1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
11 //
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time.  For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
19 //
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support.  In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
24 //
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated.  Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time.  Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
33 //
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators.  More complicated operations currently require
38 // target-specific code.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/ADT/Optional.h"
43 #include "llvm/ADT/Statistic.h"
44 #include "llvm/Analysis/BranchProbabilityInfo.h"
45 #include "llvm/Analysis/Loads.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/CodeGen/Analysis.h"
48 #include "llvm/CodeGen/FastISel.h"
49 #include "llvm/CodeGen/FunctionLoweringInfo.h"
50 #include "llvm/CodeGen/MachineFrameInfo.h"
51 #include "llvm/CodeGen/MachineInstrBuilder.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/StackMaps.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DebugInfo.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/GetElementPtrTypeIterator.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Mangler.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetInstrInfo.h"
68 #include "llvm/Target/TargetLowering.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetSubtargetInfo.h"
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "isel"
74 
75 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
76                                          "target-independent selector");
77 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
78                                     "target-specific selector");
79 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
80 
81 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS,
82                                            unsigned AttrIdx) {
83   IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt);
84   IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
85   IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg);
86   IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
87   IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest);
88   IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
89   IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
90   IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
91   IsSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf);
92   IsSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError);
93   Alignment = CS->getParamAlignment(AttrIdx);
94 }
95 
96 /// Set the current block to which generated machine instructions will be
97 /// appended, and clear the local CSE map.
98 void FastISel::startNewBlock() {
99   LocalValueMap.clear();
100 
101   // Instructions are appended to FuncInfo.MBB. If the basic block already
102   // contains labels or copies, use the last instruction as the last local
103   // value.
104   EmitStartPt = nullptr;
105   if (!FuncInfo.MBB->empty())
106     EmitStartPt = &FuncInfo.MBB->back();
107   LastLocalValue = EmitStartPt;
108 }
109 
110 bool FastISel::lowerArguments() {
111   if (!FuncInfo.CanLowerReturn)
112     // Fallback to SDISel argument lowering code to deal with sret pointer
113     // parameter.
114     return false;
115 
116   if (!fastLowerArguments())
117     return false;
118 
119   // Enter arguments into ValueMap for uses in non-entry BBs.
120   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
121                                     E = FuncInfo.Fn->arg_end();
122        I != E; ++I) {
123     DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I);
124     assert(VI != LocalValueMap.end() && "Missed an argument?");
125     FuncInfo.ValueMap[&*I] = VI->second;
126   }
127   return true;
128 }
129 
130 void FastISel::flushLocalValueMap() {
131   LocalValueMap.clear();
132   LastLocalValue = EmitStartPt;
133   recomputeInsertPt();
134   SavedInsertPt = FuncInfo.InsertPt;
135 }
136 
137 bool FastISel::hasTrivialKill(const Value *V) {
138   // Don't consider constants or arguments to have trivial kills.
139   const Instruction *I = dyn_cast<Instruction>(V);
140   if (!I)
141     return false;
142 
143   // No-op casts are trivially coalesced by fast-isel.
144   if (const auto *Cast = dyn_cast<CastInst>(I))
145     if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) &&
146         !hasTrivialKill(Cast->getOperand(0)))
147       return false;
148 
149   // Even the value might have only one use in the LLVM IR, it is possible that
150   // FastISel might fold the use into another instruction and now there is more
151   // than one use at the Machine Instruction level.
152   unsigned Reg = lookUpRegForValue(V);
153   if (Reg && !MRI.use_empty(Reg))
154     return false;
155 
156   // GEPs with all zero indices are trivially coalesced by fast-isel.
157   if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
158     if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
159       return false;
160 
161   // Only instructions with a single use in the same basic block are considered
162   // to have trivial kills.
163   return I->hasOneUse() &&
164          !(I->getOpcode() == Instruction::BitCast ||
165            I->getOpcode() == Instruction::PtrToInt ||
166            I->getOpcode() == Instruction::IntToPtr) &&
167          cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
168 }
169 
170 unsigned FastISel::getRegForValue(const Value *V) {
171   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
172   // Don't handle non-simple values in FastISel.
173   if (!RealVT.isSimple())
174     return 0;
175 
176   // Ignore illegal types. We must do this before looking up the value
177   // in ValueMap because Arguments are given virtual registers regardless
178   // of whether FastISel can handle them.
179   MVT VT = RealVT.getSimpleVT();
180   if (!TLI.isTypeLegal(VT)) {
181     // Handle integer promotions, though, because they're common and easy.
182     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
183       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
184     else
185       return 0;
186   }
187 
188   // Look up the value to see if we already have a register for it.
189   unsigned Reg = lookUpRegForValue(V);
190   if (Reg)
191     return Reg;
192 
193   // In bottom-up mode, just create the virtual register which will be used
194   // to hold the value. It will be materialized later.
195   if (isa<Instruction>(V) &&
196       (!isa<AllocaInst>(V) ||
197        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
198     return FuncInfo.InitializeRegForValue(V);
199 
200   SavePoint SaveInsertPt = enterLocalValueArea();
201 
202   // Materialize the value in a register. Emit any instructions in the
203   // local value area.
204   Reg = materializeRegForValue(V, VT);
205 
206   leaveLocalValueArea(SaveInsertPt);
207 
208   return Reg;
209 }
210 
211 unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
212   unsigned Reg = 0;
213   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
214     if (CI->getValue().getActiveBits() <= 64)
215       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
216   } else if (isa<AllocaInst>(V))
217     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
218   else if (isa<ConstantPointerNull>(V))
219     // Translate this as an integer zero so that it can be
220     // local-CSE'd with actual integer zeros.
221     Reg = getRegForValue(
222         Constant::getNullValue(DL.getIntPtrType(V->getContext())));
223   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
224     if (CF->isNullValue())
225       Reg = fastMaterializeFloatZero(CF);
226     else
227       // Try to emit the constant directly.
228       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
229 
230     if (!Reg) {
231       // Try to emit the constant by using an integer constant with a cast.
232       const APFloat &Flt = CF->getValueAPF();
233       EVT IntVT = TLI.getPointerTy(DL);
234 
235       uint64_t x[2];
236       uint32_t IntBitWidth = IntVT.getSizeInBits();
237       bool isExact;
238       (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
239                                  APFloat::rmTowardZero, &isExact);
240       if (isExact) {
241         APInt IntVal(IntBitWidth, x);
242 
243         unsigned IntegerReg =
244             getRegForValue(ConstantInt::get(V->getContext(), IntVal));
245         if (IntegerReg != 0)
246           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
247                            /*Kill=*/false);
248       }
249     }
250   } else if (const auto *Op = dyn_cast<Operator>(V)) {
251     if (!selectOperator(Op, Op->getOpcode()))
252       if (!isa<Instruction>(Op) ||
253           !fastSelectInstruction(cast<Instruction>(Op)))
254         return 0;
255     Reg = lookUpRegForValue(Op);
256   } else if (isa<UndefValue>(V)) {
257     Reg = createResultReg(TLI.getRegClassFor(VT));
258     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
259             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
260   }
261   return Reg;
262 }
263 
264 /// Helper for getRegForValue. This function is called when the value isn't
265 /// already available in a register and must be materialized with new
266 /// instructions.
267 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
268   unsigned Reg = 0;
269   // Give the target-specific code a try first.
270   if (isa<Constant>(V))
271     Reg = fastMaterializeConstant(cast<Constant>(V));
272 
273   // If target-specific code couldn't or didn't want to handle the value, then
274   // give target-independent code a try.
275   if (!Reg)
276     Reg = materializeConstant(V, VT);
277 
278   // Don't cache constant materializations in the general ValueMap.
279   // To do so would require tracking what uses they dominate.
280   if (Reg) {
281     LocalValueMap[V] = Reg;
282     LastLocalValue = MRI.getVRegDef(Reg);
283   }
284   return Reg;
285 }
286 
287 unsigned FastISel::lookUpRegForValue(const Value *V) {
288   // Look up the value to see if we already have a register for it. We
289   // cache values defined by Instructions across blocks, and other values
290   // only locally. This is because Instructions already have the SSA
291   // def-dominates-use requirement enforced.
292   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
293   if (I != FuncInfo.ValueMap.end())
294     return I->second;
295   return LocalValueMap[V];
296 }
297 
298 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
299   if (!isa<Instruction>(I)) {
300     LocalValueMap[I] = Reg;
301     return;
302   }
303 
304   unsigned &AssignedReg = FuncInfo.ValueMap[I];
305   if (AssignedReg == 0)
306     // Use the new register.
