1 //===--- SelectOptimize.cpp - Convert select to branches if profitable ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass converts selects to conditional jumps when profitable.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/Optional.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/BlockFrequencyInfo.h"
17 #include "llvm/Analysis/BranchProbabilityInfo.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
20 #include "llvm/Analysis/ProfileSummaryInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/CodeGen/TargetSchedule.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/ScaledNumber.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/Transforms/Utils/SizeOpts.h"
37 #include <algorithm>
38 #include <memory>
39 #include <queue>
40 #include <stack>
41 #include <string>
42 
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "select-optimize"
46 
47 STATISTIC(NumSelectOptAnalyzed,
48           "Number of select groups considered for conversion to branch");
49 STATISTIC(NumSelectConvertedExpColdOperand,
50           "Number of select groups converted due to expensive cold operand");
51 STATISTIC(NumSelectConvertedHighPred,
52           "Number of select groups converted due to high-predictability");
53 STATISTIC(NumSelectUnPred,
54           "Number of select groups not converted due to unpredictability");
55 STATISTIC(NumSelectColdBB,
56           "Number of select groups not converted due to cold basic block");
57 STATISTIC(NumSelectConvertedLoop,
58           "Number of select groups converted due to loop-level analysis");
59 STATISTIC(NumSelectsConverted, "Number of selects converted");
60 
61 static cl::opt<unsigned> ColdOperandThreshold(
62     "cold-operand-threshold",
63     cl::desc("Maximum frequency of path for an operand to be considered cold."),
64     cl::init(20), cl::Hidden);
65 
66 static cl::opt<unsigned> ColdOperandMaxCostMultiplier(
67     "cold-operand-max-cost-multiplier",
68     cl::desc("Maximum cost multiplier of TCC_expensive for the dependence "
69              "slice of a cold operand to be considered inexpensive."),
70     cl::init(1), cl::Hidden);
71 
72 static cl::opt<unsigned>
73     GainGradientThreshold("select-opti-loop-gradient-gain-threshold",
74                           cl::desc("Gradient gain threshold (%)."),
75                           cl::init(25), cl::Hidden);
76 
77 static cl::opt<unsigned>
78     GainCycleThreshold("select-opti-loop-cycle-gain-threshold",
79                        cl::desc("Minimum gain per loop (in cycles) threshold."),
80                        cl::init(4), cl::Hidden);
81 
82 static cl::opt<unsigned> GainRelativeThreshold(
83     "select-opti-loop-relative-gain-threshold",
84     cl::desc(
85         "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"),
86     cl::init(8), cl::Hidden);
87 
88 static cl::opt<unsigned> MispredictDefaultRate(
89     "mispredict-default-rate", cl::Hidden, cl::init(25),
90     cl::desc("Default mispredict rate (initialized to 25%)."));
91 
92 static cl::opt<bool>
93     DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden,
94                                cl::init(false),
95                                cl::desc("Disable loop-level heuristics."));
96 
97 namespace {
98 
99 class SelectOptimize : public FunctionPass {
100   const TargetMachine *TM = nullptr;
101   const TargetSubtargetInfo *TSI;
102   const TargetLowering *TLI = nullptr;
103   const TargetTransformInfo *TTI = nullptr;
104   const LoopInfo *LI;
105   DominatorTree *DT;
106   std::unique_ptr<BlockFrequencyInfo> BFI;
107   std::unique_ptr<BranchProbabilityInfo> BPI;
108   ProfileSummaryInfo *PSI;
109   OptimizationRemarkEmitter *ORE;
110   TargetSchedModel TSchedModel;
111 
112 public:
113   static char ID;
114 
115   SelectOptimize() : FunctionPass(ID) {
116     initializeSelectOptimizePass(*PassRegistry::getPassRegistry());
117   }
118 
119   bool runOnFunction(Function &F) override;
120 
121   void getAnalysisUsage(AnalysisUsage &AU) const override {
122     AU.addRequired<ProfileSummaryInfoWrapperPass>();
123     AU.addRequired<TargetPassConfig>();
124     AU.addRequired<TargetTransformInfoWrapperPass>();
125     AU.addRequired<DominatorTreeWrapperPass>();
126     AU.addRequired<LoopInfoWrapperPass>();
127     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
128   }
129 
130 private:
131   // Select groups consist of consecutive select instructions with the same
132   // condition.
133   using SelectGroup = SmallVector<SelectInst *, 2>;
134   using SelectGroups = SmallVector<SelectGroup, 2>;
135 
136   using Scaled64 = ScaledNumber<uint64_t>;
137 
138   struct CostInfo {
139     /// Predicated cost (with selects as conditional moves).
140     Scaled64 PredCost;
141     /// Non-predicated cost (with selects converted to branches).
