects. 1130 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1131 (!isa<AllocaInst>(Address) || 1132 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1133 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1134 false); 1135 1136 if (Op) { 1137 if (Op->isReg()) { 1138 Op->setIsDebug(true); 1139 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1140 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0, 1141 DI->getVariable()); 1142 } else 1143 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1144 TII.get(TargetOpcode::DBG_VALUE)) 1145 .addOperand(*Op) 1146 .addImm(0) 1147 .addMetadata(DI->getVariable()); 1148 } else { 1149 // We can't yet handle anything else here because it would require 1150 // generating code, thus altering codegen because of debug info. 1151 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1152 } 1153 return true; 1154 } 1155 case Intrinsic::dbg_value: { 1156 // This form of DBG_VALUE is target-independent. 1157 const DbgValueInst *DI = cast<DbgValueInst>(II); 1158 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1159 const Value *V = DI->getValue(); 1160 if (!V) { 1161 // Currently the optimizer can produce this; insert an undef to 1162 // help debugging. Probably the optimizer should not do this. 1163 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1164 .addReg(0U).addImm(DI->getOffset()) 1165 .addMetadata(DI->getVariable()); 1166 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1167 if (CI->getBitWidth() > 64) 1168 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1169 .addCImm(CI).addImm(DI->getOffset()) 1170 .addMetadata(DI->getVariable()); 1171 else 1172 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1173 .addImm(CI->getZExtValue()).addImm(DI->getOffset()) 1174 .addMetadata(DI->getVariable()); 1175 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 1176 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1177 .addFPImm(CF).addImm(DI->getOffset()) 1178 .addMetadata(DI->getVariable()); 1179 } else if (unsigned Reg = lookUpRegForValue(V)) { 1180 // FIXME: This does not handle register-indirect values at offset 0. 1181 bool IsIndirect = DI->getOffset() != 0; 1182 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, 1183 Reg, DI->getOffset(), DI->getVariable()); 1184 } else { 1185 // We can't yet handle anything else here because it would require 1186 // generating code, thus altering codegen because of debug info. 1187 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1188 } 1189 return true; 1190 } 1191 case Intrinsic::objectsize: { 1192 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1193 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1194 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1195 unsigned ResultReg = getRegForValue(ResCI); 1196 if (ResultReg == 0) 1197 return false; 1198 UpdateValueMap(II, ResultReg); 1199 return true; 1200 } 1201 case Intrinsic::expect: { 1202 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1203 if (ResultReg == 0) 1204 return false; 1205 UpdateValueMap(II, ResultReg); 1206 return true; 1207 } 1208 case Intrinsic::experimental_stackmap: 1209 return SelectStackmap(II); 1210 case Intrinsic::experimental_patchpoint_void: 1211 case Intrinsic::experimental_patchpoint_i64: 1212 return SelectPatchpoint(II); 1213 } 1214 1215 return FastLowerIntrinsicCall(II); 1216 } 1217 1218 bool FastISel::SelectCast(const User *I, unsigned Opcode) { 1219 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1220 EVT DstVT = TLI.getValueType(I->getType()); 1221 1222 if (SrcVT == MVT::Other || !SrcVT.isSimple() || 1223 DstVT == MVT::Other || !DstVT.isSimple()) 1224 // Unhandled type. Halt "fast" selection and bail. 1225 return false; 1226 1227 // Check if the destination type is legal. 1228 if (!TLI.isTypeLegal(DstVT)) 1229 return false; 1230 1231 // Check if the source operand is legal. 1232 if (!TLI.isTypeLegal(SrcVT)) 1233 return false; 1234 1235 unsigned InputReg = getRegForValue(I->getOperand(0)); 1236 if (!InputReg) 1237 // Unhandled operand. Halt "fast" selection and bail. 1238 return false; 1239 1240 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1241 1242 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), 1243 DstVT.getSimpleVT(), 1244 Opcode, 1245 InputReg, InputRegIsKill); 1246 if (!ResultReg) 1247 return false; 1248 1249 UpdateValueMap(I, ResultReg); 1250 return true; 1251 } 1252 1253 bool FastISel::SelectBitCast(const User *I) { 1254 // If the bitcast doesn't change the type, just use the operand value. 