1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
11 //
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time.  For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
19 //
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support.  In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
24 //
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated.  Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time.  Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
33 //
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators.  More complicated operations currently require
38 // target-specific code.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/CodeGen/FastISel.h"
43 #include "llvm/ADT/APFloat.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/DenseMap.h"
46 #include "llvm/ADT/Optional.h"
47 #include "llvm/ADT/SmallPtrSet.h"
48 #include "llvm/ADT/SmallString.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/Analysis/BranchProbabilityInfo.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/CodeGen/Analysis.h"
54 #include "llvm/CodeGen/FunctionLoweringInfo.h"
55 #include "llvm/CodeGen/ISDOpcodes.h"
56 #include "llvm/CodeGen/MachineBasicBlock.h"
57 #include "llvm/CodeGen/MachineFrameInfo.h"
58 #include "llvm/CodeGen/MachineInstr.h"
59 #include "llvm/CodeGen/MachineInstrBuilder.h"
60 #include "llvm/CodeGen/MachineMemOperand.h"
61 #include "llvm/CodeGen/MachineModuleInfo.h"
62 #include "llvm/CodeGen/MachineOperand.h"
63 #include "llvm/CodeGen/MachineRegisterInfo.h"
64 #include "llvm/CodeGen/MachineValueType.h"
65 #include "llvm/CodeGen/StackMaps.h"
66 #include "llvm/CodeGen/TargetInstrInfo.h"
67 #include "llvm/CodeGen/TargetLowering.h"
68 #include "llvm/CodeGen/TargetSubtargetInfo.h"
69 #include "llvm/CodeGen/ValueTypes.h"
70 #include "llvm/IR/Argument.h"
71 #include "llvm/IR/Attributes.h"
72 #include "llvm/IR/BasicBlock.h"
73 #include "llvm/IR/CallSite.h"
74 #include "llvm/IR/CallingConv.h"
75 #include "llvm/IR/Constant.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DebugInfo.h"
79 #include "llvm/IR/DebugLoc.h"
80 #include "llvm/IR/DerivedTypes.h"
81 #include "llvm/IR/Function.h"
82 #include "llvm/IR/GetElementPtrTypeIterator.h"
83 #include "llvm/IR/GlobalValue.h"
84 #include "llvm/IR/InlineAsm.h"
85 #include "llvm/IR/InstrTypes.h"
86 #include "llvm/IR/Instruction.h"
87 #include "llvm/IR/Instructions.h"
88 #include "llvm/IR/IntrinsicInst.h"
89 #include "llvm/IR/LLVMContext.h"
90 #include "llvm/IR/Mangler.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Operator.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/MC/MCContext.h"
97 #include "llvm/MC/MCInstrDesc.h"
98 #include "llvm/MC/MCRegisterInfo.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/Debug.h"
101 #include "llvm/Support/ErrorHandling.h"
102 #include "llvm/Support/MathExtras.h"
103 #include "llvm/Support/raw_ostream.h"
104 #include "llvm/Target/TargetMachine.h"
105 #include "llvm/Target/TargetOptions.h"
106 #include <algorithm>
107 #include <cassert>
108 #include <cstdint>
109 #include <iterator>
110 #include <utility>
111 
112 using namespace llvm;
113 
114 #define DEBUG_TYPE "isel"
115 
116 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
117                                          "target-independent selector");
118 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
119                                     "target-specific selector");
120 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
121 
122 /// Set the current block to which generated machine instructions will be
123 /// appended, and clear the local CSE map.
124 void FastISel::startNewBlock() {
125   LocalValueMap.clear();
126 
127   // Instructions are appended to FuncInfo.MBB. If the basic block already
128   // contains labels or copies, use the last instruction as the last local
129   // value.
130   EmitStartPt = nullptr;
131   if (!FuncInfo.MBB->empty())
132     EmitStartPt = &FuncInfo.MBB->back();
133   LastLocalValue = EmitStartPt;
134 }
135 
136 bool FastISel::lowerArguments() {
137   if (!FuncInfo.CanLowerReturn)
138     // Fallback to SDISel argument lowering code to deal with sret pointer
139     // parameter.
140     return false;
141 
142   if (!fastLowerArguments())
143     return false;
144 
145   // Enter arguments into ValueMap for uses in non-entry BBs.
146   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
147                                     E = FuncInfo.Fn->arg_end();
148        I != E; ++I) {
149     DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I);
150     assert(VI != LocalValueMap.end() && "Missed an argument?");
151     FuncInfo.ValueMap[&*I] = VI->second;
152   }
153   return true;
154 }
155 
156 void FastISel::flushLocalValueMap() {
157   LocalValueMap.clear();
158   LastLocalValue = EmitStartPt;
159   recomputeInsertPt();
160   SavedInsertPt = FuncInfo.InsertPt;
161 }
162 
163 bool FastISel::hasTrivialKill(const Value *V) {
164   // Don't consider constants or arguments to have trivial kills.
165   const Instruction *I = dyn_cast<Instruction>(V);
166   if (!I)
167     return false;
168 
169   // No-op casts are trivially coalesced by fast-isel.
170   if (const auto *Cast = dyn_cast<CastInst>(I))
171     if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0)))
172       return false;
173 
174   // Even the value might have only one use in the LLVM IR, it is possible that
175   // FastISel might fold the use into another instruction and now there is more
176   // than one use at the Machine Instruction level.
177   unsigned Reg = lookUpRegForValue(V);
178   if (Reg && !MRI.use_empty(Reg))
179     return false;
180 
181   // GEPs with all zero indices are trivially coalesced by fast-isel.
182   if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
183     if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
184       return false;
185 
186   // Only instructions with a single use in the same basic block are considered
187   // to have trivial kills.
188   return I->hasOneUse() &&
189          !(I->getOpcode() == Instruction::BitCast ||
190            I->getOpcode() == Instruction::PtrToInt ||
191            I->getOpcode() == Instruction::IntToPtr) &&
192          cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
193 }
194 
195 unsigned FastISel::getRegForValue(const Value *V) {
196   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
197   // Don't handle non-simple values in FastISel.
198   if (!RealVT.isSimple())
199     return 0;
200 
201   // Ignore illegal types. We must do this before looking up the value
202   // in ValueMap because Arguments are given virtual registers regardless
203   // of whether FastISel can handle them.
204   MVT VT = RealVT.getSimpleVT();
205   if (!TLI.isTypeLegal(VT)) {
206     // Handle integer promotions, though, because they're common and easy.
207     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
208       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
209     else
210       return 0;
211   }
212 
213   // Look up the value to see if we already have a register for it.
214   unsigned Reg = lookUpRegForValue(V);
215   if (Reg)
216     return Reg;
217 
218   // In bottom-up mode, just create the virtual register which will be used
219   // to hold the value. It will be materialized later.
220   if (isa<Instruction>(V) &&
221       (!isa<AllocaInst>(V) ||
222        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
223     return FuncInfo.InitializeRegForValue(V);
224 
225   SavePoint SaveInsertPt = enterLocalValueArea();
226 
227   // Materialize the value in a register. Emit any instructions in the
228   // local value area.
229   Reg = materializeRegForValue(V, VT);
230 
231   leaveLocalValueArea(SaveInsertPt);
232 
233   return Reg;
234 }
235 
236 unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
237   unsigned Reg = 0;
238   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
239     if (CI->getValue().getActiveBits() <= 64)
240       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
241   } else if (isa<AllocaInst>(V))
242     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
243   else if (isa<ConstantPointerNull>(V))
244     // Translate this as an integer zero so that it can be
245     // local-CSE'd with actual integer zeros.
246     Reg = getRegForValue(
247         Constant::getNullValue(DL.getIntPtrType(V->getContext())));
248   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
249     if (CF->isNullValue())
250       Reg = fastMaterializeFloatZero(CF);
251     else
252       // Try to emit the constant directly.
253       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
254 
255     if (!Reg) {
256       // Try to emit the constant by using an integer constant with a cast.
257       const APFloat &Flt = CF->getValueAPF();
258       EVT IntVT = TLI.getPointerTy(DL);
259       uint32_t IntBitWidth = IntVT.getSizeInBits();
260       APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
261       bool isExact;
262       (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
263       if (isExact) {
264         unsigned IntegerReg =
265             getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
266         if (IntegerReg != 0)
267           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
268                            /*Kill=*/false);
269       }
270     }
271   } else if (const auto *Op = dyn_cast<Operator>(V)) {
272     if (!selectOperator(Op, Op->getOpcode()))
273       if (!isa<Instruction>(Op) ||
274           !fastSelectInstruction(cast<Instruction>(Op)))
275         return 0;
276     Reg = lookUpRegForValue(Op);
277   } else if (isa<UndefValue>(V)) {
278     Reg = createResultReg(TLI.getRegClassFor(VT));
279     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
280             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
281   }
282   return Reg;
283 }
284 
285 /// Helper for getRegForValue. This function is called when the value isn't
286 /// already available in a register and must be materialized with new
287 /// instructions.
