1 //===--- SelectOptimize.cpp - Convert select to branches if profitable ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass converts selects to conditional jumps when profitable. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/Optional.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/BlockFrequencyInfo.h" 17 #include "llvm/Analysis/BranchProbabilityInfo.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 20 #include "llvm/Analysis/ProfileSummaryInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetPassConfig.h" 25 #include "llvm/CodeGen/TargetSchedule.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/InitializePasses.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/ScaledNumber.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/Transforms/Utils/SizeOpts.h" 37 #include <algorithm> 38 #include <memory> 39 #include <queue> 40 #include <stack> 41 #include <string> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "select-optimize" 46 47 STATISTIC(NumSelectOptAnalyzed, 48 "Number of select groups considered for conversion to branch"); 49 STATISTIC(NumSelectConvertedExpColdOperand, 50 "Number of select groups converted due to expensive cold operand"); 51 STATISTIC(NumSelectConvertedHighPred, 52 "Number of select groups converted due to high-predictability"); 53 STATISTIC(NumSelectUnPred, 54 "Number of select groups not converted due to unpredictability"); 55 STATISTIC(NumSelectColdBB, 56 "Number of select groups not converted due to cold basic block"); 57 STATISTIC(NumSelectConvertedLoop, 58 "Number of select groups converted due to loop-level analysis"); 59 STATISTIC(NumSelectsConverted, "Number of selects converted"); 60 61 static cl::opt<unsigned> ColdOperandThreshold( 62 "cold-operand-threshold", 63 cl::desc("Maximum frequency of path for an operand to be considered cold."), 64 cl::init(20), cl::Hidden); 65 66 static cl::opt<unsigned> ColdOperandMaxCostMultiplier( 67 "cold-operand-max-cost-multiplier", 68 cl::desc("Maximum cost multiplier of TCC_expensive for the dependence " 69 "slice of a cold operand to be considered inexpensive."), 70 cl::init(1), cl::Hidden); 71 72 static cl::opt<unsigned> 73 GainGradientThreshold("select-opti-loop-gradient-gain-threshold", 74 cl::desc("Gradient gain threshold (%)."), 75 cl::init(25), cl::Hidden); 76 77 static cl::opt<unsigned> 78 GainCycleThreshold("select-opti-loop-cycle-gain-threshold", 79 cl::desc("Minimum gain per loop (in cycles) threshold."), 80 cl::init(4), cl::Hidden); 81 82 static cl::opt<unsigned> GainRelativeThreshold( 83 "select-opti-loop-relative-gain-threshold", 84 cl::desc( 85 "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"), 86 cl::init(8), cl::Hidden); 87 88 static cl::opt<unsigned> MispredictDefaultRate( 89 "mispredict-default-rate", cl::Hidden, cl::init(25), 90 cl::desc("Default mispredict rate (initialized to 25%).")); 91 92 static cl::opt<bool> 93 DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden, 94 cl::init(false), 95 cl::desc("Disable loop-level heuristics.")); 96 97 namespace { 98 99 class SelectOptimize : public FunctionPass { 100 const TargetMachine *TM = nullptr; 101 const TargetSubtargetInfo *TSI; 102 const TargetLowering *TLI = nullptr; 103 const TargetTransformInfo *TTI = nullptr; 104 const LoopInfo *LI; 105 DominatorTree *DT; 106 std::unique_ptr<BlockFrequencyInfo> BFI; 107 std::unique_ptr<BranchProbabilityInfo> BPI; 108 ProfileSummaryInfo *PSI; 109 OptimizationRemarkEmitter *ORE; 110 TargetSchedModel TSchedModel; 111 112 public: 113 static char ID; 114 115 SelectOptimize() : FunctionPass(ID) { 116 initializeSelectOptimizePass(*PassRegistry::getPassRegistry()); 117 } 118 119 bool runOnFunction(Function &F) override; 120 121 void getAnalysisUsage(AnalysisUsage &AU) const override { 122 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 123 AU.addRequired<TargetPassConfig>(); 124 AU.addRequired<TargetTransformInfoWrapperPass>(); 125 AU.addRequired<DominatorTreeWrapperPass>(); 126 AU.addRequired<LoopInfoWrapperPass>(); 127 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 128 } 129 130 private: 131 // Select groups consist of consecutive select instructions with the same 132 // condition. 