1255 if (I->getType() == I->getOperand(0)->getType()) { 1256 unsigned Reg = getRegForValue(I->getOperand(0)); 1257 if (Reg == 0) 1258 return false; 1259 UpdateValueMap(I, Reg); 1260 return true; 1261 } 1262 1263 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1264 EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType()); 1265 EVT DstEVT = TLI.getValueType(I->getType()); 1266 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1267 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1268 // Unhandled type. Halt "fast" selection and bail. 1269 return false; 1270 1271 MVT SrcVT = SrcEVT.getSimpleVT(); 1272 MVT DstVT = DstEVT.getSimpleVT(); 1273 unsigned Op0 = getRegForValue(I->getOperand(0)); 1274 if (Op0 == 0) 1275 // Unhandled operand. Halt "fast" selection and bail. 1276 return false; 1277 1278 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1279 1280 // First, try to perform the bitcast by inserting a reg-reg copy. 1281 unsigned ResultReg = 0; 1282 if (SrcVT == DstVT) { 1283 const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); 1284 const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); 1285 // Don't attempt a cross-class copy. It will likely fail. 1286 if (SrcClass == DstClass) { 1287 ResultReg = createResultReg(DstClass); 1288 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1289 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1290 } 1291 } 1292 1293 // If the reg-reg copy failed, select a BITCAST opcode. 1294 if (!ResultReg) 1295 ResultReg = FastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1296 1297 if (!ResultReg) 1298 return false; 1299 1300 UpdateValueMap(I, ResultReg); 1301 return true; 1302 } 1303 1304 bool 1305 FastISel::SelectInstruction(const Instruction *I) { 1306 // Just before the terminator instruction, insert instructions to 1307 // feed PHI nodes in successor blocks. 1308 if (isa<TerminatorInst>(I)) 1309 if (!HandlePHINodesInSuccessorBlocks(I->getParent())) 1310 return false; 1311 1312 DbgLoc = I->getDebugLoc(); 1313 1314 MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt; 1315 1316 if (const CallInst *Call = dyn_cast<CallInst>(I)) { 1317 const Function *F = Call->getCalledFunction(); 1318 LibFunc::Func Func; 1319 1320 // As a special case, don't handle calls to builtin library functions that 1321 // may be translated directly to target instructions. 1322 if (F && !F->hasLocalLinkage() && F->hasName() && 1323 LibInfo->getLibFunc(F->getName(), Func) && 1324 LibInfo->hasOptimizedCodeGen(Func)) 1325 return false; 1326 1327 // Don't handle Intrinsic::trap if a trap funciton is specified. 1328 if (F && F->getIntrinsicID() == Intrinsic::trap && 1329 !TM.Options.getTrapFunctionName().empty()) 1330 return false; 1331 } 1332 1333 // First, try doing target-independent selection. 1334 if (SelectOperator(I, I->getOpcode())) { 1335 ++NumFastIselSuccessIndependent; 1336 DbgLoc = DebugLoc(); 1337 return true; 1338 } 1339 // Remove dead code. However, ignore call instructions since we've flushed 1340 // the local value map and recomputed the insert point. 1341 if (!isa<CallInst>(I)) { 1342 recomputeInsertPt(); 1343 if (SavedInsertPt != FuncInfo.InsertPt) 1344 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1345 } 1346 1347 // Next, try calling the target to attempt to handle the instruction. 1348 SavedInsertPt = FuncInfo.InsertPt; 1349 if (TargetSelectInstruction(I)) { 1350 ++NumFastIselSuccessTarget; 1351 DbgLoc = DebugLoc(); 1352 return true; 1353 } 1354 // Check for dead code and remove as necessary. 1355 recomputeInsertPt(); 1356 if (SavedInsertPt != FuncInfo.InsertPt) 1357 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1358 1359 DbgLoc = DebugLoc(); 1360 return false; 1361 } 1362 1363 /// FastEmitBranch - Emit an unconditional branch to the given block, 1364 /// unless it is the immediate (fall-through) successor, and update 1365 /// the CFG. 1366 void 1367 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) { 1368 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1369 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1370 // For more accurate line information if this is the only instruction 1371 // in the block then emit it, otherwise we have the unconditional 1372 // fall-through case, which needs no instructions. 1373 } else { 1374 // The unconditional branch case. 1375 TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr, 1376 SmallVector<MachineOperand, 0>(), DbgLoc); 1377 } 1378 uint32_t BranchWeight = 0; 1379 if (FuncInfo.BPI) 1380 BranchWeight = FuncInfo.BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(), 1381 MSucc->getBasicBlock()); 1382 FuncInfo.MBB->addSuccessor(MSucc, BranchWeight); 1383 } 1384 1385 /// SelectFNeg - Emit an FNeg operation. 