288 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
289   unsigned Reg = 0;
290   // Give the target-specific code a try first.
291   if (isa<Constant>(V))
292     Reg = fastMaterializeConstant(cast<Constant>(V));
293 
294   // If target-specific code couldn't or didn't want to handle the value, then
295   // give target-independent code a try.
296   if (!Reg)
297     Reg = materializeConstant(V, VT);
298 
299   // Don't cache constant materializations in the general ValueMap.
300   // To do so would require tracking what uses they dominate.
301   if (Reg) {
302     LocalValueMap[V] = Reg;
303     LastLocalValue = MRI.getVRegDef(Reg);
304   }
305   return Reg;
306 }
307 
308 unsigned FastISel::lookUpRegForValue(const Value *V) {
309   // Look up the value to see if we already have a register for it. We
310   // cache values defined by Instructions across blocks, and other values
311   // only locally. This is because Instructions already have the SSA
312   // def-dominates-use requirement enforced.
313   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
314   if (I != FuncInfo.ValueMap.end())
315     return I->second;
316   return LocalValueMap[V];
317 }
318 
319 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
320   if (!isa<Instruction>(I)) {
321     LocalValueMap[I] = Reg;
322     return;
323   }
324 
325   unsigned &AssignedReg = FuncInfo.ValueMap[I];
326   if (AssignedReg == 0)
327     // Use the new register.
328     AssignedReg = Reg;
329   else if (Reg != AssignedReg) {
330     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
331     for (unsigned i = 0; i < NumRegs; i++)
332       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
333 
334     AssignedReg = Reg;
335   }
336 }
337 
338 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
339   unsigned IdxN = getRegForValue(Idx);
340   if (IdxN == 0)
341     // Unhandled operand. Halt "fast" selection and bail.
342     return std::pair<unsigned, bool>(0, false);
343 
344   bool IdxNIsKill = hasTrivialKill(Idx);
345 
346   // If the index is smaller or larger than intptr_t, truncate or extend it.
347   MVT PtrVT = TLI.getPointerTy(DL);
348   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
349   if (IdxVT.bitsLT(PtrVT)) {
350     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
351                       IdxNIsKill);
352     IdxNIsKill = true;
353   } else if (IdxVT.bitsGT(PtrVT)) {
354     IdxN =
355         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
356     IdxNIsKill = true;
357   }
358   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
359 }
360 
361 void FastISel::recomputeInsertPt() {
362   if (getLastLocalValue()) {
363     FuncInfo.InsertPt = getLastLocalValue();
364     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
365     ++FuncInfo.InsertPt;
366   } else
367     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
368 
369   // Now skip past any EH_LABELs, which must remain at the beginning.
370   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
371          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
372     ++FuncInfo.InsertPt;
373 }
374 
375 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
376                               MachineBasicBlock::iterator E) {
377   assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
378          "Invalid iterator!");
379   while (I != E) {
380     MachineInstr *Dead = &*I;
381     ++I;
382     Dead->eraseFromParent();
383     ++NumFastIselDead;
384   }
385   recomputeInsertPt();
386 }
387 
388 FastISel::SavePoint FastISel::enterLocalValueArea() {
389   MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
390   DebugLoc OldDL = DbgLoc;
391   recomputeInsertPt();
392   DbgLoc = DebugLoc();
393   SavePoint SP = {OldInsertPt, OldDL};
394   return SP;
395 }
396 
397 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
398   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
399     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
400 
401   // Restore the previous insert position.
402   FuncInfo.InsertPt = OldInsertPt.InsertPt;
403   DbgLoc = OldInsertPt.DL;
404 }
405 
406 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
407   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
408   if (VT == MVT::Other || !VT.isSimple())
409     // Unhandled type. Halt "fast" selection and bail.
410     return false;
411 
412   // We only handle legal types. For example, on x86-32 the instruction
413   // selector contains all of the 64-bit instructions from x86-64,
414   // under the assumption that i64 won't be used if the target doesn't
415   // support it.
416   if (!TLI.isTypeLegal(VT)) {
417     // MVT::i1 is special. Allow AND, OR, or XOR because they
418     // don't require additional zeroing, which makes them easy.
419     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
420                           ISDOpcode == ISD::XOR))
421       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
422     else
423       return false;
424   }
425 
426   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
427   // we don't have anything that canonicalizes operand order.
428   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
429     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
430       unsigned Op1 = getRegForValue(I->getOperand(1));
431       if (!Op1)
432         return false;
433       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
434 
435       unsigned ResultReg =
436           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
437                        CI->getZExtValue(), VT.getSimpleVT());
438       if (!ResultReg)
439         return false;
440 
441       // We successfully emitted code for the given LLVM Instruction.
442       updateValueMap(I, ResultReg);
443       return true;
444     }
445 
446   unsigned Op0 = getRegForValue(I->getOperand(0));
447   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
448     return false;
449   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
450 
451   // Check if the second operand is a constant and handle it appropriately.
452   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
453     uint64_t Imm = CI->getSExtValue();
454 
455     // Transform "sdiv exact X, 8" -> "sra X, 3".
456     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
457         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
458       Imm = Log2_64(Imm);
459       ISDOpcode = ISD::SRA;
460     }
461 
462     // Transform "urem x, pow2" -> "and x, pow2-1".
463     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
464         isPowerOf2_64(Imm)) {
465       --Imm;
466       ISDOpcode = ISD::AND;
467     }
468 
469     unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
470                                       Op0IsKill, Imm, VT.getSimpleVT());
471     if (!ResultReg)
472       return false;
473 
474     // We successfully emitted code for the given LLVM Instruction.
475     updateValueMap(I, ResultReg);
476     return true;
477   }
478 
479   unsigned Op1 = getRegForValue(I->getOperand(1));
480   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
481     return false;
482   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
483 
484   // Now we have both operands in registers. Emit the instruction.
485   unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
486                                    ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
487   if (!ResultReg)
488     // Target-specific code wasn't able to find a machine opcode for
489     // the given ISD opcode and type. Halt "fast" selection and bail.
490     return false;
491 
492   // We successfully emitted code for the given LLVM Instruction.
493   updateValueMap(I, ResultReg);
494   return true;
495 }
496 
497 bool FastISel::selectGetElementPtr(const User *I) {
498   unsigned N = getRegForValue(I->getOperand(0));
499   if (!N) // Unhandled operand. Halt "fast" selection and bail.
500     return false;
501   bool NIsKill = hasTrivialKill(I->getOperand(0));
502 
503   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
504   // into a single N = N + TotalOffset.
505   uint64_t TotalOffs = 0;
506   // FIXME: What's a good SWAG number for MaxOffs?
507   uint64_t MaxOffs = 2048;
508   MVT VT = TLI.getPointerTy(DL);
509   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
510        GTI != E; ++GTI) {
511     const Value *Idx = GTI.getOperand();
512     if (StructType *StTy = GTI.getStructTypeOrNull()) {
513       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
514       if (Field) {
515         // N = N + Offset
516         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
517         if (TotalOffs >= MaxOffs) {
518           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
519           if (!N) // Unhandled operand. Halt "fast" selection and bail.
520             return false;
521           NIsKill = true;
522           TotalOffs = 0;
523         }
524       }
525     } else {
526       Type *Ty = GTI.getIndexedType();
527 
528       // If this is a constant subscript, handle it quickly.
529       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
530         if (CI->isZero())
531           continue;
532         // N = N + Offset
533         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
534         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
535         if (TotalOffs >= MaxOffs) {
536           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
537           if (!N) // Unhandled operand. Halt "fast" selection and bail.
538             return false;
539           NIsKill = true;
540           TotalOffs = 0;
541         }
542         continue;
543       }
544       if (TotalOffs) {
545         N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
546         if (!N) // Unhandled operand. Halt "fast" selection and bail.
547           return false;
548         NIsKill = true;
549         TotalOffs = 0;
550       }
551 
552       // N = N + Idx * ElementSize;
553       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
554       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
555       unsigned IdxN = Pair.first;
556       bool IdxNIsKill = Pair.second;
557       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
558         return false;
559 
560       if (ElementSize != 1) {
561         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
562         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
563           return false;
564         IdxNIsKill = true;
565       }
566       N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
567       if (!N) // Unhandled operand. Halt "fast" selection and bail.
568         return false;
569     }
570   }
571   if (TotalOffs) {
572     N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
573     if (!N) // Unhandled operand. Halt "fast" selection and bail.
