1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #define DEBUG_TYPE "isel" 43 #include "llvm/Function.h" 44 #include "llvm/GlobalVariable.h" 45 #include "llvm/Instructions.h" 46 #include "llvm/IntrinsicInst.h" 47 #include "llvm/Operator.h" 48 #include "llvm/CodeGen/Analysis.h" 49 #include "llvm/CodeGen/FastISel.h" 50 #include "llvm/CodeGen/FunctionLoweringInfo.h" 51 #include "llvm/CodeGen/MachineInstrBuilder.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/Analysis/DebugInfo.h" 55 #include "llvm/Analysis/Loads.h" 56 #include "llvm/Target/TargetData.h" 57 #include "llvm/Target/TargetInstrInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetMachine.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/ADT/Statistic.h" 63 using namespace llvm; 64 65 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 66 "target-independent selector"); 67 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 68 "target-specific selector"); 69 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 70 71 /// startNewBlock - Set the current block to which generated machine 72 /// instructions will be appended, and clear the local CSE map. 73 /// 74 void FastISel::startNewBlock() { 75 LocalValueMap.clear(); 76 77 EmitStartPt = 0; 78 79 // Advance the emit start point past any EH_LABEL instructions. 80 MachineBasicBlock::iterator 81 I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end(); 82 while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) { 83 EmitStartPt = I; 84 ++I; 85 } 86 LastLocalValue = EmitStartPt; 87 } 88 89 void FastISel::flushLocalValueMap() { 90 LocalValueMap.clear(); 91 LastLocalValue = EmitStartPt; 92 recomputeInsertPt(); 93 } 94 95 bool FastISel::hasTrivialKill(const Value *V) const { 96 // Don't consider constants or arguments to have trivial kills. 97 const Instruction *I = dyn_cast<Instruction>(V); 98 if (!I) 99 return false; 100 101 // No-op casts are trivially coalesced by fast-isel. 102 if (const CastInst *Cast = dyn_cast<CastInst>(I)) 103 if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) && 104 !hasTrivialKill(Cast->getOperand(0))) 105 return false; 106 107 // GEPs with all zero indices are trivially coalesced by fast-isel. 108 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 109 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 110 return false; 111 112 // Only instructions with a single use in the same basic block are considered 113 // to have trivial kills. 114 return I->hasOneUse() && 115 !(I->getOpcode() == Instruction::BitCast || 116 I->getOpcode() == Instruction::PtrToInt || 117 I->getOpcode() == Instruction::IntToPtr) && 118 cast<Instruction>(*I->use_begin())->getParent() == I->getParent(); 119 } 120 121 unsigned FastISel::getRegForValue(const Value *V) { 122 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); 123 // Don't handle non-simple values in FastISel. 124 if (!RealVT.isSimple()) 125 return 0; 126 127 // Ignore illegal types. We must do this before looking up the value 128 // in ValueMap because Arguments are given virtual registers regardless 129 // of whether FastISel can handle them. 130 MVT VT = RealVT.getSimpleVT(); 131 if (!TLI.isTypeLegal(VT)) { 132 // Handle integer promotions, though, because they're common and easy. 133 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 134 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 135 else 136 return 0; 137 } 138 139 // Look up the value to see if we already have a register for it. We 140 // cache values defined by Instructions across blocks, and other values 141 // only locally. This is because Instructions already have the SSA 142 // def-dominates-use requirement enforced. 143 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 144 if (I != FuncInfo.ValueMap.end()) 145 return I->second; 146 147 unsigned Reg = LocalValueMap[V]; 148 if (Reg != 0) 149 return Reg; 150 151 // In bottom-up mode, just create the virtual register which will be used 152 // to hold the value. It will be materialized later. 153 if (isa<Instruction>(V) && 154 (!isa<AllocaInst>(V) || 155 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 156 return FuncInfo.InitializeRegForValue(V); 157 158 SavePoint SaveInsertPt = enterLocalValueArea(); 159 160 // Materialize the value in a register. Emit any instructions in the 161 // local value area. 162 Reg = materializeRegForValue(V, VT); 163 164 leaveLocalValueArea(SaveInsertPt); 165 166 return Reg; 167 } 168 169 /// materializeRegForValue - Helper for getRegForValue. This function is 170 /// called when the value isn't already available in a register and must 171 /// be materialized with new instructions. 172 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 173 unsigned Reg = 0; 174 175 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 176 if (CI->getValue().getActiveBits() <= 64) 177 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 178 } else if (isa<AllocaInst>(V)) { 179 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V)); 180 } else if (isa<ConstantPointerNull>(V)) { 181 // Translate this as an integer zero so that it can be 182 // local-CSE'd with actual integer zeros. 183 Reg = 184 getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext()))); 185 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 186 if (CF->isNullValue()) { 187 Reg = TargetMaterializeFloatZero(CF); 188 } else { 189 // Try to emit the constant directly. 