1386 /// 1387 bool 1388 FastISel::SelectFNeg(const User *I) { 1389 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1390 if (OpReg == 0) return false; 1391 1392 bool OpRegIsKill = hasTrivialKill(I); 1393 1394 // If the target has ISD::FNEG, use it. 1395 EVT VT = TLI.getValueType(I->getType()); 1396 unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), 1397 ISD::FNEG, OpReg, OpRegIsKill); 1398 if (ResultReg != 0) { 1399 UpdateValueMap(I, ResultReg); 1400 return true; 1401 } 1402 1403 // Bitcast the value to integer, twiddle the sign bit with xor, 1404 // and then bitcast it back to floating-point. 1405 if (VT.getSizeInBits() > 64) return false; 1406 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1407 if (!TLI.isTypeLegal(IntVT)) 1408 return false; 1409 1410 unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1411 ISD::BITCAST, OpReg, OpRegIsKill); 1412 if (IntReg == 0) 1413 return false; 1414 1415 unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, 1416 IntReg, /*Kill=*/true, 1417 UINT64_C(1) << (VT.getSizeInBits()-1), 1418 IntVT.getSimpleVT()); 1419 if (IntResultReg == 0) 1420 return false; 1421 1422 ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), 1423 ISD::BITCAST, IntResultReg, /*Kill=*/true); 1424 if (ResultReg == 0) 1425 return false; 1426 1427 UpdateValueMap(I, ResultReg); 1428 return true; 1429 } 1430 1431 bool 1432 FastISel::SelectExtractValue(const User *U) { 1433 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1434 if (!EVI) 1435 return false; 1436 1437 // Make sure we only try to handle extracts with a legal result. But also 1438 // allow i1 because it's easy. 1439 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true); 1440 if (!RealVT.isSimple()) 1441 return false; 1442 MVT VT = RealVT.getSimpleVT(); 1443 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1444 return false; 1445 1446 const Value *Op0 = EVI->getOperand(0); 1447 Type *AggTy = Op0->getType(); 1448 1449 // Get the base result register. 1450 unsigned ResultReg; 1451 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1452 if (I != FuncInfo.ValueMap.end()) 1453 ResultReg = I->second; 1454 else if (isa<Instruction>(Op0)) 1455 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1456 else 1457 return false; // fast-isel can't handle aggregate constants at the moment 1458 1459 // Get the actual result register, which is an offset from the base register. 1460 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1461 1462 SmallVector<EVT, 4> AggValueVTs; 1463 ComputeValueVTs(TLI, AggTy, AggValueVTs); 1464 1465 for (unsigned i = 0; i < VTIndex; i++) 1466 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1467 1468 UpdateValueMap(EVI, ResultReg); 1469 return true; 1470 } 1471 1472 bool 1473 FastISel::SelectOperator(const User *I, unsigned Opcode) { 1474 switch (Opcode) { 1475 case Instruction::Add: 1476 return SelectBinaryOp(I, ISD::ADD); 1477 case Instruction::FAdd: 1478 return SelectBinaryOp(I, ISD::FADD); 1479 case Instruction::Sub: 1480 return SelectBinaryOp(I, ISD::SUB); 1481 case Instruction::FSub: 1482 // FNeg is currently represented in LLVM IR as a special case of FSub. 1483 if (BinaryOperator::isFNeg(I)) 1484 return SelectFNeg(I); 1485 return SelectBinaryOp(I, ISD::FSUB); 1486 case Instruction::Mul: 1487 return SelectBinaryOp(I, ISD::MUL); 1488 case Instruction::FMul: 1489 return SelectBinaryOp(I, ISD::FMUL); 1490 case Instruction::SDiv: 1491 return SelectBinaryOp(I, ISD::SDIV); 1492 case Instruction::UDiv: 1493 return SelectBinaryOp(I, ISD::UDIV); 1494 case Instruction::FDiv: 1495 return SelectBinaryOp(I, ISD::FDIV); 1496 case Instruction::SRem: 1497 return SelectBinaryOp(I, ISD::SREM); 1498 case Instruction::URem: 1499 return SelectBinaryOp(I, ISD::UREM); 1500 case Instruction::FRem: 1501 return SelectBinaryOp(I, ISD::FREM); 1502 case Instruction::Shl: 1503 return SelectBinaryOp(I, ISD::SHL); 1504 case Instruction::LShr: 1505 return SelectBinaryOp(I, ISD::SRL); 1506 case Instruction::AShr: 1507 return SelectBinaryOp(I, ISD::SRA); 1508 case Instruction::And: 1509 return SelectBinaryOp(I, ISD::AND); 1510 case Instruction::Or: 1511 return SelectBinaryOp(I, ISD::OR); 1512 case Instruction::Xor: 1513 return SelectBinaryOp(I, ISD::XOR); 1514 1515 case Instruction::GetElementPtr: 1516 return SelectGetElementPtr(I); 1517 1518 case Instruction::Br: { 1519 const BranchInst *BI = cast<BranchInst>(I); 1520 1521 if (BI->isUnconditional()) { 1522 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1523 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1524 FastEmitBranch(MSucc, BI->getDebugLoc()); 1525 return true; 1526 } 1527 1528 // Conditional branches are not handed yet. 1529 // Halt "fast" selection and bail. 1530 return false; 1531 } 1532 1533 case Instruction::Unreachable: 1534 if (TM.Options.TrapUnreachable) 1535 return FastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1536 else 1537 return true; 1538 1539 case Instruction::Alloca: 1540 // FunctionLowering has the static-sized case covered. 