142     Scaled64 NonPredCost;
143   };
144 
145   // Converts select instructions of a function to conditional jumps when deemed
146   // profitable. Returns true if at least one select was converted.
147   bool optimizeSelects(Function &F);
148 
149   // Heuristics for determining which select instructions can be profitably
150   // conveted to branches. Separate heuristics for selects in inner-most loops
151   // and the rest of code regions (base heuristics for non-inner-most loop
152   // regions).
153   void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups);
154   void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups);
155 
156   // Converts to branches the select groups that were deemed
157   // profitable-to-convert.
158   void convertProfitableSIGroups(SelectGroups &ProfSIGroups);
159 
160   // Splits selects of a given basic block into select groups.
161   void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups);
162 
163   // Determines for which select groups it is profitable converting to branches
164   // (base and inner-most-loop heuristics).
165   void findProfitableSIGroupsBase(SelectGroups &SIGroups,
166                                   SelectGroups &ProfSIGroups);
167   void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups,
168                                         SelectGroups &ProfSIGroups);
169 
170   // Determines if a select group should be converted to a branch (base
171   // heuristics).
172   bool isConvertToBranchProfitableBase(const SmallVector<SelectInst *, 2> &ASI);
173 
174   // Returns true if there are expensive instructions in the cold value
175   // operand's (if any) dependence slice of any of the selects of the given
176   // group.
177   bool hasExpensiveColdOperand(const SmallVector<SelectInst *, 2> &ASI);
178 
179   // For a given source instruction, collect its backwards dependence slice
180   // consisting of instructions exclusively computed for producing the operands
181   // of the source instruction.
182   void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice,
183                              bool ForSinking = false);
184 
185   // Returns true if the condition of the select is highly predictable.
186   bool isSelectHighlyPredictable(const SelectInst *SI);
187 
188   // Loop-level checks to determine if a non-predicated version (with branches)
189   // of the given loop is more profitable than its predicated version.
190   bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]);
191 
192   // Computes instruction and loop-critical-path costs for both the predicated
193   // and non-predicated version of the given loop.
194   bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups,
195                         DenseMap<const Instruction *, CostInfo> &InstCostMap,
196                         CostInfo *LoopCost);
197 
198   // Returns a set of all the select instructions in the given select groups.
199   SmallPtrSet<const Instruction *, 2> getSIset(const SelectGroups &SIGroups);
200 
201   // Returns the latency cost of a given instruction.
202   Optional<uint64_t> computeInstCost(const Instruction *I);
203 
204   // Returns the misprediction cost of a given select when converted to branch.
205   Scaled64 getMispredictionCost(const SelectInst *SI, const Scaled64 CondCost);
206 
207   // Returns the cost of a branch when the prediction is correct.
208   Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
209                                 const SelectInst *SI);
210 
211   // Returns true if the target architecture supports lowering a given select.
212   bool isSelectKindSupported(SelectInst *SI);
213 };
214 } // namespace
215 
216 char SelectOptimize::ID = 0;
217 
218 INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
219                       false)
220 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
221 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
222 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
223 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
224 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
225 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
226 INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
227                     false)
228 
229 FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); }
230 
231 bool SelectOptimize::runOnFunction(Function &F) {
232   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
233   TSI = TM->getSubtargetImpl(F);
234   TLI = TSI->getTargetLowering();
235 
236   // If none of the select types is supported then skip this pass.
237   // This is an optimization pass. Legality issues will be handled by
238   // instruction selection.
239   if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
240       !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
241       !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
242     return false;
243 
244   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
245   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
246   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
247   BPI.reset(new BranchProbabilityInfo(F, *LI));
248   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
249   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
250   ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
251   TSchedModel.init(TSI);
252 
253   // When optimizing for size, selects are preferable over branches.
254   if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI.get()))
255     return false;
256 
257   return optimizeSelects(F);
258 }
259 
260 bool SelectOptimize::optimizeSelects(Function &F) {
261   // Determine for which select groups it is profitable converting to branches.
262   SelectGroups ProfSIGroups;
263   // Base heuristics apply only to non-loops and outer loops.
264   optimizeSelectsBase(F, ProfSIGroups);
265   // Separate heuristics for inner-most loops.
266   optimizeSelectsInnerLoops(F, ProfSIGroups);
267 
268   // Convert to branches the select groups that were deemed
269   // profitable-to-convert.
270   convertProfitableSIGroups(ProfSIGroups);
271 
272   // Code modified if at least one select group was converted.
273   return !ProfSIGroups.empty();
274 }
275 
276 void SelectOptimize::optimizeSelectsBase(Function &F,
277                                          SelectGroups &ProfSIGroups) {
278   // Collect all the select groups.
279   SelectGroups SIGroups;
280   for (BasicBlock &BB : F) {
281     // Base heuristics apply only to non-loops and outer loops.