190 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); 191 } 192 193 if (!Reg) { 194 // Try to emit the constant by using an integer constant with a cast. 195 const APFloat &Flt = CF->getValueAPF(); 196 EVT IntVT = TLI.getPointerTy(); 197 198 uint64_t x[2]; 199 uint32_t IntBitWidth = IntVT.getSizeInBits(); 200 bool isExact; 201 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 202 APFloat::rmTowardZero, &isExact); 203 if (isExact) { 204 APInt IntVal(IntBitWidth, x); 205 206 unsigned IntegerReg = 207 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 208 if (IntegerReg != 0) 209 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 210 IntegerReg, /*Kill=*/false); 211 } 212 } 213 } else if (const Operator *Op = dyn_cast<Operator>(V)) { 214 if (!SelectOperator(Op, Op->getOpcode())) 215 if (!isa<Instruction>(Op) || 216 !TargetSelectInstruction(cast<Instruction>(Op))) 217 return 0; 218 Reg = lookUpRegForValue(Op); 219 } else if (isa<UndefValue>(V)) { 220 Reg = createResultReg(TLI.getRegClassFor(VT)); 221 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 222 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 223 } 224 225 // If target-independent code couldn't handle the value, give target-specific 226 // code a try. 227 if (!Reg && isa<Constant>(V)) 228 Reg = TargetMaterializeConstant(cast<Constant>(V)); 229 230 // Don't cache constant materializations in the general ValueMap. 231 // To do so would require tracking what uses they dominate. 232 if (Reg != 0) { 233 LocalValueMap[V] = Reg; 234 LastLocalValue = MRI.getVRegDef(Reg); 235 } 236 return Reg; 237 } 238 239 unsigned FastISel::lookUpRegForValue(const Value *V) { 240 // Look up the value to see if we already have a register for it. We 241 // cache values defined by Instructions across blocks, and other values 242 // only locally. This is because Instructions already have the SSA 243 // def-dominates-use requirement enforced. 244 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 245 if (I != FuncInfo.ValueMap.end()) 246 return I->second; 247 return LocalValueMap[V]; 248 } 249 250 /// UpdateValueMap - Update the value map to include the new mapping for this 251 /// instruction, or insert an extra copy to get the result in a previous 252 /// determined register. 253 /// NOTE: This is only necessary because we might select a block that uses 254 /// a value before we select the block that defines the value. It might be 255 /// possible to fix this by selecting blocks in reverse postorder. 256 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 257 if (!isa<Instruction>(I)) { 258 LocalValueMap[I] = Reg; 259 return; 260 } 261 262 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 263 if (AssignedReg == 0) 264 // Use the new register. 265 AssignedReg = Reg; 266 else if (Reg != AssignedReg) { 267 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 268 for (unsigned i = 0; i < NumRegs; i++) 269 FuncInfo.RegFixups[AssignedReg+i] = Reg+i; 270 271 AssignedReg = Reg; 272 } 273 } 274 275 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 276 unsigned IdxN = getRegForValue(Idx); 277 if (IdxN == 0) 278 // Unhandled operand. Halt "fast" selection and bail. 279 return std::pair<unsigned, bool>(0, false); 280 281 bool IdxNIsKill = hasTrivialKill(Idx); 282 283 // If the index is smaller or larger than intptr_t, truncate or extend it. 284 MVT PtrVT = TLI.getPointerTy(); 285 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 286 if (IdxVT.bitsLT(PtrVT)) { 287 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, 288 IdxN, IdxNIsKill); 289 IdxNIsKill = true; 290 } 291 else if (IdxVT.bitsGT(PtrVT)) { 292 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, 293 IdxN, IdxNIsKill); 294 IdxNIsKill = true; 295 } 296 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 297 } 298 299 void FastISel::recomputeInsertPt() { 300 if (getLastLocalValue()) { 301 FuncInfo.InsertPt = getLastLocalValue(); 302 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 303 ++FuncInfo.InsertPt; 304 } else 305 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 306 307 // Now skip past any EH_LABELs, which must remain at the beginning. 308 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 309 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 310 ++FuncInfo.InsertPt; 311 } 312 313 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 314 MachineBasicBlock::iterator E) { 315 assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!"); 316 while (I != E) { 317 MachineInstr *Dead = &*I; 318 ++I; 319 Dead->eraseFromParent(); 320 ++NumFastIselDead; 321 } 322 recomputeInsertPt(); 323 } 324 325 FastISel::SavePoint FastISel::enterLocalValueArea() { 326 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 327 DebugLoc OldDL = DL; 328 recomputeInsertPt(); 329 DL = DebugLoc(); 330 SavePoint SP = { OldInsertPt, OldDL }; 331 return SP; 332 } 333 334 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 335 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 336 LastLocalValue = llvm::prior(FuncInfo.InsertPt); 337 338 // Restore the previous insert position. 339 FuncInfo.InsertPt = OldInsertPt.InsertPt; 340 DL = OldInsertPt.DL; 341 } 342 343 /// SelectBinaryOp - Select and emit code for a binary operator instruction, 344 /// which has an opcode which directly corresponds to the given ISD opcode. 345 /// 346 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) { 347 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 348 if (VT == MVT::Other || !VT.isSimple()) 349 // Unhandled type. Halt "fast" selection and bail. 350 return false; 351 352 // We only handle legal types. For example, on x86-32 the instruction 353 // selector contains all of the 64-bit instructions from x86-64, 354 // under the assumption that i64 won't be used if the target doesn't 355 // support it. 356 if (!TLI.isTypeLegal(VT)) { 357 // MVT::i1 is special. Allow AND, OR, or XOR because they 358 // don't require additional zeroing, which makes them easy. 359 if (VT == MVT::i1 && 360 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 361 ISDOpcode == ISD::XOR)) 362 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 363 else 364 return false; 365 } 366 367 // Check if the first operand is a constant, and handle it as "ri". At -O0, 368 // we don't have anything that canonicalizes operand order. 