1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the FastISel class.
10 //
11 // "Fast" instruction selection is designed to emit very poor code quickly.
12 // Also, it is not designed to be able to do much lowering, so most illegal
13 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
14 // also not intended to be able to do much optimization, except in a few cases
15 // where doing optimizations reduces overall compile time.  For example, folding
16 // constants into immediate fields is often done, because it's cheap and it
17 // reduces the number of instructions later phases have to examine.
18 //
19 // "Fast" instruction selection is able to fail gracefully and transfer
20 // control to the SelectionDAG selector for operations that it doesn't
21 // support.  In many cases, this allows us to avoid duplicating a lot of
22 // the complicated lowering logic that SelectionDAG currently has.
23 //
24 // The intended use for "fast" instruction selection is "-O0" mode
25 // compilation, where the quality of the generated code is irrelevant when
26 // weighed against the speed at which the code can be generated.  Also,
27 // at -O0, the LLVM optimizers are not running, and this makes the
28 // compile time of codegen a much higher portion of the overall compile
29 // time.  Despite its limitations, "fast" instruction selection is able to
30 // handle enough code on its own to provide noticeable overall speedups
31 // in -O0 compiles.
32 //
33 // Basic operations are supported in a target-independent way, by reading
34 // the same instruction descriptions that the SelectionDAG selector reads,
35 // and identifying simple arithmetic operations that can be directly selected
36 // from simple operators.  More complicated operations currently require
37 // target-specific code.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "llvm/CodeGen/FastISel.h"
42 #include "llvm/ADT/APFloat.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/Optional.h"
46 #include "llvm/ADT/SmallPtrSet.h"
47 #include "llvm/ADT/SmallString.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/Analysis/BranchProbabilityInfo.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/CodeGen/Analysis.h"
53 #include "llvm/CodeGen/FunctionLoweringInfo.h"
54 #include "llvm/CodeGen/ISDOpcodes.h"
55 #include "llvm/CodeGen/MachineBasicBlock.h"
56 #include "llvm/CodeGen/MachineFrameInfo.h"
57 #include "llvm/CodeGen/MachineInstr.h"
58 #include "llvm/CodeGen/MachineInstrBuilder.h"
59 #include "llvm/CodeGen/MachineMemOperand.h"
60 #include "llvm/CodeGen/MachineModuleInfo.h"
61 #include "llvm/CodeGen/MachineOperand.h"
62 #include "llvm/CodeGen/MachineRegisterInfo.h"
63 #include "llvm/CodeGen/StackMaps.h"
64 #include "llvm/CodeGen/TargetInstrInfo.h"
65 #include "llvm/CodeGen/TargetLowering.h"
66 #include "llvm/CodeGen/TargetSubtargetInfo.h"
67 #include "llvm/CodeGen/ValueTypes.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfo.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Mangler.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Type.h"
92 #include "llvm/IR/User.h"
93 #include "llvm/IR/Value.h"
94 #include "llvm/MC/MCContext.h"
95 #include "llvm/MC/MCInstrDesc.h"
96 #include "llvm/MC/MCRegisterInfo.h"
97 #include "llvm/Support/Casting.h"
98 #include "llvm/Support/Debug.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/MachineValueType.h"
101 #include "llvm/Support/MathExtras.h"
102 #include "llvm/Support/raw_ostream.h"
103 #include "llvm/Target/TargetMachine.h"
104 #include "llvm/Target/TargetOptions.h"
105 #include <algorithm>
106 #include <cassert>
107 #include <cstdint>
108 #include <iterator>
109 #include <utility>
110 
111 using namespace llvm;
112 using namespace PatternMatch;
113 
114 #define DEBUG_TYPE "isel"
115 
116 // FIXME: Remove this after the feature has proven reliable.
117 static cl::opt<bool> SinkLocalValues("fast-isel-sink-local-values",
118                                      cl::init(true), cl::Hidden,
119                                      cl::desc("Sink local values in FastISel"));
120 
121 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
122                                          "target-independent selector");
123 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
124                                     "target-specific selector");
125 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
126 
127 /// Set the current block to which generated machine instructions will be
128 /// appended.
129 void FastISel::startNewBlock() {
130   assert(LocalValueMap.empty() &&
131          "local values should be cleared after finishing a BB");
132 
133   // Instructions are appended to FuncInfo.MBB. If the basic block already
134   // contains labels or copies, use the last instruction as the last local
135   // value.
136   EmitStartPt = nullptr;
137   if (!FuncInfo.MBB->empty())
138     EmitStartPt = &FuncInfo.MBB->back();
139   LastLocalValue = EmitStartPt;
140 }
141 
142 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
143 
144 bool FastISel::lowerArguments() {
145   if (!FuncInfo.CanLowerReturn)
146     // Fallback to SDISel argument lowering code to deal with sret pointer
147     // parameter.
148     return false;
149 
150   if (!fastLowerArguments())
151     return false;
152 
153   // Enter arguments into ValueMap for uses in non-entry BBs.
154   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
155                                     E = FuncInfo.Fn->arg_end();
156        I != E; ++I) {
157     DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I);
158     assert(VI != LocalValueMap.end() && "Missed an argument?");
159     FuncInfo.ValueMap[&*I] = VI->second;
160   }
161   return true;
162 }
163 
164 /// Return the defined register if this instruction defines exactly one
165 /// virtual register and uses no other virtual registers. Otherwise return 0.
166 static Register findLocalRegDef(MachineInstr &MI) {
167   Register RegDef;
168   for (const MachineOperand &MO : MI.operands()) {
169     if (!MO.isReg())
170       continue;
171     if (MO.isDef()) {
172       if (RegDef)
173         return Register();
174       RegDef = MO.getReg();
175     } else if (MO.getReg().isVirtual()) {
176       // This is another use of a vreg. Don't delete it.
177       return Register();
178     }
179   }
180   return RegDef;
181 }
182 
183 static bool isRegUsedByPhiNodes(Register DefReg,
184                                 FunctionLoweringInfo &FuncInfo) {
185   for (auto &P : FuncInfo.PHINodesToUpdate)
186     if (P.second == DefReg)
187       return true;
188   return false;
189 }
190 
191 void FastISel::flushLocalValueMap() {
192   // If FastISel bails out, it could leave local value instructions behind
193   // that aren't used for anything.  Detect and erase those.
194   if (LastLocalValue != EmitStartPt) {
195     MachineBasicBlock::reverse_iterator RE =
196         EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
197                     : FuncInfo.MBB->rend();
198     MachineBasicBlock::reverse_iterator RI(LastLocalValue);
199     for (; RI != RE;) {
200       MachineInstr &LocalMI = *RI;
201       // Increment before erasing what it points to.
202       ++RI;
203       Register DefReg = findLocalRegDef(LocalMI);
204       if (!DefReg)
205         continue;
206       if (FuncInfo.RegsWithFixups.count(DefReg))
207         continue;
208       bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
209       if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
210         if (EmitStartPt == &LocalMI)
211           EmitStartPt = EmitStartPt->getPrevNode();
212         LLVM_DEBUG(dbgs() << "removing dead local value materialization"
213                           << LocalMI);
214         LocalMI.eraseFromParent();
215       }
216     }
217   }
218 
219   LocalValueMap.clear();
220   LastLocalValue = EmitStartPt;
221   recomputeInsertPt();
222   SavedInsertPt = FuncInfo.InsertPt;
223   LastFlushPoint = FuncInfo.InsertPt;
224 }
225 
226 bool FastISel::hasTrivialKill(const Value *V) {
227   // Don't consider constants or arguments to have trivial kills.
228   const Instruction *I = dyn_cast<Instruction>(V);
229   if (!I)
230     return false;
231 
232   // No-op casts are trivially coalesced by fast-isel.
233   if (const auto *Cast = dyn_cast<CastInst>(I))
234     if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0)))
235       return false;
236 
237   // Even the value might have only one use in the LLVM IR, it is possible that
238   // FastISel might fold the use into another instruction and now there is more
239   // than one use at the Machine Instruction level.
240   Register Reg = lookUpRegForValue(V);
241   if (Reg && !MRI.use_empty(Reg))
242     return false;
243 
244   // GEPs with all zero indices are trivially coalesced by fast-isel.
245   if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
246     if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
247       return false;
248 
249   // Only instructions with a single use in the same basic block are considered
250   // to have trivial kills.
251   return I->hasOneUse() &&
252          !(I->getOpcode() == Instruction::BitCast ||
253            I->getOpcode() == Instruction::PtrToInt ||
254            I->getOpcode() == Instruction::IntToPtr) &&
255          cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
256 }
257 
258 Register FastISel::getRegForValue(const Value *V) {
259   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
260   // Don't handle non-simple values in FastISel.
261   if (!RealVT.isSimple())
262     return Register();
263 
264   // Ignore illegal types. We must do this before looking up the value
265   // in ValueMap because Arguments are given virtual registers regardless
266   // of whether FastISel can handle them.
267   MVT VT = RealVT.getSimpleVT();
268   if (!TLI.isTypeLegal(VT)) {
269     // Handle integer promotions, though, because they're common and easy.
270     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
271       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
272     else
273       return Register();
274   }
275 
276   // Look up the value to see if we already have a register for it.
277   Register Reg = lookUpRegForValue(V);
278   if (Reg)
279     return Reg;
280 
281   // In bottom-up mode, just create the virtual register which will be used
282   // to hold the value. It will be materialized later.
