1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
11 // of MachineInstrs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "sched-instrs"
16 #include "ScheduleDAGInstrs.h"
17 #include "llvm/Operator.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineMemOperand.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/PseudoSourceValue.h"
24 #include "llvm/MC/MCInstrItineraries.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetSubtargetInfo.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/ADT/SmallSet.h"
32 using namespace llvm;
33 
34 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
35                                      const MachineLoopInfo &mli,
36                                      const MachineDominatorTree &mdt,
37                                      bool IsPostRAFlag)
38   : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
39     InstrItins(mf.getTarget().getInstrItineraryData()), IsPostRA(IsPostRAFlag),
40     UnitLatencies(false), Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()),
41     LoopRegs(MLI, MDT), FirstDbgValue(0) {
42   DbgValues.clear();
43   assert(!(IsPostRA && MF.getRegInfo().getNumVirtRegs()) &&
44          "Virtual registers must be removed prior to PostRA scheduling");
45 }
46 
47 /// Run - perform scheduling.
48 ///
49 void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
50                             MachineBasicBlock::iterator begin,
51                             MachineBasicBlock::iterator end,
52                             unsigned endcount) {
53   BB = bb;
54   Begin = begin;
55   InsertPosIndex = endcount;
56 
57   // Check to see if the scheduler cares about latencies.
58   UnitLatencies = ForceUnitLatencies();
59 
60   ScheduleDAG::Run(bb, end);
61 }
62 
63 /// getUnderlyingObjectFromInt - This is the function that does the work of
64 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
65 static const Value *getUnderlyingObjectFromInt(const Value *V) {
66   do {
67     if (const Operator *U = dyn_cast<Operator>(V)) {
68       // If we find a ptrtoint, we can transfer control back to the
69       // regular getUnderlyingObjectFromInt.
70       if (U->getOpcode() == Instruction::PtrToInt)
71         return U->getOperand(0);
72       // If we find an add of a constant or a multiplied value, it's
73       // likely that the other operand will lead us to the base
74       // object. We don't have to worry about the case where the
75       // object address is somehow being computed by the multiply,
76       // because our callers only care when the result is an
77       // identifibale object.
78       if (U->getOpcode() != Instruction::Add ||
79           (!isa<ConstantInt>(U->getOperand(1)) &&
80            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
81         return V;
82       V = U->getOperand(0);
83     } else {
84       return V;
85     }
86     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
87   } while (1);
88 }
89 
90 /// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
91 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
92 static const Value *getUnderlyingObject(const Value *V) {
93   // First just call Value::getUnderlyingObject to let it do what it does.
94   do {
95     V = GetUnderlyingObject(V);
96     // If it found an inttoptr, use special code to continue climing.
97     if (Operator::getOpcode(V) != Instruction::IntToPtr)
98       break;
99     const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
100     // If that succeeded in finding a pointer, continue the search.
101     if (!O->getType()->isPointerTy())
102       break;
103     V = O;
104   } while (1);
105   return V;
106 }
107 
108 /// getUnderlyingObjectForInstr - If this machine instr has memory reference
109 /// information and it can be tracked to a normal reference to a known
110 /// object, return the Value for that object. Otherwise return null.
111 static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
112                                                 const MachineFrameInfo *MFI,
113                                                 bool &MayAlias) {
114   MayAlias = true;
115   if (!MI->hasOneMemOperand() ||
116       !(*MI->memoperands_begin())->getValue() ||
117       (*MI->memoperands_begin())->isVolatile())
118     return 0;
119 
120   const Value *V = (*MI->memoperands_begin())->getValue();
121   if (!V)
122     return 0;
123 
124   V = getUnderlyingObject(V);
125   if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
126     // For now, ignore PseudoSourceValues which may alias LLVM IR values
127     // because the code that uses this function has no way to cope with
128     // such aliases.
129     if (PSV->isAliased(MFI))
130       return 0;
131 
132     MayAlias = PSV->mayAlias(MFI);
133     return V;
134   }
135 
136   if (isIdentifiedObject(V))
137     return V;
138 
139   return 0;
140 }
141 
142 void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
143   LoopRegs.Deps.clear();
144   if (MachineLoop *ML = MLI.getLoopFor(BB))
145     if (BB == ML->getLoopLatch())
146       LoopRegs.VisitLoop(ML);
147 }
148 
149 /// AddSchedBarrierDeps - Add dependencies from instructions in the current
150 /// list of instructions being scheduled to scheduling barrier by adding
151 /// the exit SU to the register defs and use list. This is because we want to
152 /// make sure instructions which define registers that are either used by
153 /// the terminator or are live-out are properly scheduled. This is
154 /// especially important when the definition latency of the return value(s)
155 /// are too high to be hidden by the branch or when the liveout registers
156 /// used by instructions in the fallthrough block.