369 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 370 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 371 unsigned Op1 = getRegForValue(I->getOperand(1)); 372 if (Op1 == 0) return false; 373 374 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 375 376 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, 377 Op1IsKill, CI->getZExtValue(), 378 VT.getSimpleVT()); 379 if (ResultReg == 0) return false; 380 381 // We successfully emitted code for the given LLVM Instruction. 382 UpdateValueMap(I, ResultReg); 383 return true; 384 } 385 386 387 unsigned Op0 = getRegForValue(I->getOperand(0)); 388 if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. 389 return false; 390 391 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 392 393 // Check if the second operand is a constant and handle it appropriately. 394 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 395 uint64_t Imm = CI->getZExtValue(); 396 397 // Transform "sdiv exact X, 8" -> "sra X, 3". 398 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 399 cast<BinaryOperator>(I)->isExact() && 400 isPowerOf2_64(Imm)) { 401 Imm = Log2_64(Imm); 402 ISDOpcode = ISD::SRA; 403 } 404 405 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 406 Op0IsKill, Imm, VT.getSimpleVT()); 407 if (ResultReg == 0) return false; 408 409 // We successfully emitted code for the given LLVM Instruction. 410 UpdateValueMap(I, ResultReg); 411 return true; 412 } 413 414 // Check if the second operand is a constant float. 415 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 416 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 417 ISDOpcode, Op0, Op0IsKill, CF); 418 if (ResultReg != 0) { 419 // We successfully emitted code for the given LLVM Instruction. 420 UpdateValueMap(I, ResultReg); 421 return true; 422 } 423 } 424 425 unsigned Op1 = getRegForValue(I->getOperand(1)); 426 if (Op1 == 0) 427 // Unhandled operand. Halt "fast" selection and bail. 428 return false; 429 430 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 431 432 // Now we have both operands in registers. Emit the instruction. 433 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 434 ISDOpcode, 435 Op0, Op0IsKill, 436 Op1, Op1IsKill); 437 if (ResultReg == 0) 438 // Target-specific code wasn't able to find a machine opcode for 439 // the given ISD opcode and type. Halt "fast" selection and bail. 440 return false; 441 442 // We successfully emitted code for the given LLVM Instruction. 443 UpdateValueMap(I, ResultReg); 444 return true; 445 } 446 447 bool FastISel::SelectGetElementPtr(const User *I) { 448 unsigned N = getRegForValue(I->getOperand(0)); 449 if (N == 0) 450 // Unhandled operand. Halt "fast" selection and bail. 451 return false; 452 453 bool NIsKill = hasTrivialKill(I->getOperand(0)); 454 455 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 456 // into a single N = N + TotalOffset. 457 uint64_t TotalOffs = 0; 458 // FIXME: What's a good SWAG number for MaxOffs? 459 uint64_t MaxOffs = 2048; 460 Type *Ty = I->getOperand(0)->getType(); 461 MVT VT = TLI.getPointerTy(); 462 for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1, 463 E = I->op_end(); OI != E; ++OI) { 464 const Value *Idx = *OI; 465 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 466 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 467 if (Field) { 468 // N = N + Offset 469 TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field); 470 if (TotalOffs >= MaxOffs) { 471 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 472 if (N == 0) 473 // Unhandled operand. Halt "fast" selection and bail. 474 return false; 475 NIsKill = true; 476 TotalOffs = 0; 477 } 478 } 479 Ty = StTy->getElementType(Field); 480 } else { 481 Ty = cast<SequentialType>(Ty)->getElementType(); 482 483 // If this is a constant subscript, handle it quickly. 484 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 485 if (CI->isZero()) continue; 486 // N = N + Offset 487 TotalOffs += 488 TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 489 if (TotalOffs >= MaxOffs) { 490 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 491 if (N == 0) 492 // Unhandled operand. Halt "fast" selection and bail. 493 return false; 494 NIsKill = true; 495 TotalOffs = 0; 496 } 497 continue; 498 } 499 if (TotalOffs) { 500 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 501 if (N == 0) 502 // Unhandled operand. Halt "fast" selection and bail. 503 return false; 504 NIsKill = true; 505 TotalOffs = 0; 506 } 507 508 // N = N + Idx * ElementSize; 509 uint64_t ElementSize = TD.getTypeAllocSize(Ty); 510 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 511 unsigned IdxN = Pair.first; 512 bool IdxNIsKill = Pair.second; 513 if (IdxN == 0) 514 // Unhandled operand. Halt "fast" selection and bail. 515 return false; 516 517 if (ElementSize != 1) { 518 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 519 if (IdxN == 0) 520 // Unhandled operand. Halt "fast" selection and bail. 521 return false; 522 IdxNIsKill = true; 523 } 524 N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 525 if (N == 0) 526 // Unhandled operand. Halt "fast" selection and bail. 527 return false; 528 } 529 } 530 if (TotalOffs) { 531 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 532 if (N == 0) 533 // Unhandled operand. Halt "fast" selection and bail. 534 return false; 535 } 536 537 // We successfully emitted code for the given LLVM Instruction. 538 UpdateValueMap(I, N); 539 return true; 540 } 541 542 bool FastISel::SelectCall(const User *I) { 543 const CallInst *Call = cast<CallInst>(I); 544 545 // Handle simple inline asms. 546 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 547 // Don't attempt to handle constraints. 