1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/CodeGen/FastISel.h" 43 #include "llvm/ADT/APFloat.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/DenseMap.h" 46 #include "llvm/ADT/Optional.h" 47 #include "llvm/ADT/SmallPtrSet.h" 48 #include "llvm/ADT/SmallString.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/Statistic.h" 51 #include "llvm/Analysis/BranchProbabilityInfo.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/CodeGen/Analysis.h" 54 #include "llvm/CodeGen/FunctionLoweringInfo.h" 55 #include "llvm/CodeGen/ISDOpcodes.h" 56 #include "llvm/CodeGen/MachineBasicBlock.h" 57 #include "llvm/CodeGen/MachineFrameInfo.h" 58 #include "llvm/CodeGen/MachineInstr.h" 59 #include "llvm/CodeGen/MachineInstrBuilder.h" 60 #include "llvm/CodeGen/MachineMemOperand.h" 61 #include "llvm/CodeGen/MachineModuleInfo.h" 62 #include "llvm/CodeGen/MachineOperand.h" 63 #include "llvm/CodeGen/MachineRegisterInfo.h" 64 #include "llvm/CodeGen/StackMaps.h" 65 #include "llvm/CodeGen/TargetInstrInfo.h" 66 #include "llvm/CodeGen/TargetLowering.h" 67 #include "llvm/CodeGen/TargetSubtargetInfo.h" 68 #include "llvm/CodeGen/ValueTypes.h" 69 #include "llvm/IR/Argument.h" 70 #include "llvm/IR/Attributes.h" 71 #include "llvm/IR/BasicBlock.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DebugInfo.h" 78 #include "llvm/IR/DebugLoc.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Function.h" 81 #include "llvm/IR/GetElementPtrTypeIterator.h" 82 #include "llvm/IR/GlobalValue.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/LLVMContext.h" 89 #include "llvm/IR/Mangler.h" 90 #include "llvm/IR/Metadata.h" 91 #include "llvm/IR/Operator.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCInstrDesc.h" 97 #include "llvm/MC/MCRegisterInfo.h" 98 #include "llvm/Support/Casting.h" 99 #include "llvm/Support/Debug.h" 100 #include "llvm/Support/ErrorHandling.h" 101 #include "llvm/Support/MachineValueType.h" 102 #include "llvm/Support/MathExtras.h" 103 #include "llvm/Support/raw_ostream.h" 104 #include "llvm/Target/TargetMachine.h" 105 #include "llvm/Target/TargetOptions.h" 106 #include <algorithm> 107 #include <cassert> 108 #include <cstdint> 109 #include <iterator> 110 #include <utility> 111 112 using namespace llvm; 113 114 #define DEBUG_TYPE "isel" 115 116 // FIXME: Remove this when compile time issues are addressed. Do this by only 117 // numbering instructions between local value map flush points instead of the 118 // entire BB. 119 static cl::opt<bool> SinkLocalValues("fast-isel-sink-local-values", 120 cl::init(false), cl::Hidden, 121 cl::desc("Sink local values in FastISel")); 122 123 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 124 "target-independent selector"); 125 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 126 "target-specific selector"); 127 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 128 129 /// Set the current block to which generated machine instructions will be 130 /// appended. 131 void FastISel::startNewBlock() { 132 assert(LocalValueMap.empty() && 133 "local values should be cleared after finishing a BB"); 134 135 // Instructions are appended to FuncInfo.MBB. If the basic block already 136 // contains labels or copies, use the last instruction as the last local 137 // value. 138 EmitStartPt = nullptr; 139 if (!FuncInfo.MBB->empty()) 140 EmitStartPt = &FuncInfo.MBB->back(); 141 LastLocalValue = EmitStartPt; 142 } 143 144 /// Flush the local CSE map and sink anything we can. 145 void FastISel::finishBasicBlock() { flushLocalValueMap(); } 146 147 bool FastISel::lowerArguments() { 148 if (!FuncInfo.CanLowerReturn) 149 // Fallback to SDISel argument lowering code to deal with sret pointer 150 // parameter. 151 return false; 152 153 if (!fastLowerArguments()) 154 return false; 155 156 // Enter arguments into ValueMap for uses in non-entry BBs. 157 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 158 E = FuncInfo.Fn->arg_end(); 159 I != E; ++I) { 160 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I); 161 assert(VI != LocalValueMap.end() && "Missed an argument?"); 162 FuncInfo.ValueMap[&*I] = VI->second; 163 } 164 return true; 165 } 166 167 /// Return the defined register if this instruction defines exactly one 168 /// virtual register and uses no other virtual registers. Otherwise return 0. 169 static unsigned findSinkableLocalRegDef(MachineInstr &MI) { 170 unsigned RegDef = 0; 171 for (const MachineOperand &MO : MI.operands()) { 172 if (!MO.isReg()) 173 continue; 174 if (MO.isDef()) { 175 if (RegDef) 176 return 0; 177 RegDef = MO.getReg(); 178 } else if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 179 // This is another use of a vreg. Don't try to sink it. 180 return 0; 181 } 182 } 183 return RegDef; 184 } 185 186 void FastISel::flushLocalValueMap() { 187 // Try to sink local values down to their first use so that we can give them a 188 // better debug location. This has the side effect of shrinking local value 189 // live ranges, which helps out fast regalloc. 190 if (SinkLocalValues && LastLocalValue != EmitStartPt) { 191 // Sink local value materialization instructions between EmitStartPt and 192 // LastLocalValue. Visit them bottom-up, starting from LastLocalValue, to 193 // avoid inserting into the range that we're iterating over. 194 MachineBasicBlock::reverse_iterator RE = 195 EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) 196 : FuncInfo.MBB->rend(); 197 MachineBasicBlock::reverse_iterator RI(LastLocalValue); 198 199 InstOrderMap OrderMap; 200 for (; RI != RE;) { 201 MachineInstr &LocalMI = *RI; 202 ++RI; 203 bool Store = true; 204 if (!LocalMI.isSafeToMove(nullptr, Store)) 205 continue; 206 unsigned DefReg = findSinkableLocalRegDef(LocalMI); 207 if (DefReg == 0) 208 continue; 209 210 sinkLocalValueMaterialization(LocalMI, DefReg, OrderMap); 211 } 212 } 213 214 LocalValueMap.clear(); 215 LastLocalValue = EmitStartPt; 216 recomputeInsertPt(); 217 SavedInsertPt = FuncInfo.InsertPt; 218 } 219 220 static bool isRegUsedByPhiNodes(unsigned DefReg, 221 FunctionLoweringInfo &FuncInfo) { 222 for (auto &P : FuncInfo.PHINodesToUpdate) 223 if (P.second == DefReg) 224 return true; 225 return false; 226 } 227 228 /// Build a map of instruction orders. Return the first terminator and its 229 /// order. Consider EH_LABEL instructions to be terminators as well, since local 230 /// values for phis after invokes must be materialized before the call. 231 void FastISel::InstOrderMap::initialize(MachineBasicBlock *MBB) { 232 unsigned Order = 0; 233 for (MachineInstr &I : *MBB) { 234 if (!FirstTerminator && 235 (I.isTerminator() || (I.isEHLabel() && &I != &MBB->front()))) { 236 FirstTerminator = &I; 237 FirstTerminatorOrder = Order; 238 } 239 Orders[&I] = Order++; 240 } 241 } 242 243 void FastISel::sinkLocalValueMaterialization(MachineInstr &LocalMI, 244 unsigned DefReg, 245 InstOrderMap &OrderMap) { 246 // If this register is used by a register fixup, MRI will not contain all 247 // the uses until after register fixups, so don't attempt to sink or DCE 248 // this instruction. Register fixups typically come from no-op cast 249 // instructions, which replace the cast instruction vreg with the local 250 // value vreg. 251 if (FuncInfo.RegsWithFixups.count(DefReg)) 252 return; 253 254 // We can DCE this instruction if there are no uses and it wasn't a 255 // materialized for a successor PHI node. 256 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); 257 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) { 258 if (EmitStartPt == &LocalMI) 259 EmitStartPt = EmitStartPt->getPrevNode(); 260 DEBUG(dbgs() << "removing dead local value materialization " << LocalMI); 261 OrderMap.Orders.erase(&LocalMI); 262 LocalMI.eraseFromParent(); 263 return; 264 } 265 266 // Number the instructions if we haven't yet so we can efficiently find the 267 // earliest use. 268 if (OrderMap.Orders.empty()) 269 OrderMap.initialize(FuncInfo.MBB); 270 271 // Find the first user in the BB. 272 MachineInstr *FirstUser = nullptr; 273 unsigned FirstOrder = std::numeric_limits<unsigned>::max(); 274 for (MachineInstr &UseInst : MRI.use_nodbg_instructions(DefReg)) { 275 unsigned UseOrder = OrderMap.Orders[&UseInst]; 276 if (UseOrder < FirstOrder) { 277 FirstOrder = UseOrder; 278 FirstUser = &UseInst; 279 } 280 } 281 282 // The insertion point will be the first terminator or the first user, 283 // whichever came first. If there was no terminator, this must be a 284 // fallthrough block and the insertion point is the end of the block. 285 MachineBasicBlock::instr_iterator SinkPos; 286 if (UsedByPHI && OrderMap.FirstTerminatorOrder < FirstOrder) { 287 FirstOrder = OrderMap.FirstTerminatorOrder; 288 SinkPos = OrderMap.FirstTerminator->getIterator(); 289 } else if (FirstUser) { 290 SinkPos = FirstUser->getIterator(); 291 } else { 292 assert(UsedByPHI && "must be users if not used by a phi"); 293 SinkPos = FuncInfo.MBB->instr_end(); 294 } 295 296 // Collect all DBG_VALUEs before the new insertion position so that we can 297 // sink them. 298 SmallVector<MachineInstr *, 1> DbgValues; 299 for (MachineInstr &DbgVal : MRI.use_instructions(DefReg)) { 300 if (!DbgVal.isDebugValue()) 301 continue; 302 unsigned UseOrder = OrderMap.Orders[&DbgVal]; 303 if (UseOrder < FirstOrder) 304 DbgValues.push_back(&DbgVal); 305 } 306 307 // Sink LocalMI before SinkPos and assign it the same DebugLoc. 308 DEBUG(dbgs() << "sinking local value to first use " << LocalMI); 309 FuncInfo.MBB->remove(&LocalMI); 310 FuncInfo.MBB->insert(SinkPos, &LocalMI); 311 if (SinkPos != FuncInfo.MBB->end()) 312 LocalMI.setDebugLoc(SinkPos->getDebugLoc()); 313 314 // Sink any debug values that we've collected. 315 for (MachineInstr *DI : DbgValues) { 316 FuncInfo.MBB->remove(DI); 317 FuncInfo.MBB->insert(SinkPos, DI); 318 } 319 } 320 321 bool FastISel::hasTrivialKill(const Value *V) { 322 // Don't consider constants or arguments to have trivial kills. 323 const Instruction *I = dyn_cast<Instruction>(V); 324 if (!I) 325 return false; 326 327 // No-op casts are trivially coalesced by fast-isel. 328 if (const auto *Cast = dyn_cast<CastInst>(I)) 329 if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0))) 330 return false; 331 332 // Even the value might have only one use in the LLVM IR, it is possible that 333 // FastISel might fold the use into another instruction and now there is more 334 // than one use at the Machine Instruction level. 335 unsigned Reg = lookUpRegForValue(V); 336 if (Reg && !MRI.use_empty(Reg)) 337 return false; 338 339 // GEPs with all zero indices are trivially coalesced by fast-isel. 340 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 341 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 342 return false; 343 344 // Only instructions with a single use in the same basic block are considered 345 // to have trivial kills. 