283   if (isa<Instruction>(V) &&
284       (!isa<AllocaInst>(V) ||
285        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
286     return FuncInfo.InitializeRegForValue(V);
287 
288   SavePoint SaveInsertPt = enterLocalValueArea();
289 
290   // Materialize the value in a register. Emit any instructions in the
291   // local value area.
292   Reg = materializeRegForValue(V, VT);
293 
294   leaveLocalValueArea(SaveInsertPt);
295 
296   return Reg;
297 }
298 
299 Register FastISel::materializeConstant(const Value *V, MVT VT) {
300   Register Reg;
301   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
302     if (CI->getValue().getActiveBits() <= 64)
303       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
304   } else if (isa<AllocaInst>(V))
305     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
306   else if (isa<ConstantPointerNull>(V))
307     // Translate this as an integer zero so that it can be
308     // local-CSE'd with actual integer zeros.
309     Reg =
310         getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType())));
311   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
312     if (CF->isNullValue())
313       Reg = fastMaterializeFloatZero(CF);
314     else
315       // Try to emit the constant directly.
316       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
317 
318     if (!Reg) {
319       // Try to emit the constant by using an integer constant with a cast.
320       const APFloat &Flt = CF->getValueAPF();
321       EVT IntVT = TLI.getPointerTy(DL);
322       uint32_t IntBitWidth = IntVT.getSizeInBits();
323       APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
324       bool isExact;
325       (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
326       if (isExact) {
327         Register IntegerReg =
328             getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
329         if (IntegerReg)
330           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
331                            /*Op0IsKill=*/false);
332       }
333     }
334   } else if (const auto *Op = dyn_cast<Operator>(V)) {
335     if (!selectOperator(Op, Op->getOpcode()))
336       if (!isa<Instruction>(Op) ||
337           !fastSelectInstruction(cast<Instruction>(Op)))
338         return 0;
339     Reg = lookUpRegForValue(Op);
340   } else if (isa<UndefValue>(V)) {
341     Reg = createResultReg(TLI.getRegClassFor(VT));
342     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
343             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
344   }
345   return Reg;
346 }
347 
348 /// Helper for getRegForValue. This function is called when the value isn't
349 /// already available in a register and must be materialized with new
350 /// instructions.
351 Register FastISel::materializeRegForValue(const Value *V, MVT VT) {
352   Register Reg;
353   // Give the target-specific code a try first.
354   if (isa<Constant>(V))
355     Reg = fastMaterializeConstant(cast<Constant>(V));
356 
357   // If target-specific code couldn't or didn't want to handle the value, then
358   // give target-independent code a try.
359   if (!Reg)
360     Reg = materializeConstant(V, VT);
361 
362   // Don't cache constant materializations in the general ValueMap.
363   // To do so would require tracking what uses they dominate.
364   if (Reg) {
365     LocalValueMap[V] = Reg;
366     LastLocalValue = MRI.getVRegDef(Reg);
367   }
368   return Reg;
369 }
370 
371 Register FastISel::lookUpRegForValue(const Value *V) {
372   // Look up the value to see if we already have a register for it. We
373   // cache values defined by Instructions across blocks, and other values
374   // only locally. This is because Instructions already have the SSA
375   // def-dominates-use requirement enforced.
376   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V);
377   if (I != FuncInfo.ValueMap.end())
378     return I->second;
379   return LocalValueMap[V];
380 }
381 
382 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) {
383   if (!isa<Instruction>(I)) {
384     LocalValueMap[I] = Reg;
385     return;
386   }
387 
388   Register &AssignedReg = FuncInfo.ValueMap[I];
389   if (!AssignedReg)
390     // Use the new register.
391     AssignedReg = Reg;
392   else if (Reg != AssignedReg) {
393     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
394     for (unsigned i = 0; i < NumRegs; i++) {
395       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
396       FuncInfo.RegsWithFixups.insert(Reg + i);
397     }
398 
399     AssignedReg = Reg;
400   }
401 }
402 
403 std::pair<Register, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
404   Register IdxN = getRegForValue(Idx);
405   if (!IdxN)
406     // Unhandled operand. Halt "fast" selection and bail.
407     return std::pair<Register, bool>(Register(), false);
408 
409   bool IdxNIsKill = hasTrivialKill(Idx);
410 
411   // If the index is smaller or larger than intptr_t, truncate or extend it.
412   MVT PtrVT = TLI.getPointerTy(DL);
413   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
414   if (IdxVT.bitsLT(PtrVT)) {
415     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
416                       IdxNIsKill);
417     IdxNIsKill = true;
418   } else if (IdxVT.bitsGT(PtrVT)) {
419     IdxN =
420         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
421     IdxNIsKill = true;
422   }
423   return std::pair<Register, bool>(IdxN, IdxNIsKill);
424 }
425 
426 void FastISel::recomputeInsertPt() {
427   if (getLastLocalValue()) {
428     FuncInfo.InsertPt = getLastLocalValue();
429     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
430     ++FuncInfo.InsertPt;
431   } else
432     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
433 
434   // Now skip past any EH_LABELs, which must remain at the beginning.
435   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
436          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
437     ++FuncInfo.InsertPt;
438 }
439 
440 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
441                               MachineBasicBlock::iterator E) {
442   assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
443          "Invalid iterator!");
444   while (I != E) {
445     if (LastFlushPoint == I)
446       LastFlushPoint = E;
447     if (SavedInsertPt == I)
448       SavedInsertPt = E;
449     if (EmitStartPt == I)
450       EmitStartPt = E.isValid() ? &*E : nullptr;
451     if (LastLocalValue == I)
452       LastLocalValue = E.isValid() ? &*E : nullptr;
453 
454     MachineInstr *Dead = &*I;
455     ++I;
456     Dead->eraseFromParent();
457     ++NumFastIselDead;
458   }
459   recomputeInsertPt();
460 }
461 
462 FastISel::SavePoint FastISel::enterLocalValueArea() {
463   SavePoint OldInsertPt = FuncInfo.InsertPt;
464   recomputeInsertPt();
465   return OldInsertPt;
466 }
467 
468 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
469   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
470     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
471 
472   // Restore the previous insert position.
473   FuncInfo.InsertPt = OldInsertPt;
474 }
475 
476 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
477   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
478   if (VT == MVT::Other || !VT.isSimple())
479     // Unhandled type. Halt "fast" selection and bail.
480     return false;
481 
482   // We only handle legal types. For example, on x86-32 the instruction
483   // selector contains all of the 64-bit instructions from x86-64,
484   // under the assumption that i64 won't be used if the target doesn't
485   // support it.
486   if (!TLI.isTypeLegal(VT)) {
487     // MVT::i1 is special. Allow AND, OR, or XOR because they
488     // don't require additional zeroing, which makes them easy.
489     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
490                           ISDOpcode == ISD::XOR))
491       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
492     else
493       return false;
494   }
495 
496   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
497   // we don't have anything that canonicalizes operand order.
498   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
499     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
500       Register Op1 = getRegForValue(I->getOperand(1));
501       if (!Op1)
502         return false;
503       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
504 
505       Register ResultReg =
506           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
507                        CI->getZExtValue(), VT.getSimpleVT());
508       if (!ResultReg)
509         return false;
510 
511       // We successfully emitted code for the given LLVM Instruction.
512       updateValueMap(I, ResultReg);
513       return true;
514     }
515 
516   Register Op0 = getRegForValue(I->getOperand(0));
517   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
518     return false;
519   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
520 
521   // Check if the second operand is a constant and handle it appropriately.
522   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
523     uint64_t Imm = CI->getSExtValue();
524 
525     // Transform "sdiv exact X, 8" -> "sra X, 3".
526     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
527         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
528       Imm = Log2_64(Imm);
529       ISDOpcode = ISD::SRA;
530     }
531 
532     // Transform "urem x, pow2" -> "and x, pow2-1".
533     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
534         isPowerOf2_64(Imm)) {
535       --Imm;
536       ISDOpcode = ISD::AND;
537     }
538 
539     Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
540                                       Op0IsKill, Imm, VT.getSimpleVT());
541     if (!ResultReg)
542       return false;
543 
544     // We successfully emitted code for the given LLVM Instruction.
545     updateValueMap(I, ResultReg);
546     return true;
547   }
548 
549   Register Op1 = getRegForValue(I->getOperand(1));
550   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
551     return false;
552   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
553 
554   // Now we have both operands in registers. Emit the instruction.
555   Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
556                                    ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
557   if (!ResultReg)
558     // Target-specific code wasn't able to find a machine opcode for
559     // the given ISD opcode and type. Halt "fast" selection and bail.
560     return false;
561 
562   // We successfully emitted code for the given LLVM Instruction.
563   updateValueMap(I, ResultReg);
564   return true;
565 }
566 
567 bool FastISel::selectGetElementPtr(const User *I) {
568   Register N = getRegForValue(I->getOperand(0));
569   if (!N) // Unhandled operand. Halt "fast" selection and bail.
570     return false;
571 
572   // FIXME: The code below does not handle vector GEPs. Halt "fast" selection
573   // and bail.
574   if (isa<VectorType>(I->getType()))
575     return false;
576 
577   bool NIsKill = hasTrivialKill(I->getOperand(0));
578 
579   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
580   // into a single N = N + TotalOffset.
581   uint64_t TotalOffs = 0;
582   // FIXME: What's a good SWAG number for MaxOffs?
583   uint64_t MaxOffs = 2048;
584   MVT VT = TLI.getPointerTy(DL);
585   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
586        GTI != E; ++GTI) {
587     const Value *Idx = GTI.getOperand();
588     if (StructType *StTy = GTI.getStructTypeOrNull()) {
589       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
590       if (Field) {
591         // N = N + Offset
592         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
593         if (TotalOffs >= MaxOffs) {
594           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
595           if (!N) // Unhandled operand. Halt "fast" selection and bail.