548 if (!IA->getConstraintString().empty()) 549 return false; 550 551 unsigned ExtraInfo = 0; 552 if (IA->hasSideEffects()) 553 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 554 if (IA->isAlignStack()) 555 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 556 557 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 558 TII.get(TargetOpcode::INLINEASM)) 559 .addExternalSymbol(IA->getAsmString().c_str()) 560 .addImm(ExtraInfo); 561 return true; 562 } 563 564 const Function *F = Call->getCalledFunction(); 565 if (!F) return false; 566 567 // Handle selected intrinsic function calls. 568 switch (F->getIntrinsicID()) { 569 default: break; 570 case Intrinsic::dbg_declare: { 571 const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call); 572 if (!DIVariable(DI->getVariable()).Verify() || 573 !FuncInfo.MF->getMMI().hasDebugInfo()) 574 return true; 575 576 const Value *Address = DI->getAddress(); 577 if (!Address || isa<UndefValue>(Address) || isa<AllocaInst>(Address)) 578 return true; 579 580 unsigned Reg = 0; 581 unsigned Offset = 0; 582 if (const Argument *Arg = dyn_cast<Argument>(Address)) { 583 // Some arguments' frame index is recorded during argument lowering. 584 Offset = FuncInfo.getArgumentFrameIndex(Arg); 585 if (Offset) 586 Reg = TRI.getFrameRegister(*FuncInfo.MF); 587 } 588 if (!Reg) 589 Reg = getRegForValue(Address); 590 591 if (Reg) 592 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 593 TII.get(TargetOpcode::DBG_VALUE)) 594 .addReg(Reg, RegState::Debug).addImm(Offset) 595 .addMetadata(DI->getVariable()); 596 return true; 597 } 598 case Intrinsic::dbg_value: { 599 // This form of DBG_VALUE is target-independent. 600 const DbgValueInst *DI = cast<DbgValueInst>(Call); 601 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 602 const Value *V = DI->getValue(); 603 if (!V) { 604 // Currently the optimizer can produce this; insert an undef to 605 // help debugging. Probably the optimizer should not do this. 606 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 607 .addReg(0U).addImm(DI->getOffset()) 608 .addMetadata(DI->getVariable()); 609 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 610 if (CI->getBitWidth() > 64) 611 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 612 .addCImm(CI).addImm(DI->getOffset()) 613 .addMetadata(DI->getVariable()); 614 else 615 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 616 .addImm(CI->getZExtValue()).addImm(DI->getOffset()) 617 .addMetadata(DI->getVariable()); 618 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 619 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 620 .addFPImm(CF).addImm(DI->getOffset()) 621 .addMetadata(DI->getVariable()); 622 } else if (unsigned Reg = lookUpRegForValue(V)) { 623 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 624 .addReg(Reg, RegState::Debug).addImm(DI->getOffset()) 625 .addMetadata(DI->getVariable()); 626 } else { 627 // We can't yet handle anything else here because it would require 628 // generating code, thus altering codegen because of debug info. 629 DEBUG(dbgs() << "Dropping debug info for " << DI); 630 } 631 return true; 632 } 633 case Intrinsic::objectsize: { 634 ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1)); 635 unsigned long long Res = CI->isZero() ? -1ULL : 0; 636 Constant *ResCI = ConstantInt::get(Call->getType(), Res); 637 unsigned ResultReg = getRegForValue(ResCI); 638 if (ResultReg == 0) 639 return false; 640 UpdateValueMap(Call, ResultReg); 641 return true; 642 } 643 } 644 645 // Usually, it does not make sense to initialize a value, 646 // make an unrelated function call and use the value, because 647 // it tends to be spilled on the stack. So, we move the pointer 648 // to the last local value to the beginning of the block, so that 649 // all the values which have already been materialized, 650 // appear after the call. It also makes sense to skip intrinsics 651 // since they tend to be inlined. 652 if (!isa<IntrinsicInst>(F)) 653 flushLocalValueMap(); 654 655 // An arbitrary call. Bail. 656 return false; 657 } 658 659 bool FastISel::SelectCast(const User *I, unsigned Opcode) { 660 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 661 EVT DstVT = TLI.getValueType(I->getType()); 662 663 if (SrcVT == MVT::Other || !SrcVT.isSimple() || 664 DstVT == MVT::Other || !DstVT.isSimple()) 665 // Unhandled type. Halt "fast" selection and bail. 666 return false; 667 668 // Check if the destination type is legal. 669 if (!TLI.isTypeLegal(DstVT)) 670 return false; 671 672 // Check if the source operand is legal. 673 if (!TLI.isTypeLegal(SrcVT)) 674 return false; 675 676 unsigned InputReg = getRegForValue(I->getOperand(0)); 677 if (!InputReg) 678 // Unhandled operand. Halt "fast" selection and bail. 679 return false; 680 681 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 682 683 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), 684 DstVT.getSimpleVT(), 685 Opcode, 686 InputReg, InputRegIsKill); 687 if (!ResultReg) 688 return false; 689 690 UpdateValueMap(I, ResultReg); 691 return true; 692 } 693 694 bool FastISel::SelectBitCast(const User *I) { 695 // If the bitcast doesn't change the type, just use the operand value. 696 if (I->getType() == I->getOperand(0)->getType()) { 697 unsigned Reg = getRegForValue(I->getOperand(0)); 698 if (Reg == 0) 699 return false; 700 UpdateValueMap(I, Reg); 701 return true; 702 } 703 704 // Bitcasts of other values become reg-reg copies or BITCAST operators. 705 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 706 EVT DstVT = TLI.getValueType(I->getType()); 707 708 if (SrcVT == MVT::Other || !SrcVT.isSimple() || 709 DstVT == MVT::Other || !DstVT.isSimple() || 710 !