307     AssignedReg = Reg;
308   else if (Reg != AssignedReg) {
309     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
310     for (unsigned i = 0; i < NumRegs; i++)
311       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
312 
313     AssignedReg = Reg;
314   }
315 }
316 
317 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
318   unsigned IdxN = getRegForValue(Idx);
319   if (IdxN == 0)
320     // Unhandled operand. Halt "fast" selection and bail.
321     return std::pair<unsigned, bool>(0, false);
322 
323   bool IdxNIsKill = hasTrivialKill(Idx);
324 
325   // If the index is smaller or larger than intptr_t, truncate or extend it.
326   MVT PtrVT = TLI.getPointerTy(DL);
327   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
328   if (IdxVT.bitsLT(PtrVT)) {
329     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
330                       IdxNIsKill);
331     IdxNIsKill = true;
332   } else if (IdxVT.bitsGT(PtrVT)) {
333     IdxN =
334         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
335     IdxNIsKill = true;
336   }
337   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
338 }
339 
340 void FastISel::recomputeInsertPt() {
341   if (getLastLocalValue()) {
342     FuncInfo.InsertPt = getLastLocalValue();
343     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
344     ++FuncInfo.InsertPt;
345   } else
346     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
347 
348   // Now skip past any EH_LABELs, which must remain at the beginning.
349   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
350          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
351     ++FuncInfo.InsertPt;
352 }
353 
354 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
355                               MachineBasicBlock::iterator E) {
356   assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
357          "Invalid iterator!");
358   while (I != E) {
359     MachineInstr *Dead = &*I;
360     ++I;
361     Dead->eraseFromParent();
362     ++NumFastIselDead;
363   }
364   recomputeInsertPt();
365 }
366 
367 FastISel::SavePoint FastISel::enterLocalValueArea() {
368   MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
369   DebugLoc OldDL = DbgLoc;
370   recomputeInsertPt();
371   DbgLoc = DebugLoc();
372   SavePoint SP = {OldInsertPt, OldDL};
373   return SP;
374 }
375 
376 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
377   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
378     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
379 
380   // Restore the previous insert position.
381   FuncInfo.InsertPt = OldInsertPt.InsertPt;
382   DbgLoc = OldInsertPt.DL;
383 }
384 
385 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
386   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
387   if (VT == MVT::Other || !VT.isSimple())
388     // Unhandled type. Halt "fast" selection and bail.
389     return false;
390 
391   // We only handle legal types. For example, on x86-32 the instruction
392   // selector contains all of the 64-bit instructions from x86-64,
393   // under the assumption that i64 won't be used if the target doesn't
394   // support it.
395   if (!TLI.isTypeLegal(VT)) {
396     // MVT::i1 is special. Allow AND, OR, or XOR because they
397     // don't require additional zeroing, which makes them easy.
398     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
399                           ISDOpcode == ISD::XOR))
400       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
401     else
402       return false;
403   }
404 
405   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
406   // we don't have anything that canonicalizes operand order.
407   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
408     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
409       unsigned Op1 = getRegForValue(I->getOperand(1));
410       if (!Op1)
411         return false;
412       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
413 
414       unsigned ResultReg =
415           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
416                        CI->getZExtValue(), VT.getSimpleVT());
417       if (!ResultReg)
418         return false;
419 
420       // We successfully emitted code for the given LLVM Instruction.
421       updateValueMap(I, ResultReg);
422       return true;
423     }
424 
425   unsigned Op0 = getRegForValue(I->getOperand(0));
426   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
427     return false;
428   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
429 
430   // Check if the second operand is a constant and handle it appropriately.
431   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
432     uint64_t Imm = CI->getSExtValue();
433 
434     // Transform "sdiv exact X, 8" -> "sra X, 3".
435     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
436         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
437       Imm = Log2_64(Imm);
438       ISDOpcode = ISD::SRA;
439     }
440 
441     // Transform "urem x, pow2" -> "and x, pow2-1".
442     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
443         isPowerOf2_64(Imm)) {
444       --Imm;
445       ISDOpcode = ISD::AND;
446     }
447 
448     unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
449                                       Op0IsKill, Imm, VT.getSimpleVT());
450     if (!ResultReg)
451       return false;
452 
453     // We successfully emitted code for the given LLVM Instruction.
454     updateValueMap(I, ResultReg);
455     return true;
456   }
457 
458   unsigned Op1 = getRegForValue(I->getOperand(1));
459   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
460     return false;
461   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
462 
463   // Now we have both operands in registers. Emit the instruction.
464   unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
465                                    ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
466   if (!ResultReg)
467     // Target-specific code wasn't able to find a machine opcode for
468     // the given ISD opcode and type. Halt "fast" selection and bail.
469     return false;
470 
471   // We successfully emitted code for the given LLVM Instruction.
472   updateValueMap(I, ResultReg);
473   return true;
474 }
475 
476 bool FastISel::selectGetElementPtr(const User *I) {
477   unsigned N = getRegForValue(I->getOperand(0));
478   if (!N) // Unhandled operand. Halt "fast" selection and bail.
479     return false;
480   bool NIsKill = hasTrivialKill(I->getOperand(0));
481 
482   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
483   // into a single N = N + TotalOffset.
484   uint64_t TotalOffs = 0;
485   // FIXME: What's a good SWAG number for MaxOffs?
486   uint64_t MaxOffs = 2048;
487   MVT VT = TLI.getPointerTy(DL);
488   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
489        GTI != E; ++GTI) {
490     const Value *Idx = GTI.getOperand();
491     if (auto *StTy = dyn_cast<StructType>(*GTI)) {
492       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
493       if (Field) {
494         // N = N + Offset
495         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
496         if (TotalOffs >= MaxOffs) {
497           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
498           if (!N) // Unhandled operand. Halt "fast" selection and bail.
499             return false;
500           NIsKill = true;
501           TotalOffs = 0;
502         }
503       }
504     } else {
505       Type *Ty = GTI.getIndexedType();
506 
507       // If this is a constant subscript, handle it quickly.
508       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
509         if (CI->isZero())
510           continue;
511         // N = N + Offset
512         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
513         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
514         if (TotalOffs >= MaxOffs) {
515           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
516           if (!N) // Unhandled operand. Halt "fast" selection and bail.
517             return false;
518           NIsKill = true;
519           TotalOffs = 0;
520         }
521         continue;
522       }
523       if (TotalOffs) {
524         N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
525         if (!N) // Unhandled operand. Halt "fast" selection and bail.
526           return false;
527         NIsKill = true;
528         TotalOffs = 0;
529       }
530 
531       // N = N + Idx * ElementSize;
532       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
533       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
534       unsigned IdxN = Pair.first;
535       bool IdxNIsKill = Pair.second;
536       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
537         return false;
538 
539       if (ElementSize != 1) {
540         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
541         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
542           return false;
543         IdxNIsKill = true;
544       }
545       N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
546       if (!N) // Unhandled operand. Halt "fast" selection and bail.
547         return false;
548     }
549   }
550   if (TotalOffs) {
551     N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
552     if (!N) // Unhandled operand. Halt "fast" selection and bail.
553       return false;
554   }
555 
556   // We successfully emitted code for the given LLVM Instruction.
557   updateValueMap(I, N);
558   return true;
559 }
560 
561 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
562                                    const CallInst *CI, unsigned StartIdx) {
563   for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
564     Value *Val = CI->getArgOperand(i);
565     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
566     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
567       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
568       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
569     } else if (isa<ConstantPointerNull>(Val)) {
570       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
571       Ops.push_back(MachineOperand::CreateImm(0));
572     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
573       // Values coming from a stack location also require a sepcial encoding,
574       // but that is added later on by the target specific frame index
575       // elimination implementation.
576       auto SI = FuncInfo.StaticAllocaMap.find(AI);
577       if (SI != FuncInfo.StaticAllocaMap.end())
578         Ops.push_back(MachineOperand::CreateFI(SI->second));
579       else
580         return false;
581     } else {
582       unsigned Reg = getRegForValue(Val);
583       if (!Reg)
584         return false;
585       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
586     }
587   }
588   return true;
589 }
590 
591 bool FastISel::selectStackmap(const CallInst *I) {
592   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
593   //                                  [live variables...])