1541 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1542 return true; 1543 1544 // Dynamic-sized alloca is not handled yet. 1545 return false; 1546 1547 case Instruction::Call: 1548 return SelectCall(I); 1549 1550 case Instruction::BitCast: 1551 return SelectBitCast(I); 1552 1553 case Instruction::FPToSI: 1554 return SelectCast(I, ISD::FP_TO_SINT); 1555 case Instruction::ZExt: 1556 return SelectCast(I, ISD::ZERO_EXTEND); 1557 case Instruction::SExt: 1558 return SelectCast(I, ISD::SIGN_EXTEND); 1559 case Instruction::Trunc: 1560 return SelectCast(I, ISD::TRUNCATE); 1561 case Instruction::SIToFP: 1562 return SelectCast(I, ISD::SINT_TO_FP); 1563 1564 case Instruction::IntToPtr: // Deliberate fall-through. 1565 case Instruction::PtrToInt: { 1566 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1567 EVT DstVT = TLI.getValueType(I->getType()); 1568 if (DstVT.bitsGT(SrcVT)) 1569 return SelectCast(I, ISD::ZERO_EXTEND); 1570 if (DstVT.bitsLT(SrcVT)) 1571 return SelectCast(I, ISD::TRUNCATE); 1572 unsigned Reg = getRegForValue(I->getOperand(0)); 1573 if (Reg == 0) return false; 1574 UpdateValueMap(I, Reg); 1575 return true; 1576 } 1577 1578 case Instruction::ExtractValue: 1579 return SelectExtractValue(I); 1580 1581 case Instruction::PHI: 1582 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1583 1584 default: 1585 // Unhandled instruction. Halt "fast" selection and bail. 1586 return false; 1587 } 1588 } 1589 1590 FastISel::FastISel(FunctionLoweringInfo &funcInfo, 1591 const TargetLibraryInfo *libInfo) 1592 : FuncInfo(funcInfo), MF(funcInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1593 MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1594 TM(FuncInfo.MF->getTarget()), DL(*TM.getSubtargetImpl()->getDataLayout()), 1595 TII(*TM.getSubtargetImpl()->getInstrInfo()), 1596 TLI(*TM.getSubtargetImpl()->getTargetLowering()), 1597 TRI(*TM.getSubtargetImpl()->getRegisterInfo()), LibInfo(libInfo) {} 1598 1599 FastISel::~FastISel() {} 1600 1601 bool FastISel::FastLowerArguments() { 1602 return false; 1603 } 1604 1605 bool FastISel::FastLowerCall(CallLoweringInfo &/*CLI*/) { 1606 return false; 1607 } 1608 1609 bool FastISel::FastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1610 return false; 1611 } 1612 1613 unsigned FastISel::FastEmit_(MVT, MVT, 1614 unsigned) { 1615 return 0; 1616 } 1617 1618 unsigned FastISel::FastEmit_r(MVT, MVT, 1619 unsigned, 1620 unsigned /*Op0*/, bool /*Op0IsKill*/) { 1621 return 0; 1622 } 1623 1624 unsigned FastISel::FastEmit_rr(MVT, MVT, 1625 unsigned, 1626 unsigned /*Op0*/, bool /*Op0IsKill*/, 1627 unsigned /*Op1*/, bool /*Op1IsKill*/) { 1628 return 0; 1629 } 1630 1631 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1632 return 0; 1633 } 1634 1635 unsigned FastISel::FastEmit_f(MVT, MVT, 1636 unsigned, const ConstantFP * /*FPImm*/) { 1637 return 0; 1638 } 1639 1640 unsigned FastISel::FastEmit_ri(MVT, MVT, 1641 unsigned, 1642 unsigned /*Op0*/, bool /*Op0IsKill*/, 1643 uint64_t /*Imm*/) { 1644 return 0; 1645 } 1646 1647 unsigned FastISel::FastEmit_rf(MVT, MVT, 1648 unsigned, 1649 unsigned /*Op0*/, bool /*Op0IsKill*/, 1650 const ConstantFP * /*FPImm*/) { 1651 return 0; 1652 } 1653 1654 unsigned FastISel::FastEmit_rri(MVT, MVT, 1655 unsigned, 1656 unsigned /*Op0*/, bool /*Op0IsKill*/, 1657 unsigned /*Op1*/, bool /*Op1IsKill*/, 1658 uint64_t /*Imm*/) { 1659 return 0; 1660 } 1661 1662 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries 1663 /// to emit an instruction with an immediate operand using FastEmit_ri. 1664 /// If that fails, it materializes the immediate into a register and try 1665 /// FastEmit_rr instead. 1666 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode, 1667 unsigned Op0, bool Op0IsKill, 1668 uint64_t Imm, MVT ImmType) { 1669 // If this is a multiply by a power of two, emit this as a shift left. 1670 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1671 Opcode = ISD::SHL; 1672 Imm = Log2_64(Imm); 1673 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1674 // div x, 8 -> srl x, 3 1675 Opcode = ISD::SRL; 1676 Imm = Log2_64(Imm); 1677 } 1678 1679 // Horrible hack (to be removed), check to make sure shift amounts are 1680 // in-range. 