596             return false;
597           NIsKill = true;
598           TotalOffs = 0;
599         }
600       }
601     } else {
602       Type *Ty = GTI.getIndexedType();
603 
604       // If this is a constant subscript, handle it quickly.
605       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
606         if (CI->isZero())
607           continue;
608         // N = N + Offset
609         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
610         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
611         if (TotalOffs >= MaxOffs) {
612           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
613           if (!N) // Unhandled operand. Halt "fast" selection and bail.
614             return false;
615           NIsKill = true;
616           TotalOffs = 0;
617         }
618         continue;
619       }
620       if (TotalOffs) {
621         N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
622         if (!N) // Unhandled operand. Halt "fast" selection and bail.
623           return false;
624         NIsKill = true;
625         TotalOffs = 0;
626       }
627 
628       // N = N + Idx * ElementSize;
629       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
630       std::pair<Register, bool> Pair = getRegForGEPIndex(Idx);
631       Register IdxN = Pair.first;
632       bool IdxNIsKill = Pair.second;
633       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
634         return false;
635 
636       if (ElementSize != 1) {
637         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
638         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
639           return false;
640         IdxNIsKill = true;
641       }
642       N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
643       if (!N) // Unhandled operand. Halt "fast" selection and bail.
644         return false;
645     }
646   }
647   if (TotalOffs) {
648     N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
649     if (!N) // Unhandled operand. Halt "fast" selection and bail.
650       return false;
651   }
652 
653   // We successfully emitted code for the given LLVM Instruction.
654   updateValueMap(I, N);
655   return true;
656 }
657 
658 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
659                                    const CallInst *CI, unsigned StartIdx) {
660   for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
661     Value *Val = CI->getArgOperand(i);
662     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
663     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
664       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
665       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
666     } else if (isa<ConstantPointerNull>(Val)) {
667       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
668       Ops.push_back(MachineOperand::CreateImm(0));
669     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
670       // Values coming from a stack location also require a special encoding,
671       // but that is added later on by the target specific frame index
672       // elimination implementation.
673       auto SI = FuncInfo.StaticAllocaMap.find(AI);
674       if (SI != FuncInfo.StaticAllocaMap.end())
675         Ops.push_back(MachineOperand::CreateFI(SI->second));
676       else
677         return false;
678     } else {
679       Register Reg = getRegForValue(Val);
680       if (!Reg)
681         return false;
682       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
683     }
684   }
685   return true;
686 }
687 
688 bool FastISel::selectStackmap(const CallInst *I) {
689   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
690   //                                  [live variables...])
691   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
692          "Stackmap cannot return a value.");
693 
694   // The stackmap intrinsic only records the live variables (the arguments
695   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
696   // intrinsic, this won't be lowered to a function call. This means we don't
697   // have to worry about calling conventions and target-specific lowering code.
698   // Instead we perform the call lowering right here.
699   //
700   // CALLSEQ_START(0, 0...)
701   // STACKMAP(id, nbytes, ...)
702   // CALLSEQ_END(0, 0)
703   //
704   SmallVector<MachineOperand, 32> Ops;
705 
706   // Add the <id> and <numBytes> constants.
707   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
708          "Expected a constant integer.");
709   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
710   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
711 
712   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
713          "Expected a constant integer.");
714   const auto *NumBytes =
715       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
716   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
717 
718   // Push live variables for the stack map (skipping the first two arguments
719   // <id> and <numBytes>).
720   if (!addStackMapLiveVars(Ops, I, 2))
721     return false;
722 
723   // We are not adding any register mask info here, because the stackmap doesn't
724   // clobber anything.
725 
726   // Add scratch registers as implicit def and early clobber.
727   CallingConv::ID CC = I->getCallingConv();
728   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
729   for (unsigned i = 0; ScratchRegs[i]; ++i)
730     Ops.push_back(MachineOperand::CreateReg(
731         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
732         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
733 
734   // Issue CALLSEQ_START
735   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
736   auto Builder =
737       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
738   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
739   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
740     Builder.addImm(0);
741 
742   // Issue STACKMAP.
743   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
744                                     TII.get(TargetOpcode::STACKMAP));
745   for (auto const &MO : Ops)
746     MIB.add(MO);
747 
748   // Issue CALLSEQ_END
749   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
750   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
751       .addImm(0)
752       .addImm(0);
753 
754   // Inform the Frame Information that we have a stackmap in this function.
755   FuncInfo.MF->getFrameInfo().setHasStackMap();
756 
757   return true;
758 }
759 
760 /// Lower an argument list according to the target calling convention.
761 ///
762 /// This is a helper for lowering intrinsics that follow a target calling
763 /// convention or require stack pointer adjustment. Only a subset of the
764 /// intrinsic's operands need to participate in the calling convention.
765 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
766                                  unsigned NumArgs, const Value *Callee,
767                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
768   ArgListTy Args;
769   Args.reserve(NumArgs);
770 
771   // Populate the argument list.
772   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
773     Value *V = CI->getOperand(ArgI);
774 
775     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
776 
777     ArgListEntry Entry;
778     Entry.Val = V;
779     Entry.Ty = V->getType();
780     Entry.setAttributes(CI, ArgI);
781     Args.push_back(Entry);
782   }
783 
784   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
785                                : CI->getType();
786   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
787 
788   return lowerCallTo(CLI);
789 }
790 
791 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
792     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
793     StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
794   SmallString<32> MangledName;
795   Mangler::getNameWithPrefix(MangledName, Target, DL);
796   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
797   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
798 }
799 
800 bool FastISel::selectPatchpoint(const CallInst *I) {
801   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
802   //                                                 i32 <numBytes>,
803   //                                                 i8* <target>,
804   //                                                 i32 <numArgs>,
805   //                                                 [Args...],
806   //                                                 [live variables...])
807   CallingConv::ID CC = I->getCallingConv();
808   bool IsAnyRegCC = CC == CallingConv::AnyReg;
809   bool HasDef = !I->getType()->isVoidTy();
810   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
811 
812   // Get the real number of arguments participating in the call <numArgs>
813   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
814          "Expected a constant integer.");
815   const auto *NumArgsVal =
816       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
817   unsigned NumArgs = NumArgsVal->getZExtValue();
818 
819   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
820   // This includes all meta-operands up to but not including CC.
821   unsigned NumMetaOpers = PatchPointOpers::CCPos;
822   assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
823          "Not enough arguments provided to the patchpoint intrinsic");
824 
825   // For AnyRegCC the arguments are lowered later on manually.
826   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
827   CallLoweringInfo CLI;
828   CLI.setIsPatchPoint();
829   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
830     return false;
831 
832   assert(CLI.Call && "No call instruction specified.");
833 
834   SmallVector<MachineOperand, 32> Ops;
835 
836   // Add an explicit result reg if we use the anyreg calling convention.
837   if (IsAnyRegCC && HasDef) {
838     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
839     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
840     CLI.NumResultRegs = 1;
841     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
842   }
843 
844   // Add the <id> and <numBytes> constants.
845   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
846          "Expected a constant integer.");
847   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
848   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
849 
850   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
851          "Expected a constant integer.");
852   const auto *NumBytes =
853       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
854   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
855 
856   // Add the call target.
857   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
858     uint64_t CalleeConstAddr =
859       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
860     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
861   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
862     if (C->getOpcode() == Instruction::IntToPtr) {
863       uint64_t CalleeConstAddr =
864         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
865       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
866     } else
867       llvm_unreachable("Unsupported ConstantExpr.");
868   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
869     Ops.push_back(MachineOperand::CreateGA(GV, 0));
870   } else if (isa<ConstantPointerNull>(Callee))
871     Ops.push_back(MachineOperand::CreateImm(0));
872   else
873     llvm_unreachable("Unsupported callee address.");
874 
875   // Adjust <numArgs> to account for any arguments that have been passed on
876   // the stack instead.
877   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
878   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
879 
880   // Add the calling convention
881   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
882 
883   // Add the arguments we omitted previously. The register allocator should
884   // place these in any free register.
885   if (IsAnyRegCC) {
886     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
887       Register Reg = getRegForValue(I->getArgOperand(i));
888       if (!Reg)
889         return false;
890       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
891     }
892   }
893 
894   // Push the arguments from the call instruction.
895   for (auto Reg : CLI.OutRegs)
896     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
897 
898   // Push live variables for the stack map.
899   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
900     return false;
901 
902   // Push the register mask info.
903   Ops.push_back(MachineOperand::CreateRegMask(
904       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
905 
906   // Add scratch registers as implicit def and early clobber.
907   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
908   for (unsigned i = 0; ScratchRegs[i]; ++i)
909     Ops.push_back(MachineOperand::CreateReg(
910         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
911         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
912 
913   // Add implicit defs (return values).
914   for (auto Reg : CLI.InRegs)
915     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
916                                             /*isImp=*/true));
917 
918   // Insert the patchpoint instruction before the call generated by the target.
919   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
920                                     TII.get(TargetOpcode::PATCHPOINT));
921 
922   for (auto &MO : Ops)
923     MIB.add(MO);
924 
925   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
926 
927   // Delete the original call instruction.
928   CLI.Call->eraseFromParent();
929 
930   // Inform the Frame Information that we have a patchpoint in this function.
931   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
932 
933   if (CLI.NumResultRegs)
934     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
935   return true;
936 }
937 
938 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
939   const auto &Triple = TM.getTargetTriple();
940   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
941     return true; // don't do anything to this instruction.