346 return I->hasOneUse() && 347 !(I->getOpcode() == Instruction::BitCast || 348 I->getOpcode() == Instruction::PtrToInt || 349 I->getOpcode() == Instruction::IntToPtr) && 350 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 351 } 352 353 unsigned FastISel::getRegForValue(const Value *V) { 354 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 355 // Don't handle non-simple values in FastISel. 356 if (!RealVT.isSimple()) 357 return 0; 358 359 // Ignore illegal types. We must do this before looking up the value 360 // in ValueMap because Arguments are given virtual registers regardless 361 // of whether FastISel can handle them. 362 MVT VT = RealVT.getSimpleVT(); 363 if (!TLI.isTypeLegal(VT)) { 364 // Handle integer promotions, though, because they're common and easy. 365 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 366 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 367 else 368 return 0; 369 } 370 371 // Look up the value to see if we already have a register for it. 372 unsigned Reg = lookUpRegForValue(V); 373 if (Reg) 374 return Reg; 375 376 // In bottom-up mode, just create the virtual register which will be used 377 // to hold the value. It will be materialized later. 378 if (isa<Instruction>(V) && 379 (!isa<AllocaInst>(V) || 380 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 381 return FuncInfo.InitializeRegForValue(V); 382 383 SavePoint SaveInsertPt = enterLocalValueArea(); 384 385 // Materialize the value in a register. Emit any instructions in the 386 // local value area. 387 Reg = materializeRegForValue(V, VT); 388 389 leaveLocalValueArea(SaveInsertPt); 390 391 return Reg; 392 } 393 394 unsigned FastISel::materializeConstant(const Value *V, MVT VT) { 395 unsigned Reg = 0; 396 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 397 if (CI->getValue().getActiveBits() <= 64) 398 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 399 } else if (isa<AllocaInst>(V)) 400 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 401 else if (isa<ConstantPointerNull>(V)) 402 // Translate this as an integer zero so that it can be 403 // local-CSE'd with actual integer zeros. 404 Reg = getRegForValue( 405 Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 406 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 407 if (CF->isNullValue()) 408 Reg = fastMaterializeFloatZero(CF); 409 else 410 // Try to emit the constant directly. 411 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 412 413 if (!Reg) { 414 // Try to emit the constant by using an integer constant with a cast. 415 const APFloat &Flt = CF->getValueAPF(); 416 EVT IntVT = TLI.getPointerTy(DL); 417 uint32_t IntBitWidth = IntVT.getSizeInBits(); 418 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); 419 bool isExact; 420 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); 421 if (isExact) { 422 unsigned IntegerReg = 423 getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); 424 if (IntegerReg != 0) 425 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 426 /*Kill=*/false); 427 } 428 } 429 } else if (const auto *Op = dyn_cast<Operator>(V)) { 430 if (!selectOperator(Op, Op->getOpcode())) 431 if (!isa<Instruction>(Op) || 432 !fastSelectInstruction(cast<Instruction>(Op))) 433 return 0; 434 Reg = lookUpRegForValue(Op); 435 } else if (isa<UndefValue>(V)) { 436 Reg = createResultReg(TLI.getRegClassFor(VT)); 437 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 438 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 439 } 440 return Reg; 441 } 442 443 /// Helper for getRegForValue. This function is called when the value isn't 444 /// already available in a register and must be materialized with new 445 /// instructions. 446 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 447 unsigned Reg = 0; 448 // Give the target-specific code a try first. 449 if (isa<Constant>(V)) 450 Reg = fastMaterializeConstant(cast<Constant>(V)); 451 452 // If target-specific code couldn't or didn't want to handle the value, then 453 // give target-independent code a try. 454 if (!Reg) 455 Reg = materializeConstant(V, VT); 456 457 // Don't cache constant materializations in the general ValueMap. 458 // To do so would require tracking what uses they dominate. 459 if (Reg) { 460 LocalValueMap[V] = Reg; 461 LastLocalValue = MRI.getVRegDef(Reg); 462 } 463 return Reg; 464 } 465 466 unsigned FastISel::lookUpRegForValue(const Value *V) { 467 // Look up the value to see if we already have a register for it. We 468 // cache values defined by Instructions across blocks, and other values 469 // only locally. This is because Instructions already have the SSA 470 // def-dominates-use requirement enforced. 471 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 472 if (I != FuncInfo.ValueMap.end()) 473 return I->second; 474 return LocalValueMap[V]; 475 } 476 477 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 478 if (!isa<Instruction>(I)) { 479 LocalValueMap[I] = Reg; 480 return; 481 } 482 483 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 484 if (AssignedReg == 0) 485 // Use the new register. 486 AssignedReg = Reg; 487 else if (Reg != AssignedReg) { 488 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 489 for (unsigned i = 0; i < NumRegs; i++) { 490 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 491 FuncInfo.RegsWithFixups.insert(Reg + i); 492 } 493 494 AssignedReg = Reg; 495 } 496 } 497 498 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 499 unsigned IdxN = getRegForValue(Idx); 500 if (IdxN == 0) 501 // Unhandled operand. Halt "fast" selection and bail. 502 return std::pair<unsigned, bool>(0, false); 503 504 bool IdxNIsKill = hasTrivialKill(Idx); 505 506 // If the index is smaller or larger than intptr_t, truncate or extend it. 507 MVT PtrVT = TLI.getPointerTy(DL); 508 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 509 if (IdxVT.bitsLT(PtrVT)) { 510 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 511 IdxNIsKill); 512 IdxNIsKill = true; 513 } else if (IdxVT.bitsGT(PtrVT)) { 514 IdxN = 515 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 516 IdxNIsKill = true; 517 } 518 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 519 } 520 521 void FastISel::recomputeInsertPt() { 522 if (getLastLocalValue()) { 523 FuncInfo.InsertPt = getLastLocalValue(); 524 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 525 ++FuncInfo.InsertPt; 526 } else 527 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 528 529 // Now skip past any EH_LABELs, which must remain at the beginning. 530 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 531 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 532 ++FuncInfo.InsertPt; 533 } 534 535 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 536 MachineBasicBlock::iterator E) { 537 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 538 "Invalid iterator!"); 539 while (I != E) { 540 MachineInstr *Dead = &*I; 541 ++I; 542 Dead->eraseFromParent(); 543 ++NumFastIselDead; 544 } 545 recomputeInsertPt(); 546 } 547 548 FastISel::SavePoint FastISel::enterLocalValueArea() { 549 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 550 DebugLoc OldDL = DbgLoc; 551 recomputeInsertPt(); 552 DbgLoc = DebugLoc(); 553 SavePoint SP = {OldInsertPt, OldDL}; 554 return SP; 555 } 556 557 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 558 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 559 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 560 561 // Restore the previous insert position. 562 FuncInfo.InsertPt = OldInsertPt.InsertPt; 563 DbgLoc = OldInsertPt.DL; 564 } 565 566 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 567 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 568 if (VT == MVT::Other || !VT.isSimple()) 569 // Unhandled type. Halt "fast" selection and bail. 570 return false; 571 572 // We only handle legal types. For example, on x86-32 the instruction 573 // selector contains all of the 64-bit instructions from x86-64, 574 // under the assumption that i64 won't be used if the target doesn't 575 // support it. 576 if (!TLI.isTypeLegal(VT)) { 577 // MVT::i1 is special. Allow AND, OR, or XOR because they 578 // don't require additional zeroing, which makes them easy. 579 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 580 ISDOpcode == ISD::XOR)) 581 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 582 else 583 return false; 584 } 585 586 // Check if the first operand is a constant, and handle it as "ri". At -O0, 587 // we don't have anything that canonicalizes operand order. 588 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 589 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 590 unsigned Op1 = getRegForValue(I->getOperand(1)); 591 if (!Op1) 592 return false; 593 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 594 595 unsigned ResultReg = 596 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 597 CI->getZExtValue(), VT.getSimpleVT()); 598 if (!ResultReg) 599 return false; 600 601 // We successfully emitted code for the given LLVM Instruction. 602 updateValueMap(I, ResultReg); 603 return true; 604 } 605 606 unsigned Op0 = getRegForValue(I->getOperand(0)); 607 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 608 return false; 609 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 610 611 // Check if the second operand is a constant and handle it appropriately. 612 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 613 uint64_t Imm = CI->getSExtValue(); 614 615 // Transform "sdiv exact X, 8" -> "sra X, 3". 616 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 617 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 618 Imm = Log2_64(Imm); 619 ISDOpcode = ISD::SRA; 620 } 621 622 // Transform "urem x, pow2" -> "and x, pow2-1". 623 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 624 isPowerOf2_64(Imm)) { 625 --Imm; 626 ISDOpcode = ISD::AND; 627 } 628 629 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 630 Op0IsKill, Imm, VT.getSimpleVT()); 631 if (!ResultReg) 632 return false; 633 634 // We successfully emitted code for the given LLVM Instruction. 635 updateValueMap(I, ResultReg); 636 return true; 637 } 638 639 unsigned Op1 = getRegForValue(I->getOperand(1)); 640 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 641 return false; 642 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 643 644 // Now we have both operands in registers. Emit the instruction. 