157 void ScheduleDAGInstrs::AddSchedBarrierDeps() {
158   MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
159   ExitSU.setInstr(ExitMI);
160   bool AllDepKnown = ExitMI &&
161     (ExitMI->isCall() || ExitMI->isBarrier());
162   if (ExitMI && AllDepKnown) {
163     // If it's a call or a barrier, add dependencies on the defs and uses of
164     // instruction.
165     for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
166       const MachineOperand &MO = ExitMI->getOperand(i);
167       if (!MO.isReg() || MO.isDef()) continue;
168       unsigned Reg = MO.getReg();
169       if (Reg == 0) continue;
170 
171       if (TRI->isPhysicalRegister(Reg))
172         Uses[Reg].push_back(&ExitSU);
173       else
174         assert(!IsPostRA && "Virtual register encountered after regalloc.");
175     }
176   } else {
177     // For others, e.g. fallthrough, conditional branch, assume the exit
178     // uses all the registers that are livein to the successor blocks.
179     SmallSet<unsigned, 8> Seen;
180     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
181            SE = BB->succ_end(); SI != SE; ++SI)
182       for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
183              E = (*SI)->livein_end(); I != E; ++I) {
184         unsigned Reg = *I;
185         if (Seen.insert(Reg))
186           Uses[Reg].push_back(&ExitSU);
187       }
188   }
189 }
190 
191 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
192 /// this SUnit to following instructions in the same scheduling region that
193 /// depend the physical register referenced at OperIdx.
194 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
195   const MachineInstr *MI = SU->getInstr();
196   const MachineOperand &MO = MI->getOperand(OperIdx);
197   unsigned Reg = MO.getReg();
198 
199   // Ask the target if address-backscheduling is desirable, and if so how much.
200   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
201   unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
202 
203   // Optionally add output and anti dependencies. For anti
204   // dependencies we use a latency of 0 because for a multi-issue
205   // target we want to allow the defining instruction to issue
206   // in the same cycle as the using instruction.
207   // TODO: Using a latency of 1 here for output dependencies assumes
208   //       there's no cost for reusing registers.
209   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
210   for (const unsigned *Alias = TRI->getOverlaps(Reg); *Alias; ++Alias) {
211     std::vector<SUnit *> &DefList = Defs[*Alias];
212     for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
213       SUnit *DefSU = DefList[i];
214       if (DefSU == &ExitSU)
215         continue;
216       if (DefSU != SU &&
217           (Kind != SDep::Output || !MO.isDead() ||
218            !DefSU->getInstr()->registerDefIsDead(*Alias))) {
219         if (Kind == SDep::Anti)
220           DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
221         else {
222           unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx,
223                                                  DefSU->getInstr());
224           DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
225         }
226       }
227     }
228   }
229 
230   // Retrieve the UseList to add data dependencies and update uses.
231   std::vector<SUnit *> &UseList = Uses[Reg];
232   if (MO.isDef()) {
233     // Update DefList. Defs are pushed in the order they are visited and
234     // never reordered.
235     std::vector<SUnit *> &DefList = Defs[Reg];
236 
237     // Add any data dependencies.
238     unsigned DataLatency = SU->Latency;
239     for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
240       SUnit *UseSU = UseList[i];
241       if (UseSU == SU)
242         continue;
243       unsigned LDataLatency = DataLatency;
244       // Optionally add in a special extra latency for nodes that
245       // feed addresses.
246       // TODO: Do this for register aliases too.
247       // TODO: Perhaps we should get rid of
248       // SpecialAddressLatency and just move this into
249       // adjustSchedDependency for the targets that care about it.