133 using SelectGroup = SmallVector<SelectInst *, 2>; 134 using SelectGroups = SmallVector<SelectGroup, 2>; 135 136 using Scaled64 = ScaledNumber<uint64_t>; 137 138 struct CostInfo { 139 /// Predicated cost (with selects as conditional moves). 140 Scaled64 PredCost; 141 /// Non-predicated cost (with selects converted to branches). 142 Scaled64 NonPredCost; 143 }; 144 145 // Converts select instructions of a function to conditional jumps when deemed 146 // profitable. Returns true if at least one select was converted. 147 bool optimizeSelects(Function &F); 148 149 // Heuristics for determining which select instructions can be profitably 150 // conveted to branches. Separate heuristics for selects in inner-most loops 151 // and the rest of code regions (base heuristics for non-inner-most loop 152 // regions). 153 void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups); 154 void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups); 155 156 // Converts to branches the select groups that were deemed 157 // profitable-to-convert. 158 void convertProfitableSIGroups(SelectGroups &ProfSIGroups); 159 160 // Splits selects of a given basic block into select groups. 161 void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups); 162 163 // Determines for which select groups it is profitable converting to branches 164 // (base and inner-most-loop heuristics). 165 void findProfitableSIGroupsBase(SelectGroups &SIGroups, 166 SelectGroups &ProfSIGroups); 167 void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups, 168 SelectGroups &ProfSIGroups); 169 170 // Determines if a select group should be converted to a branch (base 171 // heuristics). 172 bool isConvertToBranchProfitableBase(const SmallVector<SelectInst *, 2> &ASI); 173 174 // Returns true if there are expensive instructions in the cold value 175 // operand's (if any) dependence slice of any of the selects of the given 176 // group. 177 bool hasExpensiveColdOperand(const SmallVector<SelectInst *, 2> &ASI); 178 179 // For a given source instruction, collect its backwards dependence slice 180 // consisting of instructions exclusively computed for producing the operands 181 // of the source instruction. 182 void getExclBackwardsSlice(Instruction *I, 183 SmallVector<Instruction *, 2> &Slice); 184 185 // Returns true if the condition of the select is highly predictable. 186 bool isSelectHighlyPredictable(const SelectInst *SI); 187 188 // Loop-level checks to determine if a non-predicated version (with branches) 189 // of the given loop is more profitable than its predicated version. 190 bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]); 191 192 // Computes instruction and loop-critical-path costs for both the predicated 193 // and non-predicated version of the given loop. 194 bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups, 195 DenseMap<const Instruction *, CostInfo> &InstCostMap, 196 CostInfo *LoopCost); 197 198 // Returns a set of all the select instructions in the given select groups. 199 SmallPtrSet<const Instruction *, 2> getSIset(const SelectGroups &SIGroups); 200 201 // Returns the latency cost of a given instruction. 202 Optional<uint64_t> computeInstCost(const Instruction *I); 203 204 // Returns the misprediction cost of a given select when converted to branch. 205 Scaled64 getMispredictionCost(const SelectInst *SI, const Scaled64 CondCost); 206 207 // Returns the cost of a branch when the prediction is correct. 208 Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost, 209 const SelectInst *SI); 210 211 // Returns true if the target architecture supports lowering a given select. 212 bool isSelectKindSupported(SelectInst *SI); 213 }; 214 } // namespace 215 216 char SelectOptimize::ID = 0; 217 218 INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false, 219 false) 220 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 221 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 222 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 223 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 224 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 225 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 226 INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false, 227 false) 228 229 FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); } 230 231 bool SelectOptimize::runOnFunction(Function &F) { 232 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 233 TSI = TM->getSubtargetImpl(F); 234 TLI = TSI->getTargetLowering(); 235 236 // If none of the select types is supported then skip this pass. 237 // This is an optimization pass. Legality issues will be handled by 238 // instruction selection. 