1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the FastISel class. 10 // 11 // "Fast" instruction selection is designed to emit very poor code quickly. 12 // Also, it is not designed to be able to do much lowering, so most illegal 13 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 14 // also not intended to be able to do much optimization, except in a few cases 15 // where doing optimizations reduces overall compile time. For example, folding 16 // constants into immediate fields is often done, because it's cheap and it 17 // reduces the number of instructions later phases have to examine. 18 // 19 // "Fast" instruction selection is able to fail gracefully and transfer 20 // control to the SelectionDAG selector for operations that it doesn't 21 // support. In many cases, this allows us to avoid duplicating a lot of 22 // the complicated lowering logic that SelectionDAG currently has. 23 // 24 // The intended use for "fast" instruction selection is "-O0" mode 25 // compilation, where the quality of the generated code is irrelevant when 26 // weighed against the speed at which the code can be generated. Also, 27 // at -O0, the LLVM optimizers are not running, and this makes the 28 // compile time of codegen a much higher portion of the overall compile 29 // time. Despite its limitations, "fast" instruction selection is able to 30 // handle enough code on its own to provide noticeable overall speedups 31 // in -O0 compiles. 32 // 33 // Basic operations are supported in a target-independent way, by reading 34 // the same instruction descriptions that the SelectionDAG selector reads, 35 // and identifying simple arithmetic operations that can be directly selected 36 // from simple operators. More complicated operations currently require 37 // target-specific code. 38 // 39 //===----------------------------------------------------------------------===// 40 41 #include "llvm/CodeGen/FastISel.h" 42 #include "llvm/ADT/APFloat.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/DenseMap.h" 45 #include "llvm/ADT/Optional.h" 46 #include "llvm/ADT/SmallPtrSet.h" 47 #include "llvm/ADT/SmallString.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/Analysis/BranchProbabilityInfo.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/CodeGen/Analysis.h" 53 #include "llvm/CodeGen/FunctionLoweringInfo.h" 54 #include "llvm/CodeGen/ISDOpcodes.h" 55 #include "llvm/CodeGen/MachineBasicBlock.h" 56 #include "llvm/CodeGen/MachineFrameInfo.h" 57 #include "llvm/CodeGen/MachineInstr.h" 58 #include "llvm/CodeGen/MachineInstrBuilder.h" 59 #include "llvm/CodeGen/MachineMemOperand.h" 60 #include "llvm/CodeGen/MachineModuleInfo.h" 61 #include "llvm/CodeGen/MachineOperand.h" 62 #include "llvm/CodeGen/MachineRegisterInfo.h" 63 #include "llvm/CodeGen/StackMaps.h" 64 #include "llvm/CodeGen/TargetInstrInfo.h" 65 #include "llvm/CodeGen/TargetLowering.h" 66 #include "llvm/CodeGen/TargetSubtargetInfo.h" 67 #include "llvm/CodeGen/ValueTypes.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfo.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Mangler.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Type.h" 92 #include "llvm/IR/User.h" 93 #include "llvm/IR/Value.h" 94 #include "llvm/MC/MCContext.h" 95 #include "llvm/MC/MCInstrDesc.h" 96 #include "llvm/MC/MCRegisterInfo.h" 97 #include "llvm/Support/Casting.h" 98 #include "llvm/Support/Debug.h" 99 #include "llvm/Support/ErrorHandling.h" 100 #include "llvm/Support/MachineValueType.h" 101 #include "llvm/Support/MathExtras.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Target/TargetMachine.h" 104 #include "llvm/Target/TargetOptions.h" 105 #include <algorithm> 106 #include <cassert> 107 #include <cstdint> 108 #include <iterator> 109 #include <utility> 110 111 using namespace llvm; 112 using namespace PatternMatch; 113 114 #define DEBUG_TYPE "isel" 115 116 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 117 "target-independent selector"); 118 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 119 "target-specific selector"); 120 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 121 122 /// Set the current block to which generated machine instructions will be 123 /// appended. 124 void FastISel::startNewBlock() { 125 assert(LocalValueMap.empty() && 126 "local values should be cleared after finishing a BB"); 127 128 // Instructions are appended to FuncInfo.MBB. If the basic block already 129 // contains labels or copies, use the last instruction as the last local 130 // value. 131 EmitStartPt = nullptr; 132 if (!FuncInfo.MBB->empty()) 133 EmitStartPt = &FuncInfo.MBB->back(); 134 LastLocalValue = EmitStartPt; 135 } 136 137 void FastISel::finishBasicBlock() { flushLocalValueMap(); } 138 139 bool FastISel::lowerArguments() { 140 if (!FuncInfo.CanLowerReturn) 141 // Fallback to SDISel argument lowering code to deal with sret pointer 142 // parameter. 143 return false; 144 145 if (!fastLowerArguments()) 146 return false; 147 148 // Enter arguments into ValueMap for uses in non-entry BBs. 149 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 150 E = FuncInfo.Fn->arg_end(); 151 I != E; ++I) { 152 DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I); 153 assert(VI != LocalValueMap.end() && "Missed an argument?"); 154 FuncInfo.ValueMap[&*I] = VI->second; 155 } 156 return true; 157 } 158 159 /// Return the defined register if this instruction defines exactly one 160 /// virtual register and uses no other virtual registers. Otherwise return 0. 161 static Register findLocalRegDef(MachineInstr &MI) { 162 Register RegDef; 163 for (const MachineOperand &MO : MI.operands()) { 164 if (!MO.isReg()) 165 continue; 166 if (MO.isDef()) { 167 if (RegDef) 168 return Register(); 169 RegDef = MO.getReg(); 170 } else if (MO.getReg().isVirtual()) { 171 // This is another use of a vreg. Don't delete it. 172 return Register(); 173 } 174 } 175 return RegDef; 176 } 177 178 static bool isRegUsedByPhiNodes(Register DefReg, 179 FunctionLoweringInfo &FuncInfo) { 180 for (auto &P : FuncInfo.PHINodesToUpdate) 181 if (P.second == DefReg) 182 return true; 183 return false; 184 } 185 186 void FastISel::flushLocalValueMap() { 187 // If FastISel bails out, it could leave local value instructions behind 188 // that aren't used for anything. Detect and erase those. 189 if (LastLocalValue != EmitStartPt) { 190 // Save the first instruction after local values, for later. 191 MachineBasicBlock::iterator FirstNonValue(LastLocalValue); 192 ++FirstNonValue; 193 194 MachineBasicBlock::reverse_iterator RE = 195 EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) 196 : FuncInfo.MBB->rend(); 197 MachineBasicBlock::reverse_iterator RI(LastLocalValue); 198 for (; RI != RE;) { 199 MachineInstr &LocalMI = *RI; 200 // Increment before erasing what it points to. 201 ++RI; 202 Register DefReg = findLocalRegDef(LocalMI); 203 if (!DefReg) 204 continue; 205 if (FuncInfo.RegsWithFixups.count(DefReg)) 206 continue; 207 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); 208 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) { 209 if (EmitStartPt == &LocalMI) 210 EmitStartPt = EmitStartPt->getPrevNode(); 211 LLVM_DEBUG(dbgs() << "removing dead local value materialization" 212 << LocalMI); 213 LocalMI.eraseFromParent(); 214 } 215 } 216 217 if (FirstNonValue != FuncInfo.MBB->end()) { 218 // See if there are any local value instructions left. If so, we want to 219 // make sure the first one has a debug location; if it doesn't, use the 220 // first non-value instruction's debug location. 221 222 // If EmitStartPt is non-null, this block had copies at the top before 223 // FastISel started doing anything; it points to the last one, so the 224 // first local value instruction is the one after EmitStartPt. 225 // If EmitStartPt is null, the first local value instruction is at the 226 // top of the block. 227 MachineBasicBlock::iterator FirstLocalValue = 228 EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt) 229 : FuncInfo.MBB->begin(); 230 if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc()) 231 FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc()); 232 } 233 } 234 235 LocalValueMap.clear(); 236 LastLocalValue = EmitStartPt; 237 recomputeInsertPt(); 238 SavedInsertPt = FuncInfo.InsertPt; 239 } 240 241 Register FastISel::getRegForValue(const Value *V) { 242 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 243 // Don't handle non-simple values in FastISel. 244 if (!RealVT.isSimple()) 245 return Register(); 246 247 // Ignore illegal types. We must do this before looking up the value 248 // in ValueMap because Arguments are given virtual registers regardless 249 // of whether FastISel can handle them. 250 MVT VT = RealVT.getSimpleVT(); 251 if (!TLI.isTypeLegal(VT)) { 252 // Handle integer promotions, though, because they're common and easy. 253 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 254 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 255 else 256 return Register(); 257 } 258 259 // Look up the value to see if we already have a register for it. 260 Register Reg = lookUpRegForValue(V); 261 if (Reg) 262 return Reg; 263 264 // In bottom-up mode, just create the virtual register which will be used 265 // to hold the value. It will be materialized later. 266 if (isa<Instruction>(V) && 267 (!isa<AllocaInst>(V) || 268 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 269 return FuncInfo.InitializeRegForValue(V); 270 271 SavePoint SaveInsertPt = enterLocalValueArea(); 272 273 // Materialize the value in a register. Emit any instructions in the 274 // local value area. 275 Reg = materializeRegForValue(V, VT); 276 277 leaveLocalValueArea(SaveInsertPt); 278 279 return Reg; 280 } 281 282 Register FastISel::materializeConstant(const Value *V, MVT VT) { 283 Register Reg; 284 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 285 if (CI->getValue().getActiveBits() <= 64) 286 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 287 } else if (isa<AllocaInst>(V)) 288 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 289 else if (isa<ConstantPointerNull>(V)) 290 // Translate this as an integer zero so that it can be 291 // local-CSE'd with actual integer zeros. 292 Reg = 293 getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType()))); 294 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 295 if (CF->isNullValue()) 296 Reg = fastMaterializeFloatZero(CF); 297 else 298 // Try to emit the constant directly. 