1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/CodeGen/Analysis.h" 43 #include "llvm/ADT/Optional.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Analysis/BranchProbabilityInfo.h" 46 #include "llvm/Analysis/Loads.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/CodeGen/Analysis.h" 49 #include "llvm/CodeGen/FastISel.h" 50 #include "llvm/CodeGen/FunctionLoweringInfo.h" 51 #include "llvm/CodeGen/MachineFrameInfo.h" 52 #include "llvm/CodeGen/MachineInstrBuilder.h" 53 #include "llvm/CodeGen/MachineModuleInfo.h" 54 #include "llvm/CodeGen/MachineRegisterInfo.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DebugInfo.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Mangler.h" 63 #include "llvm/IR/Operator.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetInstrInfo.h" 68 #include "llvm/Target/TargetLowering.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetSubtargetInfo.h" 71 using namespace llvm; 72 73 #define DEBUG_TYPE "isel" 74 75 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 76 "target-independent selector"); 77 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 78 "target-specific selector"); 79 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 80 81 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS, 82 unsigned AttrIdx) { 83 IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 84 IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 85 IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 86 IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 87 IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 88 IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 89 IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 90 IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 91 Alignment = CS->getParamAlignment(AttrIdx); 92 } 93 94 /// Set the current block to which generated machine instructions will be 95 /// appended, and clear the local CSE map. 96 void FastISel::startNewBlock() { 97 LocalValueMap.clear(); 98 99 // Instructions are appended to FuncInfo.MBB. If the basic block already 100 // contains labels or copies, use the last instruction as the last local 101 // value. 102 EmitStartPt = nullptr; 103 if (!FuncInfo.MBB->empty()) 104 EmitStartPt = &FuncInfo.MBB->back(); 105 LastLocalValue = EmitStartPt; 106 } 107 108 bool FastISel::lowerArguments() { 109 if (!FuncInfo.CanLowerReturn) 110 // Fallback to SDISel argument lowering code to deal with sret pointer 111 // parameter. 112 return false; 113 114 if (!fastLowerArguments()) 115 return false; 116 117 // Enter arguments into ValueMap for uses in non-entry BBs. 118 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 119 E = FuncInfo.Fn->arg_end(); 120 I != E; ++I) { 121 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I); 122 assert(VI != LocalValueMap.end() && "Missed an argument?"); 123 FuncInfo.ValueMap[I] = VI->second; 124 } 125 return true; 126 } 127 128 void FastISel::flushLocalValueMap() { 129 LocalValueMap.clear(); 130 LastLocalValue = EmitStartPt; 131 recomputeInsertPt(); 132 SavedInsertPt = FuncInfo.InsertPt; 133 } 134 135 bool FastISel::hasTrivialKill(const Value *V) { 136 // Don't consider constants or arguments to have trivial kills. 137 const Instruction *I = dyn_cast<Instruction>(V); 138 if (!I) 139 return false; 140 141 // No-op casts are trivially coalesced by fast-isel. 142 if (const auto *Cast = dyn_cast<CastInst>(I)) 143 if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) && 144 !hasTrivialKill(Cast->getOperand(0))) 145 return false; 146 147 // Even the value might have only one use in the LLVM IR, it is possible that 148 // FastISel might fold the use into another instruction and now there is more 149 // than one use at the Machine Instruction level. 150 unsigned Reg = lookUpRegForValue(V); 151 if (Reg && !MRI.use_empty(Reg)) 152 return false; 153 154 // GEPs with all zero indices are trivially coalesced by fast-isel. 155 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 156 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 157 return false; 158 159 // Only instructions with a single use in the same basic block are considered 160 // to have trivial kills. 161 return I->hasOneUse() && 162 !(I->getOpcode() == Instruction::BitCast || 163 I->getOpcode() == Instruction::PtrToInt || 164 I->getOpcode() == Instruction::IntToPtr) && 165 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 166 } 167 168 unsigned FastISel::getRegForValue(const Value *V) { 169 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 170 // Don't handle non-simple values in FastISel. 171 if (!RealVT.isSimple()) 172 return 0; 173 174 // Ignore illegal types. We must do this before looking up the value 175 // in ValueMap because Arguments are given virtual registers regardless 176 // of whether FastISel can handle them. 177 MVT VT = RealVT.getSimpleVT(); 178 if (!TLI.isTypeLegal(VT)) { 179 // Handle integer promotions, though, because they're common and easy. 180 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 181 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 182 else 183 return 0; 184 } 185 186 // Look up the value to see if we already have a register for it. 187 unsigned Reg = lookUpRegForValue(V); 188 if (Reg) 189 return Reg; 190 191 // In bottom-up mode, just create the virtual register which will be used 192 // to hold the value. It will be materialized later. 193 if (isa<Instruction>(V) && 194 (!isa<AllocaInst>(V) || 195 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 196 return FuncInfo.InitializeRegForValue(V); 197 198 SavePoint SaveInsertPt = enterLocalValueArea(); 199 200 // Materialize the value in a register. Emit any instructions in the 201 // local value area. 202 Reg = materializeRegForValue(V, VT); 203 204 leaveLocalValueArea(SaveInsertPt); 205 206 return Reg; 207 } 208 209 unsigned FastISel::materializeConstant(const Value *V, MVT VT) { 210 unsigned Reg = 0; 211 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 212 if (CI->getValue().getActiveBits() <= 64) 213 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 214 } else if (isa<AllocaInst>(V)) 215 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 216 else if (isa<ConstantPointerNull>(V)) 217 // Translate this as an integer zero so that it can be 218 // local-CSE'd with actual integer zeros. 219 Reg = getRegForValue( 220 Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 221 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 222 if (CF->isNullValue()) 223 Reg = fastMaterializeFloatZero(CF); 224 else 225 // Try to emit the constant directly. 226 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 227 228 if (!Reg) { 229 // Try to emit the constant by using an integer constant with a cast. 230 const APFloat &Flt = CF->getValueAPF(); 231 EVT IntVT = TLI.getPointerTy(DL); 232 233 uint64_t x[2]; 234 uint32_t IntBitWidth = IntVT.getSizeInBits(); 235 bool isExact; 236 (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 237 APFloat::rmTowardZero, &isExact); 238 if (isExact) { 239 APInt IntVal(IntBitWidth, x); 240 241 unsigned IntegerReg = 242 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 243 if (IntegerReg != 0) 244 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 245 /*Kill=*/false); 246 } 247 } 248 } else if (const auto *Op = dyn_cast<Operator>(V)) { 249 if (!selectOperator(Op, Op->getOpcode())) 250 if (!isa<Instruction>(Op) || 251 !fastSelectInstruction(cast<Instruction>(Op))) 252 return 0; 253 Reg = lookUpRegForValue(Op); 254 } else if (isa<UndefValue>(V)) { 255 Reg = createResultReg(TLI.getRegClassFor(VT)); 256 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 257 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 258 } 259 return Reg; 260 } 261 262 /// Helper for getRegForValue. This function is called when the value isn't 263 /// already available in a register and must be materialized with new 264 /// instructions. 265 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 266 unsigned Reg = 0; 267 // Give the target-specific code a try first. 268 if (isa<Constant>(V)) 269 Reg = fastMaterializeConstant(cast<Constant>(V)); 270 271 // If target-specific code couldn't or didn't want to handle the value, then 272 // give target-independent code a try. 273 if (!Reg) 274 Reg = materializeConstant(V, VT); 275 276 // Don't cache constant materializations in the general ValueMap. 277 // To do so would require tracking what uses they dominate. 278 if (Reg) { 279 LocalValueMap[V] = Reg; 280 LastLocalValue = MRI.getVRegDef(Reg); 281 } 282 return Reg; 283 } 284 285 unsigned FastISel::lookUpRegForValue(const Value *V) { 286 // Look up the value to see if we already have a register for it. We 287 // cache values defined by Instructions across blocks, and other values 288 // only locally. This is because Instructions already have the SSA 289 // def-dominates-use requirement enforced. 290 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 291 if (I != FuncInfo.ValueMap.end()) 292 return I->second; 293 return LocalValueMap[V]; 294 } 295 296 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 297 if (!isa<Instruction>(I)) { 298 LocalValueMap[I] = Reg; 299 return; 300 } 301 302 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 303 if (AssignedReg == 0) 304 // Use the new register. 