239 if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) && 240 !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) && 241 !TLI->isSelectSupported(TargetLowering::VectorMaskSelect)) 242 return false; 243 244 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 245 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 246 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 247 BPI.reset(new BranchProbabilityInfo(F, *LI)); 248 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 249 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 250 ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 251 TSchedModel.init(TSI); 252 253 // When optimizing for size, selects are preferable over branches. 254 if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI.get())) 255 return false; 256 257 return optimizeSelects(F); 258 } 259 260 bool SelectOptimize::optimizeSelects(Function &F) { 261 // Determine for which select groups it is profitable converting to branches. 262 SelectGroups ProfSIGroups; 263 // Base heuristics apply only to non-loops and outer loops. 264 optimizeSelectsBase(F, ProfSIGroups); 265 // Separate heuristics for inner-most loops. 266 optimizeSelectsInnerLoops(F, ProfSIGroups); 267 268 // Convert to branches the select groups that were deemed 269 // profitable-to-convert. 270 convertProfitableSIGroups(ProfSIGroups); 271 272 // Code modified if at least one select group was converted. 273 return !ProfSIGroups.empty(); 274 } 275 276 void SelectOptimize::optimizeSelectsBase(Function &F, 277 SelectGroups &ProfSIGroups) { 278 // Collect all the select groups. 279 SelectGroups SIGroups; 280 for (BasicBlock &BB : F) { 281 // Base heuristics apply only to non-loops and outer loops. 282 Loop *L = LI->getLoopFor(&BB); 283 if (L && L->isInnermost()) 284 continue; 285 collectSelectGroups(BB, SIGroups); 286 } 287 288 // Determine for which select groups it is profitable converting to branches. 289 findProfitableSIGroupsBase(SIGroups, ProfSIGroups); 290 } 291 292 void SelectOptimize::optimizeSelectsInnerLoops(Function &F, 293 SelectGroups &ProfSIGroups) { 294 SmallVector<Loop *, 4> Loops(LI->begin(), LI->end()); 295 // Need to check size on each iteration as we accumulate child loops. 296 for (unsigned long i = 0; i < Loops.size(); ++i) 297 for (Loop *ChildL : Loops[i]->getSubLoops()) 298 Loops.push_back(ChildL); 299 300 for (Loop *L : Loops) { 301 if (!L->isInnermost()) 302 continue; 303 304 SelectGroups SIGroups; 305 for (BasicBlock *BB : L->getBlocks()) 306 collectSelectGroups(*BB, SIGroups); 307 308 findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups); 309 } 310 } 311 312 /// If \p isTrue is true, return the true value of \p SI, otherwise return 313 /// false value of \p SI. If the true/false value of \p SI is defined by any 314 /// select instructions in \p Selects, look through the defining select 315 /// instruction until the true/false value is not defined in \p Selects. 316 static Value * 317 getTrueOrFalseValue(SelectInst *SI, bool isTrue, 318 const SmallPtrSet<const Instruction *, 2> &Selects) { 319 Value *V = nullptr; 320 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 321 DefSI = dyn_cast<SelectInst>(V)) { 322 assert(DefSI->getCondition() == SI->getCondition() && 323 "The condition of DefSI does not match with SI"); 324 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 325 } 326 assert(V && "Failed to get select true/false value"); 327 return V; 328 } 329 330 void SelectOptimize::convertProfitableSIGroups(SelectGroups &ProfSIGroups) { 331 for (SelectGroup &ASI : ProfSIGroups) { 332 // TODO: eliminate the redundancy of logic transforming selects to branches 333 // by removing CodeGenPrepare::optimizeSelectInst and optimizing here 334 // selects for all cases (with and without profile information). 