594   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
595          "Stackmap cannot return a value.");
596 
597   // The stackmap intrinsic only records the live variables (the arguments
598   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
599   // intrinsic, this won't be lowered to a function call. This means we don't
600   // have to worry about calling conventions and target-specific lowering code.
601   // Instead we perform the call lowering right here.
602   //
603   // CALLSEQ_START(0...)
604   // STACKMAP(id, nbytes, ...)
605   // CALLSEQ_END(0, 0)
606   //
607   SmallVector<MachineOperand, 32> Ops;
608 
609   // Add the <id> and <numBytes> constants.
610   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
611          "Expected a constant integer.");
612   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
613   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
614 
615   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
616          "Expected a constant integer.");
617   const auto *NumBytes =
618       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
619   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
620 
621   // Push live variables for the stack map (skipping the first two arguments
622   // <id> and <numBytes>).
623   if (!addStackMapLiveVars(Ops, I, 2))
624     return false;
625 
626   // We are not adding any register mask info here, because the stackmap doesn't
627   // clobber anything.
628 
629   // Add scratch registers as implicit def and early clobber.
630   CallingConv::ID CC = I->getCallingConv();
631   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
632   for (unsigned i = 0; ScratchRegs[i]; ++i)
633     Ops.push_back(MachineOperand::CreateReg(
634         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
635         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
636 
637   // Issue CALLSEQ_START
638   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
639   auto Builder =
640       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
641   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
642   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
643     Builder.addImm(0);
644 
645   // Issue STACKMAP.
646   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
647                                     TII.get(TargetOpcode::STACKMAP));
648   for (auto const &MO : Ops)
649     MIB.addOperand(MO);
650 
651   // Issue CALLSEQ_END
652   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
653   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
654       .addImm(0)
655       .addImm(0);
656 
657   // Inform the Frame Information that we have a stackmap in this function.
658   FuncInfo.MF->getFrameInfo().setHasStackMap();
659 
660   return true;
661 }
662 
663 /// \brief Lower an argument list according to the target calling convention.
664 ///
665 /// This is a helper for lowering intrinsics that follow a target calling
666 /// convention or require stack pointer adjustment. Only a subset of the
667 /// intrinsic's operands need to participate in the calling convention.
668 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
669                                  unsigned NumArgs, const Value *Callee,
670                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
671   ArgListTy Args;
672   Args.reserve(NumArgs);
673 
674   // Populate the argument list.
675   // Attributes for args start at offset 1, after the return attribute.
676   ImmutableCallSite CS(CI);
677   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
678        ArgI != ArgE; ++ArgI) {
679     Value *V = CI->getOperand(ArgI);
680 
681     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
682 
683     ArgListEntry Entry;
684     Entry.Val = V;
685     Entry.Ty = V->getType();
686     Entry.setAttributes(&CS, AttrI);
687     Args.push_back(Entry);
688   }
689 
690   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
691                                : CI->getType();
692   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
693 
694   return lowerCallTo(CLI);
695 }
696 
697 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
698     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
699     StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
700   SmallString<32> MangledName;
701   Mangler::getNameWithPrefix(MangledName, Target, DL);
702   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
703   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
704 }
705 
706 bool FastISel::selectPatchpoint(const CallInst *I) {
707   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
708   //                                                 i32 <numBytes>,
709   //                                                 i8* <target>,
710   //                                                 i32 <numArgs>,
711   //                                                 [Args...],
712   //                                                 [live variables...])
713   CallingConv::ID CC = I->getCallingConv();
714   bool IsAnyRegCC = CC == CallingConv::AnyReg;
715   bool HasDef = !I->getType()->isVoidTy();
716   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
717 
718   // Get the real number of arguments participating in the call <numArgs>
719   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
720          "Expected a constant integer.");
721   const auto *NumArgsVal =
722       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
723   unsigned NumArgs = NumArgsVal->getZExtValue();
724 
725   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
726   // This includes all meta-operands up to but not including CC.
727   unsigned NumMetaOpers = PatchPointOpers::CCPos;
728   assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
729          "Not enough arguments provided to the patchpoint intrinsic");
730 
731   // For AnyRegCC the arguments are lowered later on manually.
732   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
733   CallLoweringInfo CLI;
734   CLI.setIsPatchPoint();
735   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
736     return false;
737 
738   assert(CLI.Call && "No call instruction specified.");
739 
740   SmallVector<MachineOperand, 32> Ops;
741 
742   // Add an explicit result reg if we use the anyreg calling convention.
743   if (IsAnyRegCC && HasDef) {
744     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
745     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
746     CLI.NumResultRegs = 1;
747     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true));
748   }
749 
750   // Add the <id> and <numBytes> constants.
751   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
752          "Expected a constant integer.");
753   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
754   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
755 
756   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
757          "Expected a constant integer.");
758   const auto *NumBytes =
759       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
760   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
761 
762   // Add the call target.
763   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
764     uint64_t CalleeConstAddr =
765       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
766     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
767   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
768     if (C->getOpcode() == Instruction::IntToPtr) {
769       uint64_t CalleeConstAddr =
770         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
771       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
772     } else
773       llvm_unreachable("Unsupported ConstantExpr.");
774   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
775     Ops.push_back(MachineOperand::CreateGA(GV, 0));
776   } else if (isa<ConstantPointerNull>(Callee))
777     Ops.push_back(MachineOperand::CreateImm(0));
778   else
779     llvm_unreachable("Unsupported callee address.");
780 
781   // Adjust <numArgs> to account for any arguments that have been passed on
782   // the stack instead.
783   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
784   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
785 
786   // Add the calling convention
787   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
788 
789   // Add the arguments we omitted previously. The register allocator should
790   // place these in any free register.
791   if (IsAnyRegCC) {
792     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
793       unsigned Reg = getRegForValue(I->getArgOperand(i));
794       if (!Reg)
795         return false;
796       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
797     }
798   }
799 
800   // Push the arguments from the call instruction.
801   for (auto Reg : CLI.OutRegs)
802     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
803 
804   // Push live variables for the stack map.
805   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
806     return false;
807 
808   // Push the register mask info.
809   Ops.push_back(MachineOperand::CreateRegMask(
810       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
811 
812   // Add scratch registers as implicit def and early clobber.
813   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
814   for (unsigned i = 0; ScratchRegs[i]; ++i)
815     Ops.push_back(MachineOperand::CreateReg(
816         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
817         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
818 
819   // Add implicit defs (return values).
820   for (auto Reg : CLI.InRegs)
821     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true,
822                                             /*IsImpl=*/true));
823 
824   // Insert the patchpoint instruction before the call generated by the target.
825   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
826                                     TII.get(TargetOpcode::PATCHPOINT));
827 
828   for (auto &MO : Ops)
829     MIB.addOperand(MO);
830 
831   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
832 
833   // Delete the original call instruction.
834   CLI.Call->eraseFromParent();
835 
836   // Inform the Frame Information that we have a patchpoint in this function.
837   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
838 
839   if (CLI.NumResultRegs)
840     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
841   return true;
842 }
843 
844 /// Returns an AttributeSet representing the attributes applied to the return
845 /// value of the given call.
846 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
847   SmallVector<Attribute::AttrKind, 2> Attrs;
848   if (CLI.RetSExt)
849     Attrs.push_back(Attribute::SExt);
850   if (CLI.RetZExt)
851     Attrs.push_back(Attribute::ZExt);
852   if (CLI.IsInReg)
853     Attrs.push_back(Attribute::InReg);
854 
855   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
856                            Attrs);
857 }
858 
859 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
860                            unsigned NumArgs) {
861   MCContext &Ctx = MF->getContext();
862   SmallString<32> MangledName;
863   Mangler::getNameWithPrefix(MangledName, SymName, DL);
864   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
865   return lowerCallTo(CI, Sym, NumArgs);
866 }
867 
868 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
869                            unsigned NumArgs) {
870   ImmutableCallSite CS(CI);
871 
872   FunctionType *FTy = CS.getFunctionType();
873   Type *RetTy = CS.getType();
874 
875   ArgListTy Args;
876   Args.reserve(NumArgs);
877 
878   // Populate the argument list.
879   // Attributes for args start at offset 1, after the return attribute.
880   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
881     Value *V = CI->getOperand(ArgI);
882 
883     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
884 
885     ArgListEntry Entry;
886     Entry.Val = V;
887     Entry.Ty = V->getType();
888     Entry.setAttributes(&CS, ArgI + 1);
889     Args.push_back(Entry);
890   }
891 
892   CallLoweringInfo CLI;
893   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs);
894 
895   return lowerCallTo(CLI);
896 }
897 
898 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
899   // Handle the incoming return values from the call.