645 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 646 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 647 if (!ResultReg) 648 // Target-specific code wasn't able to find a machine opcode for 649 // the given ISD opcode and type. Halt "fast" selection and bail. 650 return false; 651 652 // We successfully emitted code for the given LLVM Instruction. 653 updateValueMap(I, ResultReg); 654 return true; 655 } 656 657 bool FastISel::selectGetElementPtr(const User *I) { 658 unsigned N = getRegForValue(I->getOperand(0)); 659 if (!N) // Unhandled operand. Halt "fast" selection and bail. 660 return false; 661 bool NIsKill = hasTrivialKill(I->getOperand(0)); 662 663 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 664 // into a single N = N + TotalOffset. 665 uint64_t TotalOffs = 0; 666 // FIXME: What's a good SWAG number for MaxOffs? 667 uint64_t MaxOffs = 2048; 668 MVT VT = TLI.getPointerTy(DL); 669 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 670 GTI != E; ++GTI) { 671 const Value *Idx = GTI.getOperand(); 672 if (StructType *StTy = GTI.getStructTypeOrNull()) { 673 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 674 if (Field) { 675 // N = N + Offset 676 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 677 if (TotalOffs >= MaxOffs) { 678 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 679 if (!N) // Unhandled operand. Halt "fast" selection and bail. 680 return false; 681 NIsKill = true; 682 TotalOffs = 0; 683 } 684 } 685 } else { 686 Type *Ty = GTI.getIndexedType(); 687 688 // If this is a constant subscript, handle it quickly. 689 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 690 if (CI->isZero()) 691 continue; 692 // N = N + Offset 693 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 694 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 695 if (TotalOffs >= MaxOffs) { 696 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 697 if (!N) // Unhandled operand. Halt "fast" selection and bail. 698 return false; 699 NIsKill = true; 700 TotalOffs = 0; 701 } 702 continue; 703 } 704 if (TotalOffs) { 705 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 706 if (!N) // Unhandled operand. Halt "fast" selection and bail. 707 return false; 708 NIsKill = true; 709 TotalOffs = 0; 710 } 711 712 // N = N + Idx * ElementSize; 713 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 714 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 715 unsigned IdxN = Pair.first; 716 bool IdxNIsKill = Pair.second; 717 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 718 return false; 719 720 if (ElementSize != 1) { 721 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 722 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 723 return false; 724 IdxNIsKill = true; 725 } 726 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 727 if (!N) // Unhandled operand. Halt "fast" selection and bail. 728 return false; 729 } 730 } 731 if (TotalOffs) { 732 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 733 if (!N) // Unhandled operand. Halt "fast" selection and bail. 734 return false; 735 } 736 737 // We successfully emitted code for the given LLVM Instruction. 738 updateValueMap(I, N); 739 return true; 740 } 741 742 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 743 const CallInst *CI, unsigned StartIdx) { 744 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 745 Value *Val = CI->getArgOperand(i); 746 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 747 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 748 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 749 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 750 } else if (isa<ConstantPointerNull>(Val)) { 751 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 752 Ops.push_back(MachineOperand::CreateImm(0)); 753 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 754 // Values coming from a stack location also require a special encoding, 755 // but that is added later on by the target specific frame index 756 // elimination implementation. 757 auto SI = FuncInfo.StaticAllocaMap.find(AI); 758 if (SI != FuncInfo.StaticAllocaMap.end()) 759 Ops.push_back(MachineOperand::CreateFI(SI->second)); 760 else 761 return false; 762 } else { 763 unsigned Reg = getRegForValue(Val); 764 if (!Reg) 765 return false; 766 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 767 } 768 } 769 return true; 770 } 771 772 bool FastISel::selectStackmap(const CallInst *I) { 773 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 774 // [live variables...]) 775 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 776 "Stackmap cannot return a value."); 777 778 // The stackmap intrinsic only records the live variables (the arguments 779 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 780 // intrinsic, this won't be lowered to a function call. This means we don't 781 // have to worry about calling conventions and target-specific lowering code. 782 // Instead we perform the call lowering right here. 783 // 784 // CALLSEQ_START(0, 0...) 785 // STACKMAP(id, nbytes, ...) 786 // CALLSEQ_END(0, 0) 787 // 788 SmallVector<MachineOperand, 32> Ops; 789 790 // Add the <id> and <numBytes> constants. 791 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 792 "Expected a constant integer."); 793 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 794 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 795 796 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 797 "Expected a constant integer."); 798 const auto *NumBytes = 799 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 800 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 801 802 // Push live variables for the stack map (skipping the first two arguments 803 // <id> and <numBytes>). 804 if (!addStackMapLiveVars(Ops, I, 2)) 805 return false; 806 807 // We are not adding any register mask info here, because the stackmap doesn't 808 // clobber anything. 809 810 // Add scratch registers as implicit def and early clobber. 811 CallingConv::ID CC = I->getCallingConv(); 812 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 813 for (unsigned i = 0; ScratchRegs[i]; ++i) 814 Ops.push_back(MachineOperand::CreateReg( 815 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 816 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 817 818 // Issue CALLSEQ_START 819 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 820 auto Builder = 821 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 822 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 823 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 824 Builder.addImm(0); 825 826 // Issue STACKMAP. 827 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 828 TII.get(TargetOpcode::STACKMAP)); 829 for (auto const &MO : Ops) 830 MIB.add(MO); 831 832 // Issue CALLSEQ_END 833 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 834 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 835 .addImm(0) 836 .addImm(0); 837 838 // Inform the Frame Information that we have a stackmap in this function. 839 FuncInfo.MF->getFrameInfo().setHasStackMap(); 840 841 return true; 842 } 843 844 /// \brief Lower an argument list according to the target calling convention. 845 /// 846 /// This is a helper for lowering intrinsics that follow a target calling 847 /// convention or require stack pointer adjustment. Only a subset of the 848 /// intrinsic's operands need to participate in the calling convention. 849 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 850 unsigned NumArgs, const Value *Callee, 851 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 852 ArgListTy Args; 853 Args.reserve(NumArgs); 854 855 // Populate the argument list. 856 ImmutableCallSite CS(CI); 857 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { 858 Value *V = CI->getOperand(ArgI); 859 860 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 861 862 ArgListEntry Entry; 863 Entry.Val = V; 864 Entry.Ty = V->getType(); 865 Entry.setAttributes(&CS, ArgI); 866 Args.push_back(Entry); 867 } 868 869 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 870 : CI->getType(); 871 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 872 873 return lowerCallTo(CLI); 874 } 875 876 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 877 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 878 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 879 SmallString<32> MangledName; 880 Mangler::getNameWithPrefix(MangledName, Target, DL); 881 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 882 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 883 } 884 885 bool FastISel::selectPatchpoint(const CallInst *I) { 886 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 887 // i32 <numBytes>, 888 // i8* <target>, 889 // i32 <numArgs>, 890 // [Args...], 891 // [live variables...]) 892 CallingConv::ID CC = I->getCallingConv(); 893 bool IsAnyRegCC = CC == CallingConv::AnyReg; 894 bool HasDef = !I->getType()->isVoidTy(); 895 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 896 897 // Get the real number of arguments participating in the call <numArgs> 898 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 899 "Expected a constant integer."); 900 const auto *NumArgsVal = 901 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 902 unsigned NumArgs = NumArgsVal->getZExtValue(); 903 904 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 905 // This includes all meta-operands up to but not including CC. 906 unsigned NumMetaOpers = PatchPointOpers::CCPos; 907 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 908 "Not enough arguments provided to the patchpoint intrinsic"); 909 910 // For AnyRegCC the arguments are lowered later on manually. 911 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 912 CallLoweringInfo CLI; 913 CLI.setIsPatchPoint(); 914 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 915 return false; 916 917 assert(CLI.Call && "No call instruction specified."); 918 919 SmallVector<MachineOperand, 32> Ops; 920 921 // Add an explicit result reg if we use the anyreg calling convention. 922 if (IsAnyRegCC && HasDef) { 923 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 924 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 925 CLI.NumResultRegs = 1; 926 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 927 } 928 929 // Add the <id> and <numBytes> constants. 930 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 931 "Expected a constant integer."); 932 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 933 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 934 935 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 936 "Expected a constant integer."); 937 const auto *NumBytes = 938 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 939 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 940 941 // Add the call target. 