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT)) 711 // Unhandled type. Halt "fast" selection and bail. 712 return false; 713 714 unsigned Op0 = getRegForValue(I->getOperand(0)); 715 if (Op0 == 0) 716 // Unhandled operand. Halt "fast" selection and bail. 717 return false; 718 719 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 720 721 // First, try to perform the bitcast by inserting a reg-reg copy. 722 unsigned ResultReg = 0; 723 if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) { 724 TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); 725 TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); 726 // Don't attempt a cross-class copy. It will likely fail. 727 if (SrcClass == DstClass) { 728 ResultReg = createResultReg(DstClass); 729 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 730 ResultReg).addReg(Op0); 731 } 732 } 733 734 // If the reg-reg copy failed, select a BITCAST opcode. 735 if (!ResultReg) 736 ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 737 ISD::BITCAST, Op0, Op0IsKill); 738 739 if (!ResultReg) 740 return false; 741 742 UpdateValueMap(I, ResultReg); 743 return true; 744 } 745 746 bool 747 FastISel::SelectInstruction(const Instruction *I) { 748 // Just before the terminator instruction, insert instructions to 749 // feed PHI nodes in successor blocks. 750 if (isa<TerminatorInst>(I)) 751 if (!HandlePHINodesInSuccessorBlocks(I->getParent())) 752 return false; 753 754 DL = I->getDebugLoc(); 755 756 MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt; 757 758 // First, try doing target-independent selection. 759 if (SelectOperator(I, I->getOpcode())) { 760 ++NumFastIselSuccessIndependent; 761 DL = DebugLoc(); 762 return true; 763 } 764 // Remove dead code. However, ignore call instructions since we've flushed 765 // the local value map and recomputed the insert point. 766 if (!isa<CallInst>(I)) { 767 recomputeInsertPt(); 768 if (SavedInsertPt != FuncInfo.InsertPt) 769 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 770 } 771 772 // Next, try calling the target to attempt to handle the instruction. 773 SavedInsertPt = FuncInfo.InsertPt; 774 if (TargetSelectInstruction(I)) { 775 ++NumFastIselSuccessTarget; 776 DL = DebugLoc(); 777 return true; 778 } 779 // Check for dead code and remove as necessary. 780 recomputeInsertPt(); 781 if (SavedInsertPt != FuncInfo.InsertPt) 782 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 783 784 DL = DebugLoc(); 785 return false; 786 } 787 788 /// FastEmitBranch - Emit an unconditional branch to the given block, 789 /// unless it is the immediate (fall-through) successor, and update 790 /// the CFG. 791 void 792 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) { 793 if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 794 // The unconditional fall-through case, which needs no instructions. 795 } else { 796 // The unconditional branch case. 797 TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL, 798 SmallVector<MachineOperand, 0>(), DL); 799 } 800 FuncInfo.MBB->addSuccessor(MSucc); 801 } 802 803 /// SelectFNeg - Emit an FNeg operation. 804 /// 805 bool 806 FastISel::SelectFNeg(const User *I) { 807 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 808 if (OpReg == 0) return false; 809 810 bool OpRegIsKill = hasTrivialKill(I); 811 812 // If the target has ISD::FNEG, use it. 813 EVT VT = TLI.getValueType(I->getType()); 814 unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), 815 ISD::FNEG, OpReg, OpRegIsKill); 816 if (ResultReg != 0) { 817 UpdateValueMap(I, ResultReg); 818 return true; 819 } 820 821 // Bitcast the value to integer, twiddle the sign bit with xor, 822 // and then bitcast it back to floating-point. 823 if (VT.getSizeInBits() > 64) return false; 824 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 825 if (!TLI.isTypeLegal(IntVT)) 826 return false; 827 828 unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 829 ISD::BITCAST, OpReg, OpRegIsKill); 830 if (IntReg == 0) 831 return false; 832 833 unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, 834 IntReg, /*Kill=*/true, 835 UINT64_C(1) << (VT.getSizeInBits()-1), 836 IntVT.getSimpleVT()); 837 if (IntResultReg == 0) 838 return false; 839 840 ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), 841 ISD::BITCAST, IntResultReg, /*Kill=*/true); 842 if (ResultReg == 0) 843 return false; 844 845 UpdateValueMap(I, ResultReg); 846 return true; 847 } 848 849 bool 850 FastISel::SelectExtractValue(const User *U) { 851 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 852 if (!EVI) 853 return false; 854 855 // Make sure we only try to handle extracts with a legal result. But also 856 // allow i1 because it's easy. 857 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true); 858 if (!RealVT.isSimple()) 859 return false; 860 MVT VT = RealVT.getSimpleVT(); 861 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 862 return false; 863 864 const Value *Op0 = EVI->getOperand(0); 865 Type *AggTy = Op0->getType(); 866 867 // Get the base result register. 868 unsigned ResultReg; 869 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 870 if (I != FuncInfo.ValueMap.end()) 871 ResultReg = I->second; 872 else if (isa<Instruction>(Op0)) 873 ResultReg = FuncInfo.InitializeRegForValue(Op0); 874 else 875 return false; // fast-isel can't handle aggregate constants at the moment 876 877 // Get the actual result register, which is an offset from the base register. 