282     Loop *L = LI->getLoopFor(&BB);
283     if (L && L->isInnermost())
284       continue;
285     collectSelectGroups(BB, SIGroups);
286   }
287 
288   // Determine for which select groups it is profitable converting to branches.
289   findProfitableSIGroupsBase(SIGroups, ProfSIGroups);
290 }
291 
292 void SelectOptimize::optimizeSelectsInnerLoops(Function &F,
293                                                SelectGroups &ProfSIGroups) {
294   SmallVector<Loop *, 4> Loops(LI->begin(), LI->end());
295   // Need to check size on each iteration as we accumulate child loops.
296   for (unsigned long i = 0; i < Loops.size(); ++i)
297     for (Loop *ChildL : Loops[i]->getSubLoops())
298       Loops.push_back(ChildL);
299 
300   for (Loop *L : Loops) {
301     if (!L->isInnermost())
302       continue;
303 
304     SelectGroups SIGroups;
305     for (BasicBlock *BB : L->getBlocks())
306       collectSelectGroups(*BB, SIGroups);
307 
308     findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups);
309   }
310 }
311 
312 /// If \p isTrue is true, return the true value of \p SI, otherwise return
313 /// false value of \p SI. If the true/false value of \p SI is defined by any
314 /// select instructions in \p Selects, look through the defining select
315 /// instruction until the true/false value is not defined in \p Selects.
316 static Value *
317 getTrueOrFalseValue(SelectInst *SI, bool isTrue,
318                     const SmallPtrSet<const Instruction *, 2> &Selects) {
319   Value *V = nullptr;
320   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
321        DefSI = dyn_cast<SelectInst>(V)) {
322     assert(DefSI->getCondition() == SI->getCondition() &&
323            "The condition of DefSI does not match with SI");
324     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
325   }
326   assert(V && "Failed to get select true/false value");
327   return V;
328 }
329 
330 void SelectOptimize::convertProfitableSIGroups(SelectGroups &ProfSIGroups) {
331   for (SelectGroup &ASI : ProfSIGroups) {
332     // The code transformation here is a modified version of the sinking
333     // transformation in CodeGenPrepare::optimizeSelectInst with a more
334     // aggressive strategy of which instructions to sink.
335     //
336     // TODO: eliminate the redundancy of logic transforming selects to branches
337     // by removing CodeGenPrepare::optimizeSelectInst and optimizing here
338     // selects for all cases (with and without profile information).
339 
340     // Transform a sequence like this:
341     //    start:
342     //       %cmp = cmp uge i32 %a, %b
343     //       %sel = select i1 %cmp, i32 %c, i32 %d
344     //
345     // Into:
346     //    start:
347     //       %cmp = cmp uge i32 %a, %b
348     //       %cmp.frozen = freeze %cmp
349     //       br i1 %cmp.frozen, label %select.true, label %select.false
350     //    select.true:
351     //       br label %select.end
352     //    select.false:
353     //       br label %select.end
354     //    select.end:
355     //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
356     //
357     // %cmp should be frozen, otherwise it may introduce undefined behavior.
358     // In addition, we may sink instructions that produce %c or %d into the
359     // destination(s) of the new branch.
360     // If the true or false blocks do not contain a sunken instruction, that
361     // block and its branch may be optimized away. In that case, one side of the
362     // first branch will point directly to select.end, and the corresponding PHI
363     // predecessor block will be the start block.
364 
365     // Find all the instructions that can be soundly sunk to the true/false
366     // blocks. These are instructions that are computed solely for producing the
367     // operands of the select instructions in the group and can be sunk without
368     // breaking the semantics of the LLVM IR (e.g., cannot sink instructions
369     // with side effects).
370     SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices;
371     unsigned long maxTrueSliceLen = 0, maxFalseSliceLen = 0;
372     for (SelectInst *SI : ASI) {
373       // For each select, compute the sinkable dependence chains of the true and
374       // false operands.
375       if (auto *TI = dyn_cast<Instruction>(SI->getTrueValue())) {
376         std::stack<Instruction *> TrueSlice;
377         getExclBackwardsSlice(TI, TrueSlice, true);
378         maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size());
379         TrueSlices.push_back(TrueSlice);
380       }
381       if (auto *FI = dyn_cast<Instruction>(SI->getFalseValue())) {
382         std::stack<Instruction *> FalseSlice;
383         getExclBackwardsSlice(FI, FalseSlice, true);
384         maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size());
385         FalseSlices.push_back(FalseSlice);
386       }
387     }
388     // In the case of multiple select instructions in the same group, the order
389     // of non-dependent instructions (instructions of different dependence
390     // slices) in the true/false blocks appears to affect performance.
391     // Interleaving the slices seems to experimentally be the optimal approach.