299 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 300 301 if (!Reg) { 302 // Try to emit the constant by using an integer constant with a cast. 303 const APFloat &Flt = CF->getValueAPF(); 304 EVT IntVT = TLI.getPointerTy(DL); 305 uint32_t IntBitWidth = IntVT.getSizeInBits(); 306 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); 307 bool isExact; 308 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); 309 if (isExact) { 310 Register IntegerReg = 311 getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); 312 if (IntegerReg) 313 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 314 IntegerReg); 315 } 316 } 317 } else if (const auto *Op = dyn_cast<Operator>(V)) { 318 if (!selectOperator(Op, Op->getOpcode())) 319 if (!isa<Instruction>(Op) || 320 !fastSelectInstruction(cast<Instruction>(Op))) 321 return 0; 322 Reg = lookUpRegForValue(Op); 323 } else if (isa<UndefValue>(V)) { 324 Reg = createResultReg(TLI.getRegClassFor(VT)); 325 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 326 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 327 } 328 return Reg; 329 } 330 331 /// Helper for getRegForValue. This function is called when the value isn't 332 /// already available in a register and must be materialized with new 333 /// instructions. 334 Register FastISel::materializeRegForValue(const Value *V, MVT VT) { 335 Register Reg; 336 // Give the target-specific code a try first. 337 if (isa<Constant>(V)) 338 Reg = fastMaterializeConstant(cast<Constant>(V)); 339 340 // If target-specific code couldn't or didn't want to handle the value, then 341 // give target-independent code a try. 342 if (!Reg) 343 Reg = materializeConstant(V, VT); 344 345 // Don't cache constant materializations in the general ValueMap. 346 // To do so would require tracking what uses they dominate. 347 if (Reg) { 348 LocalValueMap[V] = Reg; 349 LastLocalValue = MRI.getVRegDef(Reg); 350 } 351 return Reg; 352 } 353 354 Register FastISel::lookUpRegForValue(const Value *V) { 355 // Look up the value to see if we already have a register for it. We 356 // cache values defined by Instructions across blocks, and other values 357 // only locally. This is because Instructions already have the SSA 358 // def-dominates-use requirement enforced. 359 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V); 360 if (I != FuncInfo.ValueMap.end()) 361 return I->second; 362 return LocalValueMap[V]; 363 } 364 365 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) { 366 if (!isa<Instruction>(I)) { 367 LocalValueMap[I] = Reg; 368 return; 369 } 370 371 Register &AssignedReg = FuncInfo.ValueMap[I]; 372 if (!AssignedReg) 373 // Use the new register. 374 AssignedReg = Reg; 375 else if (Reg != AssignedReg) { 376 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 377 for (unsigned i = 0; i < NumRegs; i++) { 378 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 379 FuncInfo.RegsWithFixups.insert(Reg + i); 380 } 381 382 AssignedReg = Reg; 383 } 384 } 385 386 Register FastISel::getRegForGEPIndex(const Value *Idx) { 387 Register IdxN = getRegForValue(Idx); 388 if (!IdxN) 389 // Unhandled operand. Halt "fast" selection and bail. 390 return Register(); 391 392 // If the index is smaller or larger than intptr_t, truncate or extend it. 393 MVT PtrVT = TLI.getPointerTy(DL); 394 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 395 if (IdxVT.bitsLT(PtrVT)) { 396 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN); 397 } else if (IdxVT.bitsGT(PtrVT)) { 398 IdxN = 399 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN); 400 } 401 return IdxN; 402 } 403 404 void FastISel::recomputeInsertPt() { 405 if (getLastLocalValue()) { 406 FuncInfo.InsertPt = getLastLocalValue(); 407 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 408 ++FuncInfo.InsertPt; 409 } else 410 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 411 412 // Now skip past any EH_LABELs, which must remain at the beginning. 413 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 414 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 415 ++FuncInfo.InsertPt; 416 } 417 418 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 419 MachineBasicBlock::iterator E) { 420 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 421 "Invalid iterator!"); 422 while (I != E) { 423 if (SavedInsertPt == I) 424 SavedInsertPt = E; 425 if (EmitStartPt == I) 426 EmitStartPt = E.isValid() ? &*E : nullptr; 427 if (LastLocalValue == I) 428 LastLocalValue = E.isValid() ? &*E : nullptr; 429 430 MachineInstr *Dead = &*I; 431 ++I; 432 Dead->eraseFromParent(); 433 ++NumFastIselDead; 434 } 435 recomputeInsertPt(); 436 } 437 438 FastISel::SavePoint FastISel::enterLocalValueArea() { 439 SavePoint OldInsertPt = FuncInfo.InsertPt; 440 recomputeInsertPt(); 441 return OldInsertPt; 442 } 443 444 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 445 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 446 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 447 448 // Restore the previous insert position. 449 FuncInfo.InsertPt = OldInsertPt; 450 } 451 452 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 453 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 454 if (VT == MVT::Other || !VT.isSimple()) 455 // Unhandled type. Halt "fast" selection and bail. 456 return false; 457 458 // We only handle legal types. For example, on x86-32 the instruction 459 // selector contains all of the 64-bit instructions from x86-64, 460 // under the assumption that i64 won't be used if the target doesn't 461 // support it. 462 if (!TLI.isTypeLegal(VT)) { 463 // MVT::i1 is special. Allow AND, OR, or XOR because they 464 // don't require additional zeroing, which makes them easy. 465 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 466 ISDOpcode == ISD::XOR)) 467 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 468 else 469 return false; 470 } 471 472 // Check if the first operand is a constant, and handle it as "ri". At -O0, 473 // we don't have anything that canonicalizes operand order. 474 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 475 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 476 Register Op1 = getRegForValue(I->getOperand(1)); 477 if (!Op1) 478 return false; 479 480 Register ResultReg = 481 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(), 482 VT.getSimpleVT()); 483 if (!ResultReg) 484 return false; 485 486 // We successfully emitted code for the given LLVM Instruction. 487 updateValueMap(I, ResultReg); 488 return true; 489 } 490 491 Register Op0 = getRegForValue(I->getOperand(0)); 492 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 493 return false; 494 495 // Check if the second operand is a constant and handle it appropriately. 496 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 497 uint64_t Imm = CI->getSExtValue(); 498 499 // Transform "sdiv exact X, 8" -> "sra X, 3". 500 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 501 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 502 Imm = Log2_64(Imm); 503 ISDOpcode = ISD::SRA; 504 } 505 506 // Transform "urem x, pow2" -> "and x, pow2-1". 507 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 508 isPowerOf2_64(Imm)) { 509 --Imm; 510 ISDOpcode = ISD::AND; 511 } 512 513 Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm, 514 VT.getSimpleVT()); 515 if (!ResultReg) 516 return false; 517 518 // We successfully emitted code for the given LLVM Instruction. 519 updateValueMap(I, ResultReg); 520 return true; 521 } 522 523 Register Op1 = getRegForValue(I->getOperand(1)); 524 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 525 return false; 526 527 // Now we have both operands in registers. Emit the instruction. 528 Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 529 ISDOpcode, Op0, Op1); 530 if (!ResultReg) 531 // Target-specific code wasn't able to find a machine opcode for 532 // the given ISD opcode and type. Halt "fast" selection and bail. 533 return false; 534 535 // We successfully emitted code for the given LLVM Instruction. 536 updateValueMap(I, ResultReg); 537 return true; 538 } 539 540 bool FastISel::selectGetElementPtr(const User *I) { 541 Register N = getRegForValue(I->getOperand(0)); 542 if (!N) // Unhandled operand. Halt "fast" selection and bail. 543 return false; 544 545 // FIXME: The code below does not handle vector GEPs. Halt "fast" selection 546 // and bail. 547 if (isa<VectorType>(I->getType())) 548 return false; 549 550 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 551 // into a single N = N + TotalOffset. 552 uint64_t TotalOffs = 0; 553 // FIXME: What's a good SWAG number for MaxOffs? 554 uint64_t MaxOffs = 2048; 555 MVT VT = TLI.getPointerTy(DL); 556 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 557 GTI != E; ++GTI) { 558 const Value *Idx = GTI.getOperand(); 559 if (StructType *StTy = GTI.getStructTypeOrNull()) { 560 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 561 if (Field) { 562 // N = N + Offset 563 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 564 if (TotalOffs >= MaxOffs) { 565 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 566 if (!N) // Unhandled operand. Halt "fast" selection and bail. 567 return false; 568 TotalOffs = 0; 569 } 570 } 571 } else { 572 Type *Ty = GTI.getIndexedType(); 573 574 // If this is a constant subscript, handle it quickly. 575 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 576 if (CI->isZero()) 577 continue; 578 // N = N + Offset 579 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 580 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 581 if (TotalOffs >= MaxOffs) { 582 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 583 if (!N) // Unhandled operand. Halt "fast" selection and bail. 584 return false; 585 TotalOffs = 0; 586 } 587 continue; 588 } 589 if (TotalOffs) { 590 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 591 if (!N) // Unhandled operand. Halt "fast" selection and bail. 592 return false; 593 TotalOffs = 0; 594 } 595 596 // N = N + Idx * ElementSize; 597 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 598 Register IdxN = getRegForGEPIndex(Idx); 599 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 600 return false; 601 602 if (ElementSize != 1) { 603 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT); 604 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 605 return false; 606 } 607 N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN); 608 if (!N) // Unhandled operand. Halt "fast" selection and bail. 609 return false; 610 } 611 } 612 if (TotalOffs) { 613 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 614 if (!N) // Unhandled operand. Halt "fast" selection and bail. 615 return false; 616 } 617 618 // We successfully emitted code for the given LLVM Instruction. 