335 336 // Transform a sequence like this: 337 // start: 338 // %cmp = cmp uge i32 %a, %b 339 // %sel = select i1 %cmp, i32 %c, i32 %d 340 // 341 // Into: 342 // start: 343 // %cmp = cmp uge i32 %a, %b 344 // %cmp.frozen = freeze %cmp 345 // br i1 %cmp.frozen, label %select.end, label %select.false 346 // select.false: 347 // br label %select.end 348 // select.end: 349 // %sel = phi i32 [ %c, %start ], [ %d, %select.false ] 350 // 351 // %cmp should be frozen, otherwise it may introduce undefined behavior. 352 353 // We split the block containing the select(s) into two blocks. 354 SelectInst *SI = ASI.front(); 355 SelectInst *LastSI = ASI.back(); 356 BasicBlock *StartBlock = SI->getParent(); 357 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 358 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 359 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 360 // Delete the unconditional branch that was just created by the split. 361 StartBlock->getTerminator()->eraseFromParent(); 362 363 // Move any debug/pseudo instructions that were in-between the select 364 // group to the newly-created end block. 365 SmallVector<Instruction *, 2> DebugPseudoINS; 366 auto DIt = SI->getIterator(); 367 while (&*DIt != LastSI) { 368 if (DIt->isDebugOrPseudoInst()) 369 DebugPseudoINS.push_back(&*DIt); 370 DIt++; 371 } 372 for (auto DI : DebugPseudoINS) { 373 DI->moveBefore(&*EndBlock->getFirstInsertionPt()); 374 } 375 376 // These are the new basic blocks for the conditional branch. 377 // For now, no instruction sinking to the true/false blocks. 378 // Thus both True and False blocks will be empty. 379 BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr; 380 381 // Use the 'false' side for a new input value to the PHI. 382 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 383 EndBlock->getParent(), EndBlock); 384 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 385 FalseBranch->setDebugLoc(SI->getDebugLoc()); 386 387 // For the 'true' side the path originates from the start block from the 388 // point view of the new PHI. 389 TrueBlock = StartBlock; 390 391 // Insert the real conditional branch based on the original condition. 392 BasicBlock *TT, *FT; 393 TT = EndBlock; 394 FT = FalseBlock; 395 IRBuilder<> IB(SI); 396 auto *CondFr = 397 IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 398 IB.CreateCondBr(CondFr, TT, FT, SI); 399 400 SmallPtrSet<const Instruction *, 2> INS; 401 INS.insert(ASI.begin(), ASI.end()); 402 // Use reverse iterator because later select may use the value of the 403 // earlier select, and we need to propagate value through earlier select 404 // to get the PHI operand. 405 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 406 SelectInst *SI = *It; 407 // The select itself is replaced with a PHI Node. 408 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 409 PN->takeName(SI); 410 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 411 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 412 PN->setDebugLoc(SI->getDebugLoc()); 413 414 SI->replaceAllUsesWith(PN); 415 SI->eraseFromParent(); 416 INS.erase(SI); 417 ++NumSelectsConverted; 418 } 419 } 420 } 421 422 void SelectOptimize::collectSelectGroups(BasicBlock &BB, 423 SelectGroups &SIGroups) { 424 BasicBlock::iterator BBIt = BB.begin(); 425 while (BBIt != BB.end()) { 426 Instruction *I = &*BBIt++; 427 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 428 SelectGroup SIGroup; 429 SIGroup.push_back(SI); 430 while (BBIt != BB.end()) { 431 Instruction *NI = &*BBIt; 432 SelectInst *NSI = dyn_cast<SelectInst>(NI); 433 if (NSI && SI->getCondition() == NSI->getCondition()) { 434 SIGroup.push_back(NSI); 435 } else if (!NI->isDebugOrPseudoInst()) { 436 // Debug/pseudo instructions should be skipped and not prevent the 437 // formation of a select group. 