878 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 879 880 SmallVector<EVT, 4> AggValueVTs; 881 ComputeValueVTs(TLI, AggTy, AggValueVTs); 882 883 for (unsigned i = 0; i < VTIndex; i++) 884 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 885 886 UpdateValueMap(EVI, ResultReg); 887 return true; 888 } 889 890 bool 891 FastISel::SelectOperator(const User *I, unsigned Opcode) { 892 switch (Opcode) { 893 case Instruction::Add: 894 return SelectBinaryOp(I, ISD::ADD); 895 case Instruction::FAdd: 896 return SelectBinaryOp(I, ISD::FADD); 897 case Instruction::Sub: 898 return SelectBinaryOp(I, ISD::SUB); 899 case Instruction::FSub: 900 // FNeg is currently represented in LLVM IR as a special case of FSub. 901 if (BinaryOperator::isFNeg(I)) 902 return SelectFNeg(I); 903 return SelectBinaryOp(I, ISD::FSUB); 904 case Instruction::Mul: 905 return SelectBinaryOp(I, ISD::MUL); 906 case Instruction::FMul: 907 return SelectBinaryOp(I, ISD::FMUL); 908 case Instruction::SDiv: 909 return SelectBinaryOp(I, ISD::SDIV); 910 case Instruction::UDiv: 911 return SelectBinaryOp(I, ISD::UDIV); 912 case Instruction::FDiv: 913 return SelectBinaryOp(I, ISD::FDIV); 914 case Instruction::SRem: 915 return SelectBinaryOp(I, ISD::SREM); 916 case Instruction::URem: 917 return SelectBinaryOp(I, ISD::UREM); 918 case Instruction::FRem: 919 return SelectBinaryOp(I, ISD::FREM); 920 case Instruction::Shl: 921 return SelectBinaryOp(I, ISD::SHL); 922 case Instruction::LShr: 923 return SelectBinaryOp(I, ISD::SRL); 924 case Instruction::AShr: 925 return SelectBinaryOp(I, ISD::SRA); 926 case Instruction::And: 927 return SelectBinaryOp(I, ISD::AND); 928 case Instruction::Or: 929 return SelectBinaryOp(I, ISD::OR); 930 case Instruction::Xor: 931 return SelectBinaryOp(I, ISD::XOR); 932 933 case Instruction::GetElementPtr: 934 return SelectGetElementPtr(I); 935 936 case Instruction::Br: { 937 const BranchInst *BI = cast<BranchInst>(I); 938 939 if (BI->isUnconditional()) { 940 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 941 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 942 FastEmitBranch(MSucc, BI->getDebugLoc()); 943 return true; 944 } 945 946 // Conditional branches are not handed yet. 947 // Halt "fast" selection and bail. 948 return false; 949 } 950 951 case Instruction::Unreachable: 952 // Nothing to emit. 953 return true; 954 955 case Instruction::Alloca: 956 // FunctionLowering has the static-sized case covered. 957 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 958 return true; 959 960 // Dynamic-sized alloca is not handled yet. 961 return false; 962 963 case Instruction::Call: 964 return SelectCall(I); 965 966 case Instruction::BitCast: 967 return SelectBitCast(I); 968 969 case Instruction::FPToSI: 970 return SelectCast(I, ISD::FP_TO_SINT); 971 case Instruction::ZExt: 972 return SelectCast(I, ISD::ZERO_EXTEND); 973 case Instruction::SExt: 974 return SelectCast(I, ISD::SIGN_EXTEND); 975 case Instruction::Trunc: 976 return SelectCast(I, ISD::TRUNCATE); 977 case Instruction::SIToFP: 978 return SelectCast(I, ISD::SINT_TO_FP); 979 980 case Instruction::IntToPtr: // Deliberate fall-through. 981 case Instruction::PtrToInt: { 982 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 983 EVT DstVT = TLI.getValueType(I->getType()); 984 if (DstVT.bitsGT(SrcVT)) 985 return SelectCast(I, ISD::ZERO_EXTEND); 986 if (DstVT.bitsLT(SrcVT)) 987 return SelectCast(I, ISD::TRUNCATE); 988 unsigned Reg = getRegForValue(I->getOperand(0)); 989 if (Reg == 0) return false; 990 UpdateValueMap(I, Reg); 991 return true; 992 } 993 994 case Instruction::ExtractValue: 995 return SelectExtractValue(I); 996 997 case Instruction::PHI: 998 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 999 1000 default: 1001 // Unhandled instruction. Halt "fast" selection and bail. 1002 return false; 1003 } 1004 } 1005 1006 FastISel::FastISel(FunctionLoweringInfo &funcInfo) 1007 : FuncInfo(funcInfo), 1008 MRI(FuncInfo.MF->getRegInfo()), 1009 MFI(*FuncInfo.MF->getFrameInfo()), 1010 MCP(*FuncInfo.MF->getConstantPool()), 1011 TM(FuncInfo.MF->getTarget()), 1012 TD(*TM.getTargetData()), 1013 TII(*TM.getInstrInfo()), 1014 TLI(*TM.getTargetLowering()), 1015 TRI(*TM.getRegisterInfo()) { 1016 } 1017 1018 FastISel::~FastISel() {} 1019 1020 unsigned FastISel::FastEmit_(MVT, MVT, 1021 unsigned) { 1022 return 0; 1023 } 1024 1025 unsigned FastISel::FastEmit_r(MVT, MVT, 1026 unsigned, 1027 unsigned /*Op0*/, bool /*Op0IsKill*/) { 1028 return 0; 1029 } 1030 1031 unsigned FastISel::FastEmit_rr(MVT, MVT, 1032 unsigned, 1033 unsigned /*Op0*/, bool /*Op0IsKill*/, 1034 unsigned /*Op1*/, bool /*Op1IsKill*/) { 1035 return 0; 1036 } 1037 1038 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1039 return 0; 1040 } 1041 1042 unsigned FastISel::FastEmit_f(MVT, MVT, 1043 unsigned, const ConstantFP * /*FPImm*/) { 1044 return 0; 1045 } 1046 1047 unsigned FastISel::FastEmit_ri(MVT, MVT, 1048 unsigned, 1049 unsigned /*Op0*/, bool /*Op0IsKill*/, 1050 uint64_t /*Imm*/) { 1051 return 0; 1052 } 1053 1054 unsigned FastISel::FastEmit_rf(MVT, MVT, 1055 unsigned, 1056 unsigned /*Op0*/, bool /*Op0IsKill*/, 1057 const ConstantFP * /*FPImm*/) { 1058 return 0; 1059 } 1060 1061 unsigned FastISel::FastEmit_rri(MVT, MVT, 1062 unsigned, 1063 unsigned /*Op0*/, bool /*Op0IsKill*/, 1064 unsigned /*Op1*/, bool /*Op1IsKill*/, 1065 uint64_t /*Imm*/) { 1066 return 0; 1067 } 1068 1069 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries 1070 /// to emit an instruction with an immediate operand using FastEmit_ri. 1071 /// If that fails, it materializes the immediate into a register and try 1072 /// FastEmit_rr instead. 1073 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode, 1074 unsigned Op0, bool Op0IsKill, 1075 uint64_t Imm, MVT ImmType) { 1076 // If this is a multiply by a power of two, emit this as a shift left. 1077 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1078 Opcode = ISD::SHL; 1079 Imm = Log2_64(Imm); 1080 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1081 // div x, 8 -> srl x, 3 1082 Opcode = ISD::SRL; 1083 Imm = Log2_64(Imm); 1084 } 1085 1086 // Horrible hack (to be removed), check to make sure shift amounts are 1087 // in-range. 