1681 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1682 Imm >= VT.getSizeInBits()) 1683 return 0; 1684 1685 // First check if immediate type is legal. If not, we can't use the ri form. 1686 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1687 if (ResultReg != 0) 1688 return ResultReg; 1689 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1690 if (MaterialReg == 0) { 1691 // This is a bit ugly/slow, but failing here means falling out of 1692 // fast-isel, which would be very slow. 1693 IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(), 1694 VT.getSizeInBits()); 1695 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1696 assert (MaterialReg != 0 && "Unable to materialize imm."); 1697 if (MaterialReg == 0) return 0; 1698 } 1699 return FastEmit_rr(VT, VT, Opcode, 1700 Op0, Op0IsKill, 1701 MaterialReg, /*Kill=*/true); 1702 } 1703 1704 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { 1705 return MRI.createVirtualRegister(RC); 1706 } 1707 1708 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, 1709 unsigned Op, unsigned OpNum) { 1710 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1711 const TargetRegisterClass *RegClass = 1712 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1713 if (!MRI.constrainRegClass(Op, RegClass)) { 1714 // If it's not legal to COPY between the register classes, something 1715 // has gone very wrong before we got here. 1716 unsigned NewOp = createResultReg(RegClass); 1717 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1718 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1719 return NewOp; 1720 } 1721 } 1722 return Op; 1723 } 1724 1725 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, 1726 const TargetRegisterClass* RC) { 1727 unsigned ResultReg = createResultReg(RC); 1728 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1729 1730 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1731 return ResultReg; 1732 } 1733 1734 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, 1735 const TargetRegisterClass *RC, 1736 unsigned Op0, bool Op0IsKill) { 1737 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1738 1739 unsigned ResultReg = createResultReg(RC); 1740 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1741 1742 if (II.getNumDefs() >= 1) 1743 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1744 .addReg(Op0, Op0IsKill * RegState::Kill); 1745 else { 1746 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1747 .addReg(Op0, Op0IsKill * RegState::Kill); 1748 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1749 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1750 } 1751 1752 return ResultReg; 1753 } 1754 1755 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 1756 const TargetRegisterClass *RC, 1757 unsigned Op0, bool Op0IsKill, 1758 unsigned Op1, bool Op1IsKill) { 1759 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1760 1761 unsigned ResultReg = createResultReg(RC); 1762 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1763 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1764 1765 if (II.getNumDefs() >= 1) 1766 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1767 .addReg(Op0, Op0IsKill * RegState::Kill) 1768 .addReg(Op1, Op1IsKill * RegState::Kill); 1769 else { 1770 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1771 .addReg(Op0, Op0IsKill * RegState::Kill) 1772 .addReg(Op1, Op1IsKill * RegState::Kill); 1773 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1774 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1775 } 1776 return ResultReg; 1777 } 1778 1779 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 1780 const TargetRegisterClass *RC, 1781 unsigned Op0, bool Op0IsKill, 1782 unsigned Op1, bool Op1IsKill, 1783 unsigned Op2, bool Op2IsKill) { 1784 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1785 1786 unsigned ResultReg = createResultReg(RC); 1787 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1788 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1789 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1790 1791 if (II.getNumDefs() >= 1) 1792 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1793 .addReg(Op0, Op0IsKill * RegState::Kill) 1794 .addReg(Op1, Op1IsKill * RegState::Kill) 1795 .addReg(Op2, Op2IsKill * RegState::Kill); 1796 else { 1797 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1798 .addReg(Op0, Op0IsKill * RegState::Kill) 1799 .addReg(Op1, Op1IsKill * RegState::Kill) 1800 .addReg(Op2, Op2IsKill * RegState::Kill); 1801 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1802 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1803 } 1804 return