574       return false;
575   }
576 
577   // We successfully emitted code for the given LLVM Instruction.
578   updateValueMap(I, N);
579   return true;
580 }
581 
582 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
583                                    const CallInst *CI, unsigned StartIdx) {
584   for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
585     Value *Val = CI->getArgOperand(i);
586     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
587     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
588       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
589       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
590     } else if (isa<ConstantPointerNull>(Val)) {
591       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
592       Ops.push_back(MachineOperand::CreateImm(0));
593     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
594       // Values coming from a stack location also require a special encoding,
595       // but that is added later on by the target specific frame index
596       // elimination implementation.
597       auto SI = FuncInfo.StaticAllocaMap.find(AI);
598       if (SI != FuncInfo.StaticAllocaMap.end())
599         Ops.push_back(MachineOperand::CreateFI(SI->second));
600       else
601         return false;
602     } else {
603       unsigned Reg = getRegForValue(Val);
604       if (!Reg)
605         return false;
606       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
607     }
608   }
609   return true;
610 }
611 
612 bool FastISel::selectStackmap(const CallInst *I) {
613   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
614   //                                  [live variables...])
615   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
616          "Stackmap cannot return a value.");
617 
618   // The stackmap intrinsic only records the live variables (the arguments
619   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
620   // intrinsic, this won't be lowered to a function call. This means we don't
621   // have to worry about calling conventions and target-specific lowering code.
622   // Instead we perform the call lowering right here.
623   //
624   // CALLSEQ_START(0, 0...)
625   // STACKMAP(id, nbytes, ...)
626   // CALLSEQ_END(0, 0)
627   //
628   SmallVector<MachineOperand, 32> Ops;
629 
630   // Add the <id> and <numBytes> constants.
631   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
632          "Expected a constant integer.");
633   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
634   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
635 
636   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
637          "Expected a constant integer.");
638   const auto *NumBytes =
639       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
640   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
641 
642   // Push live variables for the stack map (skipping the first two arguments
643   // <id> and <numBytes>).
644   if (!addStackMapLiveVars(Ops, I, 2))
645     return false;
646 
647   // We are not adding any register mask info here, because the stackmap doesn't
648   // clobber anything.
649 
650   // Add scratch registers as implicit def and early clobber.
651   CallingConv::ID CC = I->getCallingConv();
652   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
653   for (unsigned i = 0; ScratchRegs[i]; ++i)
654     Ops.push_back(MachineOperand::CreateReg(
655         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
656         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
657 
658   // Issue CALLSEQ_START
659   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
660   auto Builder =
661       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
662   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
663   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
664     Builder.addImm(0);
665 
666   // Issue STACKMAP.
667   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
668                                     TII.get(TargetOpcode::STACKMAP));
669   for (auto const &MO : Ops)
670     MIB.add(MO);
671 
672   // Issue CALLSEQ_END
673   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
674   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
675       .addImm(0)
676       .addImm(0);
677 
678   // Inform the Frame Information that we have a stackmap in this function.
679   FuncInfo.MF->getFrameInfo().setHasStackMap();
680 
681   return true;
682 }
683 
684 /// \brief Lower an argument list according to the target calling convention.
685 ///
686 /// This is a helper for lowering intrinsics that follow a target calling
687 /// convention or require stack pointer adjustment. Only a subset of the
688 /// intrinsic's operands need to participate in the calling convention.
689 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
690                                  unsigned NumArgs, const Value *Callee,
691                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
692   ArgListTy Args;
693   Args.reserve(NumArgs);
694 
695   // Populate the argument list.
696   ImmutableCallSite CS(CI);
697   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
698     Value *V = CI->getOperand(ArgI);
699 
700     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
701 
702     ArgListEntry Entry;
703     Entry.Val = V;
704     Entry.Ty = V->getType();
705     Entry.setAttributes(&CS, ArgI);
706     Args.push_back(Entry);
707   }
708 
709   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
710                                : CI->getType();
711   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
712 
713   return lowerCallTo(CLI);
714 }
715 
716 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
717     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
718     StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
719   SmallString<32> MangledName;
720   Mangler::getNameWithPrefix(MangledName, Target, DL);
721   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
722   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
723 }
724 
725 bool FastISel::selectPatchpoint(const CallInst *I) {
726   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
727   //                                                 i32 <numBytes>,
728   //                                                 i8* <target>,
729   //                                                 i32 <numArgs>,
730   //                                                 [Args...],
731   //                                                 [live variables...])
732   CallingConv::ID CC = I->getCallingConv();
733   bool IsAnyRegCC = CC == CallingConv::AnyReg;
734   bool HasDef = !I->getType()->isVoidTy();
735   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
736 
737   // Get the real number of arguments participating in the call <numArgs>
738   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
739          "Expected a constant integer.");
740   const auto *NumArgsVal =
741       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
742   unsigned NumArgs = NumArgsVal->getZExtValue();
743 
744   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
745   // This includes all meta-operands up to but not including CC.
746   unsigned NumMetaOpers = PatchPointOpers::CCPos;
747   assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
748          "Not enough arguments provided to the patchpoint intrinsic");
749 
750   // For AnyRegCC the arguments are lowered later on manually.
751   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
752   CallLoweringInfo CLI;
753   CLI.setIsPatchPoint();
754   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
755     return false;
756 
757   assert(CLI.Call && "No call instruction specified.");
758 
759   SmallVector<MachineOperand, 32> Ops;
760 
761   // Add an explicit result reg if we use the anyreg calling convention.
762   if (IsAnyRegCC && HasDef) {
763     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
764     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
765     CLI.NumResultRegs = 1;
766     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true));
767   }
768 
769   // Add the <id> and <numBytes> constants.
770   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
771          "Expected a constant integer.");
772   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
773   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
774 
775   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
776          "Expected a constant integer.");
777   const auto *NumBytes =
778       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
779   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
780 
781   // Add the call target.
782   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
783     uint64_t CalleeConstAddr =
784       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
785     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
786   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
787     if (C->getOpcode() == Instruction::IntToPtr) {
788       uint64_t CalleeConstAddr =
789         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
790       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
791     } else
792       llvm_unreachable("Unsupported ConstantExpr.");
793   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
794     Ops.push_back(MachineOperand::CreateGA(GV, 0));
795   } else if (isa<ConstantPointerNull>(Callee))
796     Ops.push_back(MachineOperand::CreateImm(0));
797   else
798     llvm_unreachable("Unsupported callee address.");
799 
800   // Adjust <numArgs> to account for any arguments that have been passed on
801   // the stack instead.
802   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
803   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
804 
805   // Add the calling convention
806   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
807 
808   // Add the arguments we omitted previously. The register allocator should
809   // place these in any free register.
810   if (IsAnyRegCC) {
811     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
812       unsigned Reg = getRegForValue(I->getArgOperand(i));
813       if (!Reg)
814         return false;
815       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
816     }
817   }
818 
819   // Push the arguments from the call instruction.
820   for (auto Reg : CLI.OutRegs)
821     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
822 
823   // Push live variables for the stack map.
824   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
825     return false;
826 
827   // Push the register mask info.
828   Ops.push_back(MachineOperand::CreateRegMask(
829       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
830 
831   // Add scratch registers as implicit def and early clobber.
832   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
833   for (unsigned i = 0; ScratchRegs[i]; ++i)
834     Ops.push_back(MachineOperand::CreateReg(
835         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
836         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
837 
838   // Add implicit defs (return values).
839   for (auto Reg : CLI.InRegs)
840     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true,
841                                             /*IsImpl=*/true));
842 
843   // Insert the patchpoint instruction before the call generated by the target.
844   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
845                                     TII.get(TargetOpcode::PATCHPOINT));
846 
847   for (auto &MO : Ops)
848     MIB.add(MO);
849 
850   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
851 
852   // Delete the original call instruction.
853   CLI.Call->eraseFromParent();
854 
855   // Inform the Frame Information that we have a patchpoint in this function.
856   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
857 
858   if (CLI.NumResultRegs)
859     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
860   return true;
861 }
862 
863 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
864   const auto &Triple = TM.getTargetTriple();
865   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
866     return true; // don't do anything to this instruction.
867   SmallVector<MachineOperand, 8> Ops;
868   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
869                                           /*IsDef=*/false));
870   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
871                                           /*IsDef=*/false));
872   MachineInstrBuilder MIB =
873       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
874               TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
875   for (auto &MO : Ops)
876     MIB.add(MO);
877 
878   // Insert the Patchable Event Call instruction, that gets lowered properly.
879   return true;
880 }
881 
882 
883 /// Returns an AttributeList representing the attributes applied to the return
884 /// value of the given call.