900   CLI.clearIns();
901   SmallVector<EVT, 4> RetTys;
902   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
903 
904   SmallVector<ISD::OutputArg, 4> Outs;
905   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
906 
907   bool CanLowerReturn = TLI.CanLowerReturn(
908       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
909 
910   // FIXME: sret demotion isn't supported yet - bail out.
911   if (!CanLowerReturn)
912     return false;
913 
914   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
915     EVT VT = RetTys[I];
916     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
917     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
918     for (unsigned i = 0; i != NumRegs; ++i) {
919       ISD::InputArg MyFlags;
920       MyFlags.VT = RegisterVT;
921       MyFlags.ArgVT = VT;
922       MyFlags.Used = CLI.IsReturnValueUsed;
923       if (CLI.RetSExt)
924         MyFlags.Flags.setSExt();
925       if (CLI.RetZExt)
926         MyFlags.Flags.setZExt();
927       if (CLI.IsInReg)
928         MyFlags.Flags.setInReg();
929       CLI.Ins.push_back(MyFlags);
930     }
931   }
932 
933   // Handle all of the outgoing arguments.
934   CLI.clearOuts();
935   for (auto &Arg : CLI.getArgs()) {
936     Type *FinalType = Arg.Ty;
937     if (Arg.IsByVal)
938       FinalType = cast<PointerType>(Arg.Ty)->getElementType();
939     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
940         FinalType, CLI.CallConv, CLI.IsVarArg);
941 
942     ISD::ArgFlagsTy Flags;
943     if (Arg.IsZExt)
944       Flags.setZExt();
945     if (Arg.IsSExt)
946       Flags.setSExt();
947     if (Arg.IsInReg)
948       Flags.setInReg();
949     if (Arg.IsSRet)
950       Flags.setSRet();
951     if (Arg.IsSwiftSelf)
952       Flags.setSwiftSelf();
953     if (Arg.IsSwiftError)
954       Flags.setSwiftError();
955     if (Arg.IsByVal)
956       Flags.setByVal();
957     if (Arg.IsInAlloca) {
958       Flags.setInAlloca();
959       // Set the byval flag for CCAssignFn callbacks that don't know about
960       // inalloca. This way we can know how many bytes we should've allocated
961       // and how many bytes a callee cleanup function will pop.  If we port
962       // inalloca to more targets, we'll have to add custom inalloca handling in
963       // the various CC lowering callbacks.
964       Flags.setByVal();
965     }
966     if (Arg.IsByVal || Arg.IsInAlloca) {
967       PointerType *Ty = cast<PointerType>(Arg.Ty);
968       Type *ElementTy = Ty->getElementType();
969       unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
970       // For ByVal, alignment should come from FE. BE will guess if this info is
971       // not there, but there are cases it cannot get right.
972       unsigned FrameAlign = Arg.Alignment;
973       if (!FrameAlign)
974         FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL);
975       Flags.setByValSize(FrameSize);
976       Flags.setByValAlign(FrameAlign);
977     }
978     if (Arg.IsNest)
979       Flags.setNest();
980     if (NeedsRegBlock)
981       Flags.setInConsecutiveRegs();
982     unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty);
983     Flags.setOrigAlign(OriginalAlignment);
984 
985     CLI.OutVals.push_back(Arg.Val);
986     CLI.OutFlags.push_back(Flags);
987   }
988 
989   if (!fastLowerCall(CLI))
990     return false;
991 
992   // Set all unused physreg defs as dead.
993   assert(CLI.Call && "No call instruction specified.");
994   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
995 
996   if (CLI.NumResultRegs && CLI.CS)
997     updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
998 
999   return true;
1000 }
1001 
1002 bool FastISel::lowerCall(const CallInst *CI) {
1003   ImmutableCallSite CS(CI);
1004 
1005   FunctionType *FuncTy = CS.getFunctionType();
1006   Type *RetTy = CS.getType();
1007 
1008   ArgListTy Args;
1009   ArgListEntry Entry;
1010   Args.reserve(CS.arg_size());
1011 
1012   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1013        i != e; ++i) {
1014     Value *V = *i;
1015 
1016     // Skip empty types
1017     if (V->getType()->isEmptyTy())
1018       continue;
1019 
1020     Entry.Val = V;
1021     Entry.Ty = V->getType();
1022 
1023     // Skip the first return-type Attribute to get to params.
1024     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
1025     Args.push_back(Entry);
1026   }
1027 
1028   // Check if target-independent constraints permit a tail call here.
1029   // Target-dependent constraints are checked within fastLowerCall.
1030   bool IsTailCall = CI->isTailCall();
1031   if (IsTailCall && !isInTailCallPosition(CS, TM))
1032     IsTailCall = false;
1033 
1034   CallLoweringInfo CLI;
1035   CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
1036       .setTailCall(IsTailCall);
1037 
1038   return lowerCallTo(CLI);
1039 }
1040 
1041 bool FastISel::selectCall(const User *I) {
1042   const CallInst *Call = cast<CallInst>(I);
1043 
1044   // Handle simple inline asms.
1045   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
1046     // If the inline asm has side effects, then make sure that no local value
1047     // lives across by flushing the local value map.
1048     if (IA->hasSideEffects())
1049       flushLocalValueMap();
1050 
1051     // Don't attempt to handle constraints.
1052     if (!IA->getConstraintString().empty())
1053       return false;
1054 
1055     unsigned ExtraInfo = 0;
1056     if (IA->hasSideEffects())
1057       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1058     if (IA->isAlignStack())
1059       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1060 
1061     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1062             TII.get(TargetOpcode::INLINEASM))
1063         .addExternalSymbol(IA->getAsmString().c_str())
1064         .addImm(ExtraInfo);
1065     return true;
1066   }
1067 
1068   MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
1069   ComputeUsesVAFloatArgument(*Call, &MMI);
1070 
1071   // Handle intrinsic function calls.
1072   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1073     return selectIntrinsicCall(II);
1074 
1075   // Usually, it does not make sense to initialize a value,
1076   // make an unrelated function call and use the value, because
1077   // it tends to be spilled on the stack. So, we move the pointer
1078   // to the last local value to the beginning of the block, so that
1079   // all the values which have already been materialized,
1080   // appear after the call. It also makes sense to skip intrinsics
1081   // since they tend to be inlined.
1082   flushLocalValueMap();
1083 
1084   return lowerCall(Call);
1085 }
1086 
1087 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1088   switch (II->getIntrinsicID()) {
1089   default:
1090     break;
1091   // At -O0 we don't care about the lifetime intrinsics.
1092   case Intrinsic::lifetime_start:
1093   case Intrinsic::lifetime_end:
1094   // The donothing intrinsic does, well, nothing.
1095   case Intrinsic::donothing:
1096   // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1097   case Intrinsic::assume:
1098     return true;
1099   case Intrinsic::dbg_declare: {
1100     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1101     assert(DI->getVariable() && "Missing variable");
1102     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1103       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1104       return true;
1105     }
1106 
1107     const Value *Address = DI->getAddress();
1108     if (!Address || isa<UndefValue>(Address)) {
1109       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1110       return true;
1111     }
1112 
1113     unsigned Offset = 0;
1114     Optional<MachineOperand> Op;
1115     if (const auto *Arg = dyn_cast<Argument>(Address))
1116       // Some arguments' frame index is recorded during argument lowering.
1117       Offset = FuncInfo.getArgumentFrameIndex(Arg);
1118     if (Offset)
1119       Op = MachineOperand::CreateFI(Offset);
1120     if (!Op)
1121       if (unsigned Reg = lookUpRegForValue(Address))
1122         Op = MachineOperand::CreateReg(Reg, false);
1123 
1124     // If we have a VLA that has a "use" in a metadata node that's then used
1125     // here but it has no other uses, then we have a problem. E.g.,
1126     //
1127     //   int foo (const int *x) {
1128     //     char a[*x];
1129     //     return 0;
1130     //   }
1131     //
1132     // If we assign 'a' a vreg and fast isel later on has to use the selection
1133     // DAG isel, it will want to copy the value to the vreg. However, there are
1134     // no uses, which goes counter to what selection DAG isel expects.