1088 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1089 Imm >= VT.getSizeInBits()) 1090 return 0; 1091 1092 // First check if immediate type is legal. If not, we can't use the ri form. 1093 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1094 if (ResultReg != 0) 1095 return ResultReg; 1096 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1097 if (MaterialReg == 0) { 1098 // This is a bit ugly/slow, but failing here means falling out of 1099 // fast-isel, which would be very slow. 1100 IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(), 1101 VT.getSizeInBits()); 1102 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1103 } 1104 return FastEmit_rr(VT, VT, Opcode, 1105 Op0, Op0IsKill, 1106 MaterialReg, /*Kill=*/true); 1107 } 1108 1109 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { 1110 return MRI.createVirtualRegister(RC); 1111 } 1112 1113 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, 1114 const TargetRegisterClass* RC) { 1115 unsigned ResultReg = createResultReg(RC); 1116 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1117 1118 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg); 1119 return ResultReg; 1120 } 1121 1122 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, 1123 const TargetRegisterClass *RC, 1124 unsigned Op0, bool Op0IsKill) { 1125 unsigned ResultReg = createResultReg(RC); 1126 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1127 1128 if (II.getNumDefs() >= 1) 1129 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1130 .addReg(Op0, Op0IsKill * RegState::Kill); 1131 else { 1132 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1133 .addReg(Op0, Op0IsKill * RegState::Kill); 1134 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1135 ResultReg).addReg(II.ImplicitDefs[0]); 1136 } 1137 1138 return ResultReg; 1139 } 1140 1141 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 1142 const TargetRegisterClass *RC, 1143 unsigned Op0, bool Op0IsKill, 1144 unsigned Op1, bool Op1IsKill) { 1145 unsigned ResultReg = createResultReg(RC); 1146 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1147 1148 if (II.getNumDefs() >= 1) 1149 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1150 .addReg(Op0, Op0IsKill * RegState::Kill) 1151 .addReg(Op1, Op1IsKill * RegState::Kill); 1152 else { 1153 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1154 .addReg(Op0, Op0IsKill * RegState::Kill) 1155 .addReg(Op1, Op1IsKill * RegState::Kill); 1156 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1157 ResultReg).addReg(II.ImplicitDefs[0]); 1158 } 1159 return ResultReg; 1160 } 1161 1162 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 1163 const TargetRegisterClass *RC, 1164 unsigned Op0, bool Op0IsKill, 1165 unsigned Op1, bool Op1IsKill, 1166 unsigned Op2, bool Op2IsKill) { 1167 unsigned ResultReg = createResultReg(RC); 1168 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1169 1170 if (II.getNumDefs() >= 1) 1171 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1172 .addReg(Op0, Op0IsKill * RegState::Kill) 1173 .addReg(Op1, Op1IsKill * RegState::Kill) 1174 .addReg(Op2, Op2IsKill * RegState::Kill); 1175 else { 1176 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1177 .addReg(Op0, Op0IsKill * RegState::Kill) 1178 .addReg(Op1, Op1IsKill * RegState::Kill) 1179 .addReg(Op2, Op2IsKill * RegState::Kill); 1180 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1181 ResultReg).addReg(II.ImplicitDefs[0]); 1182 } 1183 return ResultReg; 1184 } 1185 1186 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 1187 const TargetRegisterClass *RC, 1188 unsigned Op0, bool Op0IsKill, 1189 uint64_t Imm) { 1190 unsigned ResultReg = createResultReg(RC); 1191 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1192 1193 if (II.getNumDefs() >= 1) 1194 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1195 .addReg(Op0, Op0IsKill * RegState::Kill) 1196 .addImm(Imm); 1197 else { 1198 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1199 .addReg(Op0, Op0IsKill * RegState::Kill) 1200 .addImm(Imm); 1201 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1202 ResultReg).addReg(II.ImplicitDefs[0]); 1203 } 1204 return ResultReg; 1205 } 1206 1207 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode, 1208 const TargetRegisterClass *RC, 1209 unsigned Op0, bool Op0IsKill, 1210 uint64_t Imm1, uint64_t Imm2) { 1211 unsigned ResultReg = createResultReg(RC); 1212 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1213 1214 if (II.getNumDefs() >= 1) 1215 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1216 .addReg(Op0, Op0IsKill * RegState::Kill) 1217 .addImm(Imm1) 1218 .addImm(Imm2); 1219 else { 1220 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1221 .addReg(Op0, Op0IsKill * RegState::Kill) 1222 .addImm(Imm1) 1223 .addImm(Imm2); 1224 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1225 ResultReg).addReg(II.ImplicitDefs[0]); 1226 } 1227 return ResultReg; 1228 } 1229 1230 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 1231 const TargetRegisterClass *RC, 1232 unsigned Op0, bool Op0IsKill, 1233 const ConstantFP *FPImm) { 1234 unsigned ResultReg = createResultReg(RC); 1235 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1236 1237 if (II.getNumDefs() >= 1) 1238 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1239 .addReg(Op0, Op0IsKill * RegState::Kill) 1240 .addFPImm(FPImm); 1241 else { 1242 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1243 .addReg(Op0, Op0IsKill * RegState::Kill) 1244 .addFPImm(FPImm); 1245 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1246 ResultReg).addReg(II.ImplicitDefs[0]); 1247 } 1248 return