438 break; 439 } 440 ++BBIt; 441 } 442 443 // If the select type is not supported, no point optimizing it. 444 // Instruction selection will take care of it. 445 if (!isSelectKindSupported(SI)) 446 continue; 447 448 SIGroups.push_back(SIGroup); 449 } 450 } 451 } 452 453 void SelectOptimize::findProfitableSIGroupsBase(SelectGroups &SIGroups, 454 SelectGroups &ProfSIGroups) { 455 for (SelectGroup &ASI : SIGroups) { 456 ++NumSelectOptAnalyzed; 457 if (isConvertToBranchProfitableBase(ASI)) 458 ProfSIGroups.push_back(ASI); 459 } 460 } 461 462 void SelectOptimize::findProfitableSIGroupsInnerLoops( 463 const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) { 464 NumSelectOptAnalyzed += SIGroups.size(); 465 // For each select group in an inner-most loop, 466 // a branch is more preferable than a select/conditional-move if: 467 // i) conversion to branches for all the select groups of the loop satisfies 468 // loop-level heuristics including reducing the loop's critical path by 469 // some threshold (see SelectOptimize::checkLoopHeuristics); and 470 // ii) the total cost of the select group is cheaper with a branch compared 471 // to its predicated version. The cost is in terms of latency and the cost 472 // of a select group is the cost of its most expensive select instruction 473 // (assuming infinite resources and thus fully leveraging available ILP). 474 475 DenseMap<const Instruction *, CostInfo> InstCostMap; 476 CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()}, 477 {Scaled64::getZero(), Scaled64::getZero()}}; 478 if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) || 479 !checkLoopHeuristics(L, LoopCost)) { 480 return; 481 } 482 483 for (SelectGroup &ASI : SIGroups) { 484 // Assuming infinite resources, the cost of a group of instructions is the 485 // cost of the most expensive instruction of the group. 486 Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero(); 487 for (SelectInst *SI : ASI) { 488 SelectCost = std::max(SelectCost, InstCostMap[SI].PredCost); 489 BranchCost = std::max(BranchCost, InstCostMap[SI].NonPredCost); 490 } 491 if (BranchCost < SelectCost) { 492 OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", ASI.front()); 493 OR << "Profitable to convert to branch (loop analysis). BranchCost=" 494 << BranchCost.toString() << ", SelectCost=" << SelectCost.toString() 495 << ". "; 496 ORE->emit(OR); 497 ++NumSelectConvertedLoop; 498 ProfSIGroups.push_back(ASI); 499 } else { 500 OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front()); 501 ORmiss << "Select is more profitable (loop analysis). BranchCost=" 502 << BranchCost.toString() 503 << ", SelectCost=" << SelectCost.toString() << ". "; 504 ORE->emit(ORmiss); 505 } 506 } 507 } 508 509 bool SelectOptimize::isConvertToBranchProfitableBase( 510 const SmallVector<SelectInst *, 2> &ASI) { 511 SelectInst *SI = ASI.front(); 512 OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI); 513 OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI); 514 515 // Skip cold basic blocks. Better to optimize for size for cold blocks. 516 if (PSI->isColdBlock(SI->getParent(), BFI.get())) { 517 ++NumSelectColdBB; 518 ORmiss << "Not converted to branch because of cold basic block. "; 519 ORE->emit(ORmiss); 520 return false; 521 } 522 523 // If unpredictable, branch form is less profitable. 524 if (SI->getMetadata(LLVMContext::MD_unpredictable)) { 525 ++NumSelectUnPred; 526 ORmiss << "Not converted to branch because of unpredictable branch. "; 527 ORE->emit(ORmiss); 528 return false; 529 } 530 531 // If highly predictable, branch form is more profitable, unless a 532 // predictable select is inexpensive in the target architecture. 533 if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) { 534 ++NumSelectConvertedHighPred; 535 OR << "Converted to branch because of highly predictable branch. "; 536 ORE->emit(OR); 537 return true; 538 } 539 540 // Look for expensive instructions in the cold operand's (if any) dependence 541 // slice of any of the selects in the group. 542 if (hasExpensiveColdOperand(ASI)) { 543 ++NumSelectConvertedExpColdOperand; 544 OR << "Converted to branch because of expensive cold operand."; 545 ORE->emit(OR); 546 return true; 547 } 548 549 ORmiss << "Not profitable to convert to branch (base heuristic)."; 550 ORE->emit(ORmiss); 551 return false; 552 } 553 554 static InstructionCost divideNearest(InstructionCost Numerator, 555 uint64_t Denominator) { 556 return (Numerator + (Denominator / 2)) / Denominator; 557 } 558 559 bool SelectOptimize::hasExpensiveColdOperand( 560 const SmallVector<SelectInst *, 2> &ASI) { 561 bool ColdOperand = false; 562 uint64_t TrueWeight, FalseWeight, TotalWeight; 563 if (ASI.front()->extractProfMetadata(TrueWeight, FalseWeight)) { 564 uint64_t MinWeight = std::min(TrueWeight, FalseWeight); 565 TotalWeight = TrueWeight + FalseWeight; 566 // Is there a path with frequency <ColdOperandThreshold% (default:20%) ? 