305 AssignedReg = Reg; 306 else if (Reg != AssignedReg) { 307 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 308 for (unsigned i = 0; i < NumRegs; i++) 309 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 310 311 AssignedReg = Reg; 312 } 313 } 314 315 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 316 unsigned IdxN = getRegForValue(Idx); 317 if (IdxN == 0) 318 // Unhandled operand. Halt "fast" selection and bail. 319 return std::pair<unsigned, bool>(0, false); 320 321 bool IdxNIsKill = hasTrivialKill(Idx); 322 323 // If the index is smaller or larger than intptr_t, truncate or extend it. 324 MVT PtrVT = TLI.getPointerTy(DL); 325 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 326 if (IdxVT.bitsLT(PtrVT)) { 327 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 328 IdxNIsKill); 329 IdxNIsKill = true; 330 } else if (IdxVT.bitsGT(PtrVT)) { 331 IdxN = 332 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 333 IdxNIsKill = true; 334 } 335 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 336 } 337 338 void FastISel::recomputeInsertPt() { 339 if (getLastLocalValue()) { 340 FuncInfo.InsertPt = getLastLocalValue(); 341 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 342 ++FuncInfo.InsertPt; 343 } else 344 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 345 346 // Now skip past any EH_LABELs, which must remain at the beginning. 347 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 348 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 349 ++FuncInfo.InsertPt; 350 } 351 352 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 353 MachineBasicBlock::iterator E) { 354 assert(I && E && std::distance(I, E) > 0 && "Invalid iterator!"); 355 while (I != E) { 356 MachineInstr *Dead = &*I; 357 ++I; 358 Dead->eraseFromParent(); 359 ++NumFastIselDead; 360 } 361 recomputeInsertPt(); 362 } 363 364 FastISel::SavePoint FastISel::enterLocalValueArea() { 365 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 366 DebugLoc OldDL = DbgLoc; 367 recomputeInsertPt(); 368 DbgLoc = DebugLoc(); 369 SavePoint SP = {OldInsertPt, OldDL}; 370 return SP; 371 } 372 373 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 374 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 375 LastLocalValue = std::prev(FuncInfo.InsertPt); 376 377 // Restore the previous insert position. 378 FuncInfo.InsertPt = OldInsertPt.InsertPt; 379 DbgLoc = OldInsertPt.DL; 380 } 381 382 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 383 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 384 if (VT == MVT::Other || !VT.isSimple()) 385 // Unhandled type. Halt "fast" selection and bail. 386 return false; 387 388 // We only handle legal types. For example, on x86-32 the instruction 389 // selector contains all of the 64-bit instructions from x86-64, 390 // under the assumption that i64 won't be used if the target doesn't 391 // support it. 392 if (!TLI.isTypeLegal(VT)) { 393 // MVT::i1 is special. Allow AND, OR, or XOR because they 394 // don't require additional zeroing, which makes them easy. 395 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 396 ISDOpcode == ISD::XOR)) 397 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 398 else 399 return false; 400 } 401 402 // Check if the first operand is a constant, and handle it as "ri". At -O0, 403 // we don't have anything that canonicalizes operand order. 404 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 405 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 406 unsigned Op1 = getRegForValue(I->getOperand(1)); 407 if (!Op1) 408 return false; 409 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 410 411 unsigned ResultReg = 412 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 413 CI->getZExtValue(), VT.getSimpleVT()); 414 if (!ResultReg) 415 return false; 416 417 // We successfully emitted code for the given LLVM Instruction. 418 updateValueMap(I, ResultReg); 419 return true; 420 } 421 422 unsigned Op0 = getRegForValue(I->getOperand(0)); 423 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 424 return false; 425 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 426 427 // Check if the second operand is a constant and handle it appropriately. 428 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 429 uint64_t Imm = CI->getSExtValue(); 430 431 // Transform "sdiv exact X, 8" -> "sra X, 3". 432 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 433 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 434 Imm = Log2_64(Imm); 435 ISDOpcode = ISD::SRA; 436 } 437 438 // Transform "urem x, pow2" -> "and x, pow2-1". 439 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 440 isPowerOf2_64(Imm)) { 441 --Imm; 442 ISDOpcode = ISD::AND; 443 } 444 445 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 446 Op0IsKill, Imm, VT.getSimpleVT()); 447 if (!ResultReg) 448 return false; 449 450 // We successfully emitted code for the given LLVM Instruction. 451 updateValueMap(I, ResultReg); 452 return true; 453 } 454 455 // Check if the second operand is a constant float. 456 if (const auto *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 457 unsigned ResultReg = fastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 458 ISDOpcode, Op0, Op0IsKill, CF); 459 if (ResultReg) { 460 // We successfully emitted code for the given LLVM Instruction. 461 updateValueMap(I, ResultReg); 462 return true; 463 } 464 } 465 466 unsigned Op1 = getRegForValue(I->getOperand(1)); 467 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 468 return false; 469 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 470 471 // Now we have both operands in registers. Emit the instruction. 472 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 473 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 474 if (!ResultReg) 475 // Target-specific code wasn't able to find a machine opcode for 476 // the given ISD opcode and type. Halt "fast" selection and bail. 477 return false; 478 479 // We successfully emitted code for the given LLVM Instruction. 480 updateValueMap(I, ResultReg); 481 return true; 482 } 483 484 bool FastISel::selectGetElementPtr(const User *I) { 485 unsigned N = getRegForValue(I->getOperand(0)); 486 if (!N) // Unhandled operand. Halt "fast" selection and bail. 487 return false; 488 bool NIsKill = hasTrivialKill(I->getOperand(0)); 489 490 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 491 // into a single N = N + TotalOffset. 492 uint64_t TotalOffs = 0; 493 // FIXME: What's a good SWAG number for MaxOffs? 494 uint64_t MaxOffs = 2048; 495 Type *Ty = I->getOperand(0)->getType(); 496 MVT VT = TLI.getPointerTy(DL); 497 for (GetElementPtrInst::const_op_iterator OI = I->op_begin() + 1, 498 E = I->op_end(); 499 OI != E; ++OI) { 500 const Value *Idx = *OI; 501 if (auto *StTy = dyn_cast<StructType>(Ty)) { 502 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 503 if (Field) { 504 // N = N + Offset 505 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 506 if (TotalOffs >= MaxOffs) { 507 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 508 if (!N) // Unhandled operand. Halt "fast" selection and bail. 509 return false; 510 NIsKill = true; 511 TotalOffs = 0; 512 } 513 } 514 Ty = StTy->getElementType(Field); 515 } else { 516 Ty = cast<SequentialType>(Ty)->getElementType(); 517 518 // If this is a constant subscript, handle it quickly. 519 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 520 if (CI->isZero()) 521 continue; 522 // N = N + Offset 523 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 524 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 525 if (TotalOffs >= MaxOffs) { 526 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 527 if (!N) // Unhandled operand. Halt "fast" selection and bail. 528 return false; 529 NIsKill = true; 530 TotalOffs = 0; 531 } 532 continue; 533 } 534 if (TotalOffs) { 535 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 536 if (!N) // Unhandled operand. Halt "fast" selection and bail. 537 return false; 538 NIsKill = true; 539 TotalOffs = 0; 540 } 541 542 // N = N + Idx * ElementSize; 543 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 544 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 545 unsigned IdxN = Pair.first; 546 bool IdxNIsKill = Pair.second; 547 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 548 return false; 549 550 if (ElementSize != 1) { 551 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 552 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 553 return false; 554 IdxNIsKill = true; 555 } 556 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 557 if (!N) // Unhandled operand. Halt "fast" selection and bail. 558 return false; 559 } 560 } 561 if (TotalOffs) { 562 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 563 if (!N) // Unhandled operand. Halt "fast" selection and bail. 564 return false; 565 } 566 567 // We successfully emitted code for the given LLVM Instruction. 568 updateValueMap(I, N); 569 return true; 570 } 571 572 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 573 const CallInst *CI, unsigned StartIdx) { 574 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 575 Value *Val = CI->getArgOperand(i); 576 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 577 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 578 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 579 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 580 } else if (isa<ConstantPointerNull>(Val)) { 581 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 582 Ops.push_back(MachineOperand::CreateImm(0)); 583 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 584 // Values coming from a stack location also require a sepcial encoding, 585 // but that is added later on by the target specific frame index 586 // elimination implementation. 587 auto SI = FuncInfo.StaticAllocaMap.find(AI); 588 if (SI != FuncInfo.StaticAllocaMap.end()) 589 Ops.push_back(MachineOperand::CreateFI(SI->second)); 590 else 591 return false; 592 } else { 593 unsigned Reg = getRegForValue(Val); 594 if (!Reg) 595 return false; 596 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 597 } 598 } 599 return true; 600 } 601 602 bool FastISel::selectStackmap(const CallInst *I) { 603 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 604 // [live variables...]) 