942   SmallVector<MachineOperand, 8> Ops;
943   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
944                                           /*isDef=*/false));
945   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
946                                           /*isDef=*/false));
947   MachineInstrBuilder MIB =
948       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
949               TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
950   for (auto &MO : Ops)
951     MIB.add(MO);
952 
953   // Insert the Patchable Event Call instruction, that gets lowered properly.
954   return true;
955 }
956 
957 bool FastISel::selectXRayTypedEvent(const CallInst *I) {
958   const auto &Triple = TM.getTargetTriple();
959   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
960     return true; // don't do anything to this instruction.
961   SmallVector<MachineOperand, 8> Ops;
962   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
963                                           /*isDef=*/false));
964   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
965                                           /*isDef=*/false));
966   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
967                                           /*isDef=*/false));
968   MachineInstrBuilder MIB =
969       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
970               TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
971   for (auto &MO : Ops)
972     MIB.add(MO);
973 
974   // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
975   return true;
976 }
977 
978 /// Returns an AttributeList representing the attributes applied to the return
979 /// value of the given call.
980 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
981   SmallVector<Attribute::AttrKind, 2> Attrs;
982   if (CLI.RetSExt)
983     Attrs.push_back(Attribute::SExt);
984   if (CLI.RetZExt)
985     Attrs.push_back(Attribute::ZExt);
986   if (CLI.IsInReg)
987     Attrs.push_back(Attribute::InReg);
988 
989   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
990                             Attrs);
991 }
992 
993 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
994                            unsigned NumArgs) {
995   MCContext &Ctx = MF->getContext();
996   SmallString<32> MangledName;
997   Mangler::getNameWithPrefix(MangledName, SymName, DL);
998   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
999   return lowerCallTo(CI, Sym, NumArgs);
1000 }
1001 
1002 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
1003                            unsigned NumArgs) {
1004   FunctionType *FTy = CI->getFunctionType();
1005   Type *RetTy = CI->getType();
1006 
1007   ArgListTy Args;
1008   Args.reserve(NumArgs);
1009 
1010   // Populate the argument list.
1011   // Attributes for args start at offset 1, after the return attribute.
1012   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
1013     Value *V = CI->getOperand(ArgI);
1014 
1015     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
1016 
1017     ArgListEntry Entry;
1018     Entry.Val = V;
1019     Entry.Ty = V->getType();
1020     Entry.setAttributes(CI, ArgI);
1021     Args.push_back(Entry);
1022   }
1023   TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args);
1024 
1025   CallLoweringInfo CLI;
1026   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs);
1027 
1028   return lowerCallTo(CLI);
1029 }
1030 
1031 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
1032   // Handle the incoming return values from the call.
1033   CLI.clearIns();
1034   SmallVector<EVT, 4> RetTys;
1035   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
1036 
1037   SmallVector<ISD::OutputArg, 4> Outs;
1038   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1039 
1040   bool CanLowerReturn = TLI.CanLowerReturn(
1041       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
1042 
1043   // FIXME: sret demotion isn't supported yet - bail out.
1044   if (!CanLowerReturn)
1045     return false;
1046 
1047   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
1048     EVT VT = RetTys[I];
1049     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1050     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1051     for (unsigned i = 0; i != NumRegs; ++i) {
1052       ISD::InputArg MyFlags;
1053       MyFlags.VT = RegisterVT;
1054       MyFlags.ArgVT = VT;
1055       MyFlags.Used = CLI.IsReturnValueUsed;
1056       if (CLI.RetSExt)
1057         MyFlags.Flags.setSExt();
1058       if (CLI.RetZExt)
1059         MyFlags.Flags.setZExt();
1060       if (CLI.IsInReg)
1061         MyFlags.Flags.setInReg();
1062       CLI.Ins.push_back(MyFlags);
1063     }
1064   }
1065 
1066   // Handle all of the outgoing arguments.
1067   CLI.clearOuts();
1068   for (auto &Arg : CLI.getArgs()) {
1069     Type *FinalType = Arg.Ty;
1070     if (Arg.IsByVal)
1071       FinalType = cast<PointerType>(Arg.Ty)->getElementType();
1072     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1073         FinalType, CLI.CallConv, CLI.IsVarArg);
1074 
1075     ISD::ArgFlagsTy Flags;
1076     if (Arg.IsZExt)
1077       Flags.setZExt();
1078     if (Arg.IsSExt)
1079       Flags.setSExt();
1080     if (Arg.IsInReg)
1081       Flags.setInReg();
1082     if (Arg.IsSRet)
1083       Flags.setSRet();
1084     if (Arg.IsSwiftSelf)
1085       Flags.setSwiftSelf();
1086     if (Arg.IsSwiftError)
1087       Flags.setSwiftError();
1088     if (Arg.IsCFGuardTarget)
1089       Flags.setCFGuardTarget();
1090     if (Arg.IsByVal)
1091       Flags.setByVal();
1092     if (Arg.IsInAlloca) {
1093       Flags.setInAlloca();
1094       // Set the byval flag for CCAssignFn callbacks that don't know about
1095       // inalloca. This way we can know how many bytes we should've allocated
1096       // and how many bytes a callee cleanup function will pop.  If we port
1097       // inalloca to more targets, we'll have to add custom inalloca handling in
1098       // the various CC lowering callbacks.
1099       Flags.setByVal();
1100     }
1101     if (Arg.IsPreallocated) {
1102       Flags.setPreallocated();
1103       // Set the byval flag for CCAssignFn callbacks that don't know about
1104       // preallocated. This way we can know how many bytes we should've
1105       // allocated and how many bytes a callee cleanup function will pop.  If we
1106       // port preallocated to more targets, we'll have to add custom
1107       // preallocated handling in the various CC lowering callbacks.
1108       Flags.setByVal();
1109     }
1110     if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) {
1111       PointerType *Ty = cast<PointerType>(Arg.Ty);
1112       Type *ElementTy = Ty->getElementType();
1113       unsigned FrameSize =
1114           DL.getTypeAllocSize(Arg.ByValType ? Arg.ByValType : ElementTy);
1115 
1116       // For ByVal, alignment should come from FE. BE will guess if this info
1117       // is not there, but there are cases it cannot get right.
1118       MaybeAlign FrameAlign = Arg.Alignment;
1119       if (!FrameAlign)
1120         FrameAlign = Align(TLI.getByValTypeAlignment(ElementTy, DL));
1121       Flags.setByValSize(FrameSize);
1122       Flags.setByValAlign(*FrameAlign);
1123     }
1124     if (Arg.IsNest)
1125       Flags.setNest();
1126     if (NeedsRegBlock)
1127       Flags.setInConsecutiveRegs();
1128     Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
1129 
1130     CLI.OutVals.push_back(Arg.Val);
1131     CLI.OutFlags.push_back(Flags);
1132   }
1133 
1134   if (!fastLowerCall(CLI))
1135     return false;
1136 
1137   // Set all unused physreg defs as dead.
1138   assert(CLI.Call && "No call instruction specified.");
1139   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1140 
1141   if (CLI.NumResultRegs && CLI.CB)
1142     updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs);
1143 
1144   // Set labels for heapallocsite call.
1145   if (CLI.CB)
1146     if (MDNode *MD = CLI.CB->getMetadata("heapallocsite"))
1147       CLI.Call->setHeapAllocMarker(*MF, MD);
1148 
1149   return true;
1150 }
1151 
1152 bool FastISel::lowerCall(const CallInst *CI) {
1153   FunctionType *FuncTy = CI->getFunctionType();
1154   Type *RetTy = CI->getType();
1155 
1156   ArgListTy Args;
1157   ArgListEntry Entry;
1158   Args.reserve(CI->arg_size());
1159 
1160   for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) {
1161     Value *V = *i;
1162 
1163     // Skip empty types
1164     if (V->getType()->isEmptyTy())
1165       continue;
1166 
1167     Entry.Val = V;
1168     Entry.Ty = V->getType();
1169 
1170     // Skip the first return-type Attribute to get to params.
1171     Entry.setAttributes(CI, i - CI->arg_begin());
1172     Args.push_back(Entry);
1173   }
1174 
1175   // Check if target-independent constraints permit a tail call here.
1176   // Target-dependent constraints are checked within fastLowerCall.
1177   bool IsTailCall = CI->isTailCall();
1178   if (IsTailCall && !isInTailCallPosition(*CI, TM))
1179     IsTailCall = false;
1180   if (IsTailCall && MF->getFunction()
1181                             .getFnAttribute("disable-tail-calls")
1182                             .getValueAsString() == "true")
1183     IsTailCall = false;
1184 
1185   CallLoweringInfo CLI;
1186   CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI)
1187       .setTailCall(IsTailCall);
1188 
1189   return lowerCallTo(CLI);
1190 }
1191 
1192 bool FastISel::selectCall(const User *I) {
1193   const CallInst *Call = cast<CallInst>(I);
1194 
1195   // Handle simple inline asms.
1196   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) {
1197     // If the inline asm has side effects, then make sure that no local value
1198     // lives across by flushing the local value map.
1199     if (IA->hasSideEffects())
1200       flushLocalValueMap();
1201 
1202     // Don't attempt to handle constraints.