567 ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight; 568 } else if (PSI->hasProfileSummary()) { 569 OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front()); 570 ORmiss << "Profile data available but missing branch-weights metadata for " 571 "select instruction. "; 572 ORE->emit(ORmiss); 573 } 574 if (!ColdOperand) 575 return false; 576 // Check if the cold path's dependence slice is expensive for any of the 577 // selects of the group. 578 for (SelectInst *SI : ASI) { 579 Instruction *ColdI = nullptr; 580 uint64_t HotWeight; 581 if (TrueWeight < FalseWeight) { 582 ColdI = dyn_cast<Instruction>(SI->getTrueValue()); 583 HotWeight = FalseWeight; 584 } else { 585 ColdI = dyn_cast<Instruction>(SI->getFalseValue()); 586 HotWeight = TrueWeight; 587 } 588 if (ColdI) { 589 SmallVector<Instruction *, 2> ColdSlice; 590 getExclBackwardsSlice(ColdI, ColdSlice); 591 InstructionCost SliceCost = 0; 592 for (auto *ColdII : ColdSlice) { 593 SliceCost += 594 TTI->getInstructionCost(ColdII, TargetTransformInfo::TCK_Latency); 595 } 596 // The colder the cold value operand of the select is the more expensive 597 // the cmov becomes for computing the cold value operand every time. Thus, 598 // the colder the cold operand is the more its cost counts. 599 // Get nearest integer cost adjusted for coldness. 600 InstructionCost AdjSliceCost = 601 divideNearest(SliceCost * HotWeight, TotalWeight); 602 if (AdjSliceCost >= 603 ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive) 604 return true; 605 } 606 } 607 return false; 608 } 609 610 // For a given source instruction, collect its backwards dependence slice 611 // consisting of instructions exclusively computed for the purpose of producing 612 // the operands of the source instruction. As an approximation 613 // (sufficiently-accurate in practice), we populate this set with the 614 // instructions of the backwards dependence slice that only have one-use and 615 // form an one-use chain that leads to the source instruction. 616 void SelectOptimize::getExclBackwardsSlice( 617 Instruction *I, SmallVector<Instruction *, 2> &Slice) { 618 SmallPtrSet<Instruction *, 2> Visited; 619 std::queue<Instruction *> Worklist; 620 Worklist.push(I); 621 while (!Worklist.empty()) { 622 Instruction *II = Worklist.front(); 623 Worklist.pop(); 624 625 // Avoid cycles. 626 if (Visited.count(II)) 627 continue; 628 Visited.insert(II); 629 630 if (!II->hasOneUse()) 631 continue; 632 633 // Avoid considering instructions with less frequency than the source 634 // instruction (i.e., avoid colder code regions of the dependence slice). 635 if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent())) 636 continue; 637 638 // Eligible one-use instruction added to the dependence slice. 639 Slice.push_back(II); 640 641 // Explore all the operands of the current instruction to expand the slice. 642 for (unsigned k = 0; k < II->getNumOperands(); ++k) 643 if (auto *OpI = dyn_cast<Instruction>(II->getOperand(k))) 644 Worklist.push(OpI); 645 } 646 } 647 648 bool SelectOptimize::isSelectHighlyPredictable(const SelectInst *SI) { 649 uint64_t TrueWeight, FalseWeight; 650 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 651 uint64_t Max = std::max(TrueWeight, FalseWeight); 652 uint64_t Sum = TrueWeight + FalseWeight; 653 if (Sum != 0) { 654 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 655 if (Probability > TTI->getPredictableBranchThreshold()) 656 return true; 657 } 658 } 659 return false; 660 } 661 662 bool SelectOptimize::checkLoopHeuristics(const Loop *L, 663 const CostInfo LoopCost[2]) { 664 // Loop-level checks to determine if a non-predicated version (with branches) 665 // of the loop is more profitable than its predicated version. 