605 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 606 "Stackmap cannot return a value."); 607 608 // The stackmap intrinsic only records the live variables (the arguments 609 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 610 // intrinsic, this won't be lowered to a function call. This means we don't 611 // have to worry about calling conventions and target-specific lowering code. 612 // Instead we perform the call lowering right here. 613 // 614 // CALLSEQ_START(0) 615 // STACKMAP(id, nbytes, ...) 616 // CALLSEQ_END(0, 0) 617 // 618 SmallVector<MachineOperand, 32> Ops; 619 620 // Add the <id> and <numBytes> constants. 621 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 622 "Expected a constant integer."); 623 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 624 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 625 626 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 627 "Expected a constant integer."); 628 const auto *NumBytes = 629 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 630 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 631 632 // Push live variables for the stack map (skipping the first two arguments 633 // <id> and <numBytes>). 634 if (!addStackMapLiveVars(Ops, I, 2)) 635 return false; 636 637 // We are not adding any register mask info here, because the stackmap doesn't 638 // clobber anything. 639 640 // Add scratch registers as implicit def and early clobber. 641 CallingConv::ID CC = I->getCallingConv(); 642 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 643 for (unsigned i = 0; ScratchRegs[i]; ++i) 644 Ops.push_back(MachineOperand::CreateReg( 645 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 646 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 647 648 // Issue CALLSEQ_START 649 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 650 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) 651 .addImm(0); 652 653 // Issue STACKMAP. 654 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 655 TII.get(TargetOpcode::STACKMAP)); 656 for (auto const &MO : Ops) 657 MIB.addOperand(MO); 658 659 // Issue CALLSEQ_END 660 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 661 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 662 .addImm(0) 663 .addImm(0); 664 665 // Inform the Frame Information that we have a stackmap in this function. 666 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 667 668 return true; 669 } 670 671 /// \brief Lower an argument list according to the target calling convention. 672 /// 673 /// This is a helper for lowering intrinsics that follow a target calling 674 /// convention or require stack pointer adjustment. Only a subset of the 675 /// intrinsic's operands need to participate in the calling convention. 676 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 677 unsigned NumArgs, const Value *Callee, 678 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 679 ArgListTy Args; 680 Args.reserve(NumArgs); 681 682 // Populate the argument list. 683 // Attributes for args start at offset 1, after the return attribute. 684 ImmutableCallSite CS(CI); 685 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 686 ArgI != ArgE; ++ArgI) { 687 Value *V = CI->getOperand(ArgI); 688 689 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 690 691 ArgListEntry Entry; 692 Entry.Val = V; 693 Entry.Ty = V->getType(); 694 Entry.setAttributes(&CS, AttrI); 695 Args.push_back(Entry); 696 } 697 698 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 699 : CI->getType(); 700 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 701 702 return lowerCallTo(CLI); 703 } 704 705 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 706 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 707 const char *Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 708 SmallString<32> MangledName; 709 Mangler::getNameWithPrefix(MangledName, Target, DL); 710 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 711 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 712 } 713 714 bool FastISel::selectPatchpoint(const CallInst *I) { 715 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 716 // i32 <numBytes>, 717 // i8* <target>, 718 // i32 <numArgs>, 719 // [Args...], 720 // [live variables...]) 721 CallingConv::ID CC = I->getCallingConv(); 722 bool IsAnyRegCC = CC == CallingConv::AnyReg; 723 bool HasDef = !I->getType()->isVoidTy(); 724 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 725 726 // Get the real number of arguments participating in the call <numArgs> 727 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 728 "Expected a constant integer."); 729 const auto *NumArgsVal = 730 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 731 unsigned NumArgs = NumArgsVal->getZExtValue(); 732 733 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 734 // This includes all meta-operands up to but not including CC. 735 unsigned NumMetaOpers = PatchPointOpers::CCPos; 736 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 737 "Not enough arguments provided to the patchpoint intrinsic"); 738 739 // For AnyRegCC the arguments are lowered later on manually. 740 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 741 CallLoweringInfo CLI; 742 CLI.setIsPatchPoint(); 743 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 744 return false; 745 746 assert(CLI.Call && "No call instruction specified."); 747 748 SmallVector<MachineOperand, 32> Ops; 749 750 // Add an explicit result reg if we use the anyreg calling convention. 751 if (IsAnyRegCC && HasDef) { 752 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 753 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 754 CLI.NumResultRegs = 1; 755 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 756 } 757 758 // Add the <id> and <numBytes> constants. 759 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 760 "Expected a constant integer."); 761 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 762 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 763 764 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 765 "Expected a constant integer."); 766 const auto *NumBytes = 767 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 768 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 769 770 // Add the call target. 771 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 772 uint64_t CalleeConstAddr = 773 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 774 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 775 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 776 if (C->getOpcode() == Instruction::IntToPtr) { 777 uint64_t CalleeConstAddr = 778 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 779 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 780 } else 781 llvm_unreachable("Unsupported ConstantExpr."); 782 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 783 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 784 } else if (isa<ConstantPointerNull>(Callee)) 785 Ops.push_back(MachineOperand::CreateImm(0)); 786 else 787 llvm_unreachable("Unsupported callee address."); 788 789 // Adjust <numArgs> to account for any arguments that have been passed on 790 // the stack instead. 791 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 792 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 793 794 // Add the calling convention 795 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 796 797 // Add the arguments we omitted previously. The register allocator should 798 // place these in any free register. 799 if (IsAnyRegCC) { 800 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 801 unsigned Reg = getRegForValue(I->getArgOperand(i)); 802 if (!Reg) 803 return false; 804 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 805 } 806 } 807 808 // Push the arguments from the call instruction. 809 for (auto Reg : CLI.OutRegs) 810 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 811 812 // Push live variables for the stack map. 813 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 814 return false; 815 816 // Push the register mask info. 817 Ops.push_back(MachineOperand::CreateRegMask( 818 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 819 820 // Add scratch registers as implicit def and early clobber. 821 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 822 for (unsigned i = 0; ScratchRegs[i]; ++i) 823 Ops.push_back(MachineOperand::CreateReg( 824 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 825 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 826 827 // Add implicit defs (return values). 828 for (auto Reg : CLI.InRegs) 829 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 830 /*IsImpl=*/true)); 831 832 // Insert the patchpoint instruction before the call generated by the target. 833 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 834 TII.get(TargetOpcode::PATCHPOINT)); 835 836 for (auto &MO : Ops) 837 MIB.addOperand(MO); 838 839 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 840 841 // Delete the original call instruction. 842 CLI.Call->eraseFromParent(); 843 844 // Inform the Frame Information that we have a patchpoint in this function. 