942 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 943 uint64_t CalleeConstAddr = 944 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 945 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 946 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 947 if (C->getOpcode() == Instruction::IntToPtr) { 948 uint64_t CalleeConstAddr = 949 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 950 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 951 } else 952 llvm_unreachable("Unsupported ConstantExpr."); 953 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 954 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 955 } else if (isa<ConstantPointerNull>(Callee)) 956 Ops.push_back(MachineOperand::CreateImm(0)); 957 else 958 llvm_unreachable("Unsupported callee address."); 959 960 // Adjust <numArgs> to account for any arguments that have been passed on 961 // the stack instead. 962 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 963 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 964 965 // Add the calling convention 966 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 967 968 // Add the arguments we omitted previously. The register allocator should 969 // place these in any free register. 970 if (IsAnyRegCC) { 971 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 972 unsigned Reg = getRegForValue(I->getArgOperand(i)); 973 if (!Reg) 974 return false; 975 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 976 } 977 } 978 979 // Push the arguments from the call instruction. 980 for (auto Reg : CLI.OutRegs) 981 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 982 983 // Push live variables for the stack map. 984 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 985 return false; 986 987 // Push the register mask info. 988 Ops.push_back(MachineOperand::CreateRegMask( 989 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 990 991 // Add scratch registers as implicit def and early clobber. 992 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 993 for (unsigned i = 0; ScratchRegs[i]; ++i) 994 Ops.push_back(MachineOperand::CreateReg( 995 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 996 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 997 998 // Add implicit defs (return values). 999 for (auto Reg : CLI.InRegs) 1000 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 1001 /*IsImpl=*/true)); 1002 1003 // Insert the patchpoint instruction before the call generated by the target. 1004 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 1005 TII.get(TargetOpcode::PATCHPOINT)); 1006 1007 for (auto &MO : Ops) 1008 MIB.add(MO); 1009 1010 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1011 1012 // Delete the original call instruction. 1013 CLI.Call->eraseFromParent(); 1014 1015 // Inform the Frame Information that we have a patchpoint in this function. 1016 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 1017 1018 if (CLI.NumResultRegs) 1019 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 1020 return true; 1021 } 1022 1023 bool FastISel::selectXRayCustomEvent(const CallInst *I) { 1024 const auto &Triple = TM.getTargetTriple(); 1025 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 1026 return true; // don't do anything to this instruction. 1027 SmallVector<MachineOperand, 8> Ops; 1028 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 1029 /*IsDef=*/false)); 1030 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 1031 /*IsDef=*/false)); 1032 MachineInstrBuilder MIB = 1033 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1034 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); 1035 for (auto &MO : Ops) 1036 MIB.add(MO); 1037 1038 // Insert the Patchable Event Call instruction, that gets lowered properly. 1039 return true; 1040 } 1041 1042 1043 /// Returns an AttributeList representing the attributes applied to the return 1044 /// value of the given call. 1045 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 1046 SmallVector<Attribute::AttrKind, 2> Attrs; 1047 if (CLI.RetSExt) 1048 Attrs.push_back(Attribute::SExt); 1049 if (CLI.RetZExt) 1050 Attrs.push_back(Attribute::ZExt); 1051 if (CLI.IsInReg) 1052 Attrs.push_back(Attribute::InReg); 1053 1054 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 1055 Attrs); 1056 } 1057 1058 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 1059 unsigned NumArgs) { 1060 MCContext &Ctx = MF->getContext(); 1061 SmallString<32> MangledName; 1062 Mangler::getNameWithPrefix(MangledName, SymName, DL); 1063 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 1064 return lowerCallTo(CI, Sym, NumArgs); 1065 } 1066 1067 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 1068 unsigned NumArgs) { 1069 ImmutableCallSite CS(CI); 1070 1071 FunctionType *FTy = CS.getFunctionType(); 1072 Type *RetTy = CS.getType(); 1073 1074 ArgListTy Args; 1075 Args.reserve(NumArgs); 1076 1077 // Populate the argument list. 1078 // Attributes for args start at offset 1, after the return attribute. 1079 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 1080 Value *V = CI->getOperand(ArgI); 1081 1082 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 1083 1084 ArgListEntry Entry; 1085 Entry.Val = V; 1086 Entry.Ty = V->getType(); 1087 Entry.setAttributes(&CS, ArgI); 1088 Args.push_back(Entry); 1089 } 1090 TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args); 1091 1092 CallLoweringInfo CLI; 1093 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs); 1094 1095 return lowerCallTo(CLI); 1096 } 1097 1098 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 1099 // Handle the incoming return values from the call. 1100 CLI.clearIns(); 1101 SmallVector<EVT, 4> RetTys; 1102 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 1103 1104 SmallVector<ISD::OutputArg, 4> Outs; 1105 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 1106 1107 bool CanLowerReturn = TLI.CanLowerReturn( 1108 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 1109 1110 // FIXME: sret demotion isn't supported yet - bail out. 1111 if (!CanLowerReturn) 1112 return false; 1113 1114 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 1115 EVT VT = RetTys[I]; 1116 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 1117 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 1118 for (unsigned i = 0; i != NumRegs; ++i) { 1119 ISD::InputArg MyFlags; 1120 MyFlags.VT = RegisterVT; 1121 MyFlags.ArgVT = VT; 1122 MyFlags.Used = CLI.IsReturnValueUsed; 1123 if (CLI.RetSExt) 1124 MyFlags.Flags.setSExt(); 1125 if (CLI.RetZExt) 1126 MyFlags.Flags.setZExt(); 1127 if (CLI.IsInReg) 1128 MyFlags.Flags.setInReg(); 1129 CLI.Ins.push_back(MyFlags); 1130 } 1131 } 1132 1133 // Handle all of the outgoing arguments. 1134 CLI.clearOuts(); 1135 for (auto &Arg : CLI.getArgs()) { 1136 Type *FinalType = Arg.Ty; 1137 if (Arg.IsByVal) 1138 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 1139 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1140 FinalType, CLI.CallConv, CLI.IsVarArg); 1141 1142 ISD::ArgFlagsTy Flags; 1143 if (Arg.IsZExt) 1144 Flags.setZExt(); 1145 if (Arg.IsSExt) 1146 Flags.setSExt(); 1147 if (Arg.IsInReg) 1148 Flags.setInReg(); 1149 if (Arg.IsSRet) 1150 Flags.setSRet(); 1151 if (Arg.IsSwiftSelf) 1152 Flags.setSwiftSelf(); 1153 if (Arg.IsSwiftError) 1154 Flags.setSwiftError(); 1155 if (Arg.IsByVal) 1156 Flags.setByVal(); 1157 if (Arg.IsInAlloca) { 1158 Flags.setInAlloca(); 1159 // Set the byval flag for CCAssignFn callbacks that don't know about 1160 // inalloca. This way we can know how many bytes we should've allocated 1161 // and how many bytes a callee cleanup function will pop. If we port 1162 // inalloca to more targets, we'll have to add custom inalloca handling in 1163 // the various CC lowering callbacks. 1164 Flags.setByVal(); 1165 } 1166 if (Arg.IsByVal || Arg.IsInAlloca) { 1167 PointerType *Ty = cast<PointerType>(Arg.Ty); 1168 Type *ElementTy = Ty->getElementType(); 1169 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 1170 // For ByVal, alignment should come from FE. BE will guess if this info is 1171 // not there, but there are cases it cannot get right. 1172 unsigned FrameAlign = Arg.Alignment; 1173 if (!FrameAlign) 1174 FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL); 1175 Flags.setByValSize(FrameSize); 1176 Flags.setByValAlign(FrameAlign); 1177 } 1178 if (Arg.IsNest) 1179 Flags.setNest(); 1180 if (NeedsRegBlock) 1181 Flags.setInConsecutiveRegs(); 1182 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 1183 Flags.setOrigAlign(OriginalAlignment); 1184 1185 CLI.OutVals.push_back(Arg.Val); 1186 CLI.OutFlags.push_back(Flags); 1187 } 1188 1189 if (!fastLowerCall(CLI)) 1190 return false; 1191 1192 // Set all unused physreg defs as dead. 1193 assert(CLI.Call && "No call instruction specified."); 1194 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1195 1196 if (CLI.NumResultRegs && CLI.CS) 1197 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 1198 1199 return true; 1200 } 1201 1202 bool FastISel::lowerCall(const CallInst *CI) { 1203 ImmutableCallSite CS(CI); 1204 1205 FunctionType *FuncTy = CS.getFunctionType(); 1206 Type *RetTy = CS.getType(); 1207 1208 ArgListTy Args; 1209 ArgListEntry Entry; 1210 Args.reserve(CS.arg_size()); 1211 1212 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1213 i != e; ++i) { 1214 Value *V = *i; 1215 1216 // Skip empty types 1217 if (V->getType()->isEmptyTy()) 1218 continue; 1219 1220 Entry.Val = V; 1221 Entry.Ty = V->getType(); 1222 1223 // Skip the first return-type Attribute to get to params. 1224 Entry.setAttributes(&CS, i - CS.arg_begin()); 1225 Args.push_back(Entry); 1226 } 1227 1228 // Check if target-independent constraints permit a tail call here. 1229 // Target-dependent constraints are checked within fastLowerCall. 1230 bool IsTailCall = CI->isTailCall(); 1231 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1232 IsTailCall = false; 1233 1234 CallLoweringInfo CLI; 1235 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1236 .setTailCall(IsTailCall); 1237 1238 return lowerCallTo(CLI); 1239 } 1240 1241 bool FastISel::selectCall(const User *I) { 1242 const CallInst *Call = cast<CallInst>(I); 1243 1244 // Handle simple inline asms. 1245 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1246 // If the inline asm has side effects, then make sure that no local value 1247 // lives across by flushing the local value map. 1248 if (IA->hasSideEffects()) 1249 flushLocalValueMap(); 1250 1251 // Don't attempt to handle constraints. 