619 updateValueMap(I, N); 620 return true; 621 } 622 623 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 624 const CallInst *CI, unsigned StartIdx) { 625 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 626 Value *Val = CI->getArgOperand(i); 627 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 628 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 629 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 630 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 631 } else if (isa<ConstantPointerNull>(Val)) { 632 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 633 Ops.push_back(MachineOperand::CreateImm(0)); 634 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 635 // Values coming from a stack location also require a special encoding, 636 // but that is added later on by the target specific frame index 637 // elimination implementation. 638 auto SI = FuncInfo.StaticAllocaMap.find(AI); 639 if (SI != FuncInfo.StaticAllocaMap.end()) 640 Ops.push_back(MachineOperand::CreateFI(SI->second)); 641 else 642 return false; 643 } else { 644 Register Reg = getRegForValue(Val); 645 if (!Reg) 646 return false; 647 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 648 } 649 } 650 return true; 651 } 652 653 bool FastISel::selectStackmap(const CallInst *I) { 654 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 655 // [live variables...]) 656 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 657 "Stackmap cannot return a value."); 658 659 // The stackmap intrinsic only records the live variables (the arguments 660 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 661 // intrinsic, this won't be lowered to a function call. This means we don't 662 // have to worry about calling conventions and target-specific lowering code. 663 // Instead we perform the call lowering right here. 664 // 665 // CALLSEQ_START(0, 0...) 666 // STACKMAP(id, nbytes, ...) 667 // CALLSEQ_END(0, 0) 668 // 669 SmallVector<MachineOperand, 32> Ops; 670 671 // Add the <id> and <numBytes> constants. 672 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 673 "Expected a constant integer."); 674 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 675 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 676 677 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 678 "Expected a constant integer."); 679 const auto *NumBytes = 680 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 681 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 682 683 // Push live variables for the stack map (skipping the first two arguments 684 // <id> and <numBytes>). 685 if (!addStackMapLiveVars(Ops, I, 2)) 686 return false; 687 688 // We are not adding any register mask info here, because the stackmap doesn't 689 // clobber anything. 690 691 // Add scratch registers as implicit def and early clobber. 692 CallingConv::ID CC = I->getCallingConv(); 693 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 694 for (unsigned i = 0; ScratchRegs[i]; ++i) 695 Ops.push_back(MachineOperand::CreateReg( 696 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 697 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 698 699 // Issue CALLSEQ_START 700 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 701 auto Builder = 702 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 703 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 704 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 705 Builder.addImm(0); 706 707 // Issue STACKMAP. 708 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 709 TII.get(TargetOpcode::STACKMAP)); 710 for (auto const &MO : Ops) 711 MIB.add(MO); 712 713 // Issue CALLSEQ_END 714 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 715 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 716 .addImm(0) 717 .addImm(0); 718 719 // Inform the Frame Information that we have a stackmap in this function. 720 FuncInfo.MF->getFrameInfo().setHasStackMap(); 721 722 return true; 723 } 724 725 /// Lower an argument list according to the target calling convention. 726 /// 727 /// This is a helper for lowering intrinsics that follow a target calling 728 /// convention or require stack pointer adjustment. Only a subset of the 729 /// intrinsic's operands need to participate in the calling convention. 730 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 731 unsigned NumArgs, const Value *Callee, 732 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 733 ArgListTy Args; 734 Args.reserve(NumArgs); 735 736 // Populate the argument list. 737 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { 738 Value *V = CI->getOperand(ArgI); 739 740 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 741 742 ArgListEntry Entry; 743 Entry.Val = V; 744 Entry.Ty = V->getType(); 745 Entry.setAttributes(CI, ArgI); 746 Args.push_back(Entry); 747 } 748 749 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 750 : CI->getType(); 751 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 752 753 return lowerCallTo(CLI); 754 } 755 756 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 757 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 758 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 759 SmallString<32> MangledName; 760 Mangler::getNameWithPrefix(MangledName, Target, DL); 761 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 762 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 763 } 764 765 bool FastISel::selectPatchpoint(const CallInst *I) { 766 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 767 // i32 <numBytes>, 768 // i8* <target>, 769 // i32 <numArgs>, 770 // [Args...], 771 // [live variables...]) 772 CallingConv::ID CC = I->getCallingConv(); 773 bool IsAnyRegCC = CC == CallingConv::AnyReg; 774 bool HasDef = !I->getType()->isVoidTy(); 775 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 776 777 // Get the real number of arguments participating in the call <numArgs> 778 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 779 "Expected a constant integer."); 780 const auto *NumArgsVal = 781 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 782 unsigned NumArgs = NumArgsVal->getZExtValue(); 783 784 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 785 // This includes all meta-operands up to but not including CC. 786 unsigned NumMetaOpers = PatchPointOpers::CCPos; 787 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 788 "Not enough arguments provided to the patchpoint intrinsic"); 789 790 // For AnyRegCC the arguments are lowered later on manually. 791 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 792 CallLoweringInfo CLI; 793 CLI.setIsPatchPoint(); 794 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 795 return false; 796 797 assert(CLI.Call && "No call instruction specified."); 798 799 SmallVector<MachineOperand, 32> Ops; 800 801 // Add an explicit result reg if we use the anyreg calling convention. 802 if (IsAnyRegCC && HasDef) { 803 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 804 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 805 CLI.NumResultRegs = 1; 806 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true)); 807 } 808 809 // Add the <id> and <numBytes> constants. 810 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 811 "Expected a constant integer."); 812 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 813 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 814 815 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 816 "Expected a constant integer."); 817 const auto *NumBytes = 818 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 819 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 820 821 // Add the call target. 822 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 823 uint64_t CalleeConstAddr = 824 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 825 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 826 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 827 if (C->getOpcode() == Instruction::IntToPtr) { 828 uint64_t CalleeConstAddr = 829 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 830 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 831 } else 832 llvm_unreachable("Unsupported ConstantExpr."); 833 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 834 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 835 } else if (isa<ConstantPointerNull>(Callee)) 836 Ops.push_back(MachineOperand::CreateImm(0)); 837 else 838 llvm_unreachable("Unsupported callee address."); 839 840 // Adjust <numArgs> to account for any arguments that have been passed on 841 // the stack instead. 842 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 843 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 844 845 // Add the calling convention 846 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 847 848 // Add the arguments we omitted previously. The register allocator should 849 // place these in any free register. 850 if (IsAnyRegCC) { 851 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 852 Register Reg = getRegForValue(I->getArgOperand(i)); 853 if (!Reg) 854 return false; 855 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 856 } 857 } 858 859 // Push the arguments from the call instruction. 860 for (auto Reg : CLI.OutRegs) 861 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 862 863 // Push live variables for the stack map. 864 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 865 return false; 866 867 // Push the register mask info. 868 Ops.push_back(MachineOperand::CreateRegMask( 869 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 870 871 // Add scratch registers as implicit def and early clobber. 872 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 873 for (unsigned i = 0; ScratchRegs[i]; ++i) 874 Ops.push_back(MachineOperand::CreateReg( 875 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 876 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 877 878 // Add implicit defs (return values). 