1203     if (!IA->getConstraintString().empty())
1204       return false;
1205 
1206     unsigned ExtraInfo = 0;
1207     if (IA->hasSideEffects())
1208       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1209     if (IA->isAlignStack())
1210       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1211     if (Call->isConvergent())
1212       ExtraInfo |= InlineAsm::Extra_IsConvergent;
1213     ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
1214 
1215     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1216                                       TII.get(TargetOpcode::INLINEASM));
1217     MIB.addExternalSymbol(IA->getAsmString().c_str());
1218     MIB.addImm(ExtraInfo);
1219 
1220     const MDNode *SrcLoc = Call->getMetadata("srcloc");
1221     if (SrcLoc)
1222       MIB.addMetadata(SrcLoc);
1223 
1224     return true;
1225   }
1226 
1227   // Handle intrinsic function calls.
1228   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1229     return selectIntrinsicCall(II);
1230 
1231   // Usually, it does not make sense to initialize a value,
1232   // make an unrelated function call and use the value, because
1233   // it tends to be spilled on the stack. So, we move the pointer
1234   // to the last local value to the beginning of the block, so that
1235   // all the values which have already been materialized,
1236   // appear after the call. It also makes sense to skip intrinsics
1237   // since they tend to be inlined.
1238   flushLocalValueMap();
1239 
1240   return lowerCall(Call);
1241 }
1242 
1243 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1244   switch (II->getIntrinsicID()) {
1245   default:
1246     break;
1247   // At -O0 we don't care about the lifetime intrinsics.
1248   case Intrinsic::lifetime_start:
1249   case Intrinsic::lifetime_end:
1250   // The donothing intrinsic does, well, nothing.
1251   case Intrinsic::donothing:
1252   // Neither does the sideeffect intrinsic.
1253   case Intrinsic::sideeffect:
1254   // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1255   case Intrinsic::assume:
1256     return true;
1257   case Intrinsic::dbg_declare: {
1258     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1259     assert(DI->getVariable() && "Missing variable");
1260     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1261       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1262                         << " (!hasDebugInfo)\n");
1263       return true;
1264     }
1265 
1266     const Value *Address = DI->getAddress();
1267     if (!Address || isa<UndefValue>(Address)) {
1268       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1269                         << " (bad/undef address)\n");
1270       return true;
1271     }
1272 
1273     // Byval arguments with frame indices were already handled after argument
1274     // lowering and before isel.
1275     const auto *Arg =
1276         dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
1277     if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
1278       return true;
1279 
1280     Optional<MachineOperand> Op;
1281     if (Register Reg = lookUpRegForValue(Address))
1282       Op = MachineOperand::CreateReg(Reg, false);
1283 
1284     // If we have a VLA that has a "use" in a metadata node that's then used
1285     // here but it has no other uses, then we have a problem. E.g.,
1286     //
1287     //   int foo (const int *x) {
1288     //     char a[*x];
1289     //     return 0;
1290     //   }
1291     //
1292     // If we assign 'a' a vreg and fast isel later on has to use the selection
1293     // DAG isel, it will want to copy the value to the vreg. However, there are
1294     // no uses, which goes counter to what selection DAG isel expects.
1295     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1296         (!isa<AllocaInst>(Address) ||
1297          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1298       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1299                                      false);
1300 
1301     if (Op) {
1302       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1303              "Expected inlined-at fields to agree");
1304       // A dbg.declare describes the address of a source variable, so lower it
1305       // into an indirect DBG_VALUE.
1306       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1307               TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true,
1308               *Op, DI->getVariable(), DI->getExpression());
1309     } else {
1310       // We can't yet handle anything else here because it would require
1311       // generating code, thus altering codegen because of debug info.
1312       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1313                         << " (no materialized reg for address)\n");
1314     }
1315     return true;
1316   }
1317   case Intrinsic::dbg_value: {
1318     // This form of DBG_VALUE is target-independent.
1319     const DbgValueInst *DI = cast<DbgValueInst>(II);
1320     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1321     const Value *V = DI->getValue();
1322     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1323            "Expected inlined-at fields to agree");
1324     if (!V || isa<UndefValue>(V)) {
1325       // Currently the optimizer can produce this; insert an undef to
1326       // help debugging.
1327       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
1328               DI->getVariable(), DI->getExpression());
1329     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1330       if (CI->getBitWidth() > 64)
1331         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1332             .addCImm(CI)
1333             .addImm(0U)
1334             .addMetadata(DI->getVariable())
1335             .addMetadata(DI->getExpression());
1336       else
1337         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1338             .addImm(CI->getZExtValue())
1339             .addImm(0U)
1340             .addMetadata(DI->getVariable())
1341             .addMetadata(DI->getExpression());
1342     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1343       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1344           .addFPImm(CF)
1345           .addImm(0U)
1346           .addMetadata(DI->getVariable())
1347           .addMetadata(DI->getExpression());
1348     } else if (Register Reg = lookUpRegForValue(V)) {
1349       // FIXME: This does not handle register-indirect values at offset 0.
1350       bool IsIndirect = false;
1351       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1352               DI->getVariable(), DI->getExpression());
1353     } else {
1354       // We don't know how to handle other cases, so we drop.
1355       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1356     }
1357     return true;
1358   }
1359   case Intrinsic::dbg_label: {
1360     const DbgLabelInst *DI = cast<DbgLabelInst>(II);
1361     assert(DI->getLabel() && "Missing label");
1362     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1363       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1364       return true;
1365     }
1366 
1367     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1368             TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
1369     return true;
1370   }
1371   case Intrinsic::objectsize:
1372     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1373 
1374   case Intrinsic::is_constant:
1375     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1376 
1377   case Intrinsic::launder_invariant_group:
1378   case Intrinsic::strip_invariant_group:
1379   case Intrinsic::expect: {
1380     Register ResultReg = getRegForValue(II->getArgOperand(0));
1381     if (!ResultReg)
1382       return false;
1383     updateValueMap(II, ResultReg);
1384     return true;
1385   }
1386   case Intrinsic::experimental_stackmap:
1387     return selectStackmap(II);
1388   case Intrinsic::experimental_patchpoint_void:
1389   case Intrinsic::experimental_patchpoint_i64:
1390     return selectPatchpoint(II);
1391 
1392   case Intrinsic::xray_customevent:
1393     return selectXRayCustomEvent(II);
1394   case Intrinsic::xray_typedevent:
1395     return selectXRayTypedEvent(II);
1396 
1397   case Intrinsic::memcpy:
1398   case Intrinsic::memcpy_element_unordered_atomic:
1399   case Intrinsic::memcpy_inline:
1400   case Intrinsic::memmove:
1401   case Intrinsic::memmove_element_unordered_atomic:
1402   case Intrinsic::memset:
1403   case Intrinsic::memset_element_unordered_atomic:
1404     // Flush the local value map just like we do for regular calls,
1405     // to avoid excessive spills and reloads.
1406     // These intrinsics mostly turn into library calls at O0; and
1407     // even memcpy_inline should be treated like one for this purpose.
1408     flushLocalValueMap();
1409     break;
1410   }
1411 
1412   return fastLowerIntrinsicCall(II);
1413 }
1414 
1415 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1416   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1417   EVT DstVT = TLI.getValueType(DL, I->getType());
1418 
1419   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1420       !DstVT.isSimple())
1421     // Unhandled type. Halt "fast" selection and bail.
1422     return false;
1423 
1424   // Check if the destination type is legal.
1425   if (!TLI.isTypeLegal(DstVT))
1426     return false;
1427 
1428   // Check if the source operand is legal.
1429   if (!TLI.isTypeLegal(SrcVT))
1430     return false;
1431 
1432   Register InputReg = getRegForValue(I->getOperand(0));
1433   if (!InputReg)
1434     // Unhandled operand.  Halt "fast" selection and bail.
1435     return false;
1436 
1437   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
1438 
1439   Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1440                                   Opcode, InputReg, InputRegIsKill);
1441   if (!ResultReg)
1442     return false;
1443 
1444   updateValueMap(I, ResultReg);
1445   return true;
1446 }
1447 
1448 bool FastISel::selectBitCast(const User *I) {
1449   // If the bitcast doesn't change the type, just use the operand value.
1450   if (I->getType() == I->getOperand(0)->getType()) {
1451     Register Reg = getRegForValue(I->getOperand(0));
1452     if (!Reg)
1453       return false;
1454     updateValueMap(I, Reg);
1455     return true;
1456   }
1457 
1458   // Bitcasts of other values become reg-reg copies or BITCAST operators.
1459   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1460   EVT DstEVT = TLI.getValueType(DL, I->getType());
1461   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1462       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1463     // Unhandled type. Halt "fast" selection and bail.
1464     return false;
1465 
1466   MVT SrcVT = SrcEVT.getSimpleVT();
1467   MVT DstVT = DstEVT.getSimpleVT();
1468   Register Op0 = getRegForValue(I->getOperand(0));
1469   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1470     return false;
1471   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
1472 
1473   // First, try to perform the bitcast by inserting a reg-reg copy.
1474   Register ResultReg;
1475   if (SrcVT == DstVT) {
1476     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1477     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1478     // Don't attempt a cross-class copy. It will likely fail.
1479     if (SrcClass == DstClass) {
1480       ResultReg = createResultReg(DstClass);
1481       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1482               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1483     }
1484   }
1485 
1486   // If the reg-reg copy failed, select a BITCAST opcode.
1487   if (!ResultReg)
1488     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
1489 
1490   if (!ResultReg)
1491     return false;
1492 
1493   updateValueMap(I, ResultReg);
1494   return true;
1495 }
1496 
1497 bool FastISel::selectFreeze(const User *I) {
1498   Register Reg = getRegForValue(I->getOperand(0));
1499   if (!Reg)
1500     // Unhandled operand.
1501     return false;
1502 
1503   EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType());
1504   if (ETy == MVT::Other || !TLI.isTypeLegal(ETy))
1505     // Unhandled type, bail out.