1252 if (!IA->getConstraintString().empty()) 1253 return false; 1254 1255 unsigned ExtraInfo = 0; 1256 if (IA->hasSideEffects()) 1257 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1258 if (IA->isAlignStack()) 1259 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1260 1261 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1262 TII.get(TargetOpcode::INLINEASM)) 1263 .addExternalSymbol(IA->getAsmString().c_str()) 1264 .addImm(ExtraInfo); 1265 return true; 1266 } 1267 1268 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1269 computeUsesVAFloatArgument(*Call, MMI); 1270 1271 // Handle intrinsic function calls. 1272 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1273 return selectIntrinsicCall(II); 1274 1275 // Usually, it does not make sense to initialize a value, 1276 // make an unrelated function call and use the value, because 1277 // it tends to be spilled on the stack. So, we move the pointer 1278 // to the last local value to the beginning of the block, so that 1279 // all the values which have already been materialized, 1280 // appear after the call. It also makes sense to skip intrinsics 1281 // since they tend to be inlined. 1282 flushLocalValueMap(); 1283 1284 return lowerCall(Call); 1285 } 1286 1287 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1288 switch (II->getIntrinsicID()) { 1289 default: 1290 break; 1291 // At -O0 we don't care about the lifetime intrinsics. 1292 case Intrinsic::lifetime_start: 1293 case Intrinsic::lifetime_end: 1294 // The donothing intrinsic does, well, nothing. 1295 case Intrinsic::donothing: 1296 // Neither does the sideeffect intrinsic. 1297 case Intrinsic::sideeffect: 1298 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1299 case Intrinsic::assume: 1300 return true; 1301 case Intrinsic::dbg_declare: { 1302 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1303 assert(DI->getVariable() && "Missing variable"); 1304 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1305 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1306 return true; 1307 } 1308 1309 const Value *Address = DI->getAddress(); 1310 if (!Address || isa<UndefValue>(Address)) { 1311 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1312 return true; 1313 } 1314 1315 // Byval arguments with frame indices were already handled after argument 1316 // lowering and before isel. 1317 const auto *Arg = 1318 dyn_cast<Argument>(Address->stripInBoundsConstantOffsets()); 1319 if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX) 1320 return true; 1321 1322 Optional<MachineOperand> Op; 1323 if (unsigned Reg = lookUpRegForValue(Address)) 1324 Op = MachineOperand::CreateReg(Reg, false); 1325 1326 // If we have a VLA that has a "use" in a metadata node that's then used 1327 // here but it has no other uses, then we have a problem. E.g., 1328 // 1329 // int foo (const int *x) { 1330 // char a[*x]; 1331 // return 0; 1332 // } 1333 // 1334 // If we assign 'a' a vreg and fast isel later on has to use the selection 1335 // DAG isel, it will want to copy the value to the vreg. However, there are 1336 // no uses, which goes counter to what selection DAG isel expects. 1337 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1338 (!isa<AllocaInst>(Address) || 1339 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1340 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1341 false); 1342 1343 if (Op) { 1344 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1345 "Expected inlined-at fields to agree"); 1346 if (Op->isReg()) { 1347 Op->setIsDebug(true); 1348 // A dbg.declare describes the address of a source variable, so lower it 1349 // into an indirect DBG_VALUE. 1350 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1351 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, 1352 Op->getReg(), DI->getVariable(), DI->getExpression()); 1353 } else 1354 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1355 TII.get(TargetOpcode::DBG_VALUE)) 1356 .add(*Op) 1357 .addImm(0) 1358 .addMetadata(DI->getVariable()) 1359 .addMetadata(DI->getExpression()); 1360 } else { 1361 // We can't yet handle anything else here because it would require 1362 // generating code, thus altering codegen because of debug info. 1363 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1364 } 1365 return true; 1366 } 1367 case Intrinsic::dbg_value: { 1368 // This form of DBG_VALUE is target-independent. 1369 const DbgValueInst *DI = cast<DbgValueInst>(II); 1370 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1371 const Value *V = DI->getValue(); 1372 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1373 "Expected inlined-at fields to agree"); 1374 if (!V) { 1375 // Currently the optimizer can produce this; insert an undef to 1376 // help debugging. Probably the optimizer should not do this. 1377 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U, 1378 DI->getVariable(), DI->getExpression()); 1379 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1380 if (CI->getBitWidth() > 64) 1381 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1382 .addCImm(CI) 1383 .addImm(0U) 1384 .addMetadata(DI->getVariable()) 1385 .addMetadata(DI->getExpression()); 1386 else 1387 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1388 .addImm(CI->getZExtValue()) 1389 .addImm(0U) 1390 .addMetadata(DI->getVariable()) 1391 .addMetadata(DI->getExpression()); 1392 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1393 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1394 .addFPImm(CF) 1395 .addImm(0U) 1396 .addMetadata(DI->getVariable()) 1397 .addMetadata(DI->getExpression()); 1398 } else if (unsigned Reg = lookUpRegForValue(V)) { 1399 // FIXME: This does not handle register-indirect values at offset 0. 1400 bool IsIndirect = false; 1401 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1402 DI->getVariable(), DI->getExpression()); 1403 } else { 1404 // We can't yet handle anything else here because it would require 1405 // generating code, thus altering codegen because of debug info. 1406 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1407 } 1408 return true; 1409 } 1410 case Intrinsic::objectsize: { 1411 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1412 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1413 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1414 unsigned ResultReg = getRegForValue(ResCI); 1415 if (!ResultReg) 1416 return false; 1417 updateValueMap(II, ResultReg); 1418 return true; 1419 } 1420 case Intrinsic::invariant_group_barrier: 1421 case Intrinsic::expect: { 1422 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1423 if (!ResultReg) 1424 return false; 1425 updateValueMap(II, ResultReg); 1426 return true; 1427 } 1428 case Intrinsic::experimental_stackmap: 1429 return selectStackmap(II); 1430 case Intrinsic::experimental_patchpoint_void: 1431 case Intrinsic::experimental_patchpoint_i64: 1432 return selectPatchpoint(II); 1433 1434 case Intrinsic::xray_customevent: 1435 return selectXRayCustomEvent(II); 1436 } 1437 1438 return fastLowerIntrinsicCall(II); 1439 } 1440 1441 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1442 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1443 EVT DstVT = TLI.getValueType(DL, I->getType()); 1444 1445 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1446 !DstVT.isSimple()) 1447 // Unhandled type. Halt "fast" selection and bail. 1448 return false; 1449 1450 // Check if the destination type is legal. 1451 if (!TLI.isTypeLegal(DstVT)) 1452 return false; 1453 1454 // Check if the source operand is legal. 1455 if (!TLI.isTypeLegal(SrcVT)) 1456 return false; 1457 1458 unsigned InputReg = getRegForValue(I->getOperand(0)); 1459 if (!InputReg) 1460 // Unhandled operand. Halt "fast" selection and bail. 1461 return false; 1462 1463 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1464 1465 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1466 Opcode, InputReg, InputRegIsKill); 1467 if (!ResultReg) 1468 return false; 1469 1470 updateValueMap(I, ResultReg); 1471 return true; 1472 } 1473 1474 bool FastISel::selectBitCast(const User *I) { 1475 // If the bitcast doesn't change the type, just use the operand value. 1476 if (I->getType() == I->getOperand(0)->getType()) { 1477 unsigned Reg = getRegForValue(I->getOperand(0)); 1478 if (!Reg) 1479 return false; 1480 updateValueMap(I, Reg); 1481 return true; 1482 } 1483 1484 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1485 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1486 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1487 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1488 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1489 // Unhandled type. Halt "fast" selection and bail. 1490 return false; 1491 1492 MVT SrcVT = SrcEVT.getSimpleVT(); 1493 MVT DstVT = DstEVT.getSimpleVT(); 1494 unsigned Op0 = getRegForValue(I->getOperand(0)); 1495 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1496 return false; 1497 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1498 1499 // First, try to perform the bitcast by inserting a reg-reg copy. 1500 unsigned ResultReg = 0; 1501 if (SrcVT == DstVT) { 1502 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1503 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1504 // Don't attempt a cross-class copy. It will likely fail. 1505 if (SrcClass == DstClass) { 1506 ResultReg = createResultReg(DstClass); 1507 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1508 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1509 } 1510 } 1511 1512 // If the reg-reg copy failed, select a BITCAST opcode. 1513 if (!ResultReg) 1514 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1515 1516 if (!ResultReg) 1517 return false; 1518 1519 updateValueMap(I, ResultReg); 1520 return true; 1521 } 1522 1523 // Remove local value instructions starting from the instruction after 1524 // SavedLastLocalValue to the current function insert point. 1525 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1526 { 1527 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1528 if (CurLastLocalValue != SavedLastLocalValue) { 1529 // Find the first local value instruction to be deleted. 1530 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1531 // Otherwise it's the first instruction in the block. 