879 for (auto Reg : CLI.InRegs) 880 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true, 881 /*isImp=*/true)); 882 883 // Insert the patchpoint instruction before the call generated by the target. 884 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 885 TII.get(TargetOpcode::PATCHPOINT)); 886 887 for (auto &MO : Ops) 888 MIB.add(MO); 889 890 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 891 892 // Delete the original call instruction. 893 CLI.Call->eraseFromParent(); 894 895 // Inform the Frame Information that we have a patchpoint in this function. 896 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 897 898 if (CLI.NumResultRegs) 899 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 900 return true; 901 } 902 903 bool FastISel::selectXRayCustomEvent(const CallInst *I) { 904 const auto &Triple = TM.getTargetTriple(); 905 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 906 return true; // don't do anything to this instruction. 907 SmallVector<MachineOperand, 8> Ops; 908 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 909 /*isDef=*/false)); 910 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 911 /*isDef=*/false)); 912 MachineInstrBuilder MIB = 913 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 914 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); 915 for (auto &MO : Ops) 916 MIB.add(MO); 917 918 // Insert the Patchable Event Call instruction, that gets lowered properly. 919 return true; 920 } 921 922 bool FastISel::selectXRayTypedEvent(const CallInst *I) { 923 const auto &Triple = TM.getTargetTriple(); 924 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 925 return true; // don't do anything to this instruction. 926 SmallVector<MachineOperand, 8> Ops; 927 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 928 /*isDef=*/false)); 929 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 930 /*isDef=*/false)); 931 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)), 932 /*isDef=*/false)); 933 MachineInstrBuilder MIB = 934 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 935 TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL)); 936 for (auto &MO : Ops) 937 MIB.add(MO); 938 939 // Insert the Patchable Typed Event Call instruction, that gets lowered properly. 940 return true; 941 } 942 943 /// Returns an AttributeList representing the attributes applied to the return 944 /// value of the given call. 945 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 946 SmallVector<Attribute::AttrKind, 2> Attrs; 947 if (CLI.RetSExt) 948 Attrs.push_back(Attribute::SExt); 949 if (CLI.RetZExt) 950 Attrs.push_back(Attribute::ZExt); 951 if (CLI.IsInReg) 952 Attrs.push_back(Attribute::InReg); 953 954 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 955 Attrs); 956 } 957 958 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 959 unsigned NumArgs) { 960 MCContext &Ctx = MF->getContext(); 961 SmallString<32> MangledName; 962 Mangler::getNameWithPrefix(MangledName, SymName, DL); 963 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 964 return lowerCallTo(CI, Sym, NumArgs); 965 } 966 967 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 968 unsigned NumArgs) { 969 FunctionType *FTy = CI->getFunctionType(); 970 Type *RetTy = CI->getType(); 971 972 ArgListTy Args; 973 Args.reserve(NumArgs); 974 975 // Populate the argument list. 976 // Attributes for args start at offset 1, after the return attribute. 977 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 978 Value *V = CI->getOperand(ArgI); 979 980 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 981 982 ArgListEntry Entry; 983 Entry.Val = V; 984 Entry.Ty = V->getType(); 985 Entry.setAttributes(CI, ArgI); 986 Args.push_back(Entry); 987 } 988 TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args); 989 990 CallLoweringInfo CLI; 991 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs); 992 993 return lowerCallTo(CLI); 994 } 995 996 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 997 // Handle the incoming return values from the call. 998 CLI.clearIns(); 999 SmallVector<EVT, 4> RetTys; 1000 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 1001 1002 SmallVector<ISD::OutputArg, 4> Outs; 1003 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 1004 1005 bool CanLowerReturn = TLI.CanLowerReturn( 1006 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 1007 1008 // FIXME: sret demotion isn't supported yet - bail out. 1009 if (!CanLowerReturn) 1010 return false; 1011 1012 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 1013 EVT VT = RetTys[I]; 1014 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 1015 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 1016 for (unsigned i = 0; i != NumRegs; ++i) { 1017 ISD::InputArg MyFlags; 1018 MyFlags.VT = RegisterVT; 1019 MyFlags.ArgVT = VT; 1020 MyFlags.Used = CLI.IsReturnValueUsed; 1021 if (CLI.RetSExt) 1022 MyFlags.Flags.setSExt(); 1023 if (CLI.RetZExt) 1024 MyFlags.Flags.setZExt(); 1025 if (CLI.IsInReg) 1026 MyFlags.Flags.setInReg(); 1027 CLI.Ins.push_back(MyFlags); 1028 } 1029 } 1030 1031 // Handle all of the outgoing arguments. 1032 CLI.clearOuts(); 1033 for (auto &Arg : CLI.getArgs()) { 1034 Type *FinalType = Arg.Ty; 1035 if (Arg.IsByVal) 1036 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 1037 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1038 FinalType, CLI.CallConv, CLI.IsVarArg); 1039 1040 ISD::ArgFlagsTy Flags; 1041 if (Arg.IsZExt) 1042 Flags.setZExt(); 1043 if (Arg.IsSExt) 1044 Flags.setSExt(); 1045 if (Arg.IsInReg) 1046 Flags.setInReg(); 1047 if (Arg.IsSRet) 1048 Flags.setSRet(); 1049 if (Arg.IsSwiftSelf) 1050 Flags.setSwiftSelf(); 1051 if (Arg.IsSwiftError) 1052 Flags.setSwiftError(); 1053 if (Arg.IsCFGuardTarget) 1054 Flags.setCFGuardTarget(); 1055 if (Arg.IsByVal) 1056 Flags.setByVal(); 1057 if (Arg.IsInAlloca) { 1058 Flags.setInAlloca(); 1059 // Set the byval flag for CCAssignFn callbacks that don't know about 1060 // inalloca. This way we can know how many bytes we should've allocated 1061 // and how many bytes a callee cleanup function will pop. If we port 1062 // inalloca to more targets, we'll have to add custom inalloca handling in 1063 // the various CC lowering callbacks. 1064 Flags.setByVal(); 1065 } 1066 if (Arg.IsPreallocated) { 1067 Flags.setPreallocated(); 1068 // Set the byval flag for CCAssignFn callbacks that don't know about 1069 // preallocated. This way we can know how many bytes we should've 1070 // allocated and how many bytes a callee cleanup function will pop. If we 1071 // port preallocated to more targets, we'll have to add custom 1072 // preallocated handling in the various CC lowering callbacks. 1073 Flags.setByVal(); 1074 } 1075 if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) { 1076 PointerType *Ty = cast<PointerType>(Arg.Ty); 1077 Type *ElementTy = Ty->getElementType(); 1078 unsigned FrameSize = 1079 DL.getTypeAllocSize(Arg.ByValType ? Arg.ByValType : ElementTy); 1080 1081 // For ByVal, alignment should come from FE. BE will guess if this info 1082 // is not there, but there are cases it cannot get right. 1083 MaybeAlign FrameAlign = Arg.Alignment; 1084 if (!FrameAlign) 1085 FrameAlign = Align(TLI.getByValTypeAlignment(ElementTy, DL)); 1086 Flags.setByValSize(FrameSize); 1087 Flags.setByValAlign(*FrameAlign); 1088 } 1089 if (Arg.IsNest) 1090 Flags.setNest(); 1091 if (NeedsRegBlock) 1092 Flags.setInConsecutiveRegs(); 1093 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 1094 1095 CLI.OutVals.push_back(Arg.Val); 1096 CLI.OutFlags.push_back(Flags); 1097 } 1098 1099 if (!fastLowerCall(CLI)) 1100 return false; 1101 1102 // Set all unused physreg defs as dead. 1103 assert(CLI.Call && "No call instruction specified."); 1104 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1105 1106 if (CLI.NumResultRegs && CLI.CB) 1107 updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs); 1108 1109 // Set labels for heapallocsite call. 1110 if (CLI.CB) 1111 if (MDNode *MD = CLI.CB->getMetadata("heapallocsite")) 1112 CLI.Call->setHeapAllocMarker(*MF, MD); 1113 1114 return true; 1115 } 1116 1117 bool FastISel::lowerCall(const CallInst *CI) { 1118 FunctionType *FuncTy = CI->getFunctionType(); 1119 Type *RetTy = CI->getType(); 1120 1121 ArgListTy Args; 1122 ArgListEntry Entry; 1123 Args.reserve(CI->arg_size()); 1124 1125 for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) { 1126 Value *V = *i; 1127 1128 // Skip empty types 1129 if (V->getType()->isEmptyTy()) 1130 continue; 1131 1132 Entry.Val = V; 1133 Entry.Ty = V->getType(); 1134 1135 // Skip the first return-type Attribute to get to params. 1136 Entry.setAttributes(CI, i - CI->arg_begin()); 1137 Args.push_back(Entry); 1138 } 1139 1140 // Check if target-independent constraints permit a tail call here. 1141 // Target-dependent constraints are checked within fastLowerCall. 1142 bool IsTailCall = CI->isTailCall(); 1143 if (IsTailCall && !isInTailCallPosition(*CI, TM)) 1144 IsTailCall = false; 1145 if (IsTailCall && MF->getFunction() 1146 .getFnAttribute("disable-tail-calls") 1147 .getValueAsString() == "true") 1148 IsTailCall = false; 1149 1150 CallLoweringInfo CLI; 1151 CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI) 1152 .setTailCall(IsTailCall); 1153 1154 return lowerCallTo(CLI); 1155 } 1156 1157 bool FastISel::selectCall(const User *I) { 1158 const CallInst *Call = cast<CallInst>(I); 1159 1160 // Handle simple inline asms. 1161 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) { 1162 // Don't attempt to handle constraints. 1163 if (!IA->getConstraintString().empty()) 1164 return false; 1165 1166 unsigned ExtraInfo = 0; 1167 if (IA->hasSideEffects()) 1168 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1169 if (IA->isAlignStack()) 1170 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1171 if (Call->isConvergent()) 1172 ExtraInfo |= InlineAsm::Extra_IsConvergent; 1173 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 1174 1175 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1176 TII.get(TargetOpcode::INLINEASM)); 1177 MIB.addExternalSymbol(IA->getAsmString().c_str()); 1178 MIB.addImm(ExtraInfo); 1179 1180 const MDNode *SrcLoc = Call->getMetadata("srcloc"); 1181 if (SrcLoc) 1182 MIB.addMetadata(SrcLoc); 1183 1184 return true; 1185 } 1186 1187 // Handle intrinsic function calls. 