1506     return false;
1507 
1508   MVT Ty = ETy.getSimpleVT();
1509   const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty);
1510   Register ResultReg = createResultReg(TyRegClass);
1511   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1512           TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
1513 
1514   updateValueMap(I, ResultReg);
1515   return true;
1516 }
1517 
1518 // Remove local value instructions starting from the instruction after
1519 // SavedLastLocalValue to the current function insert point.
1520 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1521 {
1522   MachineInstr *CurLastLocalValue = getLastLocalValue();
1523   if (CurLastLocalValue != SavedLastLocalValue) {
1524     // Find the first local value instruction to be deleted.
1525     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1526     // Otherwise it's the first instruction in the block.
1527     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1528     if (SavedLastLocalValue)
1529       ++FirstDeadInst;
1530     else
1531       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1532     setLastLocalValue(SavedLastLocalValue);
1533     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1534   }
1535 }
1536 
1537 bool FastISel::selectInstruction(const Instruction *I) {
1538   // Flush the local value map before starting each instruction.
1539   // This improves locality and debugging, and can reduce spills.
1540   // Reuse of values across IR instructions is relatively uncommon.
1541   flushLocalValueMap();
1542 
1543   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1544   // Just before the terminator instruction, insert instructions to
1545   // feed PHI nodes in successor blocks.
1546   if (I->isTerminator()) {
1547     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1548       // PHI node handling may have generated local value instructions,
1549       // even though it failed to handle all PHI nodes.
1550       // We remove these instructions because SelectionDAGISel will generate
1551       // them again.
1552       removeDeadLocalValueCode(SavedLastLocalValue);
1553       return false;
1554     }
1555   }
1556 
1557   // FastISel does not handle any operand bundles except OB_funclet.
1558   if (auto *Call = dyn_cast<CallBase>(I))
1559     for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i)
1560       if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1561         return false;
1562 
1563   DbgLoc = I->getDebugLoc();
1564 
1565   SavedInsertPt = FuncInfo.InsertPt;
1566 
1567   if (const auto *Call = dyn_cast<CallInst>(I)) {
1568     const Function *F = Call->getCalledFunction();
1569     LibFunc Func;
1570 
1571     // As a special case, don't handle calls to builtin library functions that
1572     // may be translated directly to target instructions.
1573     if (F && !F->hasLocalLinkage() && F->hasName() &&
1574         LibInfo->getLibFunc(F->getName(), Func) &&
1575         LibInfo->hasOptimizedCodeGen(Func))
1576       return false;
1577 
1578     // Don't handle Intrinsic::trap if a trap function is specified.
1579     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1580         Call->hasFnAttr("trap-func-name"))
1581       return false;
1582   }
1583 
1584   // First, try doing target-independent selection.
1585   if (!SkipTargetIndependentISel) {
1586     if (selectOperator(I, I->getOpcode())) {
1587       ++NumFastIselSuccessIndependent;
1588       DbgLoc = DebugLoc();
1589       return true;
1590     }
1591     // Remove dead code.
1592     recomputeInsertPt();
1593     if (SavedInsertPt != FuncInfo.InsertPt)
1594       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1595     SavedInsertPt = FuncInfo.InsertPt;
1596   }
1597   // Next, try calling the target to attempt to handle the instruction.
1598   if (fastSelectInstruction(I)) {
1599     ++NumFastIselSuccessTarget;
1600     DbgLoc = DebugLoc();
1601     return true;
1602   }
1603   // Remove dead code.
1604   recomputeInsertPt();
1605   if (SavedInsertPt != FuncInfo.InsertPt)
1606     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1607 
1608   DbgLoc = DebugLoc();
1609   // Undo phi node updates, because they will be added again by SelectionDAG.
1610   if (I->isTerminator()) {
1611     // PHI node handling may have generated local value instructions.
1612     // We remove them because SelectionDAGISel will generate them again.
1613     removeDeadLocalValueCode(SavedLastLocalValue);
1614     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1615   }
1616   return false;
1617 }
1618 
1619 /// Emit an unconditional branch to the given block, unless it is the immediate
1620 /// (fall-through) successor, and update the CFG.
1621 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1622                               const DebugLoc &DbgLoc) {
1623   if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 &&
1624       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1625     // For more accurate line information if this is the only non-debug
1626     // instruction in the block then emit it, otherwise we have the
1627     // unconditional fall-through case, which needs no instructions.
1628   } else {
1629     // The unconditional branch case.
1630     TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1631                      SmallVector<MachineOperand, 0>(), DbgLoc);
1632   }
1633   if (FuncInfo.BPI) {
1634     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1635         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1636     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1637   } else
1638     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1639 }
1640 
1641 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1642                                 MachineBasicBlock *TrueMBB,
1643                                 MachineBasicBlock *FalseMBB) {
1644   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1645   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1646   // successor/predecessor lists.
1647   if (TrueMBB != FalseMBB) {
1648     if (FuncInfo.BPI) {
1649       auto BranchProbability =
1650           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1651       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1652     } else
1653       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1654   }
1655 
1656   fastEmitBranch(FalseMBB, DbgLoc);
1657 }
1658 
1659 /// Emit an FNeg operation.
1660 bool FastISel::selectFNeg(const User *I, const Value *In) {
1661   Register OpReg = getRegForValue(In);
1662   if (!OpReg)
1663     return false;
1664   bool OpRegIsKill = hasTrivialKill(In);
1665 
1666   // If the target has ISD::FNEG, use it.
1667   EVT VT = TLI.getValueType(DL, I->getType());
1668   Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1669                                   OpReg, OpRegIsKill);
1670   if (ResultReg) {
1671     updateValueMap(I, ResultReg);
1672     return true;
1673   }
1674 
1675   // Bitcast the value to integer, twiddle the sign bit with xor,
1676   // and then bitcast it back to floating-point.
1677   if (VT.getSizeInBits() > 64)
1678     return false;
1679   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1680   if (!TLI.isTypeLegal(IntVT))
1681     return false;
1682 
1683   Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1684                                ISD::BITCAST, OpReg, OpRegIsKill);
1685   if (!IntReg)
1686     return false;
1687 
1688   Register IntResultReg = fastEmit_ri_(
1689       IntVT.getSimpleVT(), ISD::XOR, IntReg, /*Op0IsKill=*/true,
1690       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1691   if (!IntResultReg)
1692     return false;
1693 
1694   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1695                          IntResultReg, /*Op0IsKill=*/true);
1696   if (!ResultReg)
1697     return false;
1698 
1699   updateValueMap(I, ResultReg);
1700   return true;
1701 }
1702 
1703 bool FastISel::selectExtractValue(const User *U) {
1704   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1705   if (!EVI)
1706     return false;
1707 
1708   // Make sure we only try to handle extracts with a legal result.  But also
1709   // allow i1 because it's easy.
1710   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1711   if (!RealVT.isSimple())
1712     return false;
1713   MVT VT = RealVT.getSimpleVT();
1714   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1715     return false;
1716 
1717   const Value *Op0 = EVI->getOperand(0);
1718   Type *AggTy = Op0->getType();
1719 
1720   // Get the base result register.
1721   unsigned ResultReg;
1722   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0);
1723   if (I != FuncInfo.ValueMap.end())
1724     ResultReg = I->second;
1725   else if (isa<Instruction>(Op0))
1726     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1727   else
1728     return false; // fast-isel can't handle aggregate constants at the moment
1729 
1730   // Get the actual result register, which is an offset from the base register.
1731   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1732 
1733   SmallVector<EVT, 4> AggValueVTs;
1734   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1735 
1736   for (unsigned i = 0; i < VTIndex; i++)
1737     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1738 
1739   updateValueMap(EVI, ResultReg);
1740   return true;
1741 }
1742 
1743 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1744   switch (Opcode) {
1745   case Instruction::Add:
1746     return selectBinaryOp(I, ISD::ADD);
1747   case Instruction::FAdd:
1748     return selectBinaryOp(I, ISD::FADD);
1749   case Instruction::Sub:
1750     return selectBinaryOp(I, ISD::SUB);
1751   case Instruction::FSub:
1752     return selectBinaryOp(I, ISD::FSUB);
1753   case Instruction::Mul:
1754     return selectBinaryOp(I, ISD::MUL);
1755   case Instruction::FMul:
1756     return selectBinaryOp(I, ISD::FMUL);
1757   case Instruction::SDiv:
1758     return selectBinaryOp(I, ISD::SDIV);
1759   case Instruction::UDiv:
1760     return selectBinaryOp(I, ISD::UDIV);
1761   case Instruction::FDiv:
1762     return selectBinaryOp(I, ISD::FDIV);
1763   case Instruction::SRem:
1764     return selectBinaryOp(I, ISD::SREM);
1765   case Instruction::URem:
1766     return selectBinaryOp(I, ISD::UREM);
1767   case Instruction::FRem:
1768     return selectBinaryOp(I, ISD::FREM);
1769   case Instruction::Shl:
1770     return selectBinaryOp(I, ISD::SHL);
1771   case Instruction::LShr:
1772     return selectBinaryOp(I, ISD::SRL);
1773   case Instruction::AShr:
1774     return selectBinaryOp(I, ISD::SRA);
1775   case Instruction::And:
1776     return selectBinaryOp(I, ISD::AND);
1777   case Instruction::Or:
1778     return selectBinaryOp(I, ISD::OR);
1779   case Instruction::Xor:
1780     return selectBinaryOp(I, ISD::XOR);
1781 
1782   case Instruction::FNeg:
1783     return selectFNeg(I, I->getOperand(0));
1784 
1785   case Instruction::GetElementPtr:
1786     return selectGetElementPtr(I);
1787 
1788   case Instruction::Br: {
1789     const BranchInst *BI = cast<BranchInst>(I);
1790 
1791     if (BI->isUnconditional()) {
1792       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1793       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1794       fastEmitBranch(MSucc, BI->getDebugLoc());
1795       return true;
1796     }
1797 
1798     // Conditional branches are not handed yet.