845 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 846 847 if (CLI.NumResultRegs) 848 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 849 return true; 850 } 851 852 /// Returns an AttributeSet representing the attributes applied to the return 853 /// value of the given call. 854 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 855 SmallVector<Attribute::AttrKind, 2> Attrs; 856 if (CLI.RetSExt) 857 Attrs.push_back(Attribute::SExt); 858 if (CLI.RetZExt) 859 Attrs.push_back(Attribute::ZExt); 860 if (CLI.IsInReg) 861 Attrs.push_back(Attribute::InReg); 862 863 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 864 Attrs); 865 } 866 867 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 868 unsigned NumArgs) { 869 MCContext &Ctx = MF->getContext(); 870 SmallString<32> MangledName; 871 Mangler::getNameWithPrefix(MangledName, SymName, DL); 872 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 873 return lowerCallTo(CI, Sym, NumArgs); 874 } 875 876 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 877 unsigned NumArgs) { 878 ImmutableCallSite CS(CI); 879 880 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 881 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 882 Type *RetTy = FTy->getReturnType(); 883 884 ArgListTy Args; 885 Args.reserve(NumArgs); 886 887 // Populate the argument list. 888 // Attributes for args start at offset 1, after the return attribute. 889 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 890 Value *V = CI->getOperand(ArgI); 891 892 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 893 894 ArgListEntry Entry; 895 Entry.Val = V; 896 Entry.Ty = V->getType(); 897 Entry.setAttributes(&CS, ArgI + 1); 898 Args.push_back(Entry); 899 } 900 901 CallLoweringInfo CLI; 902 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs); 903 904 return lowerCallTo(CLI); 905 } 906 907 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 908 // Handle the incoming return values from the call. 909 CLI.clearIns(); 910 SmallVector<EVT, 4> RetTys; 911 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 912 913 SmallVector<ISD::OutputArg, 4> Outs; 914 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 915 916 bool CanLowerReturn = TLI.CanLowerReturn( 917 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 918 919 // FIXME: sret demotion isn't supported yet - bail out. 920 if (!CanLowerReturn) 921 return false; 922 923 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 924 EVT VT = RetTys[I]; 925 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 926 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 927 for (unsigned i = 0; i != NumRegs; ++i) { 928 ISD::InputArg MyFlags; 929 MyFlags.VT = RegisterVT; 930 MyFlags.ArgVT = VT; 931 MyFlags.Used = CLI.IsReturnValueUsed; 932 if (CLI.RetSExt) 933 MyFlags.Flags.setSExt(); 934 if (CLI.RetZExt) 935 MyFlags.Flags.setZExt(); 936 if (CLI.IsInReg) 937 MyFlags.Flags.setInReg(); 938 CLI.Ins.push_back(MyFlags); 939 } 940 } 941 942 // Handle all of the outgoing arguments. 943 CLI.clearOuts(); 944 for (auto &Arg : CLI.getArgs()) { 945 Type *FinalType = Arg.Ty; 946 if (Arg.IsByVal) 947 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 948 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 949 FinalType, CLI.CallConv, CLI.IsVarArg); 950 951 ISD::ArgFlagsTy Flags; 952 if (Arg.IsZExt) 953 Flags.setZExt(); 954 if (Arg.IsSExt) 955 Flags.setSExt(); 956 if (Arg.IsInReg) 957 Flags.setInReg(); 958 if (Arg.IsSRet) 959 Flags.setSRet(); 960 if (Arg.IsByVal) 961 Flags.setByVal(); 962 if (Arg.IsInAlloca) { 963 Flags.setInAlloca(); 964 // Set the byval flag for CCAssignFn callbacks that don't know about 965 // inalloca. This way we can know how many bytes we should've allocated 966 // and how many bytes a callee cleanup function will pop. If we port 967 // inalloca to more targets, we'll have to add custom inalloca handling in 968 // the various CC lowering callbacks. 969 Flags.setByVal(); 970 } 971 if (Arg.IsByVal || Arg.IsInAlloca) { 972 PointerType *Ty = cast<PointerType>(Arg.Ty); 973 Type *ElementTy = Ty->getElementType(); 974 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 975 // For ByVal, alignment should come from FE. BE will guess if this info is 976 // not there, but there are cases it cannot get right. 977 unsigned FrameAlign = Arg.Alignment; 978 if (!FrameAlign) 979 FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL); 980 Flags.setByValSize(FrameSize); 981 Flags.setByValAlign(FrameAlign); 982 } 983 if (Arg.IsNest) 984 Flags.setNest(); 985 if (NeedsRegBlock) 986 Flags.setInConsecutiveRegs(); 987 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 988 Flags.setOrigAlign(OriginalAlignment); 989 990 CLI.OutVals.push_back(Arg.Val); 991 CLI.OutFlags.push_back(Flags); 992 } 993 994 if (!fastLowerCall(CLI)) 995 return false; 996 997 // Set all unused physreg defs as dead. 998 assert(CLI.Call && "No call instruction specified."); 999 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1000 1001 if (CLI.NumResultRegs && CLI.CS) 1002 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 1003 1004 return true; 1005 } 1006 1007 bool FastISel::lowerCall(const CallInst *CI) { 1008 ImmutableCallSite CS(CI); 1009 1010 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 1011 FunctionType *FuncTy = cast<FunctionType>(PT->getElementType()); 1012 Type *RetTy = FuncTy->getReturnType(); 1013 1014 ArgListTy Args; 1015 ArgListEntry Entry; 1016 Args.reserve(CS.arg_size()); 1017 1018 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1019 i != e; ++i) { 1020 Value *V = *i; 1021 1022 // Skip empty types 1023 if (V->getType()->isEmptyTy()) 1024 continue; 1025 1026 Entry.Val = V; 1027 Entry.Ty = V->getType(); 1028 1029 // Skip the first return-type Attribute to get to params. 1030 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 1031 Args.push_back(Entry); 1032 } 1033 1034 // Check if target-independent constraints permit a tail call here. 1035 // Target-dependent constraints are checked within fastLowerCall. 1036 bool IsTailCall = CI->isTailCall(); 1037 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1038 IsTailCall = false; 1039 1040 CallLoweringInfo CLI; 1041 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1042 .setTailCall(IsTailCall); 1043 1044 return lowerCallTo(CLI); 1045 } 1046 1047 bool FastISel::selectCall(const User *I) { 1048 const CallInst *Call = cast<CallInst>(I); 1049 1050 // Handle simple inline asms. 1051 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1052 // If the inline asm has side effects, then make sure that no local value 1053 // lives across by flushing the local value map. 1054 if (IA->hasSideEffects()) 1055 flushLocalValueMap(); 1056 1057 // Don't attempt to handle constraints. 1058 if (!IA->getConstraintString().empty()) 1059 return false; 1060 1061 unsigned ExtraInfo = 0; 1062 if (IA->hasSideEffects()) 1063 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1064 if (IA->isAlignStack()) 1065 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1066 1067 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1068 TII.get(TargetOpcode::INLINEASM)) 1069 .addExternalSymbol(IA->getAsmString().c_str()) 1070 .addImm(ExtraInfo); 1071 return true; 1072 } 1073 1074 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1075 ComputeUsesVAFloatArgument(*Call, &MMI); 1076 1077 // Handle intrinsic function calls. 1078 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1079 return selectIntrinsicCall(II); 1080 1081 // Usually, it does not make sense to initialize a value, 1082 // make an unrelated function call and use the value, because 1083 // it tends to be spilled on the stack. So, we move the pointer 1084 // to the last local value to the beginning of the block, so that 1085 // all the values which have already been materialized, 1086 // appear after the call. It also makes sense to skip intrinsics 1087 // since they tend to be inlined. 1088 flushLocalValueMap(); 1089 1090 return lowerCall(Call); 1091 } 1092 1093 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1094 switch (II->getIntrinsicID()) { 1095 default: 1096 break; 1097 // At -O0 we don't care about the lifetime intrinsics. 1098 case Intrinsic::lifetime_start: 1099 case Intrinsic::lifetime_end: 1100 // The donothing intrinsic does, well, nothing. 1101 case Intrinsic::donothing: 1102 return true; 1103 case Intrinsic::eh_actions: { 1104 unsigned ResultReg = getRegForValue(UndefValue::get(II->getType())); 1105 if (!ResultReg) 1106 return false; 1107 updateValueMap(II, ResultReg); 1108 return true; 1109 } 1110 case Intrinsic::dbg_declare: { 1111 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1112 assert(DI->getVariable() && "Missing variable"); 1113 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1114 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1115 return true; 1116 } 1117 1118 const Value *Address = DI->getAddress(); 1119 if (!Address || isa<UndefValue>(Address)) { 1120 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1121 return true; 1122 } 1123 1124 unsigned Offset = 0; 1125 Optional<MachineOperand> Op; 1126 if (const auto *Arg = dyn_cast<Argument>(Address)) 1127 // Some arguments' frame index is recorded during argument lowering. 1128 Offset = FuncInfo.getArgumentFrameIndex(Arg); 1129 if (Offset) 1130 Op = MachineOperand::CreateFI(Offset); 1131 if (!Op) 1132 if (unsigned Reg = lookUpRegForValue(Address)) 1133 Op = MachineOperand::CreateReg(Reg, false); 1134 1135 // If we have a VLA that has a "use" in a metadata node that's then used 1136 // here but it has no other uses, then we have a problem. E.g., 1137 // 1138 // int foo (const int *x) { 1139 // char a[*x]; 1140 // return 0; 1141 // } 1142 // 1143 // If we assign 'a' a vreg and fast isel later on has to use the selection 1144 // DAG isel, it will want to copy the value to the vreg. However, there are 1145 // no uses, which goes counter to what selection DAG isel expects. 