885 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
886   SmallVector<Attribute::AttrKind, 2> Attrs;
887   if (CLI.RetSExt)
888     Attrs.push_back(Attribute::SExt);
889   if (CLI.RetZExt)
890     Attrs.push_back(Attribute::ZExt);
891   if (CLI.IsInReg)
892     Attrs.push_back(Attribute::InReg);
893 
894   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
895                             Attrs);
896 }
897 
898 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
899                            unsigned NumArgs) {
900   MCContext &Ctx = MF->getContext();
901   SmallString<32> MangledName;
902   Mangler::getNameWithPrefix(MangledName, SymName, DL);
903   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
904   return lowerCallTo(CI, Sym, NumArgs);
905 }
906 
907 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
908                            unsigned NumArgs) {
909   ImmutableCallSite CS(CI);
910 
911   FunctionType *FTy = CS.getFunctionType();
912   Type *RetTy = CS.getType();
913 
914   ArgListTy Args;
915   Args.reserve(NumArgs);
916 
917   // Populate the argument list.
918   // Attributes for args start at offset 1, after the return attribute.
919   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
920     Value *V = CI->getOperand(ArgI);
921 
922     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
923 
924     ArgListEntry Entry;
925     Entry.Val = V;
926     Entry.Ty = V->getType();
927     Entry.setAttributes(&CS, ArgI);
928     Args.push_back(Entry);
929   }
930   TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args);
931 
932   CallLoweringInfo CLI;
933   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs);
934 
935   return lowerCallTo(CLI);
936 }
937 
938 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
939   // Handle the incoming return values from the call.
940   CLI.clearIns();
941   SmallVector<EVT, 4> RetTys;
942   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
943 
944   SmallVector<ISD::OutputArg, 4> Outs;
945   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
946 
947   bool CanLowerReturn = TLI.CanLowerReturn(
948       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
949 
950   // FIXME: sret demotion isn't supported yet - bail out.
951   if (!CanLowerReturn)
952     return false;
953 
954   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
955     EVT VT = RetTys[I];
956     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
957     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
958     for (unsigned i = 0; i != NumRegs; ++i) {
959       ISD::InputArg MyFlags;
960       MyFlags.VT = RegisterVT;
961       MyFlags.ArgVT = VT;
962       MyFlags.Used = CLI.IsReturnValueUsed;
963       if (CLI.RetSExt)
964         MyFlags.Flags.setSExt();
965       if (CLI.RetZExt)
966         MyFlags.Flags.setZExt();
967       if (CLI.IsInReg)
968         MyFlags.Flags.setInReg();
969       CLI.Ins.push_back(MyFlags);
970     }
971   }
972 
973   // Handle all of the outgoing arguments.
974   CLI.clearOuts();
975   for (auto &Arg : CLI.getArgs()) {
976     Type *FinalType = Arg.Ty;
977     if (Arg.IsByVal)
978       FinalType = cast<PointerType>(Arg.Ty)->getElementType();
979     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
980         FinalType, CLI.CallConv, CLI.IsVarArg);
981 
982     ISD::ArgFlagsTy Flags;
983     if (Arg.IsZExt)
984       Flags.setZExt();
985     if (Arg.IsSExt)
986       Flags.setSExt();
987     if (Arg.IsInReg)
988       Flags.setInReg();
989     if (Arg.IsSRet)
990       Flags.setSRet();
991     if (Arg.IsSwiftSelf)
992       Flags.setSwiftSelf();
993     if (Arg.IsSwiftError)
994       Flags.setSwiftError();
995     if (Arg.IsByVal)
996       Flags.setByVal();
997     if (Arg.IsInAlloca) {
998       Flags.setInAlloca();
999       // Set the byval flag for CCAssignFn callbacks that don't know about
1000       // inalloca. This way we can know how many bytes we should've allocated
1001       // and how many bytes a callee cleanup function will pop.  If we port
1002       // inalloca to more targets, we'll have to add custom inalloca handling in
1003       // the various CC lowering callbacks.
1004       Flags.setByVal();
1005     }
1006     if (Arg.IsByVal || Arg.IsInAlloca) {
1007       PointerType *Ty = cast<PointerType>(Arg.Ty);
1008       Type *ElementTy = Ty->getElementType();
1009       unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
1010       // For ByVal, alignment should come from FE. BE will guess if this info is
1011       // not there, but there are cases it cannot get right.
1012       unsigned FrameAlign = Arg.Alignment;
1013       if (!FrameAlign)
1014         FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL);
1015       Flags.setByValSize(FrameSize);
1016       Flags.setByValAlign(FrameAlign);
1017     }
1018     if (Arg.IsNest)
1019       Flags.setNest();
1020     if (NeedsRegBlock)
1021       Flags.setInConsecutiveRegs();
1022     unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty);
1023     Flags.setOrigAlign(OriginalAlignment);
1024 
1025     CLI.OutVals.push_back(Arg.Val);
1026     CLI.OutFlags.push_back(Flags);
1027   }
1028 
1029   if (!fastLowerCall(CLI))
1030     return false;
1031 
1032   // Set all unused physreg defs as dead.
1033   assert(CLI.Call && "No call instruction specified.");
1034   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1035 
1036   if (CLI.NumResultRegs && CLI.CS)
1037     updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
1038 
1039   return true;
1040 }
1041 
1042 bool FastISel::lowerCall(const CallInst *CI) {
1043   ImmutableCallSite CS(CI);
1044 
1045   FunctionType *FuncTy = CS.getFunctionType();
1046   Type *RetTy = CS.getType();
1047 
1048   ArgListTy Args;
1049   ArgListEntry Entry;
1050   Args.reserve(CS.arg_size());
1051 
1052   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1053        i != e; ++i) {
1054     Value *V = *i;
1055 
1056     // Skip empty types
1057     if (V->getType()->isEmptyTy())
1058       continue;
1059 
1060     Entry.Val = V;
1061     Entry.Ty = V->getType();
1062 
1063     // Skip the first return-type Attribute to get to params.
1064     Entry.setAttributes(&CS, i - CS.arg_begin());
1065     Args.push_back(Entry);
1066   }
1067 
1068   // Check if target-independent constraints permit a tail call here.
1069   // Target-dependent constraints are checked within fastLowerCall.
1070   bool IsTailCall = CI->isTailCall();
1071   if (IsTailCall && !isInTailCallPosition(CS, TM))
1072     IsTailCall = false;
1073 
1074   CallLoweringInfo CLI;
1075   CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
1076       .setTailCall(IsTailCall);
1077 
1078   return lowerCallTo(CLI);
1079 }
1080 
1081 bool FastISel::selectCall(const User *I) {
1082   const CallInst *Call = cast<CallInst>(I);
1083 
1084   // Handle simple inline asms.
1085   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
1086     // If the inline asm has side effects, then make sure that no local value
1087     // lives across by flushing the local value map.
1088     if (IA->hasSideEffects())
1089       flushLocalValueMap();
1090 
1091     // Don't attempt to handle constraints.
1092     if (!IA->getConstraintString().empty())
1093       return false;
1094 
1095     unsigned ExtraInfo = 0;
1096     if (IA->hasSideEffects())
1097       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1098     if (IA->isAlignStack())
1099       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1100 
1101     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1102             TII.get(TargetOpcode::INLINEASM))
1103         .addExternalSymbol(IA->getAsmString().c_str())
1104         .addImm(ExtraInfo);
1105     return true;
1106   }
1107 
1108   MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
1109   computeUsesVAFloatArgument(*Call, MMI);
1110 
1111   // Handle intrinsic function calls.
1112   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1113     return selectIntrinsicCall(II);
1114 
1115   // Usually, it does not make sense to initialize a value,
1116   // make an unrelated function call and use the value, because
1117   // it tends to be spilled on the stack. So, we move the pointer
1118   // to the last local value to the beginning of the block, so that
1119   // all the values which have already been materialized,
1120   // appear after the call. It also makes sense to skip intrinsics
1121   // since they tend to be inlined.
1122   flushLocalValueMap();
1123 
1124   return lowerCall(Call);
1125 }
1126 
1127 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1128   switch (II->getIntrinsicID()) {
1129   default:
1130     break;
1131   // At -O0 we don't care about the lifetime intrinsics.
1132   case Intrinsic::lifetime_start:
1133   case Intrinsic::lifetime_end:
1134   // The donothing intrinsic does, well, nothing.
1135   case Intrinsic::donothing:
1136   // Neither does the sideeffect intrinsic.
1137   case Intrinsic::sideeffect:
1138   // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1139   case Intrinsic::assume:
1140     return true;
1141   case Intrinsic::dbg_declare: {
1142     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1143     assert(DI->getVariable() && "Missing variable");
1144     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1145       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1146       return true;
1147     }
1148 
1149     const Value *Address = DI->getAddress();
1150     if (!Address || isa<UndefValue>(Address)) {
1151       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1152       return true;
1153     }
1154 
1155     // Byval arguments with frame indices were already handled after argument
1156     // lowering and before isel.