1188 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1189 return selectIntrinsicCall(II); 1190 1191 return lowerCall(Call); 1192 } 1193 1194 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1195 switch (II->getIntrinsicID()) { 1196 default: 1197 break; 1198 // At -O0 we don't care about the lifetime intrinsics. 1199 case Intrinsic::lifetime_start: 1200 case Intrinsic::lifetime_end: 1201 // The donothing intrinsic does, well, nothing. 1202 case Intrinsic::donothing: 1203 // Neither does the sideeffect intrinsic. 1204 case Intrinsic::sideeffect: 1205 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1206 case Intrinsic::assume: 1207 // Neither does the llvm.experimental.noalias.scope.decl intrinsic 1208 case Intrinsic::experimental_noalias_scope_decl: 1209 return true; 1210 case Intrinsic::dbg_declare: { 1211 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1212 assert(DI->getVariable() && "Missing variable"); 1213 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1214 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1215 << " (!hasDebugInfo)\n"); 1216 return true; 1217 } 1218 1219 const Value *Address = DI->getAddress(); 1220 if (!Address || isa<UndefValue>(Address)) { 1221 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1222 << " (bad/undef address)\n"); 1223 return true; 1224 } 1225 1226 // Byval arguments with frame indices were already handled after argument 1227 // lowering and before isel. 1228 const auto *Arg = 1229 dyn_cast<Argument>(Address->stripInBoundsConstantOffsets()); 1230 if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX) 1231 return true; 1232 1233 Optional<MachineOperand> Op; 1234 if (Register Reg = lookUpRegForValue(Address)) 1235 Op = MachineOperand::CreateReg(Reg, false); 1236 1237 // If we have a VLA that has a "use" in a metadata node that's then used 1238 // here but it has no other uses, then we have a problem. E.g., 1239 // 1240 // int foo (const int *x) { 1241 // char a[*x]; 1242 // return 0; 1243 // } 1244 // 1245 // If we assign 'a' a vreg and fast isel later on has to use the selection 1246 // DAG isel, it will want to copy the value to the vreg. However, there are 1247 // no uses, which goes counter to what selection DAG isel expects. 1248 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1249 (!isa<AllocaInst>(Address) || 1250 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1251 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1252 false); 1253 1254 if (Op) { 1255 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1256 "Expected inlined-at fields to agree"); 1257 // A dbg.declare describes the address of a source variable, so lower it 1258 // into an indirect DBG_VALUE. 1259 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1260 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, 1261 *Op, DI->getVariable(), DI->getExpression()); 1262 } else { 1263 // We can't yet handle anything else here because it would require 1264 // generating code, thus altering codegen because of debug info. 1265 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1266 << " (no materialized reg for address)\n"); 1267 } 1268 return true; 1269 } 1270 case Intrinsic::dbg_value: { 1271 // This form of DBG_VALUE is target-independent. 1272 const DbgValueInst *DI = cast<DbgValueInst>(II); 1273 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1274 const Value *V = DI->getValue(); 1275 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1276 "Expected inlined-at fields to agree"); 1277 if (!V || isa<UndefValue>(V)) { 1278 // Currently the optimizer can produce this; insert an undef to 1279 // help debugging. 1280 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U, 1281 DI->getVariable(), DI->getExpression()); 1282 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1283 if (CI->getBitWidth() > 64) 1284 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1285 .addCImm(CI) 1286 .addImm(0U) 1287 .addMetadata(DI->getVariable()) 1288 .addMetadata(DI->getExpression()); 1289 else 1290 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1291 .addImm(CI->getZExtValue()) 1292 .addImm(0U) 1293 .addMetadata(DI->getVariable()) 1294 .addMetadata(DI->getExpression()); 1295 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1296 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1297 .addFPImm(CF) 1298 .addImm(0U) 1299 .addMetadata(DI->getVariable()) 1300 .addMetadata(DI->getExpression()); 1301 } else if (Register Reg = lookUpRegForValue(V)) { 1302 // FIXME: This does not handle register-indirect values at offset 0. 1303 bool IsIndirect = false; 1304 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1305 DI->getVariable(), DI->getExpression()); 1306 } else { 1307 // We don't know how to handle other cases, so we drop. 1308 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1309 } 1310 return true; 1311 } 1312 case Intrinsic::dbg_label: { 1313 const DbgLabelInst *DI = cast<DbgLabelInst>(II); 1314 assert(DI->getLabel() && "Missing label"); 1315 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1316 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1317 return true; 1318 } 1319 1320 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1321 TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel()); 1322 return true; 1323 } 1324 case Intrinsic::objectsize: 1325 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1326 1327 case Intrinsic::is_constant: 1328 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1329 1330 case Intrinsic::launder_invariant_group: 1331 case Intrinsic::strip_invariant_group: 1332 case Intrinsic::expect: { 1333 Register ResultReg = getRegForValue(II->getArgOperand(0)); 1334 if (!ResultReg) 1335 return false; 1336 updateValueMap(II, ResultReg); 1337 return true; 1338 } 1339 case Intrinsic::experimental_stackmap: 1340 return selectStackmap(II); 1341 case Intrinsic::experimental_patchpoint_void: 1342 case Intrinsic::experimental_patchpoint_i64: 1343 return selectPatchpoint(II); 1344 1345 case Intrinsic::xray_customevent: 1346 return selectXRayCustomEvent(II); 1347 case Intrinsic::xray_typedevent: 1348 return selectXRayTypedEvent(II); 1349 } 1350 1351 return fastLowerIntrinsicCall(II); 1352 } 1353 1354 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1355 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1356 EVT DstVT = TLI.getValueType(DL, I->getType()); 1357 1358 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1359 !DstVT.isSimple()) 1360 // Unhandled type. Halt "fast" selection and bail. 1361 return false; 1362 1363 // Check if the destination type is legal. 1364 if (!TLI.isTypeLegal(DstVT)) 1365 return false; 1366 1367 // Check if the source operand is legal. 1368 if (!TLI.isTypeLegal(SrcVT)) 1369 return false; 1370 1371 Register InputReg = getRegForValue(I->getOperand(0)); 1372 if (!InputReg) 1373 // Unhandled operand. Halt "fast" selection and bail. 1374 return false; 1375 1376 Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1377 Opcode, InputReg); 1378 if (!ResultReg) 1379 return false; 1380 1381 updateValueMap(I, ResultReg); 1382 return true; 1383 } 1384 1385 bool FastISel::selectBitCast(const User *I) { 1386 // If the bitcast doesn't change the type, just use the operand value. 1387 if (I->getType() == I->getOperand(0)->getType()) { 1388 Register Reg = getRegForValue(I->getOperand(0)); 1389 if (!Reg) 1390 return false; 1391 updateValueMap(I, Reg); 1392 return true; 1393 } 1394 1395 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1396 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1397 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1398 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1399 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1400 // Unhandled type. Halt "fast" selection and bail. 1401 return false; 1402 1403 MVT SrcVT = SrcEVT.getSimpleVT(); 1404 MVT DstVT = DstEVT.getSimpleVT(); 1405 Register Op0 = getRegForValue(I->getOperand(0)); 1406 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1407 return false; 1408 1409 // First, try to perform the bitcast by inserting a reg-reg copy. 1410 Register ResultReg; 1411 if (SrcVT == DstVT) { 1412 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1413 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1414 // Don't attempt a cross-class copy. It will likely fail. 1415 if (SrcClass == DstClass) { 1416 ResultReg = createResultReg(DstClass); 1417 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1418 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1419 } 1420 } 1421 1422 // If the reg-reg copy failed, select a BITCAST opcode. 1423 if (!ResultReg) 1424 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0); 1425 1426 if (!ResultReg) 1427 return false; 1428 1429 updateValueMap(I, ResultReg); 1430 return true; 1431 } 1432 1433 bool FastISel::selectFreeze(const User *I) { 1434 Register Reg = getRegForValue(I->getOperand(0)); 1435 if (!Reg) 1436 // Unhandled operand. 1437 return false; 1438 1439 EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType()); 1440 if (ETy == MVT::Other || !TLI.isTypeLegal(ETy)) 1441 // Unhandled type, bail out. 1442 return false; 1443 1444 MVT Ty = ETy.getSimpleVT(); 1445 const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty); 1446 Register ResultReg = createResultReg(TyRegClass); 1447 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1448 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); 1449 1450 updateValueMap(I, ResultReg); 1451 return true; 1452 } 1453 1454 // Remove local value instructions starting from the instruction after 1455 // SavedLastLocalValue to the current function insert point. 1456 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1457 { 1458 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1459 if (CurLastLocalValue != SavedLastLocalValue) { 1460 // Find the first local value instruction to be deleted. 1461 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1462 // Otherwise it's the first instruction in the block. 1463 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1464 if (SavedLastLocalValue) 1465 ++FirstDeadInst; 1466 else 1467 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1468 setLastLocalValue(SavedLastLocalValue); 1469 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1470 } 1471 } 1472 1473 bool FastISel::selectInstruction(const Instruction *I) { 1474 // Flush the local value map before starting each instruction. 