1146 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1147 (!isa<AllocaInst>(Address) || 1148 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1149 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1150 false); 1151 1152 if (Op) { 1153 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1154 "Expected inlined-at fields to agree"); 1155 if (Op->isReg()) { 1156 Op->setIsDebug(true); 1157 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1158 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0, 1159 DI->getVariable(), DI->getExpression()); 1160 } else 1161 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1162 TII.get(TargetOpcode::DBG_VALUE)) 1163 .addOperand(*Op) 1164 .addImm(0) 1165 .addMetadata(DI->getVariable()) 1166 .addMetadata(DI->getExpression()); 1167 } else { 1168 // We can't yet handle anything else here because it would require 1169 // generating code, thus altering codegen because of debug info. 1170 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1171 } 1172 return true; 1173 } 1174 case Intrinsic::dbg_value: { 1175 // This form of DBG_VALUE is target-independent. 1176 const DbgValueInst *DI = cast<DbgValueInst>(II); 1177 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1178 const Value *V = DI->getValue(); 1179 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1180 "Expected inlined-at fields to agree"); 1181 if (!V) { 1182 // Currently the optimizer can produce this; insert an undef to 1183 // help debugging. Probably the optimizer should not do this. 1184 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1185 .addReg(0U) 1186 .addImm(DI->getOffset()) 1187 .addMetadata(DI->getVariable()) 1188 .addMetadata(DI->getExpression()); 1189 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1190 if (CI->getBitWidth() > 64) 1191 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1192 .addCImm(CI) 1193 .addImm(DI->getOffset()) 1194 .addMetadata(DI->getVariable()) 1195 .addMetadata(DI->getExpression()); 1196 else 1197 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1198 .addImm(CI->getZExtValue()) 1199 .addImm(DI->getOffset()) 1200 .addMetadata(DI->getVariable()) 1201 .addMetadata(DI->getExpression()); 1202 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1203 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1204 .addFPImm(CF) 1205 .addImm(DI->getOffset()) 1206 .addMetadata(DI->getVariable()) 1207 .addMetadata(DI->getExpression()); 1208 } else if (unsigned Reg = lookUpRegForValue(V)) { 1209 // FIXME: This does not handle register-indirect values at offset 0. 1210 bool IsIndirect = DI->getOffset() != 0; 1211 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1212 DI->getOffset(), DI->getVariable(), DI->getExpression()); 1213 } else { 1214 // We can't yet handle anything else here because it would require 1215 // generating code, thus altering codegen because of debug info. 1216 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1217 } 1218 return true; 1219 } 1220 case Intrinsic::objectsize: { 1221 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1222 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1223 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1224 unsigned ResultReg = getRegForValue(ResCI); 1225 if (!ResultReg) 1226 return false; 1227 updateValueMap(II, ResultReg); 1228 return true; 1229 } 1230 case Intrinsic::expect: { 1231 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1232 if (!ResultReg) 1233 return false; 1234 updateValueMap(II, ResultReg); 1235 return true; 1236 } 1237 case Intrinsic::experimental_stackmap: 1238 return selectStackmap(II); 1239 case Intrinsic::experimental_patchpoint_void: 1240 case Intrinsic::experimental_patchpoint_i64: 1241 return selectPatchpoint(II); 1242 } 1243 1244 return fastLowerIntrinsicCall(II); 1245 } 1246 1247 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1248 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1249 EVT DstVT = TLI.getValueType(DL, I->getType()); 1250 1251 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1252 !DstVT.isSimple()) 1253 // Unhandled type. Halt "fast" selection and bail. 1254 return false; 1255 1256 // Check if the destination type is legal. 1257 if (!TLI.isTypeLegal(DstVT)) 1258 return false; 1259 1260 // Check if the source operand is legal. 1261 if (!TLI.isTypeLegal(SrcVT)) 1262 return false; 1263 1264 unsigned InputReg = getRegForValue(I->getOperand(0)); 1265 if (!InputReg) 1266 // Unhandled operand. Halt "fast" selection and bail. 1267 return false; 1268 1269 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1270 1271 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1272 Opcode, InputReg, InputRegIsKill); 1273 if (!ResultReg) 1274 return false; 1275 1276 updateValueMap(I, ResultReg); 1277 return true; 1278 } 1279 1280 bool FastISel::selectBitCast(const User *I) { 1281 // If the bitcast doesn't change the type, just use the operand value. 1282 if (I->getType() == I->getOperand(0)->getType()) { 1283 unsigned Reg = getRegForValue(I->getOperand(0)); 1284 if (!Reg) 1285 return false; 1286 updateValueMap(I, Reg); 1287 return true; 1288 } 1289 1290 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1291 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1292 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1293 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1294 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1295 // Unhandled type. Halt "fast" selection and bail. 1296 return false; 1297 1298 MVT SrcVT = SrcEVT.getSimpleVT(); 1299 MVT DstVT = DstEVT.getSimpleVT(); 1300 unsigned Op0 = getRegForValue(I->getOperand(0)); 1301 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1302 return false; 1303 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1304 1305 // First, try to perform the bitcast by inserting a reg-reg copy. 1306 unsigned ResultReg = 0; 1307 if (SrcVT == DstVT) { 1308 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1309 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1310 // Don't attempt a cross-class copy. It will likely fail. 1311 if (SrcClass == DstClass) { 1312 ResultReg = createResultReg(DstClass); 1313 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1314 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1315 } 1316 } 1317 1318 // If the reg-reg copy failed, select a BITCAST opcode. 1319 if (!ResultReg) 1320 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1321 1322 if (!ResultReg) 1323 return false; 1324 1325 updateValueMap(I, ResultReg); 1326 return true; 1327 } 1328 1329 bool FastISel::selectInstruction(const Instruction *I) { 1330 // Just before the terminator instruction, insert instructions to 1331 // feed PHI nodes in successor blocks. 1332 if (isa<TerminatorInst>(I)) 1333 if (!handlePHINodesInSuccessorBlocks(I->getParent())) 1334 return false; 1335 1336 DbgLoc = I->getDebugLoc(); 1337 1338 SavedInsertPt = FuncInfo.InsertPt; 1339 1340 if (const auto *Call = dyn_cast<CallInst>(I)) { 1341 const Function *F = Call->getCalledFunction(); 1342 LibFunc::Func Func; 1343 1344 // As a special case, don't handle calls to builtin library functions that 1345 // may be translated directly to target instructions. 1346 if (F && !F->hasLocalLinkage() && F->hasName() && 1347 LibInfo->getLibFunc(F->getName(), Func) && 1348 LibInfo->hasOptimizedCodeGen(Func)) 1349 return false; 1350 1351 // Don't handle Intrinsic::trap if a trap funciton is specified. 1352 if (F && F->getIntrinsicID() == Intrinsic::trap && 1353 Call->hasFnAttr("trap-func-name")) 1354 return false; 1355 } 1356 1357 // First, try doing target-independent selection. 1358 if (!SkipTargetIndependentISel) { 1359 if (selectOperator(I, I->getOpcode())) { 1360 ++NumFastIselSuccessIndependent; 1361 DbgLoc = DebugLoc(); 1362 return true; 1363 } 1364 // Remove dead code. 1365 recomputeInsertPt(); 1366 if (SavedInsertPt != FuncInfo.InsertPt) 1367 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1368 SavedInsertPt = FuncInfo.InsertPt; 1369 } 1370 // Next, try calling the target to attempt to handle the instruction. 1371 if (fastSelectInstruction(I)) { 1372 ++NumFastIselSuccessTarget; 1373 DbgLoc = DebugLoc(); 1374 return true; 1375 } 1376 // Remove dead code. 1377 recomputeInsertPt(); 1378 if (SavedInsertPt != FuncInfo.InsertPt) 1379 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1380 1381 DbgLoc = DebugLoc(); 1382 // Undo phi node updates, because they will be added again by SelectionDAG. 1383 if (isa<TerminatorInst>(I)) 1384 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1385 return false; 1386 } 1387 1388 /// Emit an unconditional branch to the given block, unless it is the immediate 1389 /// (fall-through) successor, and update the CFG. 1390 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) { 1391 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1392 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1393 // For more accurate line information if this is the only instruction 1394 // in the block then emit it, otherwise we have the unconditional 1395 // fall-through case, which needs no instructions. 1396 } else { 1397 // The unconditional branch case. 1398 TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr, 1399 SmallVector<MachineOperand, 0>(), DbgLoc); 1400 } 1401 uint32_t BranchWeight = 0; 1402 if (FuncInfo.BPI) 1403 BranchWeight = FuncInfo.BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(), 1404 MSucc->getBasicBlock()); 1405 FuncInfo.MBB->addSuccessor(MSucc, BranchWeight); 1406 } 1407 1408 /// Emit an FNeg operation. 1409 bool FastISel::selectFNeg(const User *I) { 1410 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1411 if (!OpReg) 1412 return false; 1413 bool OpRegIsKill = hasTrivialKill(I); 1414 1415 // If the target has ISD::FNEG, use it. 1416 EVT VT = TLI.getValueType(DL, I->getType()); 1417 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1418 OpReg, OpRegIsKill); 1419 if (ResultReg) { 1420 updateValueMap(I, ResultReg); 1421 return true; 1422 } 1423 1424 // Bitcast the value to integer, twiddle the sign bit with xor, 1425 // and then bitcast it back to floating-point. 