1135     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1136         (!isa<AllocaInst>(Address) ||
1137          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1138       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1139                                      false);
1140 
1141     if (Op) {
1142       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1143              "Expected inlined-at fields to agree");
1144       if (Op->isReg()) {
1145         Op->setIsDebug(true);
1146         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1147                 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0,
1148                 DI->getVariable(), DI->getExpression());
1149       } else
1150         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1151                 TII.get(TargetOpcode::DBG_VALUE))
1152             .addOperand(*Op)
1153             .addImm(0)
1154             .addMetadata(DI->getVariable())
1155             .addMetadata(DI->getExpression());
1156     } else {
1157       // We can't yet handle anything else here because it would require
1158       // generating code, thus altering codegen because of debug info.
1159       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1160     }
1161     return true;
1162   }
1163   case Intrinsic::dbg_value: {
1164     // This form of DBG_VALUE is target-independent.
1165     const DbgValueInst *DI = cast<DbgValueInst>(II);
1166     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1167     const Value *V = DI->getValue();
1168     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1169            "Expected inlined-at fields to agree");
1170     if (!V) {
1171       // Currently the optimizer can produce this; insert an undef to
1172       // help debugging.  Probably the optimizer should not do this.
1173       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1174           .addReg(0U)
1175           .addImm(DI->getOffset())
1176           .addMetadata(DI->getVariable())
1177           .addMetadata(DI->getExpression());
1178     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1179       if (CI->getBitWidth() > 64)
1180         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1181             .addCImm(CI)
1182             .addImm(DI->getOffset())
1183             .addMetadata(DI->getVariable())
1184             .addMetadata(DI->getExpression());
1185       else
1186         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1187             .addImm(CI->getZExtValue())
1188             .addImm(DI->getOffset())
1189             .addMetadata(DI->getVariable())
1190             .addMetadata(DI->getExpression());
1191     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1192       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1193           .addFPImm(CF)
1194           .addImm(DI->getOffset())
1195           .addMetadata(DI->getVariable())
1196           .addMetadata(DI->getExpression());
1197     } else if (unsigned Reg = lookUpRegForValue(V)) {
1198       // FIXME: This does not handle register-indirect values at offset 0.
1199       bool IsIndirect = DI->getOffset() != 0;
1200       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1201               DI->getOffset(), DI->getVariable(), DI->getExpression());
1202     } else {
1203       // We can't yet handle anything else here because it would require
1204       // generating code, thus altering codegen because of debug info.
1205       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1206     }
1207     return true;
1208   }
1209   case Intrinsic::objectsize: {
1210     ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1211     unsigned long long Res = CI->isZero() ? -1ULL : 0;
1212     Constant *ResCI = ConstantInt::get(II->getType(), Res);
1213     unsigned ResultReg = getRegForValue(ResCI);
1214     if (!ResultReg)
1215       return false;
1216     updateValueMap(II, ResultReg);
1217     return true;
1218   }
1219   case Intrinsic::expect: {
1220     unsigned ResultReg = getRegForValue(II->getArgOperand(0));
1221     if (!ResultReg)
1222       return false;
1223     updateValueMap(II, ResultReg);
1224     return true;
1225   }
1226   case Intrinsic::experimental_stackmap:
1227     return selectStackmap(II);
1228   case Intrinsic::experimental_patchpoint_void:
1229   case Intrinsic::experimental_patchpoint_i64:
1230     return selectPatchpoint(II);
1231   }
1232 
1233   return fastLowerIntrinsicCall(II);
1234 }
1235 
1236 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1237   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1238   EVT DstVT = TLI.getValueType(DL, I->getType());
1239 
1240   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1241       !DstVT.isSimple())
1242     // Unhandled type. Halt "fast" selection and bail.
1243     return false;
1244 
1245   // Check if the destination type is legal.
1246   if (!TLI.isTypeLegal(DstVT))
1247     return false;
1248 
1249   // Check if the source operand is legal.
1250   if (!TLI.isTypeLegal(SrcVT))
1251     return false;
1252 
1253   unsigned InputReg = getRegForValue(I->getOperand(0));
1254   if (!InputReg)
1255     // Unhandled operand.  Halt "fast" selection and bail.
1256     return false;
1257 
1258   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
1259 
1260   unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1261                                   Opcode, InputReg, InputRegIsKill);
1262   if (!ResultReg)
1263     return false;
1264 
1265   updateValueMap(I, ResultReg);
1266   return true;
1267 }
1268 
1269 bool FastISel::selectBitCast(const User *I) {
1270   // If the bitcast doesn't change the type, just use the operand value.
1271   if (I->getType() == I->getOperand(0)->getType()) {
1272     unsigned Reg = getRegForValue(I->getOperand(0));
1273     if (!Reg)
1274       return false;
1275     updateValueMap(I, Reg);
1276     return true;
1277   }
1278 
1279   // Bitcasts of other values become reg-reg copies or BITCAST operators.
1280   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1281   EVT DstEVT = TLI.getValueType(DL, I->getType());
1282   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1283       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1284     // Unhandled type. Halt "fast" selection and bail.
1285     return false;
1286 
1287   MVT SrcVT = SrcEVT.getSimpleVT();
1288   MVT DstVT = DstEVT.getSimpleVT();
1289   unsigned Op0 = getRegForValue(I->getOperand(0));
1290   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1291     return false;
1292   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
1293 
1294   // First, try to perform the bitcast by inserting a reg-reg copy.
1295   unsigned ResultReg = 0;
1296   if (SrcVT == DstVT) {
1297     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1298     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1299     // Don't attempt a cross-class copy. It will likely fail.
1300     if (SrcClass == DstClass) {
1301       ResultReg = createResultReg(DstClass);
1302       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1303               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1304     }
1305   }
1306 
1307   // If the reg-reg copy failed, select a BITCAST opcode.
1308   if (!ResultReg)
1309     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
1310 
1311   if (!ResultReg)
1312     return false;
1313 
1314   updateValueMap(I, ResultReg);
1315   return true;
1316 }
1317 
1318 // Remove local value instructions starting from the instruction after
1319 // SavedLastLocalValue to the current function insert point.
1320 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1321 {
1322   MachineInstr *CurLastLocalValue = getLastLocalValue();
1323   if (CurLastLocalValue != SavedLastLocalValue) {
1324     // Find the first local value instruction to be deleted.
1325     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1326     // Otherwise it's the first instruction in the block.
1327     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1328     if (SavedLastLocalValue)
1329       ++FirstDeadInst;
1330     else
1331       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1332     setLastLocalValue(SavedLastLocalValue);
1333     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1334   }
1335 }
1336 
1337 bool FastISel::selectInstruction(const Instruction *I) {
1338   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1339   // Just before the terminator instruction, insert instructions to
1340   // feed PHI nodes in successor blocks.
1341   if (isa<TerminatorInst>(I)) {
1342     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1343       // PHI node handling may have generated local value instructions,
1344       // even though it failed to handle all PHI nodes.
1345       // We remove these instructions because SelectionDAGISel will generate
1346       // them again.
1347       removeDeadLocalValueCode(SavedLastLocalValue);
1348       return false;
1349     }
1350   }
1351 
1352   // FastISel does not handle any operand bundles except OB_funclet.
1353   if (ImmutableCallSite CS = ImmutableCallSite(I))
1354     for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i)
1355       if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1356         return false;
1357 
1358   DbgLoc = I->getDebugLoc();
1359 
1360   SavedInsertPt = FuncInfo.InsertPt;
1361 
1362   if (const auto *Call = dyn_cast<CallInst>(I)) {
1363     const Function *F = Call->getCalledFunction();
1364     LibFunc::Func Func;
1365 
1366     // As a special case, don't handle calls to builtin library functions that
1367     // may be translated directly to target instructions.
1368     if (F && !F->hasLocalLinkage() && F->hasName() &&
1369         LibInfo->getLibFunc(F->getName(), Func) &&
1370         LibInfo->hasOptimizedCodeGen(Func))
1371       return false;
1372 
1373     // Don't handle Intrinsic::trap if a trap function is specified.
1374     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1375         Call->hasFnAttr("trap-func-name"))
1376       return false;
1377   }
1378 
1379   // First, try doing target-independent selection.
1380   if (!SkipTargetIndependentISel) {
1381     if (selectOperator(I, I->getOpcode())) {
1382       ++NumFastIselSuccessIndependent;
1383       DbgLoc = DebugLoc();
1384       return true;
1385     }
1386     // Remove dead code.
1387     recomputeInsertPt();
1388     if (SavedInsertPt != FuncInfo.InsertPt)
1389       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1390     SavedInsertPt = FuncInfo.InsertPt;
1391   }
1392   // Next, try calling the target to attempt to handle the instruction.