392     // This interleaving scheduling allows for more ILP (with a natural downside
393     // of increasing a bit register pressure) compared to a simple ordering of
394     // one whole chain after another. One would expect that this ordering would
395     // not matter since the scheduling in the backend of the compiler  would
396     // take care of it, but apparently the scheduler fails to deliver optimal
397     // ILP with a naive ordering here.
398     SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved;
399     for (unsigned long IS = 0; IS < maxTrueSliceLen; ++IS) {
400       for (auto &S : TrueSlices) {
401         if (!S.empty()) {
402           TrueSlicesInterleaved.push_back(S.top());
403           S.pop();
404         }
405       }
406     }
407     for (unsigned long IS = 0; IS < maxFalseSliceLen; ++IS) {
408       for (auto &S : FalseSlices) {
409         if (!S.empty()) {
410           FalseSlicesInterleaved.push_back(S.top());
411           S.pop();
412         }
413       }
414     }
415 
416     // We split the block containing the select(s) into two blocks.
417     SelectInst *SI = ASI.front();
418     SelectInst *LastSI = ASI.back();
419     BasicBlock *StartBlock = SI->getParent();
420     BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
421     BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
422     BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
423     // Delete the unconditional branch that was just created by the split.
424     StartBlock->getTerminator()->eraseFromParent();
425 
426     // Move any debug/pseudo instructions that were in-between the select
427     // group to the newly-created end block.
428     SmallVector<Instruction *, 2> DebugPseudoINS;
429     auto DIt = SI->getIterator();
430     while (&*DIt != LastSI) {
431       if (DIt->isDebugOrPseudoInst())
432         DebugPseudoINS.push_back(&*DIt);
433       DIt++;
434     }
435     for (auto DI : DebugPseudoINS) {
436       DI->moveBefore(&*EndBlock->getFirstInsertionPt());
437     }
438 
439     // These are the new basic blocks for the conditional branch.
440     // At least one will become an actual new basic block.
441     BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr;
442     BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr;
443     if (!TrueSlicesInterleaved.empty()) {
444       TrueBlock = BasicBlock::Create(LastSI->getContext(), "select.true.sink",
445                                      EndBlock->getParent(), EndBlock);
446       TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
447       TrueBranch->setDebugLoc(LastSI->getDebugLoc());
448       for (Instruction *TrueInst : TrueSlicesInterleaved)
449         TrueInst->moveBefore(TrueBranch);
450     }
451     if (!FalseSlicesInterleaved.empty()) {
452       FalseBlock = BasicBlock::Create(LastSI->getContext(), "select.false.sink",
453                                       EndBlock->getParent(), EndBlock);
454       FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
455       FalseBranch->setDebugLoc(LastSI->getDebugLoc());
456       for (Instruction *FalseInst : FalseSlicesInterleaved)
457         FalseInst->moveBefore(FalseBranch);
458     }
459     // If there was nothing to sink, then arbitrarily choose the 'false' side
460     // for a new input value to the PHI.
461     if (TrueBlock == FalseBlock) {
462       assert(TrueBlock == nullptr &&
463              "Unexpected basic block transform while optimizing select");
464 
465       FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
466                                       EndBlock->getParent(), EndBlock);
467       auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
468       FalseBranch->setDebugLoc(SI->getDebugLoc());
469     }
470 
471     // Insert the real conditional branch based on the original condition.
472     // If we did not create a new block for one of the 'true' or 'false' paths
473     // of the condition, it means that side of the branch goes to the end block
474     // directly and the path originates from the start block from the point of
475     // view of the new PHI.
476     BasicBlock *TT, *FT;
477     if (TrueBlock == nullptr) {
478       TT = EndBlock;
479       FT = FalseBlock;
480       TrueBlock = StartBlock;
481     } else if (FalseBlock == nullptr) {
482       TT = TrueBlock;
483       FT = EndBlock;
484       FalseBlock = StartBlock;
485     } else {
486       TT = TrueBlock;
487       FT = FalseBlock;
488     }
489     IRBuilder<> IB(SI);
490     auto *CondFr =
491         IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
492     IB.CreateCondBr(CondFr, TT, FT, SI);
493 
494     SmallPtrSet<const Instruction *, 2> INS;
495     INS.insert(ASI.begin(), ASI.end());
496     // Use reverse iterator because later select may use the value of the
497     // earlier select, and we need to propagate value through earlier select
498     // to get the PHI operand.
499     for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
500       SelectInst *SI = *It;
501       // The select itself is replaced with a PHI Node.