1426 if (VT.getSizeInBits() > 64) 1427 return false; 1428 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1429 if (!TLI.isTypeLegal(IntVT)) 1430 return false; 1431 1432 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1433 ISD::BITCAST, OpReg, OpRegIsKill); 1434 if (!IntReg) 1435 return false; 1436 1437 unsigned IntResultReg = fastEmit_ri_( 1438 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1439 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1440 if (!IntResultReg) 1441 return false; 1442 1443 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1444 IntResultReg, /*IsKill=*/true); 1445 if (!ResultReg) 1446 return false; 1447 1448 updateValueMap(I, ResultReg); 1449 return true; 1450 } 1451 1452 bool FastISel::selectExtractValue(const User *U) { 1453 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1454 if (!EVI) 1455 return false; 1456 1457 // Make sure we only try to handle extracts with a legal result. But also 1458 // allow i1 because it's easy. 1459 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1460 if (!RealVT.isSimple()) 1461 return false; 1462 MVT VT = RealVT.getSimpleVT(); 1463 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1464 return false; 1465 1466 const Value *Op0 = EVI->getOperand(0); 1467 Type *AggTy = Op0->getType(); 1468 1469 // Get the base result register. 1470 unsigned ResultReg; 1471 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1472 if (I != FuncInfo.ValueMap.end()) 1473 ResultReg = I->second; 1474 else if (isa<Instruction>(Op0)) 1475 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1476 else 1477 return false; // fast-isel can't handle aggregate constants at the moment 1478 1479 // Get the actual result register, which is an offset from the base register. 1480 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1481 1482 SmallVector<EVT, 4> AggValueVTs; 1483 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1484 1485 for (unsigned i = 0; i < VTIndex; i++) 1486 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1487 1488 updateValueMap(EVI, ResultReg); 1489 return true; 1490 } 1491 1492 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1493 switch (Opcode) { 1494 case Instruction::Add: 1495 return selectBinaryOp(I, ISD::ADD); 1496 case Instruction::FAdd: 1497 return selectBinaryOp(I, ISD::FADD); 1498 case Instruction::Sub: 1499 return selectBinaryOp(I, ISD::SUB); 1500 case Instruction::FSub: 1501 // FNeg is currently represented in LLVM IR as a special case of FSub. 1502 if (BinaryOperator::isFNeg(I)) 1503 return selectFNeg(I); 1504 return selectBinaryOp(I, ISD::FSUB); 1505 case Instruction::Mul: 1506 return selectBinaryOp(I, ISD::MUL); 1507 case Instruction::FMul: 1508 return selectBinaryOp(I, ISD::FMUL); 1509 case Instruction::SDiv: 1510 return selectBinaryOp(I, ISD::SDIV); 1511 case Instruction::UDiv: 1512 return selectBinaryOp(I, ISD::UDIV); 1513 case Instruction::FDiv: 1514 return selectBinaryOp(I, ISD::FDIV); 1515 case Instruction::SRem: 1516 return selectBinaryOp(I, ISD::SREM); 1517 case Instruction::URem: 1518 return selectBinaryOp(I, ISD::UREM); 1519 case Instruction::FRem: 1520 return selectBinaryOp(I, ISD::FREM); 1521 case Instruction::Shl: 1522 return selectBinaryOp(I, ISD::SHL); 1523 case Instruction::LShr: 1524 return selectBinaryOp(I, ISD::SRL); 1525 case Instruction::AShr: 1526 return selectBinaryOp(I, ISD::SRA); 1527 case Instruction::And: 1528 return selectBinaryOp(I, ISD::AND); 1529 case Instruction::Or: 1530 return selectBinaryOp(I, ISD::OR); 1531 case Instruction::Xor: 1532 return selectBinaryOp(I, ISD::XOR); 1533 1534 case Instruction::GetElementPtr: 1535 return selectGetElementPtr(I); 1536 1537 case Instruction::Br: { 1538 const BranchInst *BI = cast<BranchInst>(I); 1539 1540 if (BI->isUnconditional()) { 1541 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1542 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1543 fastEmitBranch(MSucc, BI->getDebugLoc()); 1544 return true; 1545 } 1546 1547 // Conditional branches are not handed yet. 1548 // Halt "fast" selection and bail. 1549 return false; 1550 } 1551 1552 case Instruction::Unreachable: 1553 if (TM.Options.TrapUnreachable) 1554 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1555 else 1556 return true; 1557 1558 case Instruction::Alloca: 1559 // FunctionLowering has the static-sized case covered. 1560 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1561 return true; 1562 1563 // Dynamic-sized alloca is not handled yet. 1564 return false; 1565 1566 case Instruction::Call: 1567 return selectCall(I); 1568 1569 case Instruction::BitCast: 1570 return selectBitCast(I); 1571 1572 case Instruction::FPToSI: 1573 return selectCast(I, ISD::FP_TO_SINT); 1574 case Instruction::ZExt: 1575 return selectCast(I, ISD::ZERO_EXTEND); 1576 case Instruction::SExt: 1577 return selectCast(I, ISD::SIGN_EXTEND); 1578 case Instruction::Trunc: 1579 return selectCast(I, ISD::TRUNCATE); 1580 case Instruction::SIToFP: 1581 return selectCast(I, ISD::SINT_TO_FP); 1582 1583 case Instruction::IntToPtr: // Deliberate fall-through. 1584 case Instruction::PtrToInt: { 1585 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1586 EVT DstVT = TLI.getValueType(DL, I->getType()); 1587 if (DstVT.bitsGT(SrcVT)) 1588 return selectCast(I, ISD::ZERO_EXTEND); 1589 if (DstVT.bitsLT(SrcVT)) 1590 return selectCast(I, ISD::TRUNCATE); 1591 unsigned Reg = getRegForValue(I->getOperand(0)); 1592 if (!Reg) 1593 return false; 1594 updateValueMap(I, Reg); 1595 return true; 1596 } 1597 1598 case Instruction::ExtractValue: 1599 return selectExtractValue(I); 1600 1601 case Instruction::PHI: 1602 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1603 1604 default: 1605 // Unhandled instruction. Halt "fast" selection and bail. 1606 return false; 1607 } 1608 } 1609 1610 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1611 const TargetLibraryInfo *LibInfo, 1612 bool SkipTargetIndependentISel) 1613 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1614 MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1615 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1616 TII(*MF->getSubtarget().getInstrInfo()), 1617 TLI(*MF->getSubtarget().getTargetLowering()), 1618 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1619 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1620 1621 FastISel::~FastISel() {} 1622 1623 bool FastISel::fastLowerArguments() { return false; } 1624 1625 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1626 1627 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1628 return false; 1629 } 1630 1631 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1632 1633 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1634 bool /*Op0IsKill*/) { 1635 return 0; 1636 } 1637 1638 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1639 bool /*Op0IsKill*/, unsigned /*Op1*/, 1640 bool /*Op1IsKill*/) { 1641 return 0; 1642 } 1643 1644 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1645 return 0; 1646 } 1647 1648 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1649 const ConstantFP * /*FPImm*/) { 1650 return 0; 1651 } 1652 1653 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1654 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1655 return 0; 1656 } 1657 1658 unsigned FastISel::fastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/, 1659 bool /*Op0IsKill*/, 1660 const ConstantFP * /*FPImm*/) { 1661 return 0; 1662 } 1663 1664 unsigned FastISel::fastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/, 1665 bool /*Op0IsKill*/, unsigned /*Op1*/, 1666 bool /*Op1IsKill*/, uint64_t /*Imm*/) { 1667 return 0; 1668 } 1669 1670 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1671 /// instruction with an immediate operand using fastEmit_ri. 1672 /// If that fails, it materializes the immediate into a register and try 1673 /// fastEmit_rr instead. 1674 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1675 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1676 // If this is a multiply by a power of two, emit this as a shift left. 1677 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1678 Opcode = ISD::SHL; 1679 Imm = Log2_64(Imm); 1680 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1681 // div x, 8 -> srl x, 3 1682 Opcode = ISD::SRL; 1683 Imm = Log2_64(Imm); 1684 } 1685 1686 // Horrible hack (to be removed), check to make sure shift amounts are 1687 // in-range. 1688 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1689 Imm >= VT.getSizeInBits()) 1690 return 0; 1691 1692 // First check if immediate type is legal. If not, we can't use the ri form. 1693 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1694 if (ResultReg) 1695 return ResultReg; 1696 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1697 bool IsImmKill = true; 1698 if (!MaterialReg) { 1699 // This is a bit ugly/slow, but failing here means falling out of 1700 // fast-isel, which would be very slow. 1701 IntegerType *ITy = 1702 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1703 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1704 if (!MaterialReg) 1705 return 0; 1706 // FIXME: If the materialized register here has no uses yet then this 1707 // will be the first use and we should be able to mark it as killed. 