1393   if (fastSelectInstruction(I)) {
1394     ++NumFastIselSuccessTarget;
1395     DbgLoc = DebugLoc();
1396     return true;
1397   }
1398   // Remove dead code.
1399   recomputeInsertPt();
1400   if (SavedInsertPt != FuncInfo.InsertPt)
1401     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1402 
1403   DbgLoc = DebugLoc();
1404   // Undo phi node updates, because they will be added again by SelectionDAG.
1405   if (isa<TerminatorInst>(I)) {
1406     // PHI node handling may have generated local value instructions.
1407     // We remove them because SelectionDAGISel will generate them again.
1408     removeDeadLocalValueCode(SavedLastLocalValue);
1409     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1410   }
1411   return false;
1412 }
1413 
1414 /// Emit an unconditional branch to the given block, unless it is the immediate
1415 /// (fall-through) successor, and update the CFG.
1416 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1417                               const DebugLoc &DbgLoc) {
1418   if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
1419       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1420     // For more accurate line information if this is the only instruction
1421     // in the block then emit it, otherwise we have the unconditional
1422     // fall-through case, which needs no instructions.
1423   } else {
1424     // The unconditional branch case.
1425     TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1426                      SmallVector<MachineOperand, 0>(), DbgLoc);
1427   }
1428   if (FuncInfo.BPI) {
1429     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1430         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1431     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1432   } else
1433     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1434 }
1435 
1436 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1437                                 MachineBasicBlock *TrueMBB,
1438                                 MachineBasicBlock *FalseMBB) {
1439   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1440   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1441   // successor/predecessor lists.
1442   if (TrueMBB != FalseMBB) {
1443     if (FuncInfo.BPI) {
1444       auto BranchProbability =
1445           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1446       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1447     } else
1448       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1449   }
1450 
1451   fastEmitBranch(FalseMBB, DbgLoc);
1452 }
1453 
1454 /// Emit an FNeg operation.
1455 bool FastISel::selectFNeg(const User *I) {
1456   unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
1457   if (!OpReg)
1458     return false;
1459   bool OpRegIsKill = hasTrivialKill(I);
1460 
1461   // If the target has ISD::FNEG, use it.
1462   EVT VT = TLI.getValueType(DL, I->getType());
1463   unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1464                                   OpReg, OpRegIsKill);
1465   if (ResultReg) {
1466     updateValueMap(I, ResultReg);
1467     return true;
1468   }
1469 
1470   // Bitcast the value to integer, twiddle the sign bit with xor,
1471   // and then bitcast it back to floating-point.
1472   if (VT.getSizeInBits() > 64)
1473     return false;
1474   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1475   if (!TLI.isTypeLegal(IntVT))
1476     return false;
1477 
1478   unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1479                                ISD::BITCAST, OpReg, OpRegIsKill);
1480   if (!IntReg)
1481     return false;
1482 
1483   unsigned IntResultReg = fastEmit_ri_(
1484       IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
1485       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1486   if (!IntResultReg)
1487     return false;
1488 
1489   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1490                          IntResultReg, /*IsKill=*/true);
1491   if (!ResultReg)
1492     return false;
1493 
1494   updateValueMap(I, ResultReg);
1495   return true;
1496 }
1497 
1498 bool FastISel::selectExtractValue(const User *U) {
1499   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1500   if (!EVI)
1501     return false;
1502 
1503   // Make sure we only try to handle extracts with a legal result.  But also
1504   // allow i1 because it's easy.
1505   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1506   if (!RealVT.isSimple())
1507     return false;
1508   MVT VT = RealVT.getSimpleVT();
1509   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1510     return false;
1511 
1512   const Value *Op0 = EVI->getOperand(0);
1513   Type *AggTy = Op0->getType();
1514 
1515   // Get the base result register.
1516   unsigned ResultReg;
1517   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
1518   if (I != FuncInfo.ValueMap.end())
1519     ResultReg = I->second;
1520   else if (isa<Instruction>(Op0))
1521     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1522   else
1523     return false; // fast-isel can't handle aggregate constants at the moment
1524 
1525   // Get the actual result register, which is an offset from the base register.
1526   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1527 
1528   SmallVector<EVT, 4> AggValueVTs;
1529   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1530 
1531   for (unsigned i = 0; i < VTIndex; i++)
1532     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1533 
1534   updateValueMap(EVI, ResultReg);
1535   return true;
1536 }
1537 
1538 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1539   switch (Opcode) {
1540   case Instruction::Add:
1541     return selectBinaryOp(I, ISD::ADD);
1542   case Instruction::FAdd:
1543     return selectBinaryOp(I, ISD::FADD);
1544   case Instruction::Sub:
1545     return selectBinaryOp(I, ISD::SUB);
1546   case Instruction::FSub:
1547     // FNeg is currently represented in LLVM IR as a special case of FSub.
1548     if (BinaryOperator::isFNeg(I))
1549       return selectFNeg(I);
1550     return selectBinaryOp(I, ISD::FSUB);
1551   case Instruction::Mul:
1552     return selectBinaryOp(I, ISD::MUL);
1553   case Instruction::FMul:
1554     return selectBinaryOp(I, ISD::FMUL);
1555   case Instruction::SDiv:
1556     return selectBinaryOp(I, ISD::SDIV);
1557   case Instruction::UDiv:
1558     return selectBinaryOp(I, ISD::UDIV);
1559   case Instruction::FDiv:
1560     return selectBinaryOp(I, ISD::FDIV);
1561   case Instruction::SRem:
1562     return selectBinaryOp(I, ISD::SREM);
1563   case Instruction::URem:
1564     return selectBinaryOp(I, ISD::UREM);
1565   case Instruction::FRem:
1566     return selectBinaryOp(I, ISD::FREM);
1567   case Instruction::Shl:
1568     return selectBinaryOp(I, ISD::SHL);
1569   case Instruction::LShr:
1570     return selectBinaryOp(I, ISD::SRL);
1571   case Instruction::AShr:
1572     return selectBinaryOp(I, ISD::SRA);
1573   case Instruction::And:
1574     return selectBinaryOp(I, ISD::AND);
1575   case Instruction::Or:
1576     return selectBinaryOp(I, ISD::OR);
1577   case Instruction::Xor:
1578     return selectBinaryOp(I, ISD::XOR);
1579 
1580   case Instruction::GetElementPtr:
1581     return selectGetElementPtr(I);
1582 
1583   case Instruction::Br: {
1584     const BranchInst *BI = cast<BranchInst>(I);
1585 
1586     if (BI->isUnconditional()) {
1587       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1588       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1589       fastEmitBranch(MSucc, BI->getDebugLoc());
1590       return true;
1591     }
1592 
1593     // Conditional branches are not handed yet.
1594     // Halt "fast" selection and bail.
1595     return false;
1596   }
1597 
1598   case Instruction::Unreachable:
1599     if (TM.Options.TrapUnreachable)
1600       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1601     else
1602       return true;
1603 
1604   case Instruction::Alloca:
1605     // FunctionLowering has the static-sized case covered.
1606     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1607       return true;
1608 
1609     // Dynamic-sized alloca is not handled yet.
1610     return false;
1611 
1612   case Instruction::Call:
1613     return selectCall(I);
1614 
1615   case Instruction::BitCast:
1616     return selectBitCast(I);
1617 
1618   case Instruction::FPToSI:
1619     return selectCast(I, ISD::FP_TO_SINT);
1620   case Instruction::ZExt:
1621     return selectCast(I, ISD::ZERO_EXTEND);
1622   case Instruction::SExt:
1623     return selectCast(I, ISD::SIGN_EXTEND);
1624   case Instruction::Trunc:
1625     return selectCast(I, ISD::TRUNCATE);
1626   case Instruction::SIToFP:
1627     return selectCast(I, ISD::SINT_TO_FP);
1628 
1629   case Instruction::IntToPtr: // Deliberate fall-through.
1630   case Instruction::PtrToInt: {
1631     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1632     EVT DstVT = TLI.getValueType(DL, I->getType());
1633     if (DstVT.bitsGT(SrcVT))
1634       return selectCast(I, ISD::ZERO_EXTEND);
1635     if (DstVT.bitsLT(SrcVT))
1636       return selectCast(I, ISD::TRUNCATE);
1637     unsigned Reg = getRegForValue(I->getOperand(0));
1638     if (!Reg)
1639       return false;
1640     updateValueMap(I, Reg);
1641     return true;
1642   }
1643 
1644   case Instruction::ExtractValue:
1645     return selectExtractValue(I);
1646 
1647   case Instruction::PHI:
1648     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1649 
1650   default:
1651     // Unhandled instruction. Halt "fast" selection and bail.