1157     const auto *Arg =
1158         dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
1159     if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
1160       return true;
1161 
1162     Optional<MachineOperand> Op;
1163     if (unsigned Reg = lookUpRegForValue(Address))
1164       Op = MachineOperand::CreateReg(Reg, false);
1165 
1166     // If we have a VLA that has a "use" in a metadata node that's then used
1167     // here but it has no other uses, then we have a problem. E.g.,
1168     //
1169     //   int foo (const int *x) {
1170     //     char a[*x];
1171     //     return 0;
1172     //   }
1173     //
1174     // If we assign 'a' a vreg and fast isel later on has to use the selection
1175     // DAG isel, it will want to copy the value to the vreg. However, there are
1176     // no uses, which goes counter to what selection DAG isel expects.
1177     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1178         (!isa<AllocaInst>(Address) ||
1179          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1180       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1181                                      false);
1182 
1183     if (Op) {
1184       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1185              "Expected inlined-at fields to agree");
1186       if (Op->isReg()) {
1187         Op->setIsDebug(true);
1188         // A dbg.declare describes the address of a source variable, so lower it
1189         // into an indirect DBG_VALUE.
1190         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1191                 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true,
1192                 Op->getReg(), DI->getVariable(), DI->getExpression());
1193       } else
1194         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1195                 TII.get(TargetOpcode::DBG_VALUE))
1196             .add(*Op)
1197             .addImm(0)
1198             .addMetadata(DI->getVariable())
1199             .addMetadata(DI->getExpression());
1200     } else {
1201       // We can't yet handle anything else here because it would require
1202       // generating code, thus altering codegen because of debug info.
1203       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1204     }
1205     return true;
1206   }
1207   case Intrinsic::dbg_value: {
1208     // This form of DBG_VALUE is target-independent.
1209     const DbgValueInst *DI = cast<DbgValueInst>(II);
1210     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1211     const Value *V = DI->getValue();
1212     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1213            "Expected inlined-at fields to agree");
1214     if (!V) {
1215       // Currently the optimizer can produce this; insert an undef to
1216       // help debugging.  Probably the optimizer should not do this.
1217       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
1218               DI->getVariable(), DI->getExpression());
1219     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1220       if (CI->getBitWidth() > 64)
1221         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1222             .addCImm(CI)
1223             .addImm(0U)
1224             .addMetadata(DI->getVariable())
1225             .addMetadata(DI->getExpression());
1226       else
1227         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1228             .addImm(CI->getZExtValue())
1229             .addImm(0U)
1230             .addMetadata(DI->getVariable())
1231             .addMetadata(DI->getExpression());
1232     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1233       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1234           .addFPImm(CF)
1235           .addImm(0U)
1236           .addMetadata(DI->getVariable())
1237           .addMetadata(DI->getExpression());
1238     } else if (unsigned Reg = lookUpRegForValue(V)) {
1239       // FIXME: This does not handle register-indirect values at offset 0.
1240       bool IsIndirect = false;
1241       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1242               DI->getVariable(), DI->getExpression());
1243     } else {
1244       // We can't yet handle anything else here because it would require
1245       // generating code, thus altering codegen because of debug info.
1246       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1247     }
1248     return true;
1249   }
1250   case Intrinsic::objectsize: {
1251     ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1252     unsigned long long Res = CI->isZero() ? -1ULL : 0;
1253     Constant *ResCI = ConstantInt::get(II->getType(), Res);
1254     unsigned ResultReg = getRegForValue(ResCI);
1255     if (!ResultReg)
1256       return false;
1257     updateValueMap(II, ResultReg);
1258     return true;
1259   }
1260   case Intrinsic::invariant_group_barrier:
1261   case Intrinsic::expect: {
1262     unsigned ResultReg = getRegForValue(II->getArgOperand(0));
1263     if (!ResultReg)
1264       return false;
1265     updateValueMap(II, ResultReg);
1266     return true;
1267   }
1268   case Intrinsic::experimental_stackmap:
1269     return selectStackmap(II);
1270   case Intrinsic::experimental_patchpoint_void:
1271   case Intrinsic::experimental_patchpoint_i64:
1272     return selectPatchpoint(II);
1273 
1274   case Intrinsic::xray_customevent:
1275     return selectXRayCustomEvent(II);
1276   }
1277 
1278   return fastLowerIntrinsicCall(II);
1279 }
1280 
1281 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1282   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1283   EVT DstVT = TLI.getValueType(DL, I->getType());
1284 
1285   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1286       !DstVT.isSimple())
1287     // Unhandled type. Halt "fast" selection and bail.
1288     return false;
1289 
1290   // Check if the destination type is legal.
1291   if (!TLI.isTypeLegal(DstVT))
1292     return false;
1293 
1294   // Check if the source operand is legal.
1295   if (!TLI.isTypeLegal(SrcVT))
1296     return false;
1297 
1298   unsigned InputReg = getRegForValue(I->getOperand(0));
1299   if (!InputReg)
1300     // Unhandled operand.  Halt "fast" selection and bail.
1301     return false;
1302 
1303   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
1304 
1305   unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1306                                   Opcode, InputReg, InputRegIsKill);
1307   if (!ResultReg)
1308     return false;
1309 
1310   updateValueMap(I, ResultReg);
1311   return true;
1312 }
1313 
1314 bool FastISel::selectBitCast(const User *I) {
1315   // If the bitcast doesn't change the type, just use the operand value.
1316   if (I->getType() == I->getOperand(0)->getType()) {
1317     unsigned Reg = getRegForValue(I->getOperand(0));
1318     if (!Reg)
1319       return false;
1320     updateValueMap(I, Reg);
1321     return true;
1322   }
1323 
1324   // Bitcasts of other values become reg-reg copies or BITCAST operators.
1325   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1326   EVT DstEVT = TLI.getValueType(DL, I->getType());
1327   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1328       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1329     // Unhandled type. Halt "fast" selection and bail.
1330     return false;
1331 
1332   MVT SrcVT = SrcEVT.getSimpleVT();
1333   MVT DstVT = DstEVT.getSimpleVT();
1334   unsigned Op0 = getRegForValue(I->getOperand(0));
1335   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1336     return false;
1337   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
1338 
1339   // First, try to perform the bitcast by inserting a reg-reg copy.
1340   unsigned ResultReg = 0;
1341   if (SrcVT == DstVT) {
1342     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1343     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1344     // Don't attempt a cross-class copy. It will likely fail.
1345     if (SrcClass == DstClass) {
1346       ResultReg = createResultReg(DstClass);
1347       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1348               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1349     }
1350   }
1351 
1352   // If the reg-reg copy failed, select a BITCAST opcode.
1353   if (!ResultReg)
1354     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
1355 
1356   if (!ResultReg)
1357     return false;
1358 
1359   updateValueMap(I, ResultReg);
1360   return true;
1361 }
1362 
1363 // Remove local value instructions starting from the instruction after
1364 // SavedLastLocalValue to the current function insert point.
1365 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1366 {
1367   MachineInstr *CurLastLocalValue = getLastLocalValue();
1368   if (CurLastLocalValue != SavedLastLocalValue) {
1369     // Find the first local value instruction to be deleted.
1370     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1371     // Otherwise it's the first instruction in the block.
1372     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1373     if (SavedLastLocalValue)
1374       ++FirstDeadInst;
1375     else
1376       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1377     setLastLocalValue(SavedLastLocalValue);
1378     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1379   }
1380 }
1381 
1382 bool FastISel::selectInstruction(const Instruction *I) {
1383   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1384   // Just before the terminator instruction, insert instructions to
1385   // feed PHI nodes in successor blocks.
1386   if (isa<TerminatorInst>(I)) {
1387     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1388       // PHI node handling may have generated local value instructions,
1389       // even though it failed to handle all PHI nodes.
1390       // We remove these instructions because SelectionDAGISel will generate
1391       // them again.
1392       removeDeadLocalValueCode(SavedLastLocalValue);
1393       return false;
1394     }
1395   }
1396 
1397   // FastISel does not handle any operand bundles except OB_funclet.
1398   if (ImmutableCallSite CS = ImmutableCallSite(I))
1399     for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i)
1400       if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1401         return false;
1402 
1403   DbgLoc = I->getDebugLoc();
1404 
1405   SavedInsertPt = FuncInfo.InsertPt;
1406 
1407   if (const auto *Call = dyn_cast<CallInst>(I)) {
1408     const Function *F = Call->getCalledFunction();
1409     LibFunc Func;
1410 
1411     // As a special case, don't handle calls to builtin library functions that
1412     // may be translated directly to target instructions.