666 667 if (DisableLoopLevelHeuristics) 668 return true; 669 670 OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", 671 L->getHeader()->getFirstNonPHI()); 672 673 if (LoopCost[0].NonPredCost > LoopCost[0].PredCost || 674 LoopCost[1].NonPredCost >= LoopCost[1].PredCost) { 675 ORmissL << "No select conversion in the loop due to no reduction of loop's " 676 "critical path. "; 677 ORE->emit(ORmissL); 678 return false; 679 } 680 681 Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost, 682 LoopCost[1].PredCost - LoopCost[1].NonPredCost}; 683 684 // Profitably converting to branches need to reduce the loop's critical path 685 // by at least some threshold (absolute gain of GainCycleThreshold cycles and 686 // relative gain of 12.5%). 687 if (Gain[1] < Scaled64::get(GainCycleThreshold) || 688 Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) { 689 Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost; 690 ORmissL << "No select conversion in the loop due to small reduction of " 691 "loop's critical path. Gain=" 692 << Gain[1].toString() 693 << ", RelativeGain=" << RelativeGain.toString() << "%. "; 694 ORE->emit(ORmissL); 695 return false; 696 } 697 698 // If the loop's critical path involves loop-carried dependences, the gradient 699 // of the gain needs to be at least GainGradientThreshold% (defaults to 25%). 700 // This check ensures that the latency reduction for the loop's critical path 701 // keeps decreasing with sufficient rate beyond the two analyzed loop 702 // iterations. 703 if (Gain[1] > Gain[0]) { 704 Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) / 705 (LoopCost[1].PredCost - LoopCost[0].PredCost); 706 if (GradientGain < Scaled64::get(GainGradientThreshold)) { 707 ORmissL << "No select conversion in the loop due to small gradient gain. " 708 "GradientGain=" 709 << GradientGain.toString() << "%. "; 710 ORE->emit(ORmissL); 711 return false; 712 } 713 } 714 // If the gain decreases it is not profitable to convert. 715 else if (Gain[1] < Gain[0]) { 716 ORmissL 717 << "No select conversion in the loop due to negative gradient gain. "; 718 ORE->emit(ORmissL); 719 return false; 720 } 721 722 // Non-predicated version of the loop is more profitable than its 723 // predicated version. 724 return true; 725 } 726 727 // Computes instruction and loop-critical-path costs for both the predicated 728 // and non-predicated version of the given loop. 729 // Returns false if unable to compute these costs due to invalid cost of loop 730 // instruction(s). 731 bool SelectOptimize::computeLoopCosts( 732 const Loop *L, const SelectGroups &SIGroups, 733 DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) { 734 const auto &SIset = getSIset(SIGroups); 735 // Compute instruction and loop-critical-path costs across two iterations for 736 // both predicated and non-predicated version. 737 const unsigned Iterations = 2; 738 for (unsigned Iter = 0; Iter < Iterations; ++Iter) { 739 // Cost of the loop's critical path. 740 CostInfo &MaxCost = LoopCost[Iter]; 741 for (BasicBlock *BB : L->getBlocks()) { 742 for (const Instruction &I : *BB) { 743 if (I.isDebugOrPseudoInst()) 744 continue; 745 // Compute the predicated and non-predicated cost of the instruction. 746 Scaled64 IPredCost = Scaled64::getZero(), 747 INonPredCost = Scaled64::getZero(); 748 749 // Assume infinite resources that allow to fully exploit the available 750 // instruction-level parallelism. 751 // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost) 752 for (const Use &U : I.operands()) { 753 auto UI = dyn_cast<Instruction>(U.get()); 754 if (!UI) 755 continue; 756 if (InstCostMap.count(UI)) { 757 IPredCost = std::max(IPredCost, InstCostMap[UI].PredCost); 758 INonPredCost = std::max(INonPredCost, InstCostMap[UI].NonPredCost); 759 } 760 } 761 auto ILatency = computeInstCost(&I); 762 if (!ILatency.hasValue()) { 763 OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I); 764 ORmissL << "Invalid instruction cost preventing analysis and " 765 "optimization of the inner-most loop containing this " 766 "instruction. "; 767 ORE->emit(ORmissL); 768 return false; 769 } 770 IPredCost += Scaled64::get(ILatency.getValue()); 771 INonPredCost += Scaled64::get(ILatency.getValue()); 772 773 // For a select that can be converted to branch, 774 // compute its cost as a branch (non-predicated cost). 