502       PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
503       PN->takeName(SI);
504       PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
505       PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
506       PN->setDebugLoc(SI->getDebugLoc());
507 
508       SI->replaceAllUsesWith(PN);
509       SI->eraseFromParent();
510       INS.erase(SI);
511       ++NumSelectsConverted;
512     }
513   }
514 }
515 
516 void SelectOptimize::collectSelectGroups(BasicBlock &BB,
517                                          SelectGroups &SIGroups) {
518   BasicBlock::iterator BBIt = BB.begin();
519   while (BBIt != BB.end()) {
520     Instruction *I = &*BBIt++;
521     if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
522       SelectGroup SIGroup;
523       SIGroup.push_back(SI);
524       while (BBIt != BB.end()) {
525         Instruction *NI = &*BBIt;
526         SelectInst *NSI = dyn_cast<SelectInst>(NI);
527         if (NSI && SI->getCondition() == NSI->getCondition()) {
528           SIGroup.push_back(NSI);
529         } else if (!NI->isDebugOrPseudoInst()) {
530           // Debug/pseudo instructions should be skipped and not prevent the
531           // formation of a select group.
532           break;
533         }
534         ++BBIt;
535       }
536 
537       // If the select type is not supported, no point optimizing it.
538       // Instruction selection will take care of it.
539       if (!isSelectKindSupported(SI))
540         continue;
541 
542       SIGroups.push_back(SIGroup);
543     }
544   }
545 }
546 
547 void SelectOptimize::findProfitableSIGroupsBase(SelectGroups &SIGroups,
548                                                 SelectGroups &ProfSIGroups) {
549   for (SelectGroup &ASI : SIGroups) {
550     ++NumSelectOptAnalyzed;
551     if (isConvertToBranchProfitableBase(ASI))
552       ProfSIGroups.push_back(ASI);
553   }
554 }
555 
556 void SelectOptimize::findProfitableSIGroupsInnerLoops(
557     const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
558   NumSelectOptAnalyzed += SIGroups.size();
559   // For each select group in an inner-most loop,
560   // a branch is more preferable than a select/conditional-move if:
561   // i) conversion to branches for all the select groups of the loop satisfies
562   //    loop-level heuristics including reducing the loop's critical path by
563   //    some threshold (see SelectOptimize::checkLoopHeuristics); and
564   // ii) the total cost of the select group is cheaper with a branch compared
565   //     to its predicated version. The cost is in terms of latency and the cost
566   //     of a select group is the cost of its most expensive select instruction
567   //     (assuming infinite resources and thus fully leveraging available ILP).
568 
569   DenseMap<const Instruction *, CostInfo> InstCostMap;
570   CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()},
571                           {Scaled64::getZero(), Scaled64::getZero()}};
572   if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) ||
573       !checkLoopHeuristics(L, LoopCost)) {
574     return;
575   }
576 
577   for (SelectGroup &ASI : SIGroups) {
578     // Assuming infinite resources, the cost of a group of instructions is the
579     // cost of the most expensive instruction of the group.
580     Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero();
581     for (SelectInst *SI : ASI) {
582       SelectCost = std::max(SelectCost, InstCostMap[SI].PredCost);
583       BranchCost = std::max(BranchCost, InstCostMap[SI].NonPredCost);
584     }
585     if (BranchCost < SelectCost) {
586       OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", ASI.front());
587       OR << "Profitable to convert to branch (loop analysis). BranchCost="
588          << BranchCost.toString() << ", SelectCost=" << SelectCost.toString()
589          << ". ";
590       ORE->emit(OR);
591       ++NumSelectConvertedLoop;
592       ProfSIGroups.push_back(ASI);
593     } else {
594       OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front());
595       ORmiss << "Select is more profitable (loop analysis). BranchCost="
596              << BranchCost.toString()
597              << ", SelectCost=" << SelectCost.toString() << ". ";
598       ORE->emit(ORmiss);
599     }
600   }
601 }
602 
603 bool SelectOptimize::isConvertToBranchProfitableBase(
604     const SmallVector<SelectInst *, 2> &ASI) {
605   SelectInst *SI = ASI.front();
606   OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI);
607   OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI);
608 
609   // Skip cold basic blocks. Better to optimize for size for cold blocks.
610   if (PSI->isColdBlock(SI->getParent(), BFI.get())) {
611     ++NumSelectColdBB;
612     ORmiss << "Not converted to branch because of cold basic block. ";
613     ORE->emit(ORmiss);
614     return false;
615   }
616 
617   // If unpredictable, branch form is less profitable.
618   if (SI->getMetadata(LLVMContext::MD_unpredictable)) {
619     ++NumSelectUnPred;
620     ORmiss << "Not converted to branch because of unpredictable branch. ";
621     ORE->emit(ORmiss);
622     return false;
623   }
624 
625   // If highly predictable, branch form is more profitable, unless a
626   // predictable select is inexpensive in the target architecture.
627   if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) {
628     ++NumSelectConvertedHighPred;
629     OR << "Converted to branch because of highly predictable branch. ";
630     ORE->emit(OR);
631     return true;
632   }
633 
634   // Look for expensive instructions in the cold operand's (if any) dependence
635   // slice of any of the selects in the group.