1413     if (F && !F->hasLocalLinkage() && F->hasName() &&
1414         LibInfo->getLibFunc(F->getName(), Func) &&
1415         LibInfo->hasOptimizedCodeGen(Func))
1416       return false;
1417 
1418     // Don't handle Intrinsic::trap if a trap function is specified.
1419     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1420         Call->hasFnAttr("trap-func-name"))
1421       return false;
1422   }
1423 
1424   // First, try doing target-independent selection.
1425   if (!SkipTargetIndependentISel) {
1426     if (selectOperator(I, I->getOpcode())) {
1427       ++NumFastIselSuccessIndependent;
1428       DbgLoc = DebugLoc();
1429       return true;
1430     }
1431     // Remove dead code.
1432     recomputeInsertPt();
1433     if (SavedInsertPt != FuncInfo.InsertPt)
1434       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1435     SavedInsertPt = FuncInfo.InsertPt;
1436   }
1437   // Next, try calling the target to attempt to handle the instruction.
1438   if (fastSelectInstruction(I)) {
1439     ++NumFastIselSuccessTarget;
1440     DbgLoc = DebugLoc();
1441     return true;
1442   }
1443   // Remove dead code.
1444   recomputeInsertPt();
1445   if (SavedInsertPt != FuncInfo.InsertPt)
1446     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1447 
1448   DbgLoc = DebugLoc();
1449   // Undo phi node updates, because they will be added again by SelectionDAG.
1450   if (isa<TerminatorInst>(I)) {
1451     // PHI node handling may have generated local value instructions.
1452     // We remove them because SelectionDAGISel will generate them again.
1453     removeDeadLocalValueCode(SavedLastLocalValue);
1454     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1455   }
1456   return false;
1457 }
1458 
1459 /// Emit an unconditional branch to the given block, unless it is the immediate
1460 /// (fall-through) successor, and update the CFG.
1461 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1462                               const DebugLoc &DbgLoc) {
1463   if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
1464       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1465     // For more accurate line information if this is the only instruction
1466     // in the block then emit it, otherwise we have the unconditional
1467     // fall-through case, which needs no instructions.
1468   } else {
1469     // The unconditional branch case.
1470     TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1471                      SmallVector<MachineOperand, 0>(), DbgLoc);
1472   }
1473   if (FuncInfo.BPI) {
1474     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1475         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1476     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1477   } else
1478     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1479 }
1480 
1481 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1482                                 MachineBasicBlock *TrueMBB,
1483                                 MachineBasicBlock *FalseMBB) {
1484   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1485   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1486   // successor/predecessor lists.
1487   if (TrueMBB != FalseMBB) {
1488     if (FuncInfo.BPI) {
1489       auto BranchProbability =
1490           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1491       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1492     } else
1493       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1494   }
1495 
1496   fastEmitBranch(FalseMBB, DbgLoc);
1497 }
1498 
1499 /// Emit an FNeg operation.
1500 bool FastISel::selectFNeg(const User *I) {
1501   unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
1502   if (!OpReg)
1503     return false;
1504   bool OpRegIsKill = hasTrivialKill(I);
1505 
1506   // If the target has ISD::FNEG, use it.
1507   EVT VT = TLI.getValueType(DL, I->getType());
1508   unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1509                                   OpReg, OpRegIsKill);
1510   if (ResultReg) {
1511     updateValueMap(I, ResultReg);
1512     return true;
1513   }
1514 
1515   // Bitcast the value to integer, twiddle the sign bit with xor,
1516   // and then bitcast it back to floating-point.
1517   if (VT.getSizeInBits() > 64)
1518     return false;
1519   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1520   if (!TLI.isTypeLegal(IntVT))
1521     return false;
1522 
1523   unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1524                                ISD::BITCAST, OpReg, OpRegIsKill);
1525   if (!IntReg)
1526     return false;
1527 
1528   unsigned IntResultReg = fastEmit_ri_(
1529       IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
1530       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1531   if (!IntResultReg)
1532     return false;
1533 
1534   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1535                          IntResultReg, /*IsKill=*/true);
1536   if (!ResultReg)
1537     return false;
1538 
1539   updateValueMap(I, ResultReg);
1540   return true;
1541 }
1542 
1543 bool FastISel::selectExtractValue(const User *U) {
1544   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1545   if (!EVI)
1546     return false;
1547 
1548   // Make sure we only try to handle extracts with a legal result.  But also
1549   // allow i1 because it's easy.
1550   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1551   if (!RealVT.isSimple())
1552     return false;
1553   MVT VT = RealVT.getSimpleVT();
1554   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1555     return false;
1556 
1557   const Value *Op0 = EVI->getOperand(0);
1558   Type *AggTy = Op0->getType();
1559 
1560   // Get the base result register.
1561   unsigned ResultReg;
1562   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
1563   if (I != FuncInfo.ValueMap.end())
1564     ResultReg = I->second;
1565   else if (isa<Instruction>(Op0))
1566     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1567   else
1568     return false; // fast-isel can't handle aggregate constants at the moment
1569 
1570   // Get the actual result register, which is an offset from the base register.
1571   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1572 
1573   SmallVector<EVT, 4> AggValueVTs;
1574   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1575 
1576   for (unsigned i = 0; i < VTIndex; i++)
1577     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1578 
1579   updateValueMap(EVI, ResultReg);
1580   return true;
1581 }
1582 
1583 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1584   switch (Opcode) {
1585   case Instruction::Add:
1586     return selectBinaryOp(I, ISD::ADD);
1587   case Instruction::FAdd:
1588     return selectBinaryOp(I, ISD::FADD);
1589   case Instruction::Sub:
1590     return selectBinaryOp(I, ISD::SUB);
1591   case Instruction::FSub:
1592     // FNeg is currently represented in LLVM IR as a special case of FSub.
1593     if (BinaryOperator::isFNeg(I))
1594       return selectFNeg(I);
1595     return selectBinaryOp(I, ISD::FSUB);
1596   case Instruction::Mul:
1597     return selectBinaryOp(I, ISD::MUL);
1598   case Instruction::FMul:
1599     return selectBinaryOp(I, ISD::FMUL);
1600   case Instruction::SDiv:
1601     return selectBinaryOp(I, ISD::SDIV);
1602   case Instruction::UDiv:
1603     return selectBinaryOp(I, ISD::UDIV);
1604   case Instruction::FDiv:
1605     return selectBinaryOp(I, ISD::FDIV);
1606   case Instruction::SRem:
1607     return selectBinaryOp(I, ISD::SREM);
1608   case Instruction::URem:
1609     return selectBinaryOp(I, ISD::UREM);
1610   case Instruction::FRem:
1611     return selectBinaryOp(I, ISD::FREM);
1612   case Instruction::Shl:
1613     return selectBinaryOp(I, ISD::SHL);
1614   case Instruction::LShr:
1615     return selectBinaryOp(I, ISD::SRL);
1616   case Instruction::AShr:
1617     return selectBinaryOp(I, ISD::SRA);
1618   case Instruction::And:
1619     return selectBinaryOp(I, ISD::AND);
1620   case Instruction::Or:
1621     return selectBinaryOp(I, ISD::OR);
1622   case Instruction::Xor:
1623     return selectBinaryOp(I, ISD::XOR);
1624 
1625   case Instruction::GetElementPtr:
1626     return selectGetElementPtr(I);
1627 
1628   case Instruction::Br: {
1629     const BranchInst *BI = cast<BranchInst>(I);
1630 
1631     if (BI->isUnconditional()) {
1632       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1633       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1634       fastEmitBranch(MSucc, BI->getDebugLoc());
1635       return true;
1636     }
1637 
1638     // Conditional branches are not handed yet.
1639     // Halt "fast" selection and bail.
1640     return false;
1641   }
1642 
1643   case Instruction::Unreachable:
1644     if (TM.Options.TrapUnreachable)
1645       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1646     else
1647       return true;
1648 
1649   case Instruction::Alloca:
1650     // FunctionLowering has the static-sized case covered.
1651     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1652       return true;
1653 
1654     // Dynamic-sized alloca is not handled yet.
1655     return false;
1656 
1657   case Instruction::Call:
1658     return selectCall(I);
1659 
1660   case Instruction::BitCast:
1661     return selectBitCast(I);
1662 
1663   case Instruction::FPToSI:
1664     return selectCast(I, ISD::FP_TO_SINT);
1665   case Instruction::ZExt:
1666     return selectCast(I, ISD::ZERO_EXTEND);
1667   case Instruction::SExt:
1668     return selectCast(I, ISD::SIGN_EXTEND);
1669   case Instruction::Trunc:
1670     return selectCast(I, ISD::TRUNCATE);
1671   case Instruction::SIToFP:
1672     return selectCast(I, ISD::SINT_TO_FP);
1673 
1674   case Instruction::IntToPtr: // Deliberate fall-through.