ResultReg; 1805 } 1806 1807 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 1808 const TargetRegisterClass *RC, 1809 unsigned Op0, bool Op0IsKill, 1810 uint64_t Imm) { 1811 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1812 1813 unsigned ResultReg = createResultReg(RC); 1814 RC = TII.getRegClass(II, II.getNumDefs(), &TRI, *FuncInfo.MF); 1815 MRI.constrainRegClass(Op0, RC); 1816 1817 if (II.getNumDefs() >= 1) 1818 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1819 .addReg(Op0, Op0IsKill * RegState::Kill) 1820 .addImm(Imm); 1821 else { 1822 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1823 .addReg(Op0, Op0IsKill * RegState::Kill) 1824 .addImm(Imm); 1825 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1826 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1827 } 1828 return ResultReg; 1829 } 1830 1831 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode, 1832 const TargetRegisterClass *RC, 1833 unsigned Op0, bool Op0IsKill, 1834 uint64_t Imm1, uint64_t Imm2) { 1835 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1836 1837 unsigned ResultReg = createResultReg(RC); 1838 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1839 1840 if (II.getNumDefs() >= 1) 1841 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1842 .addReg(Op0, Op0IsKill * RegState::Kill) 1843 .addImm(Imm1) 1844 .addImm(Imm2); 1845 else { 1846 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1847 .addReg(Op0, Op0IsKill * RegState::Kill) 1848 .addImm(Imm1) 1849 .addImm(Imm2); 1850 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1851 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1852 } 1853 return ResultReg; 1854 } 1855 1856 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 1857 const TargetRegisterClass *RC, 1858 unsigned Op0, bool Op0IsKill, 1859 const ConstantFP *FPImm) { 1860 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1861 1862 unsigned ResultReg = createResultReg(RC); 1863 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1864 1865 if (II.getNumDefs() >= 1) 1866 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1867 .addReg(Op0, Op0IsKill * RegState::Kill) 1868 .addFPImm(FPImm); 1869 else { 1870 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1871 .addReg(Op0, Op0IsKill * RegState::Kill) 1872 .addFPImm(FPImm); 1873 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1874 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1875 } 1876 return ResultReg; 1877 } 1878 1879 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 1880 const TargetRegisterClass *RC, 1881 unsigned Op0, bool Op0IsKill, 1882 unsigned Op1, bool Op1IsKill, 1883 uint64_t Imm) { 1884 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1885 1886 unsigned ResultReg = createResultReg(RC); 1887 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1888 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1889 1890 if (II.getNumDefs() >= 1) 1891 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1892 .addReg(Op0, Op0IsKill * RegState::Kill) 1893 .addReg(Op1, Op1IsKill * RegState::Kill) 1894 .addImm(Imm); 1895 else { 1896 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1897 .addReg(Op0, Op0IsKill * RegState::Kill) 1898 .addReg(Op1, Op1IsKill * RegState::Kill) 1899 .addImm(Imm); 1900 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1901 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1902 } 1903 return ResultReg; 1904 } 1905 1906 unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode, 1907 const TargetRegisterClass *RC, 1908 unsigned Op0, bool Op0IsKill, 1909 unsigned Op1, bool Op1IsKill, 1910 uint64_t Imm1, uint64_t Imm2) { 1911 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1912 1913 unsigned ResultReg = createResultReg(RC); 1914 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1915 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1916 1917 if (II.getNumDefs() >= 1) 1918 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1919 .addReg(Op0, Op0IsKill * RegState::Kill) 1920 .addReg(Op1, Op1IsKill * RegState::Kill) 1921 .addImm(Imm1).addImm(Imm2); 1922 else { 1923 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1924 .addReg(Op0, Op0IsKill * RegState::Kill) 1925 .addReg(Op1, Op1IsKill * RegState::Kill) 1926 .addImm(Imm1).addImm(Imm2); 1927 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1928 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1929 } 1930 return ResultReg; 1931 } 1932 1933 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, 1934 const TargetRegisterClass *RC, 1935 uint64_t Imm) { 1936 unsigned ResultReg = createResultReg(RC); 1937 