636   if (hasExpensiveColdOperand(ASI)) {
637     ++NumSelectConvertedExpColdOperand;
638     OR << "Converted to branch because of expensive cold operand.";
639     ORE->emit(OR);
640     return true;
641   }
642 
643   ORmiss << "Not profitable to convert to branch (base heuristic).";
644   ORE->emit(ORmiss);
645   return false;
646 }
647 
648 static InstructionCost divideNearest(InstructionCost Numerator,
649                                      uint64_t Denominator) {
650   return (Numerator + (Denominator / 2)) / Denominator;
651 }
652 
653 bool SelectOptimize::hasExpensiveColdOperand(
654     const SmallVector<SelectInst *, 2> &ASI) {
655   bool ColdOperand = false;
656   uint64_t TrueWeight, FalseWeight, TotalWeight;
657   if (ASI.front()->extractProfMetadata(TrueWeight, FalseWeight)) {
658     uint64_t MinWeight = std::min(TrueWeight, FalseWeight);
659     TotalWeight = TrueWeight + FalseWeight;
660     // Is there a path with frequency <ColdOperandThreshold% (default:20%) ?
661     ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight;
662   } else if (PSI->hasProfileSummary()) {
663     OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front());
664     ORmiss << "Profile data available but missing branch-weights metadata for "
665               "select instruction. ";
666     ORE->emit(ORmiss);
667   }
668   if (!ColdOperand)
669     return false;
670   // Check if the cold path's dependence slice is expensive for any of the
671   // selects of the group.
672   for (SelectInst *SI : ASI) {
673     Instruction *ColdI = nullptr;
674     uint64_t HotWeight;
675     if (TrueWeight < FalseWeight) {
676       ColdI = dyn_cast<Instruction>(SI->getTrueValue());
677       HotWeight = FalseWeight;
678     } else {
679       ColdI = dyn_cast<Instruction>(SI->getFalseValue());
680       HotWeight = TrueWeight;
681     }
682     if (ColdI) {
683       std::stack<Instruction *> ColdSlice;
684       getExclBackwardsSlice(ColdI, ColdSlice);
685       InstructionCost SliceCost = 0;
686       while (!ColdSlice.empty()) {
687         SliceCost += TTI->getInstructionCost(ColdSlice.top(),
688                                              TargetTransformInfo::TCK_Latency);
689         ColdSlice.pop();
690       }
691       // The colder the cold value operand of the select is the more expensive
692       // the cmov becomes for computing the cold value operand every time. Thus,
693       // the colder the cold operand is the more its cost counts.
694       // Get nearest integer cost adjusted for coldness.
695       InstructionCost AdjSliceCost =
696           divideNearest(SliceCost * HotWeight, TotalWeight);
697       if (AdjSliceCost >=
698           ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive)
699         return true;
700     }
701   }
702   return false;
703 }
704 
705 // For a given source instruction, collect its backwards dependence slice
706 // consisting of instructions exclusively computed for the purpose of producing
707 // the operands of the source instruction. As an approximation
708 // (sufficiently-accurate in practice), we populate this set with the
709 // instructions of the backwards dependence slice that only have one-use and
710 // form an one-use chain that leads to the source instruction.
711 void SelectOptimize::getExclBackwardsSlice(Instruction *I,
712                                            std::stack<Instruction *> &Slice,
713                                            bool ForSinking) {
714   SmallPtrSet<Instruction *, 2> Visited;
715   std::queue<Instruction *> Worklist;
716   Worklist.push(I);
717   while (!Worklist.empty()) {
718     Instruction *II = Worklist.front();
719     Worklist.pop();
720 
721     // Avoid cycles.
722     if (Visited.count(II))
723       continue;
724     Visited.insert(II);
725 
726     if (!II->hasOneUse())
727       continue;
728 
729     // Cannot soundly sink instructions with side-effects.
730     // Terminator or phi instructions cannot be sunk.
731     // Avoid sinking other select instructions (should be handled separetely).
732     if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() ||
733                        isa<SelectInst>(II) || isa<PHINode>(II)))
734       continue;
735 
736     // Avoid considering instructions with less frequency than the source
737     // instruction (i.e., avoid colder code regions of the dependence slice).
738     if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent()))
739       continue;
740 
741     // Eligible one-use instruction added to the dependence slice.
742     Slice.push(II);
743 
744     // Explore all the operands of the current instruction to expand the slice.