1532 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1533 if (SavedLastLocalValue) 1534 ++FirstDeadInst; 1535 else 1536 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1537 setLastLocalValue(SavedLastLocalValue); 1538 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1539 } 1540 } 1541 1542 bool FastISel::selectInstruction(const Instruction *I) { 1543 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1544 // Just before the terminator instruction, insert instructions to 1545 // feed PHI nodes in successor blocks. 1546 if (isa<TerminatorInst>(I)) { 1547 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1548 // PHI node handling may have generated local value instructions, 1549 // even though it failed to handle all PHI nodes. 1550 // We remove these instructions because SelectionDAGISel will generate 1551 // them again. 1552 removeDeadLocalValueCode(SavedLastLocalValue); 1553 return false; 1554 } 1555 } 1556 1557 // FastISel does not handle any operand bundles except OB_funclet. 1558 if (ImmutableCallSite CS = ImmutableCallSite(I)) 1559 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) 1560 if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1561 return false; 1562 1563 DbgLoc = I->getDebugLoc(); 1564 1565 SavedInsertPt = FuncInfo.InsertPt; 1566 1567 if (const auto *Call = dyn_cast<CallInst>(I)) { 1568 const Function *F = Call->getCalledFunction(); 1569 LibFunc Func; 1570 1571 // As a special case, don't handle calls to builtin library functions that 1572 // may be translated directly to target instructions. 1573 if (F && !F->hasLocalLinkage() && F->hasName() && 1574 LibInfo->getLibFunc(F->getName(), Func) && 1575 LibInfo->hasOptimizedCodeGen(Func)) 1576 return false; 1577 1578 // Don't handle Intrinsic::trap if a trap function is specified. 1579 if (F && F->getIntrinsicID() == Intrinsic::trap && 1580 Call->hasFnAttr("trap-func-name")) 1581 return false; 1582 } 1583 1584 // First, try doing target-independent selection. 1585 if (!SkipTargetIndependentISel) { 1586 if (selectOperator(I, I->getOpcode())) { 1587 ++NumFastIselSuccessIndependent; 1588 DbgLoc = DebugLoc(); 1589 return true; 1590 } 1591 // Remove dead code. 1592 recomputeInsertPt(); 1593 if (SavedInsertPt != FuncInfo.InsertPt) 1594 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1595 SavedInsertPt = FuncInfo.InsertPt; 1596 } 1597 // Next, try calling the target to attempt to handle the instruction. 1598 if (fastSelectInstruction(I)) { 1599 ++NumFastIselSuccessTarget; 1600 DbgLoc = DebugLoc(); 1601 return true; 1602 } 1603 // Remove dead code. 1604 recomputeInsertPt(); 1605 if (SavedInsertPt != FuncInfo.InsertPt) 1606 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1607 1608 DbgLoc = DebugLoc(); 1609 // Undo phi node updates, because they will be added again by SelectionDAG. 1610 if (isa<TerminatorInst>(I)) { 1611 // PHI node handling may have generated local value instructions. 1612 // We remove them because SelectionDAGISel will generate them again. 1613 removeDeadLocalValueCode(SavedLastLocalValue); 1614 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1615 } 1616 return false; 1617 } 1618 1619 /// Emit an unconditional branch to the given block, unless it is the immediate 1620 /// (fall-through) successor, and update the CFG. 1621 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1622 const DebugLoc &DbgLoc) { 1623 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1624 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1625 // For more accurate line information if this is the only instruction 1626 // in the block then emit it, otherwise we have the unconditional 1627 // fall-through case, which needs no instructions. 1628 } else { 1629 // The unconditional branch case. 1630 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1631 SmallVector<MachineOperand, 0>(), DbgLoc); 1632 } 1633 if (FuncInfo.BPI) { 1634 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1635 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1636 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1637 } else 1638 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1639 } 1640 1641 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1642 MachineBasicBlock *TrueMBB, 1643 MachineBasicBlock *FalseMBB) { 1644 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1645 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1646 // successor/predecessor lists. 1647 if (TrueMBB != FalseMBB) { 1648 if (FuncInfo.BPI) { 1649 auto BranchProbability = 1650 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1651 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1652 } else 1653 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1654 } 1655 1656 fastEmitBranch(FalseMBB, DbgLoc); 1657 } 1658 1659 /// Emit an FNeg operation. 1660 bool FastISel::selectFNeg(const User *I) { 1661 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1662 if (!OpReg) 1663 return false; 1664 bool OpRegIsKill = hasTrivialKill(I); 1665 1666 // If the target has ISD::FNEG, use it. 1667 EVT VT = TLI.getValueType(DL, I->getType()); 1668 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1669 OpReg, OpRegIsKill); 1670 if (ResultReg) { 1671 updateValueMap(I, ResultReg); 1672 return true; 1673 } 1674 1675 // Bitcast the value to integer, twiddle the sign bit with xor, 1676 // and then bitcast it back to floating-point. 1677 if (VT.getSizeInBits() > 64) 1678 return false; 1679 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1680 if (!TLI.isTypeLegal(IntVT)) 1681 return false; 1682 1683 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1684 ISD::BITCAST, OpReg, OpRegIsKill); 1685 if (!IntReg) 1686 return false; 1687 1688 unsigned IntResultReg = fastEmit_ri_( 1689 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1690 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1691 if (!IntResultReg) 1692 return false; 1693 1694 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1695 IntResultReg, /*IsKill=*/true); 1696 if (!ResultReg) 1697 return false; 1698 1699 updateValueMap(I, ResultReg); 1700 return true; 1701 } 1702 1703 bool FastISel::selectExtractValue(const User *U) { 1704 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1705 if (!EVI) 1706 return false; 1707 1708 // Make sure we only try to handle extracts with a legal result. But also 1709 // allow i1 because it's easy. 1710 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1711 if (!RealVT.isSimple()) 1712 return false; 1713 MVT VT = RealVT.getSimpleVT(); 1714 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1715 return false; 1716 1717 const Value *Op0 = EVI->getOperand(0); 1718 Type *AggTy = Op0->getType(); 1719 1720 // Get the base result register. 1721 unsigned ResultReg; 1722 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1723 if (I != FuncInfo.ValueMap.end()) 1724 ResultReg = I->second; 1725 else if (isa<Instruction>(Op0)) 1726 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1727 else 1728 return false; // fast-isel can't handle aggregate constants at the moment 1729 1730 // Get the actual result register, which is an offset from the base register. 1731 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1732 1733 SmallVector<EVT, 4> AggValueVTs; 1734 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1735 1736 for (unsigned i = 0; i < VTIndex; i++) 1737 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1738 1739 updateValueMap(EVI, ResultReg); 1740 return true; 1741 } 1742 1743 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1744 switch (Opcode) { 1745 case Instruction::Add: 1746 return selectBinaryOp(I, ISD::ADD); 1747 case Instruction::FAdd: 1748 return selectBinaryOp(I, ISD::FADD); 1749 case Instruction::Sub: 1750 return selectBinaryOp(I, ISD::SUB); 1751 case Instruction::FSub: 1752 // FNeg is currently represented in LLVM IR as a special case of FSub. 1753 if (BinaryOperator::isFNeg(I)) 1754 return selectFNeg(I); 1755 return selectBinaryOp(I, ISD::FSUB); 1756 case Instruction::Mul: 1757 return selectBinaryOp(I, ISD::MUL); 1758 case Instruction::FMul: 1759 return selectBinaryOp(I, ISD::FMUL); 1760 case Instruction::SDiv: 1761 return selectBinaryOp(I, ISD::SDIV); 1762 case Instruction::UDiv: 1763 return selectBinaryOp(I, ISD::UDIV); 1764 case Instruction::FDiv: 1765 return selectBinaryOp(I, ISD::FDIV); 1766 case Instruction::SRem: 1767 return selectBinaryOp(I, ISD::SREM); 1768 case Instruction::URem: 1769 return selectBinaryOp(I, ISD::UREM); 1770 case Instruction::FRem: 1771 return selectBinaryOp(I, ISD::FREM); 1772 case Instruction::Shl: 1773 return selectBinaryOp(I, ISD::SHL); 1774 case Instruction::LShr: 1775 return selectBinaryOp(I, ISD::SRL); 1776 case Instruction::AShr: 1777 return selectBinaryOp(I, ISD::SRA); 1778 case Instruction::And: 1779 return selectBinaryOp(I, ISD::AND); 1780 case Instruction::Or: 1781 return selectBinaryOp(I, ISD::OR); 1782 case Instruction::Xor: 1783 return selectBinaryOp(I, ISD::XOR); 1784 1785 case Instruction::GetElementPtr: 1786 return selectGetElementPtr(I); 1787 1788 case Instruction::Br: { 1789 const BranchInst *BI = cast<BranchInst>(I); 1790 1791 if (BI->isUnconditional()) { 1792 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1793 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1794 fastEmitBranch(MSucc, BI->getDebugLoc()); 1795 return true; 1796 } 1797 1798 // Conditional branches are not handed yet. 1799 // Halt "fast" selection and bail. 1800 return false; 1801 } 1802 1803 case Instruction::Unreachable: 1804 if (TM.Options.TrapUnreachable) 1805 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1806 else 1807 return true; 1808 1809 case Instruction::Alloca: 1810 // FunctionLowering has the static-sized case covered. 1811 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1812 return true; 1813 1814 // Dynamic-sized alloca is not handled yet. 1815 return false; 1816 1817 case Instruction::Call: 1818 return selectCall(I); 1819 1820 case Instruction::BitCast: 1821 return selectBitCast(I); 1822 1823 case Instruction::FPToSI: 1824 return selectCast(I, ISD::FP_TO_SINT); 1825 case Instruction::ZExt: 1826 return selectCast(I, ISD::ZERO_EXTEND); 1827 case Instruction::SExt: 1828 return selectCast(I, ISD::SIGN_EXTEND); 1829 case Instruction::Trunc: 1830 return selectCast(I, ISD::TRUNCATE); 1831 case Instruction::SIToFP: 1832 return selectCast(I, ISD::SINT_TO_FP); 1833 1834 case Instruction::IntToPtr: // Deliberate fall-through. 