1475 // This improves locality and debugging, and can reduce spills. 1476 // Reuse of values across IR instructions is relatively uncommon. 1477 flushLocalValueMap(); 1478 1479 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1480 // Just before the terminator instruction, insert instructions to 1481 // feed PHI nodes in successor blocks. 1482 if (I->isTerminator()) { 1483 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1484 // PHI node handling may have generated local value instructions, 1485 // even though it failed to handle all PHI nodes. 1486 // We remove these instructions because SelectionDAGISel will generate 1487 // them again. 1488 removeDeadLocalValueCode(SavedLastLocalValue); 1489 return false; 1490 } 1491 } 1492 1493 // FastISel does not handle any operand bundles except OB_funclet. 1494 if (auto *Call = dyn_cast<CallBase>(I)) 1495 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) 1496 if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1497 return false; 1498 1499 DbgLoc = I->getDebugLoc(); 1500 1501 SavedInsertPt = FuncInfo.InsertPt; 1502 1503 if (const auto *Call = dyn_cast<CallInst>(I)) { 1504 const Function *F = Call->getCalledFunction(); 1505 LibFunc Func; 1506 1507 // As a special case, don't handle calls to builtin library functions that 1508 // may be translated directly to target instructions. 1509 if (F && !F->hasLocalLinkage() && F->hasName() && 1510 LibInfo->getLibFunc(F->getName(), Func) && 1511 LibInfo->hasOptimizedCodeGen(Func)) 1512 return false; 1513 1514 // Don't handle Intrinsic::trap if a trap function is specified. 1515 if (F && F->getIntrinsicID() == Intrinsic::trap && 1516 Call->hasFnAttr("trap-func-name")) 1517 return false; 1518 } 1519 1520 // First, try doing target-independent selection. 1521 if (!SkipTargetIndependentISel) { 1522 if (selectOperator(I, I->getOpcode())) { 1523 ++NumFastIselSuccessIndependent; 1524 DbgLoc = DebugLoc(); 1525 return true; 1526 } 1527 // Remove dead code. 1528 recomputeInsertPt(); 1529 if (SavedInsertPt != FuncInfo.InsertPt) 1530 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1531 SavedInsertPt = FuncInfo.InsertPt; 1532 } 1533 // Next, try calling the target to attempt to handle the instruction. 1534 if (fastSelectInstruction(I)) { 1535 ++NumFastIselSuccessTarget; 1536 DbgLoc = DebugLoc(); 1537 return true; 1538 } 1539 // Remove dead code. 1540 recomputeInsertPt(); 1541 if (SavedInsertPt != FuncInfo.InsertPt) 1542 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1543 1544 DbgLoc = DebugLoc(); 1545 // Undo phi node updates, because they will be added again by SelectionDAG. 1546 if (I->isTerminator()) { 1547 // PHI node handling may have generated local value instructions. 1548 // We remove them because SelectionDAGISel will generate them again. 1549 removeDeadLocalValueCode(SavedLastLocalValue); 1550 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1551 } 1552 return false; 1553 } 1554 1555 /// Emit an unconditional branch to the given block, unless it is the immediate 1556 /// (fall-through) successor, and update the CFG. 1557 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1558 const DebugLoc &DbgLoc) { 1559 if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 && 1560 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1561 // For more accurate line information if this is the only non-debug 1562 // instruction in the block then emit it, otherwise we have the 1563 // unconditional fall-through case, which needs no instructions. 1564 } else { 1565 // The unconditional branch case. 1566 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1567 SmallVector<MachineOperand, 0>(), DbgLoc); 1568 } 1569 if (FuncInfo.BPI) { 1570 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1571 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1572 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1573 } else 1574 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1575 } 1576 1577 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1578 MachineBasicBlock *TrueMBB, 1579 MachineBasicBlock *FalseMBB) { 1580 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1581 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1582 // successor/predecessor lists. 1583 if (TrueMBB != FalseMBB) { 1584 if (FuncInfo.BPI) { 1585 auto BranchProbability = 1586 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1587 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1588 } else 1589 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1590 } 1591 1592 fastEmitBranch(FalseMBB, DbgLoc); 1593 } 1594 1595 /// Emit an FNeg operation. 1596 bool FastISel::selectFNeg(const User *I, const Value *In) { 1597 Register OpReg = getRegForValue(In); 1598 if (!OpReg) 1599 return false; 1600 1601 // If the target has ISD::FNEG, use it. 1602 EVT VT = TLI.getValueType(DL, I->getType()); 1603 Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1604 OpReg); 1605 if (ResultReg) { 1606 updateValueMap(I, ResultReg); 1607 return true; 1608 } 1609 1610 // Bitcast the value to integer, twiddle the sign bit with xor, 1611 // and then bitcast it back to floating-point. 1612 if (VT.getSizeInBits() > 64) 1613 return false; 1614 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1615 if (!TLI.isTypeLegal(IntVT)) 1616 return false; 1617 1618 Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1619 ISD::BITCAST, OpReg); 1620 if (!IntReg) 1621 return false; 1622 1623 Register IntResultReg = fastEmit_ri_( 1624 IntVT.getSimpleVT(), ISD::XOR, IntReg, 1625 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1626 if (!IntResultReg) 1627 return false; 1628 1629 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1630 IntResultReg); 1631 if (!ResultReg) 1632 return false; 1633 1634 updateValueMap(I, ResultReg); 1635 return true; 1636 } 1637 1638 bool FastISel::selectExtractValue(const User *U) { 1639 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1640 if (!EVI) 1641 return false; 1642 1643 // Make sure we only try to handle extracts with a legal result. But also 1644 // allow i1 because it's easy. 1645 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1646 if (!RealVT.isSimple()) 1647 return false; 1648 MVT VT = RealVT.getSimpleVT(); 1649 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1650 return false; 1651 1652 const Value *Op0 = EVI->getOperand(0); 1653 Type *AggTy = Op0->getType(); 1654 1655 // Get the base result register. 1656 unsigned ResultReg; 1657 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0); 1658 if (I != FuncInfo.ValueMap.end()) 1659 ResultReg = I->second; 1660 else if (isa<Instruction>(Op0)) 1661 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1662 else 1663 return false; // fast-isel can't handle aggregate constants at the moment 1664 1665 // Get the actual result register, which is an offset from the base register. 1666 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1667 1668 SmallVector<EVT, 4> AggValueVTs; 1669 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1670 1671 for (unsigned i = 0; i < VTIndex; i++) 1672 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1673 1674 updateValueMap(EVI, ResultReg); 1675 return true; 1676 } 1677 1678 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1679 switch (Opcode) { 1680 case Instruction::Add: 1681 return selectBinaryOp(I, ISD::ADD); 1682 case Instruction::FAdd: 1683 return selectBinaryOp(I, ISD::FADD); 1684 case Instruction::Sub: 1685 return selectBinaryOp(I, ISD::SUB); 1686 case Instruction::FSub: 1687 return selectBinaryOp(I, ISD::FSUB); 1688 case Instruction::Mul: 1689 return selectBinaryOp(I, ISD::MUL); 1690 case Instruction::FMul: 1691 return selectBinaryOp(I, ISD::FMUL); 1692 case Instruction::SDiv: 1693 return selectBinaryOp(I, ISD::SDIV); 1694 case Instruction::UDiv: 1695 return selectBinaryOp(I, ISD::UDIV); 1696 case Instruction::FDiv: 1697 return selectBinaryOp(I, ISD::FDIV); 1698 case Instruction::SRem: 1699 return selectBinaryOp(I, ISD::SREM); 1700 case Instruction::URem: 1701 return selectBinaryOp(I, ISD::UREM); 1702 case Instruction::FRem: 1703 return selectBinaryOp(I, ISD::FREM); 1704 case Instruction::Shl: 1705 return selectBinaryOp(I, ISD::SHL); 1706 case Instruction::LShr: 1707 return selectBinaryOp(I, ISD::SRL); 1708 case Instruction::AShr: 1709 return selectBinaryOp(I, ISD::SRA); 1710 case Instruction::And: 1711 return selectBinaryOp(I, ISD::AND); 1712 case Instruction::Or: 1713 return selectBinaryOp(I, ISD::OR); 1714 case Instruction::Xor: 1715 return selectBinaryOp(I, ISD::XOR); 1716 1717 case Instruction::FNeg: 1718 return selectFNeg(I, I->getOperand(0)); 1719 1720 case Instruction::GetElementPtr: 1721 return selectGetElementPtr(I); 1722 1723 case Instruction::Br: { 1724 const BranchInst *BI = cast<BranchInst>(I); 1725 1726 if (BI->isUnconditional()) { 1727 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1728 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1729 fastEmitBranch(MSucc, BI->getDebugLoc()); 1730 return true; 1731 } 1732 1733 // Conditional branches are not handed yet. 1734 // Halt "fast" selection and bail. 1735 return false; 1736 } 1737 1738 case Instruction::Unreachable: 1739 if (TM.Options.TrapUnreachable) 1740 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1741 else 1742 return true; 1743 1744 case Instruction::Alloca: 1745 // FunctionLowering has the static-sized case covered. 1746 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1747 return true; 1748 1749 // Dynamic-sized alloca is not handled yet. 1750 return false; 1751 1752 case Instruction::Call: 1753 // On AIX, call lowering uses the DAG-ISEL path currently so that the 1754 // callee of the direct function call instruction will be mapped to the 1755 // symbol for the function's entry point, which is distinct from the 1756 // function descriptor symbol. The latter is the symbol whose XCOFF symbol 1757 // name is the C-linkage name of the source level function. 1758 if (TM.getTargetTriple().isOSAIX()) 1759 return false; 1760 return selectCall(I); 1761 1762 case Instruction::BitCast: 1763 return selectBitCast(I); 1764 1765 case Instruction::FPToSI: 1766 return selectCast(I, ISD::FP_TO_SINT); 1767 case Instruction::ZExt: 1768 return selectCast(I, ISD::ZERO_EXTEND); 1769 case Instruction::SExt: 1770 return selectCast(I, ISD::SIGN_EXTEND); 1771 case Instruction::Trunc: 1772 return selectCast(I, ISD::TRUNCATE); 1773 case Instruction::SIToFP: 1774 return selectCast(I, ISD::SINT_TO_FP); 1775 1776 case Instruction::IntToPtr: // Deliberate fall-through. 