1652     return false;
1653   }
1654 }
1655 
1656 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1657                    const TargetLibraryInfo *LibInfo,
1658                    bool SkipTargetIndependentISel)
1659     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1660       MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1661       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1662       TII(*MF->getSubtarget().getInstrInfo()),
1663       TLI(*MF->getSubtarget().getTargetLowering()),
1664       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1665       SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1666 
1667 FastISel::~FastISel() {}
1668 
1669 bool FastISel::fastLowerArguments() { return false; }
1670 
1671 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1672 
1673 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1674   return false;
1675 }
1676 
1677 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1678 
1679 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
1680                               bool /*Op0IsKill*/) {
1681   return 0;
1682 }
1683 
1684 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1685                                bool /*Op0IsKill*/, unsigned /*Op1*/,
1686                                bool /*Op1IsKill*/) {
1687   return 0;
1688 }
1689 
1690 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1691   return 0;
1692 }
1693 
1694 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1695                               const ConstantFP * /*FPImm*/) {
1696   return 0;
1697 }
1698 
1699 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1700                                bool /*Op0IsKill*/, uint64_t /*Imm*/) {
1701   return 0;
1702 }
1703 
1704 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1705 /// instruction with an immediate operand using fastEmit_ri.
1706 /// If that fails, it materializes the immediate into a register and try
1707 /// fastEmit_rr instead.
1708 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1709                                 bool Op0IsKill, uint64_t Imm, MVT ImmType) {
1710   // If this is a multiply by a power of two, emit this as a shift left.
1711   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1712     Opcode = ISD::SHL;
1713     Imm = Log2_64(Imm);
1714   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1715     // div x, 8 -> srl x, 3
1716     Opcode = ISD::SRL;
1717     Imm = Log2_64(Imm);
1718   }
1719 
1720   // Horrible hack (to be removed), check to make sure shift amounts are
1721   // in-range.
1722   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1723       Imm >= VT.getSizeInBits())
1724     return 0;
1725 
1726   // First check if immediate type is legal. If not, we can't use the ri form.
1727   unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1728   if (ResultReg)
1729     return ResultReg;
1730   unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1731   bool IsImmKill = true;
1732   if (!MaterialReg) {
1733     // This is a bit ugly/slow, but failing here means falling out of
1734     // fast-isel, which would be very slow.
1735     IntegerType *ITy =
1736         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1737     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1738     if (!MaterialReg)
1739       return 0;
1740     // FIXME: If the materialized register here has no uses yet then this
1741     // will be the first use and we should be able to mark it as killed.
1742     // However, the local value area for materialising constant expressions
1743     // grows down, not up, which means that any constant expressions we generate
1744     // later which also use 'Imm' could be after this instruction and therefore
1745     // after this kill.
1746     IsImmKill = false;
1747   }
1748   return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill);
1749 }
1750 
1751 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
1752   return MRI.createVirtualRegister(RC);
1753 }
1754 
1755 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
1756                                             unsigned OpNum) {
1757   if (TargetRegisterInfo::isVirtualRegister(Op)) {
1758     const TargetRegisterClass *RegClass =
1759         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1760     if (!MRI.constrainRegClass(Op, RegClass)) {
1761       // If it's not legal to COPY between the register classes, something
1762       // has gone very wrong before we got here.
1763       unsigned NewOp = createResultReg(RegClass);
1764       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1765               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1766       return NewOp;
1767     }
1768   }
1769   return Op;
1770 }
1771 
1772 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
1773                                  const TargetRegisterClass *RC) {
1774   unsigned ResultReg = createResultReg(RC);
1775   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1776 
1777   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
1778   return ResultReg;
1779 }
1780 
1781 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
1782                                   const TargetRegisterClass *RC, unsigned Op0,
1783                                   bool Op0IsKill) {
1784   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1785 
1786   unsigned ResultReg = createResultReg(RC);
1787   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1788 
1789   if (II.getNumDefs() >= 1)
1790     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1791         .addReg(Op0, getKillRegState(Op0IsKill));
1792   else {
1793     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1794         .addReg(Op0, getKillRegState(Op0IsKill));
1795     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1796             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1797   }
1798 
1799   return ResultReg;
1800 }
1801 
1802 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
1803                                    const TargetRegisterClass *RC, unsigned Op0,
1804                                    bool Op0IsKill, unsigned Op1,
1805                                    bool Op1IsKill) {
1806   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1807 
1808   unsigned ResultReg = createResultReg(RC);
1809   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1810   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1811 
1812   if (II.getNumDefs() >= 1)
1813     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1814         .addReg(Op0, getKillRegState(Op0IsKill))
1815         .addReg(Op1, getKillRegState(Op1IsKill));
1816   else {
1817     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1818         .addReg(Op0, getKillRegState(Op0IsKill))
1819         .addReg(Op1, getKillRegState(Op1IsKill));
1820     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1821             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1822   }
1823   return ResultReg;
1824 }
1825 
1826 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
1827                                     const TargetRegisterClass *RC, unsigned Op0,
1828                                     bool Op0IsKill, unsigned Op1,
1829                                     bool Op1IsKill, unsigned Op2,
1830                                     bool Op2IsKill) {
1831   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1832 
1833   unsigned ResultReg = createResultReg(RC);
1834   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1835   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1836   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
1837 
1838   if (II.getNumDefs() >= 1)
1839     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1840         .addReg(Op0, getKillRegState(Op0IsKill))
1841         .addReg(Op1, getKillRegState(Op1IsKill))
1842         .addReg(Op2, getKillRegState(Op2IsKill));
1843   else {
1844     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1845         .addReg(Op0, getKillRegState(Op0IsKill))
1846         .addReg(Op1, getKillRegState(Op1IsKill))
1847         .addReg(Op2, getKillRegState(Op2IsKill));
1848     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1849             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1850   }
1851   return ResultReg;
1852 }
1853 
1854 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
1855                                    const TargetRegisterClass *RC, unsigned Op0,
1856                                    bool Op0IsKill, uint64_t Imm) {
1857   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1858 
1859   unsigned ResultReg = createResultReg(RC);
1860   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1861 
1862   if (II.getNumDefs() >= 1)
1863     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1864         .addReg(Op0, getKillRegState(Op0IsKill))
1865         .addImm(Imm);
1866   else {
1867     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1868         .addReg(Op0, getKillRegState(Op0IsKill))
1869         .addImm(Imm);
1870     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1871             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1872   }
1873   return ResultReg;
1874 }
1875 
1876 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
1877                                     const TargetRegisterClass *RC, unsigned Op0,
1878                                     bool Op0IsKill, uint64_t Imm1,
1879                                     uint64_t Imm2) {
1880   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1881 
1882   unsigned ResultReg = createResultReg(RC);
1883   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1884 
1885   if (II.getNumDefs() >= 1)
1886     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1887         .addReg(Op0, getKillRegState(Op0IsKill))
1888         .addImm(Imm1)
1889         .addImm(Imm2);
1890   else {
1891     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1892         .addReg(Op0, getKillRegState(Op0IsKill))
1893         .addImm(Imm1)
1894         .addImm(Imm2);
1895     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1896             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1897   }
1898   return ResultReg;
1899 }
1900 
1901 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
1902                                   const TargetRegisterClass *RC,
1903                                   const ConstantFP *FPImm) {
1904   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1905 
1906   unsigned ResultReg = createResultReg(RC);
1907 
1908   if (II.getNumDefs() >= 1)
1909     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1910         .addFPImm(FPImm);
1911   else {
1912     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1913         .addFPImm(FPImm);
1914     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1915             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1916   }
1917   return ResultReg;
1918 }
1919 
1920 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
1921                                     const TargetRegisterClass *RC, unsigned Op0,
1922                                     bool Op0IsKill, unsigned Op1,
1923                                     bool Op1IsKill, uint64_t Imm) {
1924   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1925 
1926   unsigned ResultReg = createResultReg(RC);
1927   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1928   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1929 
1930   if (II.getNumDefs() >= 1)
1931     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1932         .addReg(Op0, getKillRegState(Op0IsKill))
1933         .addReg(Op1, getKillRegState(Op1IsKill))
1934         .addImm(Imm);
1935   else {
1936     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1937         .addReg(Op0, getKillRegState(Op0IsKill))
1938         .addReg(Op1, getKillRegState(Op1IsKill))
1939         .addImm(Imm);
1940     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1941             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1942   }
1943   return ResultReg;
1944 }
1945 
1946 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
1947                                   const TargetRegisterClass *RC, uint64_t Imm) {
1948   unsigned ResultReg = createResultReg(RC);
1949   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1950 
1951   if (II.getNumDefs() >= 1)
1952     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1953         .addImm(Imm);
1954   else {
1955     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
1956     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1957             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1958   }
1959   return ResultReg;
1960 }
1961 
1962 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
1963                                               bool Op0IsKill, uint32_t Idx) {
1964   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1965   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1966          "Cannot yet extract from physregs");
1967   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
1968   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
1969   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1970           ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
1971   return ResultReg;
1972 }
1973 
1974 /// Emit MachineInstrs to compute the value of Op with all but the least
1975 /// significant bit set to zero.