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1938 1939 if (II.getNumDefs() >= 1) 1940 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg).addImm(Imm); 1941 else { 1942 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 1943 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1944 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1945 } 1946 return ResultReg; 1947 } 1948 1949 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 1950 const TargetRegisterClass *RC, 1951 uint64_t Imm1, uint64_t Imm2) { 1952 unsigned ResultReg = createResultReg(RC); 1953 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1954 1955 if (II.getNumDefs() >= 1) 1956 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1957 .addImm(Imm1).addImm(Imm2); 1958 else { 1959 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1).addImm(Imm2); 1960 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1961 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1962 } 1963 return ResultReg; 1964 } 1965 1966 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT, 1967 unsigned Op0, bool Op0IsKill, 1968 uint32_t Idx) { 1969 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1970 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1971 "Cannot yet extract from physregs"); 1972 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 1973 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 1974 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 1975 DbgLoc, TII.get(TargetOpcode::COPY), ResultReg) 1976 .addReg(Op0, getKillRegState(Op0IsKill), Idx); 1977 return ResultReg; 1978 } 1979 1980 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op 1981 /// with all but the least significant bit set to zero. 1982 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 1983 return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 1984 } 1985 1986 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 1987 /// Emit code to ensure constants are copied into registers when needed. 1988 /// Remember the virtual registers that need to be added to the Machine PHI 1989 /// nodes as input. We cannot just directly add them, because expansion 1990 /// might result in multiple MBB's for one BB. As such, the start of the 1991 /// BB might correspond to a different MBB than the end. 1992 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 1993 const TerminatorInst *TI = LLVMBB->getTerminator(); 1994 1995 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 1996 unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 1997 1998 // Check successor nodes' PHI nodes that expect a constant to be available 1999 // from this block. 2000 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2001 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2002 if (!isa<PHINode>(SuccBB->begin())) continue; 2003 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2004 2005 // If this terminator has multiple identical successors (common for 2006 // switches), only handle each succ once. 2007 if (!SuccsHandled.insert(SuccMBB)) continue; 2008 2009 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2010 2011 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2012 // nodes and Machine PHI nodes, but the incoming operands have not been 2013 // emitted yet. 2014 for (BasicBlock::const_iterator I = SuccBB->begin(); 2015 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2016 2017 // Ignore dead phi's. 2018 if (PN->use_empty()) continue; 2019 2020 // Only handle legal types. Two interesting things to note here. First, 2021 // by bailing out early, we may leave behind some dead instructions, 2022 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2023 // own moves. Second, this check is necessary because FastISel doesn't 2024 // use CreateRegs to create registers, so it always creates 2025 // exactly one register for each non-void instruction. 2026 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 2027 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2028 // Handle integer promotions, though, because they're common and easy. 2029 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 2030 VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT); 2031 else { 2032 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 2033 return false; 2034 } 2035 } 2036 2037 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 2038 2039 // Set the DebugLoc for the copy. Prefer the location of the operand 2040 // if there is one; use the location of the PHI otherwise. 