1835 case Instruction::PtrToInt: { 1836 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1837 EVT DstVT = TLI.getValueType(DL, I->getType()); 1838 if (DstVT.bitsGT(SrcVT)) 1839 return selectCast(I, ISD::ZERO_EXTEND); 1840 if (DstVT.bitsLT(SrcVT)) 1841 return selectCast(I, ISD::TRUNCATE); 1842 unsigned Reg = getRegForValue(I->getOperand(0)); 1843 if (!Reg) 1844 return false; 1845 updateValueMap(I, Reg); 1846 return true; 1847 } 1848 1849 case Instruction::ExtractValue: 1850 return selectExtractValue(I); 1851 1852 case Instruction::PHI: 1853 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1854 1855 default: 1856 // Unhandled instruction. Halt "fast" selection and bail. 1857 return false; 1858 } 1859 } 1860 1861 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1862 const TargetLibraryInfo *LibInfo, 1863 bool SkipTargetIndependentISel) 1864 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1865 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1866 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1867 TII(*MF->getSubtarget().getInstrInfo()), 1868 TLI(*MF->getSubtarget().getTargetLowering()), 1869 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1870 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1871 1872 FastISel::~FastISel() = default; 1873 1874 bool FastISel::fastLowerArguments() { return false; } 1875 1876 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1877 1878 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1879 return false; 1880 } 1881 1882 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1883 1884 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1885 bool /*Op0IsKill*/) { 1886 return 0; 1887 } 1888 1889 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1890 bool /*Op0IsKill*/, unsigned /*Op1*/, 1891 bool /*Op1IsKill*/) { 1892 return 0; 1893 } 1894 1895 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1896 return 0; 1897 } 1898 1899 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1900 const ConstantFP * /*FPImm*/) { 1901 return 0; 1902 } 1903 1904 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1905 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1906 return 0; 1907 } 1908 1909 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1910 /// instruction with an immediate operand using fastEmit_ri. 1911 /// If that fails, it materializes the immediate into a register and try 1912 /// fastEmit_rr instead. 1913 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1914 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1915 // If this is a multiply by a power of two, emit this as a shift left. 1916 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1917 Opcode = ISD::SHL; 1918 Imm = Log2_64(Imm); 1919 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1920 // div x, 8 -> srl x, 3 1921 Opcode = ISD::SRL; 1922 Imm = Log2_64(Imm); 1923 } 1924 1925 // Horrible hack (to be removed), check to make sure shift amounts are 1926 // in-range. 1927 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1928 Imm >= VT.getSizeInBits()) 1929 return 0; 1930 1931 // First check if immediate type is legal. If not, we can't use the ri form. 1932 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1933 if (ResultReg) 1934 return ResultReg; 1935 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1936 bool IsImmKill = true; 1937 if (!MaterialReg) { 1938 // This is a bit ugly/slow, but failing here means falling out of 1939 // fast-isel, which would be very slow. 1940 IntegerType *ITy = 1941 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1942 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1943 if (!MaterialReg) 1944 return 0; 1945 // FIXME: If the materialized register here has no uses yet then this 1946 // will be the first use and we should be able to mark it as killed. 1947 // However, the local value area for materialising constant expressions 1948 // grows down, not up, which means that any constant expressions we generate 1949 // later which also use 'Imm' could be after this instruction and therefore 1950 // after this kill. 1951 IsImmKill = false; 1952 } 1953 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); 1954 } 1955 1956 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { 1957 return MRI.createVirtualRegister(RC); 1958 } 1959 1960 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 1961 unsigned OpNum) { 1962 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1963 const TargetRegisterClass *RegClass = 1964 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1965 if (!MRI.constrainRegClass(Op, RegClass)) { 1966 // If it's not legal to COPY between the register classes, something 1967 // has gone very wrong before we got here. 1968 unsigned NewOp = createResultReg(RegClass); 1969 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1970 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1971 return NewOp; 1972 } 1973 } 1974 return Op; 1975 } 1976 1977 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1978 const TargetRegisterClass *RC) { 1979 unsigned ResultReg = createResultReg(RC); 1980 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1981 1982 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1983 return ResultReg; 1984 } 1985 1986 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 1987 const TargetRegisterClass *RC, unsigned Op0, 1988 bool Op0IsKill) { 1989 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1990 1991 unsigned ResultReg = createResultReg(RC); 1992 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1993 1994 if (II.getNumDefs() >= 1) 1995 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1996 .addReg(Op0, getKillRegState(Op0IsKill)); 1997 else { 1998 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1999 .addReg(Op0, getKillRegState(Op0IsKill)); 2000 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2001 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2002 } 2003 2004 return ResultReg; 2005 } 2006 2007 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2008 const TargetRegisterClass *RC, unsigned Op0, 2009 bool Op0IsKill, unsigned Op1, 2010 bool Op1IsKill) { 2011 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2012 2013 unsigned ResultReg = createResultReg(RC); 2014 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2015 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2016 2017 if (II.getNumDefs() >= 1) 2018 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2019 .addReg(Op0, getKillRegState(Op0IsKill)) 2020 .addReg(Op1, getKillRegState(Op1IsKill)); 2021 else { 2022 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2023 .addReg(Op0, getKillRegState(Op0IsKill)) 2024 .addReg(Op1, getKillRegState(Op1IsKill)); 2025 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2026 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2027 } 2028 return ResultReg; 2029 } 2030 2031 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 2032 const TargetRegisterClass *RC, unsigned Op0, 2033 bool Op0IsKill, unsigned Op1, 2034 bool Op1IsKill, unsigned Op2, 2035 bool Op2IsKill) { 2036 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2037 2038 unsigned ResultReg = createResultReg(RC); 2039 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2040 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2041 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 2042 2043 if (II.getNumDefs() >= 1) 2044 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2045 .addReg(Op0, getKillRegState(Op0IsKill)) 2046 .addReg(Op1, getKillRegState(Op1IsKill)) 2047 .addReg(Op2, getKillRegState(Op2IsKill)); 2048 else { 2049 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2050 .addReg(Op0, getKillRegState(Op0IsKill)) 2051 .addReg(Op1, getKillRegState(Op1IsKill)) 2052 .addReg(Op2, getKillRegState(Op2IsKill)); 2053 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2054 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2055 } 2056 return ResultReg; 2057 } 2058 2059 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2060 const TargetRegisterClass *RC, unsigned Op0, 2061 bool Op0IsKill, uint64_t Imm) { 2062 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2063 2064 unsigned ResultReg = createResultReg(RC); 2065 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2066 2067 if (II.getNumDefs() >= 1) 2068 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2069 .addReg(Op0, getKillRegState(Op0IsKill)) 2070 .addImm(Imm); 2071 else { 2072 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2073 .addReg(Op0, getKillRegState(Op0IsKill)) 2074 .addImm(Imm); 2075 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2076 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2077 } 2078 return ResultReg; 2079 } 2080 2081 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 2082 const TargetRegisterClass *RC, unsigned Op0, 2083 bool Op0IsKill, uint64_t Imm1, 2084 uint64_t Imm2) { 2085 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2086 2087 unsigned ResultReg = createResultReg(RC); 2088 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2089 2090 if (II.getNumDefs() >= 1) 2091 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2092 .addReg(Op0, getKillRegState(Op0IsKill)) 2093 .addImm(Imm1) 2094 .addImm(Imm2); 2095 else { 2096 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2097 .addReg(Op0, getKillRegState(Op0IsKill)) 2098 .addImm(Imm1) 2099 .addImm(Imm2); 2100 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2101 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2102 } 2103 return ResultReg; 2104 } 2105 2106 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 2107 const TargetRegisterClass *RC, 2108 const ConstantFP *FPImm) { 2109 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2110 2111 unsigned ResultReg = createResultReg(RC); 2112 2113 if (II.getNumDefs() >= 1) 2114 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2115 .addFPImm(FPImm); 2116 else { 2117 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2118 .addFPImm(FPImm); 2119 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2120 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2121 } 2122 return ResultReg; 2123 } 2124 2125 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 2126 const TargetRegisterClass *RC, unsigned Op0, 2127 bool Op0IsKill, unsigned Op1, 2128 bool Op1IsKill, uint64_t Imm) { 2129 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2130 2131 unsigned ResultReg = createResultReg(RC); 2132 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2133 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2134 2135 if (II.getNumDefs() >= 1) 2136 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2137 .addReg(Op0, getKillRegState(Op0IsKill)) 2138 .addReg(Op1, getKillRegState(Op1IsKill)) 2139 .addImm(Imm); 2140 else { 2141 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2142 .addReg(Op0, getKillRegState(Op0IsKill)) 2143 .addReg(Op1, getKillRegState(Op1IsKill)) 2144 .addImm(Imm); 2145 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2146 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2147 } 2148 return ResultReg; 2149 } 2150 2151 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 2152 const TargetRegisterClass *RC, uint64_t Imm) { 2153 unsigned ResultReg = createResultReg(RC); 2154 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2155 2156 if (II.getNumDefs() >= 1) 2157 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2158 .addImm(Imm); 2159 else { 2160 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 2161 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2162 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2163 } 2164 return ResultReg; 2165 } 2166 2167 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 2168 bool Op0IsKill, uint32_t Idx) { 2169 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 2170 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 2171 "Cannot yet extract from physregs"); 2172 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2173 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2174 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 2175 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 2176 return ResultReg; 2177 } 2178 2179 /// Emit MachineInstrs to compute the value of Op with all but the least 2180 /// significant bit set to zero. 2181 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 2182 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 2183 } 2184 2185 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2186 /// Emit code to ensure constants are copied into registers when needed. 