1799     // Halt "fast" selection and bail.
1800     return false;
1801   }
1802 
1803   case Instruction::Unreachable:
1804     if (TM.Options.TrapUnreachable)
1805       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1806     else
1807       return true;
1808 
1809   case Instruction::Alloca:
1810     // FunctionLowering has the static-sized case covered.
1811     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1812       return true;
1813 
1814     // Dynamic-sized alloca is not handled yet.
1815     return false;
1816 
1817   case Instruction::Call:
1818     // On AIX, call lowering uses the DAG-ISEL path currently so that the
1819     // callee of the direct function call instruction will be mapped to the
1820     // symbol for the function's entry point, which is distinct from the
1821     // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1822     // name is the C-linkage name of the source level function.
1823     if (TM.getTargetTriple().isOSAIX())
1824       return false;
1825     return selectCall(I);
1826 
1827   case Instruction::BitCast:
1828     return selectBitCast(I);
1829 
1830   case Instruction::FPToSI:
1831     return selectCast(I, ISD::FP_TO_SINT);
1832   case Instruction::ZExt:
1833     return selectCast(I, ISD::ZERO_EXTEND);
1834   case Instruction::SExt:
1835     return selectCast(I, ISD::SIGN_EXTEND);
1836   case Instruction::Trunc:
1837     return selectCast(I, ISD::TRUNCATE);
1838   case Instruction::SIToFP:
1839     return selectCast(I, ISD::SINT_TO_FP);
1840 
1841   case Instruction::IntToPtr: // Deliberate fall-through.
1842   case Instruction::PtrToInt: {
1843     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1844     EVT DstVT = TLI.getValueType(DL, I->getType());
1845     if (DstVT.bitsGT(SrcVT))
1846       return selectCast(I, ISD::ZERO_EXTEND);
1847     if (DstVT.bitsLT(SrcVT))
1848       return selectCast(I, ISD::TRUNCATE);
1849     Register Reg = getRegForValue(I->getOperand(0));
1850     if (!Reg)
1851       return false;
1852     updateValueMap(I, Reg);
1853     return true;
1854   }
1855 
1856   case Instruction::ExtractValue:
1857     return selectExtractValue(I);
1858 
1859   case Instruction::Freeze:
1860     return selectFreeze(I);
1861 
1862   case Instruction::PHI:
1863     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1864 
1865   default:
1866     // Unhandled instruction. Halt "fast" selection and bail.
1867     return false;
1868   }
1869 }
1870 
1871 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1872                    const TargetLibraryInfo *LibInfo,
1873                    bool SkipTargetIndependentISel)
1874     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1875       MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1876       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1877       TII(*MF->getSubtarget().getInstrInfo()),
1878       TLI(*MF->getSubtarget().getTargetLowering()),
1879       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1880       SkipTargetIndependentISel(SkipTargetIndependentISel),
1881       LastLocalValue(nullptr), EmitStartPt(nullptr) {}
1882 
1883 FastISel::~FastISel() = default;
1884 
1885 bool FastISel::fastLowerArguments() { return false; }
1886 
1887 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1888 
1889 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1890   return false;
1891 }
1892 
1893 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1894 
1895 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
1896                               bool /*Op0IsKill*/) {
1897   return 0;
1898 }
1899 
1900 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1901                                bool /*Op0IsKill*/, unsigned /*Op1*/,
1902                                bool /*Op1IsKill*/) {
1903   return 0;
1904 }
1905 
1906 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1907   return 0;
1908 }
1909 
1910 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1911                               const ConstantFP * /*FPImm*/) {
1912   return 0;
1913 }
1914 
1915 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1916                                bool /*Op0IsKill*/, uint64_t /*Imm*/) {
1917   return 0;
1918 }
1919 
1920 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1921 /// instruction with an immediate operand using fastEmit_ri.
1922 /// If that fails, it materializes the immediate into a register and try
1923 /// fastEmit_rr instead.
1924 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1925                                 bool Op0IsKill, uint64_t Imm, MVT ImmType) {
1926   // If this is a multiply by a power of two, emit this as a shift left.
1927   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1928     Opcode = ISD::SHL;
1929     Imm = Log2_64(Imm);
1930   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1931     // div x, 8 -> srl x, 3
1932     Opcode = ISD::SRL;
1933     Imm = Log2_64(Imm);
1934   }
1935 
1936   // Horrible hack (to be removed), check to make sure shift amounts are
1937   // in-range.
1938   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1939       Imm >= VT.getSizeInBits())
1940     return 0;
1941 
1942   // First check if immediate type is legal. If not, we can't use the ri form.
1943   Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1944   if (ResultReg)
1945     return ResultReg;
1946   Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1947   bool IsImmKill = true;
1948   if (!MaterialReg) {
1949     // This is a bit ugly/slow, but failing here means falling out of
1950     // fast-isel, which would be very slow.
1951     IntegerType *ITy =
1952         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1953     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1954     if (!MaterialReg)
1955       return 0;
1956     // FIXME: If the materialized register here has no uses yet then this
1957     // will be the first use and we should be able to mark it as killed.
1958     // However, the local value area for materialising constant expressions
1959     // grows down, not up, which means that any constant expressions we generate
1960     // later which also use 'Imm' could be after this instruction and therefore
1961     // after this kill.
1962     IsImmKill = false;
1963   }
1964   return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill);
1965 }
1966 
1967 Register FastISel::createResultReg(const TargetRegisterClass *RC) {
1968   return MRI.createVirtualRegister(RC);
1969 }
1970 
1971 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op,
1972                                             unsigned OpNum) {
1973   if (Op.isVirtual()) {
1974     const TargetRegisterClass *RegClass =
1975         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1976     if (!MRI.constrainRegClass(Op, RegClass)) {
1977       // If it's not legal to COPY between the register classes, something
1978       // has gone very wrong before we got here.
1979       Register NewOp = createResultReg(RegClass);
1980       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1981               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1982       return NewOp;
1983     }
1984   }
1985   return Op;
1986 }
1987 
1988 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode,
1989                                  const TargetRegisterClass *RC) {
1990   Register ResultReg = createResultReg(RC);
1991   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1992 
1993   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
1994   return ResultReg;
1995 }
1996 
1997 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
1998                                   const TargetRegisterClass *RC, unsigned Op0,
1999                                   bool Op0IsKill) {
2000   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2001 
2002   Register ResultReg = createResultReg(RC);
2003   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2004 
2005   if (II.getNumDefs() >= 1)
2006     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2007         .addReg(Op0, getKillRegState(Op0IsKill));
2008   else {
2009     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2010         .addReg(Op0, getKillRegState(Op0IsKill));
2011     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2012             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2013   }
2014 
2015   return ResultReg;
2016 }
2017 
2018 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2019                                    const TargetRegisterClass *RC, unsigned Op0,
2020                                    bool Op0IsKill, unsigned Op1,
2021                                    bool Op1IsKill) {
2022   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2023 
2024   Register ResultReg = createResultReg(RC);
2025   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2026   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2027 
2028   if (II.getNumDefs() >= 1)
2029     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2030         .addReg(Op0, getKillRegState(Op0IsKill))
2031         .addReg(Op1, getKillRegState(Op1IsKill));
2032   else {
2033     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2034         .addReg(Op0, getKillRegState(Op0IsKill))
2035         .addReg(Op1, getKillRegState(Op1IsKill));
2036     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2037             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2038   }
2039   return ResultReg;
2040 }
2041 
2042 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
2043                                     const TargetRegisterClass *RC, unsigned Op0,
2044                                     bool Op0IsKill, unsigned Op1,
2045                                     bool Op1IsKill, unsigned Op2,
2046                                     bool Op2IsKill) {
2047   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2048 
2049   Register ResultReg = createResultReg(RC);
2050   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2051   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2052   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
2053 
2054   if (II.getNumDefs() >= 1)
2055     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2056         .addReg(Op0, getKillRegState(Op0IsKill))
2057         .addReg(Op1, getKillRegState(Op1IsKill))
2058         .addReg(Op2, getKillRegState(Op2IsKill));
2059   else {
2060     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2061         .addReg(Op0, getKillRegState(Op0IsKill))
2062         .addReg(Op1, getKillRegState(Op1IsKill))
2063         .addReg(Op2, getKillRegState(Op2IsKill));
2064     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2065             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2066   }
2067   return ResultReg;
2068 }
2069 
2070 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2071                                    const TargetRegisterClass *RC, unsigned Op0,
2072                                    bool Op0IsKill, uint64_t Imm) {
2073   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2074 
2075   Register ResultReg = createResultReg(RC);
2076   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2077 
2078   if (II.getNumDefs() >= 1)
2079     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2080         .addReg(Op0, getKillRegState(Op0IsKill))
2081         .addImm(Imm);
2082   else {
2083     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2084         .addReg(Op0, getKillRegState(Op0IsKill))
2085         .addImm(Imm);
2086     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2087             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2088   }
2089   return ResultReg;
2090 }
2091 
2092 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2093                                     const TargetRegisterClass *RC, unsigned Op0,
2094                                     bool Op0IsKill, uint64_t Imm1,
2095                                     uint64_t Imm2) {
2096   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2097 
2098   Register ResultReg = createResultReg(RC);
2099   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2100 
2101   if (II.getNumDefs() >= 1)
2102     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2103         .addReg(Op0, getKillRegState(Op0IsKill))
2104         .addImm(Imm1)
2105         .addImm(Imm2);
2106   else {
2107     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2108         .addReg(Op0, getKillRegState(Op0IsKill))
2109         .addImm(Imm1)
2110         .addImm(Imm2);
2111     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2112             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2113   }
2114   return ResultReg;
2115 }
2116 
2117 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2118                                   const TargetRegisterClass *RC,
2119                                   const ConstantFP *FPImm) {
2120   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2121 
2122   Register ResultReg = createResultReg(RC);
2123 
2124   if (II.getNumDefs() >= 1)
2125     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2126         .addFPImm(FPImm);
2127   else {
2128     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2129         .addFPImm(FPImm);
2130     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2131             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2132   }
2133   return ResultReg;
2134 }
2135 
2136 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2137                                     const TargetRegisterClass *RC, unsigned Op0,
2138                                     bool Op0IsKill, unsigned Op1,
2139                                     bool Op1IsKill, uint64_t Imm) {
2140   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2141 
2142   Register ResultReg = createResultReg(RC);
2143   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2144   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2145 
2146   if (II.getNumDefs() >= 1)
2147     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2148         .addReg(Op0, getKillRegState(Op0IsKill))
2149         .addReg(Op1, getKillRegState(Op1IsKill))
2150         .addImm(Imm);
2151   else {
2152     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2153         .addReg(Op0, getKillRegState(Op0IsKill))
2154         .addReg(Op1, getKillRegState(Op1IsKill))
2155         .addImm(Imm);
2156     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2157             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2158   }
2159   return ResultReg;
2160 }
2161 
2162 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2163                                   const TargetRegisterClass *RC, uint64_t Imm) {
2164   Register ResultReg = createResultReg(RC);
2165   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2166 
2167   if (II.getNumDefs() >= 1)
2168     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2169         .addImm(Imm);
2170   else {
2171     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
2172     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2173             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2174   }
2175   return ResultReg;
2176 }
2177 
2178 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2179                                               bool Op0IsKill, uint32_t Idx) {
2180   Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2181   assert(Register::isVirtualRegister(Op0) &&
2182          "Cannot yet extract from physregs");
2183   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2184   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2185   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
2186           ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
2187   return ResultReg;
2188 }
2189 
2190 /// Emit MachineInstrs to compute the value of Op with all but the least
2191 /// significant bit set to zero.