1777 case Instruction::PtrToInt: { 1778 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1779 EVT DstVT = TLI.getValueType(DL, I->getType()); 1780 if (DstVT.bitsGT(SrcVT)) 1781 return selectCast(I, ISD::ZERO_EXTEND); 1782 if (DstVT.bitsLT(SrcVT)) 1783 return selectCast(I, ISD::TRUNCATE); 1784 Register Reg = getRegForValue(I->getOperand(0)); 1785 if (!Reg) 1786 return false; 1787 updateValueMap(I, Reg); 1788 return true; 1789 } 1790 1791 case Instruction::ExtractValue: 1792 return selectExtractValue(I); 1793 1794 case Instruction::Freeze: 1795 return selectFreeze(I); 1796 1797 case Instruction::PHI: 1798 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1799 1800 default: 1801 // Unhandled instruction. Halt "fast" selection and bail. 1802 return false; 1803 } 1804 } 1805 1806 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1807 const TargetLibraryInfo *LibInfo, 1808 bool SkipTargetIndependentISel) 1809 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1810 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1811 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1812 TII(*MF->getSubtarget().getInstrInfo()), 1813 TLI(*MF->getSubtarget().getTargetLowering()), 1814 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1815 SkipTargetIndependentISel(SkipTargetIndependentISel), 1816 LastLocalValue(nullptr), EmitStartPt(nullptr) {} 1817 1818 FastISel::~FastISel() = default; 1819 1820 bool FastISel::fastLowerArguments() { return false; } 1821 1822 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1823 1824 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1825 return false; 1826 } 1827 1828 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1829 1830 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) { 1831 return 0; 1832 } 1833 1834 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1835 unsigned /*Op1*/) { 1836 return 0; 1837 } 1838 1839 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1840 return 0; 1841 } 1842 1843 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1844 const ConstantFP * /*FPImm*/) { 1845 return 0; 1846 } 1847 1848 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1849 uint64_t /*Imm*/) { 1850 return 0; 1851 } 1852 1853 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1854 /// instruction with an immediate operand using fastEmit_ri. 1855 /// If that fails, it materializes the immediate into a register and try 1856 /// fastEmit_rr instead. 1857 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1858 uint64_t Imm, MVT ImmType) { 1859 // If this is a multiply by a power of two, emit this as a shift left. 1860 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1861 Opcode = ISD::SHL; 1862 Imm = Log2_64(Imm); 1863 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1864 // div x, 8 -> srl x, 3 1865 Opcode = ISD::SRL; 1866 Imm = Log2_64(Imm); 1867 } 1868 1869 // Horrible hack (to be removed), check to make sure shift amounts are 1870 // in-range. 1871 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1872 Imm >= VT.getSizeInBits()) 1873 return 0; 1874 1875 // First check if immediate type is legal. If not, we can't use the ri form. 1876 Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm); 1877 if (ResultReg) 1878 return ResultReg; 1879 Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1880 if (!MaterialReg) { 1881 // This is a bit ugly/slow, but failing here means falling out of 1882 // fast-isel, which would be very slow. 1883 IntegerType *ITy = 1884 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1885 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1886 if (!MaterialReg) 1887 return 0; 1888 } 1889 return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg); 1890 } 1891 1892 Register FastISel::createResultReg(const TargetRegisterClass *RC) { 1893 return MRI.createVirtualRegister(RC); 1894 } 1895 1896 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op, 1897 unsigned OpNum) { 1898 if (Op.isVirtual()) { 1899 const TargetRegisterClass *RegClass = 1900 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1901 if (!MRI.constrainRegClass(Op, RegClass)) { 1902 // If it's not legal to COPY between the register classes, something 1903 // has gone very wrong before we got here. 1904 Register NewOp = createResultReg(RegClass); 1905 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1906 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1907 return NewOp; 1908 } 1909 } 1910 return Op; 1911 } 1912 1913 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1914 const TargetRegisterClass *RC) { 1915 Register ResultReg = createResultReg(RC); 1916 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1917 1918 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1919 return ResultReg; 1920 } 1921 1922 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 1923 const TargetRegisterClass *RC, unsigned Op0) { 1924 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1925 1926 Register ResultReg = createResultReg(RC); 1927 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1928 1929 if (II.getNumDefs() >= 1) 1930 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1931 .addReg(Op0); 1932 else { 1933 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1934 .addReg(Op0); 1935 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1936 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1937 } 1938 1939 return ResultReg; 1940 } 1941 1942 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 1943 const TargetRegisterClass *RC, unsigned Op0, 1944 unsigned Op1) { 1945 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1946 1947 Register ResultReg = createResultReg(RC); 1948 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1949 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1950 1951 if (II.getNumDefs() >= 1) 1952 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1953 .addReg(Op0) 1954 .addReg(Op1); 1955 else { 1956 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1957 .addReg(Op0) 1958 .addReg(Op1); 1959 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1960 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1961 } 1962 return ResultReg; 1963 } 1964 1965 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 1966 const TargetRegisterClass *RC, unsigned Op0, 1967 unsigned Op1, unsigned Op2) { 1968 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1969 1970 Register ResultReg = createResultReg(RC); 1971 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1972 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1973 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1974 1975 if (II.getNumDefs() >= 1) 1976 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1977 .addReg(Op0) 1978 .addReg(Op1) 1979 .addReg(Op2); 1980 else { 1981 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1982 .addReg(Op0) 1983 .addReg(Op1) 1984 .addReg(Op2); 1985 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1986 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1987 } 1988 return ResultReg; 1989 } 1990 1991 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 1992 const TargetRegisterClass *RC, unsigned Op0, 1993 uint64_t Imm) { 1994 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1995 1996 Register ResultReg = createResultReg(RC); 1997 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1998 1999 if (II.getNumDefs() >= 1) 2000 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2001 .addReg(Op0) 2002 .addImm(Imm); 2003 else { 2004 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2005 .addReg(Op0) 2006 .addImm(Imm); 2007 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2008 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2009 } 2010 return ResultReg; 2011 } 2012 2013 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 2014 const TargetRegisterClass *RC, unsigned Op0, 2015 uint64_t Imm1, uint64_t Imm2) { 2016 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2017 2018 Register ResultReg = createResultReg(RC); 2019 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2020 2021 if (II.getNumDefs() >= 1) 2022 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2023 .addReg(Op0) 2024 .addImm(Imm1) 2025 .addImm(Imm2); 2026 else { 2027 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2028 .addReg(Op0) 2029 .addImm(Imm1) 2030 .addImm(Imm2); 2031 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2032 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2033 } 2034 return ResultReg; 2035 } 2036 2037 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 2038 const TargetRegisterClass *RC, 2039 const ConstantFP *FPImm) { 2040 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2041 2042 Register ResultReg = createResultReg(RC); 2043 2044 if (II.getNumDefs() >= 1) 2045 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2046 .addFPImm(FPImm); 2047 else { 2048 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2049 .addFPImm(FPImm); 2050 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2051 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2052 } 2053 return ResultReg; 2054 } 2055 2056 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 2057 const TargetRegisterClass *RC, unsigned Op0, 2058 unsigned Op1, uint64_t Imm) { 2059 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2060 2061 Register ResultReg = createResultReg(RC); 2062 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2063 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2064 2065 if (II.getNumDefs() >= 1) 2066 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2067 .addReg(Op0) 2068 .addReg(Op1) 2069 .addImm(Imm); 2070 else { 2071 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2072 .addReg(Op0) 2073 .addReg(Op1) 2074 .addImm(Imm); 2075 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2076 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2077 } 2078 return ResultReg; 2079 } 2080 2081 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 2082 const TargetRegisterClass *RC, uint64_t Imm) { 2083 Register ResultReg = createResultReg(RC); 2084 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2085 2086 if (II.getNumDefs() >= 1) 2087 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2088 .addImm(Imm); 2089 else { 2090 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 2091 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2092 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2093 } 2094 return ResultReg; 2095 } 2096 2097 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 2098 uint32_t Idx) { 2099 Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 2100 assert(Register::isVirtualRegister(Op0) && 2101 "Cannot yet extract from physregs"); 2102 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2103 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2104 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 2105 ResultReg).addReg(Op0, 0, Idx); 2106 return ResultReg; 2107 } 2108 2109 /// Emit MachineInstrs to compute the value of Op with all but the least 2110 /// significant bit set to zero. 2111 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) { 2112 return fastEmit_ri(VT, VT, ISD::AND, Op0, 1); 2113 } 2114 2115 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2116 /// Emit code to ensure constants are copied into registers when needed. 