1976 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1977   return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1978 }
1979 
1980 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1981 /// Emit code to ensure constants are copied into registers when needed.
1982 /// Remember the virtual registers that need to be added to the Machine PHI
1983 /// nodes as input.  We cannot just directly add them, because expansion
1984 /// might result in multiple MBB's for one BB.  As such, the start of the
1985 /// BB might correspond to a different MBB than the end.
1986 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1987   const TerminatorInst *TI = LLVMBB->getTerminator();
1988 
1989   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1990   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1991 
1992   // Check successor nodes' PHI nodes that expect a constant to be available
1993   // from this block.
1994   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1995     const BasicBlock *SuccBB = TI->getSuccessor(succ);
1996     if (!isa<PHINode>(SuccBB->begin()))
1997       continue;
1998     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1999 
2000     // If this terminator has multiple identical successors (common for
2001     // switches), only handle each succ once.
2002     if (!SuccsHandled.insert(SuccMBB).second)
2003       continue;
2004 
2005     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2006 
2007     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2008     // nodes and Machine PHI nodes, but the incoming operands have not been
2009     // emitted yet.
2010     for (BasicBlock::const_iterator I = SuccBB->begin();
2011          const auto *PN = dyn_cast<PHINode>(I); ++I) {
2012 
2013       // Ignore dead phi's.
2014       if (PN->use_empty())
2015         continue;
2016 
2017       // Only handle legal types. Two interesting things to note here. First,
2018       // by bailing out early, we may leave behind some dead instructions,
2019       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2020       // own moves. Second, this check is necessary because FastISel doesn't
2021       // use CreateRegs to create registers, so it always creates
2022       // exactly one register for each non-void instruction.
2023       EVT VT = TLI.getValueType(DL, PN->getType(), /*AllowUnknown=*/true);
2024       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2025         // Handle integer promotions, though, because they're common and easy.
2026         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2027           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2028           return false;
2029         }
2030       }
2031 
2032       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
2033 
2034       // Set the DebugLoc for the copy. Prefer the location of the operand
2035       // if there is one; use the location of the PHI otherwise.
2036       DbgLoc = PN->getDebugLoc();
2037       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2038         DbgLoc = Inst->getDebugLoc();
2039 
2040       unsigned Reg = getRegForValue(PHIOp);
2041       if (!Reg) {
2042         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2043         return false;
2044       }
2045       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2046       DbgLoc = DebugLoc();
2047     }
2048   }
2049 
2050   return true;
2051 }
2052 
2053 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2054   assert(LI->hasOneUse() &&
2055          "tryToFoldLoad expected a LoadInst with a single use");
2056   // We know that the load has a single use, but don't know what it is.  If it
2057   // isn't one of the folded instructions, then we can't succeed here.  Handle
2058   // this by scanning the single-use users of the load until we get to FoldInst.
2059   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2060 
2061   const Instruction *TheUser = LI->user_back();
2062   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2063          // Stay in the right block.
2064          TheUser->getParent() == FoldInst->getParent() &&
2065          --MaxUsers) { // Don't scan too far.
2066     // If there are multiple or no uses of this instruction, then bail out.
2067     if (!TheUser->hasOneUse())
2068       return false;
2069 
2070     TheUser = TheUser->user_back();
2071   }
2072 
2073   // If we didn't find the fold instruction, then we failed to collapse the
2074   // sequence.
2075   if (TheUser != FoldInst)
2076     return false;
2077 
2078   // Don't try to fold volatile loads.  Target has to deal with alignment
2079   // constraints.
2080   if (LI->isVolatile())
2081     return false;
2082 
2083   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2084   // then there actually was no reference to it.  Perhaps the load is referenced
2085   // by a dead instruction.
2086   unsigned LoadReg = getRegForValue(LI);
2087   if (!LoadReg)
2088     return false;
2089 
2090   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2091   // may mean that the instruction got lowered to multiple MIs, or the use of
2092   // the loaded value ended up being multiple operands of the result.
2093   if (!MRI.hasOneUse(LoadReg))
2094     return false;
2095 
2096   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2097   MachineInstr *User = RI->getParent();
2098 
2099   // Set the insertion point properly.  Folding the load can cause generation of
2100   // other random instructions (like sign extends) for addressing modes; make
2101   // sure they get inserted in a logical place before the new instruction.
2102   FuncInfo.InsertPt = User;
2103   FuncInfo.MBB = User->getParent();
2104 
2105   // Ask the target to try folding the load.
2106   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2107 }
2108 
2109 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2110   // Must be an add.
2111   if (!isa<AddOperator>(Add))
2112     return false;
2113   // Type size needs to match.
2114   if (DL.getTypeSizeInBits(GEP->getType()) !=
2115       DL.getTypeSizeInBits(Add->getType()))
2116     return false;
2117   // Must be in the same basic block.
2118   if (isa<Instruction>(Add) &&
2119       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2120     return false;
2121   // Must have a constant operand.
2122   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2123 }
2124 
2125 MachineMemOperand *
2126 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2127   const Value *Ptr;
2128   Type *ValTy;
2129   unsigned Alignment;
2130   MachineMemOperand::Flags Flags;
2131   bool IsVolatile;
2132 
2133   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2134     Alignment = LI->getAlignment();
2135     IsVolatile = LI->isVolatile();
2136     Flags = MachineMemOperand::MOLoad;
2137     Ptr = LI->getPointerOperand();
2138     ValTy = LI->getType();
2139   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2140     Alignment = SI->getAlignment();
2141     IsVolatile = SI->isVolatile();
2142     Flags = MachineMemOperand::MOStore;
2143     Ptr = SI->getPointerOperand();
2144     ValTy = SI->getValueOperand()->getType();
2145   } else
2146     return nullptr;
2147 
2148   bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr;
2149   bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
2150   bool IsDereferenceable =
2151       I->getMetadata(LLVMContext::MD_dereferenceable) != nullptr;
2152   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2153 
2154   AAMDNodes AAInfo;
2155   I->getAAMetadata(AAInfo);
2156 
2157   if (Alignment == 0) // Ensure that codegen never sees alignment 0.
2158     Alignment = DL.getABITypeAlignment(ValTy);
2159 
2160   unsigned Size = DL.getTypeStoreSize(ValTy);
2161 
2162   if (IsVolatile)
2163     Flags |= MachineMemOperand::MOVolatile;
2164   if (IsNonTemporal)
2165     Flags |= MachineMemOperand::MONonTemporal;
2166   if (IsDereferenceable)
2167     Flags |= MachineMemOperand::MODereferenceable;
2168   if (IsInvariant)
2169     Flags |= MachineMemOperand::MOInvariant;
2170 
2171   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2172                                            Alignment, AAInfo, Ranges);
2173 }
2174 
2175 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2176   // If both operands are the same, then try to optimize or fold the cmp.
2177   CmpInst::Predicate Predicate = CI->getPredicate();
2178   if (CI->getOperand(0) != CI->getOperand(1))
2179     return Predicate;
2180 
2181   switch (Predicate) {
2182   default: llvm_unreachable("Invalid predicate!");
2183   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2184   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2185   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2186   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2187   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2188   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2189   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2190   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2191   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2192   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2193   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2194   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2195   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2196   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2197   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2198   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2199 
2200   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2201   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2202   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2203   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2204   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2205   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2206   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2207   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2208   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2209   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2210   }
2211 
2212   return Predicate;
2213 }
2214