2192 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
2193   return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
2194 }
2195 
2196 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2197 /// Emit code to ensure constants are copied into registers when needed.
2198 /// Remember the virtual registers that need to be added to the Machine PHI
2199 /// nodes as input.  We cannot just directly add them, because expansion
2200 /// might result in multiple MBB's for one BB.  As such, the start of the
2201 /// BB might correspond to a different MBB than the end.
2202 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2203   const Instruction *TI = LLVMBB->getTerminator();
2204 
2205   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2206   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2207 
2208   // Check successor nodes' PHI nodes that expect a constant to be available
2209   // from this block.
2210   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2211     const BasicBlock *SuccBB = TI->getSuccessor(succ);
2212     if (!isa<PHINode>(SuccBB->begin()))
2213       continue;
2214     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2215 
2216     // If this terminator has multiple identical successors (common for
2217     // switches), only handle each succ once.
2218     if (!SuccsHandled.insert(SuccMBB).second)
2219       continue;
2220 
2221     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2222 
2223     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2224     // nodes and Machine PHI nodes, but the incoming operands have not been
2225     // emitted yet.
2226     for (const PHINode &PN : SuccBB->phis()) {
2227       // Ignore dead phi's.
2228       if (PN.use_empty())
2229         continue;
2230 
2231       // Only handle legal types. Two interesting things to note here. First,
2232       // by bailing out early, we may leave behind some dead instructions,
2233       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2234       // own moves. Second, this check is necessary because FastISel doesn't
2235       // use CreateRegs to create registers, so it always creates
2236       // exactly one register for each non-void instruction.
2237       EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2238       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2239         // Handle integer promotions, though, because they're common and easy.
2240         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2241           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2242           return false;
2243         }
2244       }
2245 
2246       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2247 
2248       // Set the DebugLoc for the copy. Prefer the location of the operand
2249       // if there is one; use the location of the PHI otherwise.
2250       DbgLoc = PN.getDebugLoc();
2251       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2252         DbgLoc = Inst->getDebugLoc();
2253 
2254       Register Reg = getRegForValue(PHIOp);
2255       if (!Reg) {
2256         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2257         return false;
2258       }
2259       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2260       DbgLoc = DebugLoc();
2261     }
2262   }
2263 
2264   return true;
2265 }
2266 
2267 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2268   assert(LI->hasOneUse() &&
2269          "tryToFoldLoad expected a LoadInst with a single use");
2270   // We know that the load has a single use, but don't know what it is.  If it
2271   // isn't one of the folded instructions, then we can't succeed here.  Handle
2272   // this by scanning the single-use users of the load until we get to FoldInst.
2273   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2274 
2275   const Instruction *TheUser = LI->user_back();
2276   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2277          // Stay in the right block.
2278          TheUser->getParent() == FoldInst->getParent() &&
2279          --MaxUsers) { // Don't scan too far.
2280     // If there are multiple or no uses of this instruction, then bail out.
2281     if (!TheUser->hasOneUse())
2282       return false;
2283 
2284     TheUser = TheUser->user_back();
2285   }
2286 
2287   // If we didn't find the fold instruction, then we failed to collapse the
2288   // sequence.
2289   if (TheUser != FoldInst)
2290     return false;
2291 
2292   // Don't try to fold volatile loads.  Target has to deal with alignment
2293   // constraints.
2294   if (LI->isVolatile())
2295     return false;
2296 
2297   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2298   // then there actually was no reference to it.  Perhaps the load is referenced
2299   // by a dead instruction.
2300   Register LoadReg = getRegForValue(LI);
2301   if (!LoadReg)
2302     return false;
2303 
2304   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2305   // may mean that the instruction got lowered to multiple MIs, or the use of
2306   // the loaded value ended up being multiple operands of the result.
2307   if (!MRI.hasOneUse(LoadReg))
2308     return false;
2309 
2310   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2311   MachineInstr *User = RI->getParent();
2312 
2313   // Set the insertion point properly.  Folding the load can cause generation of
2314   // other random instructions (like sign extends) for addressing modes; make
2315   // sure they get inserted in a logical place before the new instruction.
2316   FuncInfo.InsertPt = User;
2317   FuncInfo.MBB = User->getParent();
2318 
2319   // Ask the target to try folding the load.
2320   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2321 }
2322 
2323 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2324   // Must be an add.
2325   if (!isa<AddOperator>(Add))
2326     return false;
2327   // Type size needs to match.
2328   if (DL.getTypeSizeInBits(GEP->getType()) !=
2329       DL.getTypeSizeInBits(Add->getType()))
2330     return false;
2331   // Must be in the same basic block.
2332   if (isa<Instruction>(Add) &&
2333       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2334     return false;
2335   // Must have a constant operand.
2336   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2337 }
2338 
2339 MachineMemOperand *
2340 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2341   const Value *Ptr;
2342   Type *ValTy;
2343   MaybeAlign Alignment;
2344   MachineMemOperand::Flags Flags;
2345   bool IsVolatile;
2346 
2347   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2348     Alignment = LI->getAlign();
2349     IsVolatile = LI->isVolatile();
2350     Flags = MachineMemOperand::MOLoad;
2351     Ptr = LI->getPointerOperand();
2352     ValTy = LI->getType();
2353   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2354     Alignment = SI->getAlign();
2355     IsVolatile = SI->isVolatile();
2356     Flags = MachineMemOperand::MOStore;
2357     Ptr = SI->getPointerOperand();
2358     ValTy = SI->getValueOperand()->getType();
2359   } else
2360     return nullptr;
2361 
2362   bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
2363   bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
2364   bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
2365   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2366 
2367   AAMDNodes AAInfo;
2368   I->getAAMetadata(AAInfo);
2369 
2370   if (!Alignment) // Ensure that codegen never sees alignment 0.
2371     Alignment = DL.getABITypeAlign(ValTy);
2372 
2373   unsigned Size = DL.getTypeStoreSize(ValTy);
2374 
2375   if (IsVolatile)
2376     Flags |= MachineMemOperand::MOVolatile;
2377   if (IsNonTemporal)
2378     Flags |= MachineMemOperand::MONonTemporal;
2379   if (IsDereferenceable)
2380     Flags |= MachineMemOperand::MODereferenceable;
2381   if (IsInvariant)
2382     Flags |= MachineMemOperand::MOInvariant;
2383 
2384   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2385                                            *Alignment, AAInfo, Ranges);
2386 }
2387 
2388 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2389   // If both operands are the same, then try to optimize or fold the cmp.
2390   CmpInst::Predicate Predicate = CI->getPredicate();
2391   if (CI->getOperand(0) != CI->getOperand(1))
2392     return Predicate;
2393 
2394   switch (Predicate) {
2395   default: llvm_unreachable("Invalid predicate!");
2396   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2397   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2398   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2399   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2400   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2401   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2402   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2403   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2404   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2405   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2406   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2407   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2408   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2409   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2410   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2411   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2412 
2413   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2414   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2415   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2416   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2417   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2418   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2419   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2420   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2421   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2422   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2423   }
2424 
2425   return Predicate;
2426 }
2427