2117 /// Remember the virtual registers that need to be added to the Machine PHI 2118 /// nodes as input. We cannot just directly add them, because expansion 2119 /// might result in multiple MBB's for one BB. As such, the start of the 2120 /// BB might correspond to a different MBB than the end. 2121 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2122 const Instruction *TI = LLVMBB->getTerminator(); 2123 2124 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2125 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2126 2127 // Check successor nodes' PHI nodes that expect a constant to be available 2128 // from this block. 2129 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2130 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2131 if (!isa<PHINode>(SuccBB->begin())) 2132 continue; 2133 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2134 2135 // If this terminator has multiple identical successors (common for 2136 // switches), only handle each succ once. 2137 if (!SuccsHandled.insert(SuccMBB).second) 2138 continue; 2139 2140 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2141 2142 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2143 // nodes and Machine PHI nodes, but the incoming operands have not been 2144 // emitted yet. 2145 for (const PHINode &PN : SuccBB->phis()) { 2146 // Ignore dead phi's. 2147 if (PN.use_empty()) 2148 continue; 2149 2150 // Only handle legal types. Two interesting things to note here. First, 2151 // by bailing out early, we may leave behind some dead instructions, 2152 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2153 // own moves. Second, this check is necessary because FastISel doesn't 2154 // use CreateRegs to create registers, so it always creates 2155 // exactly one register for each non-void instruction. 2156 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); 2157 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2158 // Handle integer promotions, though, because they're common and easy. 2159 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2160 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2161 return false; 2162 } 2163 } 2164 2165 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 2166 2167 // Set the DebugLoc for the copy. Use the location of the operand if 2168 // there is one; otherwise no location, flushLocalValueMap will fix it. 2169 DbgLoc = DebugLoc(); 2170 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2171 DbgLoc = Inst->getDebugLoc(); 2172 2173 Register Reg = getRegForValue(PHIOp); 2174 if (!Reg) { 2175 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2176 return false; 2177 } 2178 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2179 DbgLoc = DebugLoc(); 2180 } 2181 } 2182 2183 return true; 2184 } 2185 2186 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2187 assert(LI->hasOneUse() && 2188 "tryToFoldLoad expected a LoadInst with a single use"); 2189 // We know that the load has a single use, but don't know what it is. If it 2190 // isn't one of the folded instructions, then we can't succeed here. Handle 2191 // this by scanning the single-use users of the load until we get to FoldInst. 2192 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2193 2194 const Instruction *TheUser = LI->user_back(); 2195 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2196 // Stay in the right block. 2197 TheUser->getParent() == FoldInst->getParent() && 2198 --MaxUsers) { // Don't scan too far. 2199 // If there are multiple or no uses of this instruction, then bail out. 2200 if (!TheUser->hasOneUse()) 2201 return false; 2202 2203 TheUser = TheUser->user_back(); 2204 } 2205 2206 // If we didn't find the fold instruction, then we failed to collapse the 2207 // sequence. 2208 if (TheUser != FoldInst) 2209 return false; 2210 2211 // Don't try to fold volatile loads. Target has to deal with alignment 2212 // constraints. 2213 if (LI->isVolatile()) 2214 return false; 2215 2216 // Figure out which vreg this is going into. If there is no assigned vreg yet 2217 // then there actually was no reference to it. Perhaps the load is referenced 2218 // by a dead instruction. 2219 Register LoadReg = getRegForValue(LI); 2220 if (!LoadReg) 2221 return false; 2222 2223 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2224 // may mean that the instruction got lowered to multiple MIs, or the use of 2225 // the loaded value ended up being multiple operands of the result. 2226 if (!MRI.hasOneUse(LoadReg)) 2227 return false; 2228 2229 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2230 MachineInstr *User = RI->getParent(); 2231 2232 // Set the insertion point properly. Folding the load can cause generation of 2233 // other random instructions (like sign extends) for addressing modes; make 2234 // sure they get inserted in a logical place before the new instruction. 2235 FuncInfo.InsertPt = User; 2236 FuncInfo.MBB = User->getParent(); 2237 2238 // Ask the target to try folding the load. 2239 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2240 } 2241 2242 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2243 // Must be an add. 2244 if (!isa<AddOperator>(Add)) 2245 return false; 2246 // Type size needs to match. 2247 if (DL.getTypeSizeInBits(GEP->getType()) != 2248 DL.getTypeSizeInBits(Add->getType())) 2249 return false; 2250 // Must be in the same basic block. 2251 if (isa<Instruction>(Add) && 2252 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2253 return false; 2254 // Must have a constant operand. 2255 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2256 } 2257 2258 MachineMemOperand * 2259 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2260 const Value *Ptr; 2261 Type *ValTy; 2262 MaybeAlign Alignment; 2263 MachineMemOperand::Flags Flags; 2264 bool IsVolatile; 2265 2266 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2267 Alignment = LI->getAlign(); 2268 IsVolatile = LI->isVolatile(); 2269 Flags = MachineMemOperand::MOLoad; 2270 Ptr = LI->getPointerOperand(); 2271 ValTy = LI->getType(); 2272 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2273 Alignment = SI->getAlign(); 2274 IsVolatile = SI->isVolatile(); 2275 Flags = MachineMemOperand::MOStore; 2276 Ptr = SI->getPointerOperand(); 2277 ValTy = SI->getValueOperand()->getType(); 2278 } else 2279 return nullptr; 2280 2281 bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal); 2282 bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load); 2283 bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable); 2284 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2285 2286 AAMDNodes AAInfo; 2287 I->getAAMetadata(AAInfo); 2288 2289 if (!Alignment) // Ensure that codegen never sees alignment 0. 2290 Alignment = DL.getABITypeAlign(ValTy); 2291 2292 unsigned Size = DL.getTypeStoreSize(ValTy); 2293 2294 if (IsVolatile) 2295 Flags |= MachineMemOperand::MOVolatile; 2296 if (IsNonTemporal) 2297 Flags |= MachineMemOperand::MONonTemporal; 2298 if (IsDereferenceable) 2299 Flags |= MachineMemOperand::MODereferenceable; 2300 if (IsInvariant) 2301 Flags |= MachineMemOperand::MOInvariant; 2302 2303 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2304 *Alignment, AAInfo, Ranges); 2305 } 2306 2307 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2308 // If both operands are the same, then try to optimize or fold the cmp. 2309 CmpInst::Predicate Predicate = CI->getPredicate(); 2310 if (CI->getOperand(0) != CI->getOperand(1)) 2311 return Predicate; 2312 2313 switch (Predicate) { 2314 default: llvm_unreachable("Invalid predicate!"); 2315 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2316 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2317 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2318 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2319 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2320 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2321 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2322 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2323 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2324 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2325 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2326 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2327 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2328 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2329 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2330 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2331 2332 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2333 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2334 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2335 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2336 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2337 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2338 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2339 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2340 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2341 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2342 } 2343 2344 return Predicate; 2345 } 2346