1675   case Instruction::PtrToInt: {
1676     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1677     EVT DstVT = TLI.getValueType(DL, I->getType());
1678     if (DstVT.bitsGT(SrcVT))
1679       return selectCast(I, ISD::ZERO_EXTEND);
1680     if (DstVT.bitsLT(SrcVT))
1681       return selectCast(I, ISD::TRUNCATE);
1682     unsigned Reg = getRegForValue(I->getOperand(0));
1683     if (!Reg)
1684       return false;
1685     updateValueMap(I, Reg);
1686     return true;
1687   }
1688 
1689   case Instruction::ExtractValue:
1690     return selectExtractValue(I);
1691 
1692   case Instruction::PHI:
1693     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1694 
1695   default:
1696     // Unhandled instruction. Halt "fast" selection and bail.
1697     return false;
1698   }
1699 }
1700 
1701 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1702                    const TargetLibraryInfo *LibInfo,
1703                    bool SkipTargetIndependentISel)
1704     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1705       MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1706       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1707       TII(*MF->getSubtarget().getInstrInfo()),
1708       TLI(*MF->getSubtarget().getTargetLowering()),
1709       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1710       SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1711 
1712 FastISel::~FastISel() = default;
1713 
1714 bool FastISel::fastLowerArguments() { return false; }
1715 
1716 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1717 
1718 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1719   return false;
1720 }
1721 
1722 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1723 
1724 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
1725                               bool /*Op0IsKill*/) {
1726   return 0;
1727 }
1728 
1729 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1730                                bool /*Op0IsKill*/, unsigned /*Op1*/,
1731                                bool /*Op1IsKill*/) {
1732   return 0;
1733 }
1734 
1735 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1736   return 0;
1737 }
1738 
1739 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1740                               const ConstantFP * /*FPImm*/) {
1741   return 0;
1742 }
1743 
1744 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1745                                bool /*Op0IsKill*/, uint64_t /*Imm*/) {
1746   return 0;
1747 }
1748 
1749 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1750 /// instruction with an immediate operand using fastEmit_ri.
1751 /// If that fails, it materializes the immediate into a register and try
1752 /// fastEmit_rr instead.
1753 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1754                                 bool Op0IsKill, uint64_t Imm, MVT ImmType) {
1755   // If this is a multiply by a power of two, emit this as a shift left.
1756   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1757     Opcode = ISD::SHL;
1758     Imm = Log2_64(Imm);
1759   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1760     // div x, 8 -> srl x, 3
1761     Opcode = ISD::SRL;
1762     Imm = Log2_64(Imm);
1763   }
1764 
1765   // Horrible hack (to be removed), check to make sure shift amounts are
1766   // in-range.
1767   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1768       Imm >= VT.getSizeInBits())
1769     return 0;
1770 
1771   // First check if immediate type is legal. If not, we can't use the ri form.
1772   unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1773   if (ResultReg)
1774     return ResultReg;
1775   unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1776   bool IsImmKill = true;
1777   if (!MaterialReg) {
1778     // This is a bit ugly/slow, but failing here means falling out of
1779     // fast-isel, which would be very slow.
1780     IntegerType *ITy =
1781         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1782     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1783     if (!MaterialReg)
1784       return 0;
1785     // FIXME: If the materialized register here has no uses yet then this
1786     // will be the first use and we should be able to mark it as killed.
1787     // However, the local value area for materialising constant expressions
1788     // grows down, not up, which means that any constant expressions we generate
1789     // later which also use 'Imm' could be after this instruction and therefore
1790     // after this kill.
1791     IsImmKill = false;
1792   }
1793   return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill);
1794 }
1795 
1796 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
1797   return MRI.createVirtualRegister(RC);
1798 }
1799 
1800 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
1801                                             unsigned OpNum) {
1802   if (TargetRegisterInfo::isVirtualRegister(Op)) {
1803     const TargetRegisterClass *RegClass =
1804         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1805     if (!MRI.constrainRegClass(Op, RegClass)) {
1806       // If it's not legal to COPY between the register classes, something
1807       // has gone very wrong before we got here.
1808       unsigned NewOp = createResultReg(RegClass);
1809       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1810               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1811       return NewOp;
1812     }
1813   }
1814   return Op;
1815 }
1816 
1817 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
1818                                  const TargetRegisterClass *RC) {
1819   unsigned ResultReg = createResultReg(RC);
1820   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1821 
1822   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
1823   return ResultReg;
1824 }
1825 
1826 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
1827                                   const TargetRegisterClass *RC, unsigned Op0,
1828                                   bool Op0IsKill) {
1829   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1830 
1831   unsigned ResultReg = createResultReg(RC);
1832   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1833 
1834   if (II.getNumDefs() >= 1)
1835     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1836         .addReg(Op0, getKillRegState(Op0IsKill));
1837   else {
1838     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1839         .addReg(Op0, getKillRegState(Op0IsKill));
1840     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1841             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1842   }
1843 
1844   return ResultReg;
1845 }
1846 
1847 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
1848                                    const TargetRegisterClass *RC, unsigned Op0,
1849                                    bool Op0IsKill, unsigned Op1,
1850                                    bool Op1IsKill) {
1851   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1852 
1853   unsigned ResultReg = createResultReg(RC);
1854   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1855   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1856 
1857   if (II.getNumDefs() >= 1)
1858     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1859         .addReg(Op0, getKillRegState(Op0IsKill))
1860         .addReg(Op1, getKillRegState(Op1IsKill));
1861   else {
1862     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1863         .addReg(Op0, getKillRegState(Op0IsKill))
1864         .addReg(Op1, getKillRegState(Op1IsKill));
1865     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1866             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1867   }
1868   return ResultReg;
1869 }
1870 
1871 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
1872                                     const TargetRegisterClass *RC, unsigned Op0,
1873                                     bool Op0IsKill, unsigned Op1,
1874                                     bool Op1IsKill, unsigned Op2,
1875                                     bool Op2IsKill) {
1876   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1877 
1878   unsigned ResultReg = createResultReg(RC);
1879   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1880   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1881   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
1882 
1883   if (II.getNumDefs() >= 1)
1884     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1885         .addReg(Op0, getKillRegState(Op0IsKill))
1886         .addReg(Op1, getKillRegState(Op1IsKill))
1887         .addReg(Op2, getKillRegState(Op2IsKill));
1888   else {
1889     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1890         .addReg(Op0, getKillRegState(Op0IsKill))
1891         .addReg(Op1, getKillRegState(Op1IsKill))
1892         .addReg(Op2, getKillRegState(Op2IsKill));
1893     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1894             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1895   }
1896   return ResultReg;
1897 }
1898 
1899 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
1900                                    const TargetRegisterClass *RC, unsigned Op0,
1901                                    bool Op0IsKill, uint64_t Imm) {
1902   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1903 
1904   unsigned ResultReg = createResultReg(RC);
1905   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1906 
1907   if (II.getNumDefs() >= 1)
1908     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1909         .addReg(Op0, getKillRegState(Op0IsKill))
1910         .addImm(Imm);
1911   else {
1912     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1913         .addReg(Op0, getKillRegState(Op0IsKill))
1914         .addImm(Imm);
1915     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1916             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1917   }
1918   return ResultReg;
1919 }
1920 
1921 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
1922                                     const TargetRegisterClass *RC, unsigned Op0,
1923                                     bool Op0IsKill, uint64_t Imm1,
1924                                     uint64_t Imm2) {
1925   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1926 
1927   unsigned ResultReg = createResultReg(RC);
1928   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1929 
1930   if (II.getNumDefs() >= 1)
1931     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1932         .addReg(Op0, getKillRegState(Op0IsKill))
1933         .addImm(Imm1)
1934         .addImm(Imm2);
1935   else {
1936     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1937         .addReg(Op0, getKillRegState(Op0IsKill))
1938         .addImm(Imm1)
1939         .addImm(Imm2);
1940     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1941             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1942   }
1943   return ResultReg;
1944 }
1945 
1946 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
1947                                   const TargetRegisterClass *RC,
1948                                   const ConstantFP *FPImm) {
1949   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1950 
1951   unsigned ResultReg = createResultReg(RC);
1952 
1953   if (II.getNumDefs() >= 1)
1954     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1955         .addFPImm(FPImm);
1956   else {
1957     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1958         .addFPImm(FPImm);
1959     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1960             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1961   }
1962   return ResultReg;
1963 }
1964 
1965 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
1966                                     const TargetRegisterClass *RC, unsigned Op0,
1967                                     bool Op0IsKill, unsigned Op1,
1968                                     bool Op1IsKill, uint64_t Imm) {
1969   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1970 
1971   unsigned ResultReg = createResultReg(RC);
1972   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1973   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1974 
1975   if (II.getNumDefs() >= 1)
1976     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1977         .addReg(Op0, getKillRegState(Op0IsKill))
1978         .addReg(Op1, getKillRegState(Op1IsKill))
1979         .addImm(Imm);
1980   else {
1981     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1982         .addReg(Op0, getKillRegState(Op0IsKill))
1983         .addReg(Op1, getKillRegState(Op1IsKill))
1984         .addImm(Imm);
1985     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1986             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1987   }
1988   return ResultReg;
1989 }
1990 
1991 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
1992                                   const TargetRegisterClass *RC, uint64_t Imm) {
1993   unsigned ResultReg = createResultReg(RC);
1994   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1995 
1996   if (II.getNumDefs() >= 1)
1997     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1998         .addImm(Imm);
1999   else {
2000     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
2001     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2002             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2003   }
2004   return ResultReg;
2005 }
2006 
2007 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2008                                               bool Op0IsKill, uint32_t Idx) {
2009   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2010   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
2011          "Cannot yet extract from physregs");
2012   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2013   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2014   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
2015           ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
2016   return ResultReg;
2017 }
2018 
2019 /// Emit MachineInstrs to compute the value of Op with all but the least
2020 /// significant bit set to zero.