ResultReg; 1249 } 1250 1251 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 1252 const TargetRegisterClass *RC, 1253 unsigned Op0, bool Op0IsKill, 1254 unsigned Op1, bool Op1IsKill, 1255 uint64_t Imm) { 1256 unsigned ResultReg = createResultReg(RC); 1257 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1258 1259 if (II.getNumDefs() >= 1) 1260 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1261 .addReg(Op0, Op0IsKill * RegState::Kill) 1262 .addReg(Op1, Op1IsKill * RegState::Kill) 1263 .addImm(Imm); 1264 else { 1265 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1266 .addReg(Op0, Op0IsKill * RegState::Kill) 1267 .addReg(Op1, Op1IsKill * RegState::Kill) 1268 .addImm(Imm); 1269 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1270 ResultReg).addReg(II.ImplicitDefs[0]); 1271 } 1272 return ResultReg; 1273 } 1274 1275 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, 1276 const TargetRegisterClass *RC, 1277 uint64_t Imm) { 1278 unsigned ResultReg = createResultReg(RC); 1279 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1280 1281 if (II.getNumDefs() >= 1) 1282 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm); 1283 else { 1284 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm); 1285 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1286 ResultReg).addReg(II.ImplicitDefs[0]); 1287 } 1288 return ResultReg; 1289 } 1290 1291 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 1292 const TargetRegisterClass *RC, 1293 uint64_t Imm1, uint64_t Imm2) { 1294 unsigned ResultReg = createResultReg(RC); 1295 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1296 1297 if (II.getNumDefs() >= 1) 1298 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1299 .addImm(Imm1).addImm(Imm2); 1300 else { 1301 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2); 1302 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1303 ResultReg).addReg(II.ImplicitDefs[0]); 1304 } 1305 return ResultReg; 1306 } 1307 1308 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT, 1309 unsigned Op0, bool Op0IsKill, 1310 uint32_t Idx) { 1311 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1312 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1313 "Cannot yet extract from physregs"); 1314 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 1315 DL, TII.get(TargetOpcode::COPY), ResultReg) 1316 .addReg(Op0, getKillRegState(Op0IsKill), Idx); 1317 return ResultReg; 1318 } 1319 1320 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op 1321 /// with all but the least significant bit set to zero. 1322 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 1323 return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 1324 } 1325 1326 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 1327 /// Emit code to ensure constants are copied into registers when needed. 1328 /// Remember the virtual registers that need to be added to the Machine PHI 1329 /// nodes as input. We cannot just directly add them, because expansion 1330 /// might result in multiple MBB's for one BB. As such, the start of the 1331 /// BB might correspond to a different MBB than the end. 1332 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 1333 const TerminatorInst *TI = LLVMBB->getTerminator(); 1334 1335 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 1336 unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 1337 1338 // Check successor nodes' PHI nodes that expect a constant to be available 1339 // from this block. 1340 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 1341 const BasicBlock *SuccBB = TI->getSuccessor(succ); 1342 if (!isa<PHINode>(SuccBB->begin())) continue; 1343 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 1344 1345 // If this terminator has multiple identical successors (common for 1346 // switches), only handle each succ once. 1347 if (!SuccsHandled.insert(SuccMBB)) continue; 1348 1349 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 1350 1351 // At this point we know that there is a 1-1 correspondence between LLVM PHI 1352 // nodes and Machine PHI nodes, but the incoming operands have not been 1353 // emitted yet. 1354 for (BasicBlock::const_iterator I = SuccBB->begin(); 1355 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1356 1357 // Ignore dead phi's. 1358 if (PN->use_empty()) continue; 1359 1360 // Only handle legal types. Two interesting things to note here. First, 1361 // by bailing out early, we may leave behind some dead instructions, 1362 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 1363 // own moves. Second, this check is necessary because FastISel doesn't 1364 // use CreateRegs to create registers, so it always creates 1365 // exactly one register for each non-void instruction. 1366 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 1367 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 1368 // Handle integer promotions, though, because they're common and easy. 1369 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 1370 VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT); 1371 else { 1372 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 1373 return false; 1374 } 1375 } 1376 1377 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 1378 1379 // Set the DebugLoc for the copy. Prefer the location of the operand 1380 // if there is one; use the location of the PHI otherwise. 1381 DL = PN->getDebugLoc(); 1382 if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp)) 1383 DL = Inst->getDebugLoc(); 1384 1385 unsigned Reg = getRegForValue(PHIOp); 1386 if (Reg == 0) { 1387 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 1388 return false; 1389 } 1390 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 1391 DL = DebugLoc(); 1392 } 1393 } 1394 1395 return true; 1396 } 1397