1708 // However, the local value area for materialising constant expressions 1709 // grows down, not up, which means that any constant expressions we generate 1710 // later which also use 'Imm' could be after this instruction and therefore 1711 // after this kill. 1712 IsImmKill = false; 1713 } 1714 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); 1715 } 1716 1717 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { 1718 return MRI.createVirtualRegister(RC); 1719 } 1720 1721 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 1722 unsigned OpNum) { 1723 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1724 const TargetRegisterClass *RegClass = 1725 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1726 if (!MRI.constrainRegClass(Op, RegClass)) { 1727 // If it's not legal to COPY between the register classes, something 1728 // has gone very wrong before we got here. 1729 unsigned NewOp = createResultReg(RegClass); 1730 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1731 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1732 return NewOp; 1733 } 1734 } 1735 return Op; 1736 } 1737 1738 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1739 const TargetRegisterClass *RC) { 1740 unsigned ResultReg = createResultReg(RC); 1741 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1742 1743 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1744 return ResultReg; 1745 } 1746 1747 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 1748 const TargetRegisterClass *RC, unsigned Op0, 1749 bool Op0IsKill) { 1750 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1751 1752 unsigned ResultReg = createResultReg(RC); 1753 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1754 1755 if (II.getNumDefs() >= 1) 1756 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1757 .addReg(Op0, getKillRegState(Op0IsKill)); 1758 else { 1759 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1760 .addReg(Op0, getKillRegState(Op0IsKill)); 1761 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1762 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1763 } 1764 1765 return ResultReg; 1766 } 1767 1768 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 1769 const TargetRegisterClass *RC, unsigned Op0, 1770 bool Op0IsKill, unsigned Op1, 1771 bool Op1IsKill) { 1772 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1773 1774 unsigned ResultReg = createResultReg(RC); 1775 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1776 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1777 1778 if (II.getNumDefs() >= 1) 1779 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1780 .addReg(Op0, getKillRegState(Op0IsKill)) 1781 .addReg(Op1, getKillRegState(Op1IsKill)); 1782 else { 1783 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1784 .addReg(Op0, getKillRegState(Op0IsKill)) 1785 .addReg(Op1, getKillRegState(Op1IsKill)); 1786 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1787 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1788 } 1789 return ResultReg; 1790 } 1791 1792 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 1793 const TargetRegisterClass *RC, unsigned Op0, 1794 bool Op0IsKill, unsigned Op1, 1795 bool Op1IsKill, unsigned Op2, 1796 bool Op2IsKill) { 1797 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1798 1799 unsigned ResultReg = createResultReg(RC); 1800 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1801 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1802 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1803 1804 if (II.getNumDefs() >= 1) 1805 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1806 .addReg(Op0, getKillRegState(Op0IsKill)) 1807 .addReg(Op1, getKillRegState(Op1IsKill)) 1808 .addReg(Op2, getKillRegState(Op2IsKill)); 1809 else { 1810 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1811 .addReg(Op0, getKillRegState(Op0IsKill)) 1812 .addReg(Op1, getKillRegState(Op1IsKill)) 1813 .addReg(Op2, getKillRegState(Op2IsKill)); 1814 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1815 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1816 } 1817 return ResultReg; 1818 } 1819 1820 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 1821 const TargetRegisterClass *RC, unsigned Op0, 1822 bool Op0IsKill, uint64_t Imm) { 1823 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1824 1825 unsigned ResultReg = createResultReg(RC); 1826 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1827 1828 if (II.getNumDefs() >= 1) 1829 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1830 .addReg(Op0, getKillRegState(Op0IsKill)) 1831 .addImm(Imm); 1832 else { 1833 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1834 .addReg(Op0, getKillRegState(Op0IsKill)) 1835 .addImm(Imm); 1836 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1837 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1838 } 1839 return ResultReg; 1840 } 1841 1842 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 1843 const TargetRegisterClass *RC, unsigned Op0, 1844 bool Op0IsKill, uint64_t Imm1, 1845 uint64_t Imm2) { 1846 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1847 1848 unsigned ResultReg = createResultReg(RC); 1849 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1850 1851 if (II.getNumDefs() >= 1) 1852 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1853 .addReg(Op0, getKillRegState(Op0IsKill)) 1854 .addImm(Imm1) 1855 .addImm(Imm2); 1856 else { 1857 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1858 .addReg(Op0, getKillRegState(Op0IsKill)) 1859 .addImm(Imm1) 1860 .addImm(Imm2); 1861 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1862 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1863 } 1864 return ResultReg; 1865 } 1866 1867 unsigned FastISel::fastEmitInst_rf(unsigned MachineInstOpcode, 1868 const TargetRegisterClass *RC, unsigned Op0, 1869 bool Op0IsKill, const ConstantFP *FPImm) { 1870 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1871 1872 unsigned ResultReg = createResultReg(RC); 1873 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1874 1875 if (II.getNumDefs() >= 1) 1876 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1877 .addReg(Op0, getKillRegState(Op0IsKill)) 1878 .addFPImm(FPImm); 1879 else { 1880 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1881 .addReg(Op0, getKillRegState(Op0IsKill)) 1882 .addFPImm(FPImm); 1883 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1884 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1885 } 1886 return ResultReg; 1887 } 1888 1889 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 1890 const TargetRegisterClass *RC, unsigned Op0, 1891 bool Op0IsKill, unsigned Op1, 1892 bool Op1IsKill, uint64_t Imm) { 1893 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1894 1895 unsigned ResultReg = createResultReg(RC); 1896 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1897 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1898 1899 if (II.getNumDefs() >= 1) 1900 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1901 .addReg(Op0, getKillRegState(Op0IsKill)) 1902 .addReg(Op1, getKillRegState(Op1IsKill)) 1903 .addImm(Imm); 1904 else { 1905 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1906 .addReg(Op0, getKillRegState(Op0IsKill)) 1907 .addReg(Op1, getKillRegState(Op1IsKill)) 1908 .addImm(Imm); 1909 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1910 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1911 } 1912 return ResultReg; 1913 } 1914 1915 unsigned FastISel::fastEmitInst_rrii(unsigned MachineInstOpcode, 1916 const TargetRegisterClass *RC, 1917 unsigned Op0, bool Op0IsKill, unsigned Op1, 1918 bool Op1IsKill, uint64_t Imm1, 1919 uint64_t Imm2) { 1920 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1921 1922 unsigned ResultReg = createResultReg(RC); 1923 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1924 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1925 1926 if (II.getNumDefs() >= 1) 1927 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1928 .addReg(Op0, getKillRegState(Op0IsKill)) 1929 .addReg(Op1, getKillRegState(Op1IsKill)) 1930 .addImm(Imm1) 1931 .addImm(Imm2); 1932 else { 1933 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1934 .addReg(Op0, getKillRegState(Op0IsKill)) 1935 .addReg(Op1, getKillRegState(Op1IsKill)) 1936 .addImm(Imm1) 1937 .addImm(Imm2); 1938 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1939 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1940 } 1941 return ResultReg; 1942 } 1943 1944 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 1945 const TargetRegisterClass *RC, uint64_t Imm) { 1946 unsigned ResultReg = createResultReg(RC); 1947 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1948 1949 if (II.getNumDefs() >= 1) 1950 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1951 .addImm(Imm); 1952 else { 1953 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 1954 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1955 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1956 } 1957 return ResultReg; 1958 } 1959 1960 unsigned FastISel::fastEmitInst_ii(unsigned MachineInstOpcode, 1961 const TargetRegisterClass *RC, uint64_t Imm1, 1962 uint64_t Imm2) { 1963 unsigned ResultReg = createResultReg(RC); 1964 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1965 1966 if (II.getNumDefs() >= 1) 1967 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1968 .addImm(Imm1) 1969 .addImm(Imm2); 1970 else { 1971 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1) 1972 .addImm(Imm2); 1973 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1974 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1975 } 1976 return ResultReg; 1977 } 1978 1979 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 1980 bool Op0IsKill, uint32_t Idx) { 1981 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1982 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1983 "Cannot yet extract from physregs"); 1984 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 1985 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 1986 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 1987 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 1988 return ResultReg; 1989 } 1990 1991 /// Emit MachineInstrs to compute the value of Op with all but the least 1992 /// significant bit set to zero. 1993 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 1994 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 1995 } 1996 1997 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 1998 /// Emit code to ensure constants are copied into registers when needed. 