2041 DbgLoc = PN->getDebugLoc(); 2042 if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp)) 2043 DbgLoc = Inst->getDebugLoc(); 2044 2045 unsigned Reg = getRegForValue(PHIOp); 2046 if (Reg == 0) { 2047 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 2048 return false; 2049 } 2050 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 2051 DbgLoc = DebugLoc(); 2052 } 2053 } 2054 2055 return true; 2056 } 2057 2058 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2059 assert(LI->hasOneUse() && 2060 "tryToFoldLoad expected a LoadInst with a single use"); 2061 // We know that the load has a single use, but don't know what it is. If it 2062 // isn't one of the folded instructions, then we can't succeed here. Handle 2063 // this by scanning the single-use users of the load until we get to FoldInst. 2064 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2065 2066 const Instruction *TheUser = LI->user_back(); 2067 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2068 // Stay in the right block. 2069 TheUser->getParent() == FoldInst->getParent() && 2070 --MaxUsers) { // Don't scan too far. 2071 // If there are multiple or no uses of this instruction, then bail out. 2072 if (!TheUser->hasOneUse()) 2073 return false; 2074 2075 TheUser = TheUser->user_back(); 2076 } 2077 2078 // If we didn't find the fold instruction, then we failed to collapse the 2079 // sequence. 2080 if (TheUser != FoldInst) 2081 return false; 2082 2083 // Don't try to fold volatile loads. Target has to deal with alignment 2084 // constraints. 2085 if (LI->isVolatile()) 2086 return false; 2087 2088 // Figure out which vreg this is going into. If there is no assigned vreg yet 2089 // then there actually was no reference to it. Perhaps the load is referenced 2090 // by a dead instruction. 2091 unsigned LoadReg = getRegForValue(LI); 2092 if (LoadReg == 0) 2093 return false; 2094 2095 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2096 // may mean that the instruction got lowered to multiple MIs, or the use of 2097 // the loaded value ended up being multiple operands of the result. 2098 if (!MRI.hasOneUse(LoadReg)) 2099 return false; 2100 2101 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2102 MachineInstr *User = RI->getParent(); 2103 2104 // Set the insertion point properly. Folding the load can cause generation of 2105 // other random instructions (like sign extends) for addressing modes; make 2106 // sure they get inserted in a logical place before the new instruction. 2107 FuncInfo.InsertPt = User; 2108 FuncInfo.MBB = User->getParent(); 2109 2110 // Ask the target to try folding the load. 2111 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2112 } 2113 2114 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2115 // Must be an add. 2116 if (!isa<AddOperator>(Add)) 2117 return false; 2118 // Type size needs to match. 2119 if (DL.getTypeSizeInBits(GEP->getType()) != 2120 DL.getTypeSizeInBits(Add->getType())) 2121 return false; 2122 // Must be in the same basic block. 2123 if (isa<Instruction>(Add) && 2124 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2125 return false; 2126 // Must have a constant operand. 2127 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2128 } 2129 2130 MachineMemOperand * 2131 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2132 const Value *Ptr; 2133 Type *ValTy; 2134 unsigned Alignment; 2135 unsigned Flags; 2136 bool IsVolatile; 2137 2138 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2139 Alignment = LI->getAlignment(); 2140 IsVolatile = LI->isVolatile(); 2141 Flags = MachineMemOperand::MOLoad; 2142 Ptr = LI->getPointerOperand(); 2143 ValTy = LI->getType(); 2144 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2145 Alignment = SI->getAlignment(); 2146 IsVolatile = SI->isVolatile(); 2147 Flags = MachineMemOperand::MOStore; 2148 Ptr = SI->getPointerOperand(); 2149 ValTy = SI->getValueOperand()->getType(); 2150 } else { 2151 return nullptr; 2152 } 2153 2154 bool IsNonTemporal = I->getMetadata("nontemporal") != nullptr; 2155 bool IsInvariant = I->getMetadata("invariant.load") != nullptr; 2156 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2157 2158 AAMDNodes AAInfo; 2159 I->getAAMetadata(AAInfo); 2160 2161 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2162 Alignment = DL.getABITypeAlignment(ValTy); 2163 2164 unsigned Size = 2165 TM.getSubtargetImpl()->getDataLayout()->getTypeStoreSize(ValTy); 2166 2167 if (IsVolatile) 2168 Flags |= MachineMemOperand::MOVolatile; 2169 if (IsNonTemporal) 2170 Flags |= MachineMemOperand::MONonTemporal; 2171 if (IsInvariant) 2172 Flags |= MachineMemOperand::MOInvariant; 2173 2174 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2175 Alignment, AAInfo, Ranges); 2176 } 2177