745     for (unsigned k = 0; k < II->getNumOperands(); ++k)
746       if (auto *OpI = dyn_cast<Instruction>(II->getOperand(k)))
747         Worklist.push(OpI);
748   }
749 }
750 
751 bool SelectOptimize::isSelectHighlyPredictable(const SelectInst *SI) {
752   uint64_t TrueWeight, FalseWeight;
753   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
754     uint64_t Max = std::max(TrueWeight, FalseWeight);
755     uint64_t Sum = TrueWeight + FalseWeight;
756     if (Sum != 0) {
757       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
758       if (Probability > TTI->getPredictableBranchThreshold())
759         return true;
760     }
761   }
762   return false;
763 }
764 
765 bool SelectOptimize::checkLoopHeuristics(const Loop *L,
766                                          const CostInfo LoopCost[2]) {
767   // Loop-level checks to determine if a non-predicated version (with branches)
768   // of the loop is more profitable than its predicated version.
769 
770   if (DisableLoopLevelHeuristics)
771     return true;
772 
773   OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti",
774                                    L->getHeader()->getFirstNonPHI());
775 
776   if (LoopCost[0].NonPredCost > LoopCost[0].PredCost ||
777       LoopCost[1].NonPredCost >= LoopCost[1].PredCost) {
778     ORmissL << "No select conversion in the loop due to no reduction of loop's "
779                "critical path. ";
780     ORE->emit(ORmissL);
781     return false;
782   }
783 
784   Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost,
785                       LoopCost[1].PredCost - LoopCost[1].NonPredCost};
786 
787   // Profitably converting to branches need to reduce the loop's critical path
788   // by at least some threshold (absolute gain of GainCycleThreshold cycles and
789   // relative gain of 12.5%).
790   if (Gain[1] < Scaled64::get(GainCycleThreshold) ||
791       Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) {
792     Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost;
793     ORmissL << "No select conversion in the loop due to small reduction of "
794                "loop's critical path. Gain="
795             << Gain[1].toString()
796             << ", RelativeGain=" << RelativeGain.toString() << "%. ";
797     ORE->emit(ORmissL);
798     return false;
799   }
800 
801   // If the loop's critical path involves loop-carried dependences, the gradient
802   // of the gain needs to be at least GainGradientThreshold% (defaults to 25%).
803   // This check ensures that the latency reduction for the loop's critical path
804   // keeps decreasing with sufficient rate beyond the two analyzed loop
805   // iterations.
806   if (Gain[1] > Gain[0]) {
807     Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) /
808                             (LoopCost[1].PredCost - LoopCost[0].PredCost);
809     if (GradientGain < Scaled64::get(GainGradientThreshold)) {
810       ORmissL << "No select conversion in the loop due to small gradient gain. "
811                  "GradientGain="
812               << GradientGain.toString() << "%. ";
813       ORE->emit(ORmissL);
814       return false;
815     }
816   }
817   // If the gain decreases it is not profitable to convert.
818   else if (Gain[1] < Gain[0]) {
819     ORmissL
820         << "No select conversion in the loop due to negative gradient gain. ";
821     ORE->emit(ORmissL);
822     return false;
823   }
824 
825   // Non-predicated version of the loop is more profitable than its
826   // predicated version.
827   return true;
828 }
829 
830 // Computes instruction and loop-critical-path costs for both the predicated
831 // and non-predicated version of the given loop.
832 // Returns false if unable to compute these costs due to invalid cost of loop
833 // instruction(s).
834 bool SelectOptimize::computeLoopCosts(
835     const Loop *L, const SelectGroups &SIGroups,
836     DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) {
837   const auto &SIset = getSIset(SIGroups);
838   // Compute instruction and loop-critical-path costs across two iterations for
839   // both predicated and non-predicated version.
840   const unsigned Iterations = 2;
841   for (unsigned Iter = 0; Iter < Iterations; ++Iter) {
842     // Cost of the loop's critical path.
843     CostInfo &MaxCost = LoopCost[Iter];
844     for (BasicBlock *BB : L->getBlocks()) {
845       for (const Instruction &I : *BB) {
846         if (I.isDebugOrPseudoInst())
847           continue;
848         // Compute the predicated and non-predicated cost of the instruction.
849         Scaled64 IPredCost = Scaled64::getZero(),
850                  INonPredCost = Scaled64::getZero();
851 
852         // Assume infinite resources that allow to fully exploit the available
853         // instruction-level parallelism.
854         // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost)
855         for (const Use &U : I.operands()) {
856           auto UI = dyn_cast<Instruction>(U.get());
857           if (!UI)
858             continue;
859           if (InstCostMap.count(UI)) {
860             IPredCost = std::max(IPredCost, InstCostMap[UI].PredCost);
861             INonPredCost = std::max(INonPredCost, InstCostMap[UI].NonPredCost);
862           }
863         }
864         auto ILatency = computeInstCost(&I);
865         if (!ILatency.hasValue()) {
866           OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I);
867           ORmissL << "Invalid instruction cost preventing analysis and "
868                      "optimization of the inner-most loop containing this "
869                      "instruction. ";
870           ORE->emit(ORmissL);
871           return false;
872         }
873         IPredCost += Scaled64::get(ILatency.getValue());
874         INonPredCost += Scaled64::get(ILatency.getValue());
875 
876         // For a select that can be converted to branch,
877         // compute its cost as a branch (non-predicated cost).