2021 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
2022   return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
2023 }
2024 
2025 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2026 /// Emit code to ensure constants are copied into registers when needed.
2027 /// Remember the virtual registers that need to be added to the Machine PHI
2028 /// nodes as input.  We cannot just directly add them, because expansion
2029 /// might result in multiple MBB's for one BB.  As such, the start of the
2030 /// BB might correspond to a different MBB than the end.
2031 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2032   const TerminatorInst *TI = LLVMBB->getTerminator();
2033 
2034   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2035   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2036 
2037   // Check successor nodes' PHI nodes that expect a constant to be available
2038   // from this block.
2039   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2040     const BasicBlock *SuccBB = TI->getSuccessor(succ);
2041     if (!isa<PHINode>(SuccBB->begin()))
2042       continue;
2043     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2044 
2045     // If this terminator has multiple identical successors (common for
2046     // switches), only handle each succ once.
2047     if (!SuccsHandled.insert(SuccMBB).second)
2048       continue;
2049 
2050     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2051 
2052     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2053     // nodes and Machine PHI nodes, but the incoming operands have not been
2054     // emitted yet.
2055     for (const PHINode &PN : SuccBB->phis()) {
2056       // Ignore dead phi's.
2057       if (PN.use_empty())
2058         continue;
2059 
2060       // Only handle legal types. Two interesting things to note here. First,
2061       // by bailing out early, we may leave behind some dead instructions,
2062       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2063       // own moves. Second, this check is necessary because FastISel doesn't
2064       // use CreateRegs to create registers, so it always creates
2065       // exactly one register for each non-void instruction.
2066       EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2067       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2068         // Handle integer promotions, though, because they're common and easy.
2069         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2070           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2071           return false;
2072         }
2073       }
2074 
2075       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2076 
2077       // Set the DebugLoc for the copy. Prefer the location of the operand
2078       // if there is one; use the location of the PHI otherwise.
2079       DbgLoc = PN.getDebugLoc();
2080       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2081         DbgLoc = Inst->getDebugLoc();
2082 
2083       unsigned Reg = getRegForValue(PHIOp);
2084       if (!Reg) {
2085         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2086         return false;
2087       }
2088       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2089       DbgLoc = DebugLoc();
2090     }
2091   }
2092 
2093   return true;
2094 }
2095 
2096 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2097   assert(LI->hasOneUse() &&
2098          "tryToFoldLoad expected a LoadInst with a single use");
2099   // We know that the load has a single use, but don't know what it is.  If it
2100   // isn't one of the folded instructions, then we can't succeed here.  Handle
2101   // this by scanning the single-use users of the load until we get to FoldInst.
2102   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2103 
2104   const Instruction *TheUser = LI->user_back();
2105   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2106          // Stay in the right block.
2107          TheUser->getParent() == FoldInst->getParent() &&
2108          --MaxUsers) { // Don't scan too far.
2109     // If there are multiple or no uses of this instruction, then bail out.
2110     if (!TheUser->hasOneUse())
2111       return false;
2112 
2113     TheUser = TheUser->user_back();
2114   }
2115 
2116   // If we didn't find the fold instruction, then we failed to collapse the
2117   // sequence.
2118   if (TheUser != FoldInst)
2119     return false;
2120 
2121   // Don't try to fold volatile loads.  Target has to deal with alignment
2122   // constraints.
2123   if (LI->isVolatile())
2124     return false;
2125 
2126   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2127   // then there actually was no reference to it.  Perhaps the load is referenced
2128   // by a dead instruction.
2129   unsigned LoadReg = getRegForValue(LI);
2130   if (!LoadReg)
2131     return false;
2132 
2133   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2134   // may mean that the instruction got lowered to multiple MIs, or the use of
2135   // the loaded value ended up being multiple operands of the result.
2136   if (!MRI.hasOneUse(LoadReg))
2137     return false;
2138 
2139   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2140   MachineInstr *User = RI->getParent();
2141 
2142   // Set the insertion point properly.  Folding the load can cause generation of
2143   // other random instructions (like sign extends) for addressing modes; make
2144   // sure they get inserted in a logical place before the new instruction.
2145   FuncInfo.InsertPt = User;
2146   FuncInfo.MBB = User->getParent();
2147 
2148   // Ask the target to try folding the load.
2149   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2150 }
2151 
2152 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2153   // Must be an add.
2154   if (!isa<AddOperator>(Add))
2155     return false;
2156   // Type size needs to match.
2157   if (DL.getTypeSizeInBits(GEP->getType()) !=
2158       DL.getTypeSizeInBits(Add->getType()))
2159     return false;
2160   // Must be in the same basic block.
2161   if (isa<Instruction>(Add) &&
2162       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2163     return false;
2164   // Must have a constant operand.
2165   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2166 }
2167 
2168 MachineMemOperand *
2169 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2170   const Value *Ptr;
2171   Type *ValTy;
2172   unsigned Alignment;
2173   MachineMemOperand::Flags Flags;
2174   bool IsVolatile;
2175 
2176   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2177     Alignment = LI->getAlignment();
2178     IsVolatile = LI->isVolatile();
2179     Flags = MachineMemOperand::MOLoad;
2180     Ptr = LI->getPointerOperand();
2181     ValTy = LI->getType();
2182   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2183     Alignment = SI->getAlignment();
2184     IsVolatile = SI->isVolatile();
2185     Flags = MachineMemOperand::MOStore;
2186     Ptr = SI->getPointerOperand();
2187     ValTy = SI->getValueOperand()->getType();
2188   } else
2189     return nullptr;
2190 
2191   bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr;
2192   bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
2193   bool IsDereferenceable =
2194       I->getMetadata(LLVMContext::MD_dereferenceable) != nullptr;
2195   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2196 
2197   AAMDNodes AAInfo;
2198   I->getAAMetadata(AAInfo);
2199 
2200   if (Alignment == 0) // Ensure that codegen never sees alignment 0.
2201     Alignment = DL.getABITypeAlignment(ValTy);
2202 
2203   unsigned Size = DL.getTypeStoreSize(ValTy);
2204 
2205   if (IsVolatile)
2206     Flags |= MachineMemOperand::MOVolatile;
2207   if (IsNonTemporal)
2208     Flags |= MachineMemOperand::MONonTemporal;
2209   if (IsDereferenceable)
2210     Flags |= MachineMemOperand::MODereferenceable;
2211   if (IsInvariant)
2212     Flags |= MachineMemOperand::MOInvariant;
2213 
2214   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2215                                            Alignment, AAInfo, Ranges);
2216 }
2217 
2218 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2219   // If both operands are the same, then try to optimize or fold the cmp.
2220   CmpInst::Predicate Predicate = CI->getPredicate();
2221   if (CI->getOperand(0) != CI->getOperand(1))
2222     return Predicate;
2223 
2224   switch (Predicate) {
2225   default: llvm_unreachable("Invalid predicate!");
2226   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2227   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2228   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2229   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2230   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2231   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2232   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2233   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2234   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2235   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2236   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2237   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2238   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2239   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2240   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2241   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2242 
2243   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2244   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2245   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2246   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2247   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2248   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2249   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2250   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2251   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2252   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2253   }
2254 
2255   return Predicate;
2256 }
2257