775 // 776 // BranchCost = PredictedPathCost + MispredictCost 777 // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb 778 // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate 779 if (SIset.contains(&I)) { 780 auto SI = dyn_cast<SelectInst>(&I); 781 782 Scaled64 TrueOpCost = Scaled64::getZero(), 783 FalseOpCost = Scaled64::getZero(); 784 if (auto *TI = dyn_cast<Instruction>(SI->getTrueValue())) 785 if (InstCostMap.count(TI)) 786 TrueOpCost = InstCostMap[TI].NonPredCost; 787 if (auto *FI = dyn_cast<Instruction>(SI->getFalseValue())) 788 if (InstCostMap.count(FI)) 789 FalseOpCost = InstCostMap[FI].NonPredCost; 790 Scaled64 PredictedPathCost = 791 getPredictedPathCost(TrueOpCost, FalseOpCost, SI); 792 793 Scaled64 CondCost = Scaled64::getZero(); 794 if (auto *CI = dyn_cast<Instruction>(SI->getCondition())) 795 if (InstCostMap.count(CI)) 796 CondCost = InstCostMap[CI].NonPredCost; 797 Scaled64 MispredictCost = getMispredictionCost(SI, CondCost); 798 799 INonPredCost = PredictedPathCost + MispredictCost; 800 } 801 802 InstCostMap[&I] = {IPredCost, INonPredCost}; 803 MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost); 804 MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost); 805 } 806 } 807 } 808 return true; 809 } 810 811 SmallPtrSet<const Instruction *, 2> 812 SelectOptimize::getSIset(const SelectGroups &SIGroups) { 813 SmallPtrSet<const Instruction *, 2> SIset; 814 for (const SelectGroup &ASI : SIGroups) 815 for (const SelectInst *SI : ASI) 816 SIset.insert(SI); 817 return SIset; 818 } 819 820 Optional<uint64_t> SelectOptimize::computeInstCost(const Instruction *I) { 821 InstructionCost ICost = 822 TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency); 823 if (auto OC = ICost.getValue()) 824 return Optional<uint64_t>(OC.getValue()); 825 return Optional<uint64_t>(None); 826 } 827 828 ScaledNumber<uint64_t> 829 SelectOptimize::getMispredictionCost(const SelectInst *SI, 830 const Scaled64 CondCost) { 831 uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty; 832 833 // Account for the default misprediction rate when using a branch 834 // (conservatively set to 25% by default). 835 uint64_t MispredictRate = MispredictDefaultRate; 836 // If the select condition is obviously predictable, then the misprediction 837 // rate is zero. 838 if (isSelectHighlyPredictable(SI)) 839 MispredictRate = 0; 840 841 // CondCost is included to account for cases where the computation of the 842 // condition is part of a long dependence chain (potentially loop-carried) 843 // that would delay detection of a misprediction and increase its cost. 844 Scaled64 MispredictCost = 845 std::max(Scaled64::get(MispredictPenalty), CondCost) * 846 Scaled64::get(MispredictRate); 847 MispredictCost /= Scaled64::get(100); 848 849 return MispredictCost; 850 } 851 852 // Returns the cost of a branch when the prediction is correct. 853 // TrueCost * TrueProbability + FalseCost * FalseProbability. 854 ScaledNumber<uint64_t> 855 SelectOptimize::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost, 856 const SelectInst *SI) { 857 Scaled64 PredPathCost; 858 uint64_t TrueWeight, FalseWeight; 859 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 860 uint64_t SumWeight = TrueWeight + FalseWeight; 861 if (SumWeight != 0) { 862 PredPathCost = TrueCost * Scaled64::get(TrueWeight) + 863 FalseCost * Scaled64::get(FalseWeight); 864 PredPathCost /= Scaled64::get(SumWeight); 865 return PredPathCost; 866 } 867 } 868 // Without branch weight metadata, we assume 75% for the one path and 25% for 869 // the other, and pick the result with the biggest cost. 870 PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost, 871 FalseCost * Scaled64::get(3) + TrueCost); 872 PredPathCost /= Scaled64::get(4); 873 return PredPathCost; 874 } 875 876 bool SelectOptimize::isSelectKindSupported(SelectInst *SI) { 877 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 878 if (VectorCond) 879 return false; 880 TargetLowering::SelectSupportKind SelectKind; 881 if (SI->getType()->isVectorTy()) 882 SelectKind = TargetLowering::ScalarCondVectorVal; 883 else 884 SelectKind = TargetLowering::ScalarValSelect; 885 return TLI->isSelectSupported(SelectKind); 886 } 887