2187 /// Remember the virtual registers that need to be added to the Machine PHI 2188 /// nodes as input. We cannot just directly add them, because expansion 2189 /// might result in multiple MBB's for one BB. As such, the start of the 2190 /// BB might correspond to a different MBB than the end. 2191 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2192 const TerminatorInst *TI = LLVMBB->getTerminator(); 2193 2194 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2195 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2196 2197 // Check successor nodes' PHI nodes that expect a constant to be available 2198 // from this block. 2199 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2200 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2201 if (!isa<PHINode>(SuccBB->begin())) 2202 continue; 2203 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2204 2205 // If this terminator has multiple identical successors (common for 2206 // switches), only handle each succ once. 2207 if (!SuccsHandled.insert(SuccMBB).second) 2208 continue; 2209 2210 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2211 2212 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2213 // nodes and Machine PHI nodes, but the incoming operands have not been 2214 // emitted yet. 2215 for (const PHINode &PN : SuccBB->phis()) { 2216 // Ignore dead phi's. 2217 if (PN.use_empty()) 2218 continue; 2219 2220 // Only handle legal types. Two interesting things to note here. First, 2221 // by bailing out early, we may leave behind some dead instructions, 2222 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2223 // own moves. Second, this check is necessary because FastISel doesn't 2224 // use CreateRegs to create registers, so it always creates 2225 // exactly one register for each non-void instruction. 2226 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); 2227 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2228 // Handle integer promotions, though, because they're common and easy. 2229 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2230 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2231 return false; 2232 } 2233 } 2234 2235 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 2236 2237 // Set the DebugLoc for the copy. Prefer the location of the operand 2238 // if there is one; use the location of the PHI otherwise. 2239 DbgLoc = PN.getDebugLoc(); 2240 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2241 DbgLoc = Inst->getDebugLoc(); 2242 2243 unsigned Reg = getRegForValue(PHIOp); 2244 if (!Reg) { 2245 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2246 return false; 2247 } 2248 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2249 DbgLoc = DebugLoc(); 2250 } 2251 } 2252 2253 return true; 2254 } 2255 2256 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2257 assert(LI->hasOneUse() && 2258 "tryToFoldLoad expected a LoadInst with a single use"); 2259 // We know that the load has a single use, but don't know what it is. If it 2260 // isn't one of the folded instructions, then we can't succeed here. Handle 2261 // this by scanning the single-use users of the load until we get to FoldInst. 2262 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2263 2264 const Instruction *TheUser = LI->user_back(); 2265 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2266 // Stay in the right block. 2267 TheUser->getParent() == FoldInst->getParent() && 2268 --MaxUsers) { // Don't scan too far. 2269 // If there are multiple or no uses of this instruction, then bail out. 2270 if (!TheUser->hasOneUse()) 2271 return false; 2272 2273 TheUser = TheUser->user_back(); 2274 } 2275 2276 // If we didn't find the fold instruction, then we failed to collapse the 2277 // sequence. 2278 if (TheUser != FoldInst) 2279 return false; 2280 2281 // Don't try to fold volatile loads. Target has to deal with alignment 2282 // constraints. 2283 if (LI->isVolatile()) 2284 return false; 2285 2286 // Figure out which vreg this is going into. If there is no assigned vreg yet 2287 // then there actually was no reference to it. Perhaps the load is referenced 2288 // by a dead instruction. 2289 unsigned LoadReg = getRegForValue(LI); 2290 if (!LoadReg) 2291 return false; 2292 2293 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2294 // may mean that the instruction got lowered to multiple MIs, or the use of 2295 // the loaded value ended up being multiple operands of the result. 2296 if (!MRI.hasOneUse(LoadReg)) 2297 return false; 2298 2299 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2300 MachineInstr *User = RI->getParent(); 2301 2302 // Set the insertion point properly. Folding the load can cause generation of 2303 // other random instructions (like sign extends) for addressing modes; make 2304 // sure they get inserted in a logical place before the new instruction. 2305 FuncInfo.InsertPt = User; 2306 FuncInfo.MBB = User->getParent(); 2307 2308 // Ask the target to try folding the load. 2309 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2310 } 2311 2312 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2313 // Must be an add. 2314 if (!isa<AddOperator>(Add)) 2315 return false; 2316 // Type size needs to match. 2317 if (DL.getTypeSizeInBits(GEP->getType()) != 2318 DL.getTypeSizeInBits(Add->getType())) 2319 return false; 2320 // Must be in the same basic block. 2321 if (isa<Instruction>(Add) && 2322 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2323 return false; 2324 // Must have a constant operand. 2325 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2326 } 2327 2328 MachineMemOperand * 2329 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2330 const Value *Ptr; 2331 Type *ValTy; 2332 unsigned Alignment; 2333 MachineMemOperand::Flags Flags; 2334 bool IsVolatile; 2335 2336 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2337 Alignment = LI->getAlignment(); 2338 IsVolatile = LI->isVolatile(); 2339 Flags = MachineMemOperand::MOLoad; 2340 Ptr = LI->getPointerOperand(); 2341 ValTy = LI->getType(); 2342 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2343 Alignment = SI->getAlignment(); 2344 IsVolatile = SI->isVolatile(); 2345 Flags = MachineMemOperand::MOStore; 2346 Ptr = SI->getPointerOperand(); 2347 ValTy = SI->getValueOperand()->getType(); 2348 } else 2349 return nullptr; 2350 2351 bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2352 bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2353 bool IsDereferenceable = 2354 I->getMetadata(LLVMContext::MD_dereferenceable) != nullptr; 2355 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2356 2357 AAMDNodes AAInfo; 2358 I->getAAMetadata(AAInfo); 2359 2360 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2361 Alignment = DL.getABITypeAlignment(ValTy); 2362 2363 unsigned Size = DL.getTypeStoreSize(ValTy); 2364 2365 if (IsVolatile) 2366 Flags |= MachineMemOperand::MOVolatile; 2367 if (IsNonTemporal) 2368 Flags |= MachineMemOperand::MONonTemporal; 2369 if (IsDereferenceable) 2370 Flags |= MachineMemOperand::MODereferenceable; 2371 if (IsInvariant) 2372 Flags |= MachineMemOperand::MOInvariant; 2373 2374 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2375 Alignment, AAInfo, Ranges); 2376 } 2377 2378 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2379 // If both operands are the same, then try to optimize or fold the cmp. 2380 CmpInst::Predicate Predicate = CI->getPredicate(); 2381 if (CI->getOperand(0) != CI->getOperand(1)) 2382 return Predicate; 2383 2384 switch (Predicate) { 2385 default: llvm_unreachable("Invalid predicate!"); 2386 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2387 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2388 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2389 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2390 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2391 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2392 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2393 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2394 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2395 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2396 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2397 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2398 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2399 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2400 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2401 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2402 2403 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2404 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2405 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2406 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2407 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2408 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2409 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2410 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2411 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2412 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2413 } 2414 2415 return Predicate; 2416 } 2417