878         //
879         // BranchCost = PredictedPathCost + MispredictCost
880         // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb
881         // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate
882         if (SIset.contains(&I)) {
883           auto SI = dyn_cast<SelectInst>(&I);
884 
885           Scaled64 TrueOpCost = Scaled64::getZero(),
886                    FalseOpCost = Scaled64::getZero();
887           if (auto *TI = dyn_cast<Instruction>(SI->getTrueValue()))
888             if (InstCostMap.count(TI))
889               TrueOpCost = InstCostMap[TI].NonPredCost;
890           if (auto *FI = dyn_cast<Instruction>(SI->getFalseValue()))
891             if (InstCostMap.count(FI))
892               FalseOpCost = InstCostMap[FI].NonPredCost;
893           Scaled64 PredictedPathCost =
894               getPredictedPathCost(TrueOpCost, FalseOpCost, SI);
895 
896           Scaled64 CondCost = Scaled64::getZero();
897           if (auto *CI = dyn_cast<Instruction>(SI->getCondition()))
898             if (InstCostMap.count(CI))
899               CondCost = InstCostMap[CI].NonPredCost;
900           Scaled64 MispredictCost = getMispredictionCost(SI, CondCost);
901 
902           INonPredCost = PredictedPathCost + MispredictCost;
903         }
904 
905         InstCostMap[&I] = {IPredCost, INonPredCost};
906         MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost);
907         MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost);
908       }
909     }
910   }
911   return true;
912 }
913 
914 SmallPtrSet<const Instruction *, 2>
915 SelectOptimize::getSIset(const SelectGroups &SIGroups) {
916   SmallPtrSet<const Instruction *, 2> SIset;
917   for (const SelectGroup &ASI : SIGroups)
918     for (const SelectInst *SI : ASI)
919       SIset.insert(SI);
920   return SIset;
921 }
922 
923 Optional<uint64_t> SelectOptimize::computeInstCost(const Instruction *I) {
924   InstructionCost ICost =
925       TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency);
926   if (auto OC = ICost.getValue())
927     return Optional<uint64_t>(OC.getValue());
928   return Optional<uint64_t>(None);
929 }
930 
931 ScaledNumber<uint64_t>
932 SelectOptimize::getMispredictionCost(const SelectInst *SI,
933                                      const Scaled64 CondCost) {
934   uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
935 
936   // Account for the default misprediction rate when using a branch
937   // (conservatively set to 25% by default).
938   uint64_t MispredictRate = MispredictDefaultRate;
939   // If the select condition is obviously predictable, then the misprediction
940   // rate is zero.
941   if (isSelectHighlyPredictable(SI))
942     MispredictRate = 0;
943 
944   // CondCost is included to account for cases where the computation of the
945   // condition is part of a long dependence chain (potentially loop-carried)
946   // that would delay detection of a misprediction and increase its cost.
947   Scaled64 MispredictCost =
948       std::max(Scaled64::get(MispredictPenalty), CondCost) *
949       Scaled64::get(MispredictRate);
950   MispredictCost /= Scaled64::get(100);
951 
952   return MispredictCost;
953 }
954 
955 // Returns the cost of a branch when the prediction is correct.
956 // TrueCost * TrueProbability + FalseCost * FalseProbability.
957 ScaledNumber<uint64_t>
958 SelectOptimize::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
959                                      const SelectInst *SI) {
960   Scaled64 PredPathCost;
961   uint64_t TrueWeight, FalseWeight;
962   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
963     uint64_t SumWeight = TrueWeight + FalseWeight;
964     if (SumWeight != 0) {
965       PredPathCost = TrueCost * Scaled64::get(TrueWeight) +
966                      FalseCost * Scaled64::get(FalseWeight);
967       PredPathCost /= Scaled64::get(SumWeight);
968       return PredPathCost;
969     }
970   }
971   // Without branch weight metadata, we assume 75% for the one path and 25% for
972   // the other, and pick the result with the biggest cost.
973   PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost,
974                           FalseCost * Scaled64::get(3) + TrueCost);
975   PredPathCost /= Scaled64::get(4);
976   return PredPathCost;
977 }
978 
979 bool SelectOptimize::isSelectKindSupported(SelectInst *SI) {
980   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
981   if (VectorCond)
982     return false;
983   TargetLowering::SelectSupportKind SelectKind;
984   if (SI->getType()->isVectorTy())
985     SelectKind = TargetLowering::ScalarCondVectorVal;
986   else
987     SelectKind = TargetLowering::ScalarValSelect;
988   return TLI->isSelectSupported(SelectKind);
989 }
990