1999 /// Remember the virtual registers that need to be added to the Machine PHI 2000 /// nodes as input. We cannot just directly add them, because expansion 2001 /// might result in multiple MBB's for one BB. As such, the start of the 2002 /// BB might correspond to a different MBB than the end. 2003 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2004 const TerminatorInst *TI = LLVMBB->getTerminator(); 2005 2006 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2007 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2008 2009 // Check successor nodes' PHI nodes that expect a constant to be available 2010 // from this block. 2011 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2012 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2013 if (!isa<PHINode>(SuccBB->begin())) 2014 continue; 2015 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2016 2017 // If this terminator has multiple identical successors (common for 2018 // switches), only handle each succ once. 2019 if (!SuccsHandled.insert(SuccMBB).second) 2020 continue; 2021 2022 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2023 2024 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2025 // nodes and Machine PHI nodes, but the incoming operands have not been 2026 // emitted yet. 2027 for (BasicBlock::const_iterator I = SuccBB->begin(); 2028 const auto *PN = dyn_cast<PHINode>(I); ++I) { 2029 2030 // Ignore dead phi's. 2031 if (PN->use_empty()) 2032 continue; 2033 2034 // Only handle legal types. Two interesting things to note here. First, 2035 // by bailing out early, we may leave behind some dead instructions, 2036 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2037 // own moves. Second, this check is necessary because FastISel doesn't 2038 // use CreateRegs to create registers, so it always creates 2039 // exactly one register for each non-void instruction. 2040 EVT VT = TLI.getValueType(DL, PN->getType(), /*AllowUnknown=*/true); 2041 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2042 // Handle integer promotions, though, because they're common and easy. 2043 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2044 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2045 return false; 2046 } 2047 } 2048 2049 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 2050 2051 // Set the DebugLoc for the copy. Prefer the location of the operand 2052 // if there is one; use the location of the PHI otherwise. 2053 DbgLoc = PN->getDebugLoc(); 2054 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2055 DbgLoc = Inst->getDebugLoc(); 2056 2057 unsigned Reg = getRegForValue(PHIOp); 2058 if (!Reg) { 2059 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2060 return false; 2061 } 2062 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 2063 DbgLoc = DebugLoc(); 2064 } 2065 } 2066 2067 return true; 2068 } 2069 2070 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2071 assert(LI->hasOneUse() && 2072 "tryToFoldLoad expected a LoadInst with a single use"); 2073 // We know that the load has a single use, but don't know what it is. If it 2074 // isn't one of the folded instructions, then we can't succeed here. Handle 2075 // this by scanning the single-use users of the load until we get to FoldInst. 2076 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2077 2078 const Instruction *TheUser = LI->user_back(); 2079 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2080 // Stay in the right block. 2081 TheUser->getParent() == FoldInst->getParent() && 2082 --MaxUsers) { // Don't scan too far. 2083 // If there are multiple or no uses of this instruction, then bail out. 2084 if (!TheUser->hasOneUse()) 2085 return false; 2086 2087 TheUser = TheUser->user_back(); 2088 } 2089 2090 // If we didn't find the fold instruction, then we failed to collapse the 2091 // sequence. 2092 if (TheUser != FoldInst) 2093 return false; 2094 2095 // Don't try to fold volatile loads. Target has to deal with alignment 2096 // constraints. 2097 if (LI->isVolatile()) 2098 return false; 2099 2100 // Figure out which vreg this is going into. If there is no assigned vreg yet 2101 // then there actually was no reference to it. Perhaps the load is referenced 2102 // by a dead instruction. 2103 unsigned LoadReg = getRegForValue(LI); 2104 if (!LoadReg) 2105 return false; 2106 2107 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2108 // may mean that the instruction got lowered to multiple MIs, or the use of 2109 // the loaded value ended up being multiple operands of the result. 2110 if (!MRI.hasOneUse(LoadReg)) 2111 return false; 2112 2113 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2114 MachineInstr *User = RI->getParent(); 2115 2116 // Set the insertion point properly. Folding the load can cause generation of 2117 // other random instructions (like sign extends) for addressing modes; make 2118 // sure they get inserted in a logical place before the new instruction. 2119 FuncInfo.InsertPt = User; 2120 FuncInfo.MBB = User->getParent(); 2121 2122 // Ask the target to try folding the load. 2123 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2124 } 2125 2126 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2127 // Must be an add. 2128 if (!isa<AddOperator>(Add)) 2129 return false; 2130 // Type size needs to match. 2131 if (DL.getTypeSizeInBits(GEP->getType()) != 2132 DL.getTypeSizeInBits(Add->getType())) 2133 return false; 2134 // Must be in the same basic block. 2135 if (isa<Instruction>(Add) && 2136 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2137 return false; 2138 // Must have a constant operand. 2139 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2140 } 2141 2142 MachineMemOperand * 2143 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2144 const Value *Ptr; 2145 Type *ValTy; 2146 unsigned Alignment; 2147 unsigned Flags; 2148 bool IsVolatile; 2149 2150 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2151 Alignment = LI->getAlignment(); 2152 IsVolatile = LI->isVolatile(); 2153 Flags = MachineMemOperand::MOLoad; 2154 Ptr = LI->getPointerOperand(); 2155 ValTy = LI->getType(); 2156 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2157 Alignment = SI->getAlignment(); 2158 IsVolatile = SI->isVolatile(); 2159 Flags = MachineMemOperand::MOStore; 2160 Ptr = SI->getPointerOperand(); 2161 ValTy = SI->getValueOperand()->getType(); 2162 } else 2163 return nullptr; 2164 2165 bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2166 bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2167 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2168 2169 AAMDNodes AAInfo; 2170 I->getAAMetadata(AAInfo); 2171 2172 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2173 Alignment = DL.getABITypeAlignment(ValTy); 2174 2175 unsigned Size = DL.getTypeStoreSize(ValTy); 2176 2177 if (IsVolatile) 2178 Flags |= MachineMemOperand::MOVolatile; 2179 if (IsNonTemporal) 2180 Flags |= MachineMemOperand::MONonTemporal; 2181 if (IsInvariant) 2182 Flags |= MachineMemOperand::MOInvariant; 2183 2184 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2185 Alignment, AAInfo, Ranges); 2186 } 2187 2188 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2189 // If both operands are the same, then try to optimize or fold the cmp. 2190 CmpInst::Predicate Predicate = CI->getPredicate(); 2191 if (CI->getOperand(0) != CI->getOperand(1)) 2192 return Predicate; 2193 2194 switch (Predicate) { 2195 default: llvm_unreachable("Invalid predicate!"); 2196 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2197 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2198 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2199 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2200 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2201 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2202 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2203 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2204 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2205 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2206 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2207 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2208 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2209 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2210 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2211 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2212 2213 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2214 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2215 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2216 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2217 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2218 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2219 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2220 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2221 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2222 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2223 } 2224 2225 return Predicate; 2226 } 2227