250       if (SpecialAddressLatency != 0 && !UnitLatencies &&
251           UseSU != &ExitSU) {
252         MachineInstr *UseMI = UseSU->getInstr();
253         const MCInstrDesc &UseMCID = UseMI->getDesc();
254         int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
255         assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
256         if (RegUseIndex >= 0 &&
257             (UseMI->mayLoad() || UseMI->mayStore()) &&
258             (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
259             UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
260           LDataLatency += SpecialAddressLatency;
261       }
262       // Adjust the dependence latency using operand def/use
263       // information (if any), and then allow the target to
264       // perform its own adjustments.
265       const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
266       if (!UnitLatencies) {
267         ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
268         ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
269       }
270       UseSU->addPred(dep);
271     }
272     for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
273       std::vector<SUnit *> &UseList = Uses[*Alias];
274       for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
275         SUnit *UseSU = UseList[i];
276         if (UseSU == SU)
277           continue;
278         const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
279         if (!UnitLatencies) {
280           ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
281           ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
282         }
283         UseSU->addPred(dep);
284       }
285     }
286 
287     // If a def is going to wrap back around to the top of the loop,
288     // backschedule it.
289     if (!UnitLatencies && DefList.empty()) {
290       LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
291       if (I != LoopRegs.Deps.end()) {
292         const MachineOperand *UseMO = I->second.first;
293         unsigned Count = I->second.second;
294         const MachineInstr *UseMI = UseMO->getParent();
295         unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
296         const MCInstrDesc &UseMCID = UseMI->getDesc();
297         // TODO: If we knew the total depth of the region here, we could
298         // handle the case where the whole loop is inside the region but
299         // is large enough that the isScheduleHigh trick isn't needed.
300         if (UseMOIdx < UseMCID.getNumOperands()) {
301           // Currently, we only support scheduling regions consisting of
302           // single basic blocks. Check to see if the instruction is in
303           // the same region by checking to see if it has the same parent.
304           if (UseMI->getParent() != MI->getParent()) {
305             unsigned Latency = SU->Latency;
306             if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
307               Latency += SpecialAddressLatency;
308             // This is a wild guess as to the portion of the latency which
309             // will be overlapped by work done outside the current
310             // scheduling region.
311             Latency -= std::min(Latency, Count);
312             // Add the artificial edge.
313             ExitSU.addPred(SDep(SU, SDep::Order, Latency,
314                                 /*Reg=*/0, /*isNormalMemory=*/false,
315                                 /*isMustAlias=*/false,
316                                 /*isArtificial=*/true));
317           } else if (SpecialAddressLatency > 0 &&
318                      UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
319             // The entire loop body is within the current scheduling region
320             // and the latency of this operation is assumed to be greater
321             // than the latency of the loop.
322             // TODO: Recursively mark data-edge predecessors as
323             //       isScheduleHigh too.
324             SU->isScheduleHigh = true;
325           }
326         }
327         LoopRegs.Deps.erase(I);
328       }
329     }
330 
331     UseList.clear();
332     if (!MO.isDead())
333       DefList.clear();
334 
335     // Calls will not be reordered because of chain dependencies (see
336     // below). Since call operands are dead, calls may continue to be added
337     // to the DefList making dependence checking quadratic in the size of
338     // the block. Instead, we leave only one call at the back of the
339     // DefList.
340     if (SU->isCall) {
341       while (!DefList.empty() && DefList.back()->isCall)
342         DefList.pop_back();
343     }
344     DefList.push_back(SU);
345   } else {
346     UseList.push_back(SU);
347   }
348 }
349 
350 /// addVRegDefDeps - Add register output and data dependencies from this SUnit
351 /// to instructions that occur later in the same scheduling region if they read
352 /// from or write to the virtual register defined at OperIdx.
353 ///
354 /// TODO: Hoist loop induction variable increments. This has to be
355 /// reevaluated. Generally, IV scheduling should be done before coalescing.
356 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
357   const MachineInstr *MI = SU->getInstr();
358   unsigned Reg = MI->getOperand(OperIdx).getReg();
359 
360   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
361 
362   // Add output dependence to the next nearest def of this vreg.
363   //
364   // Unless this definition is dead, the output dependence should be
365   // transitively redundant with antidependencies from this definition's
366   // uses. We're conservative for now until we have a way to guarantee the uses
367   // are not eliminated sometime during scheduling. The output dependence edge
368   // is also useful if output latency exceeds def-use latency.
369   SUnit *DefSU = VRegDefs[Reg];
370   if (DefSU && DefSU != SU && DefSU != &ExitSU) {
371     unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx,
372                                                 DefSU->getInstr());
373     DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
374   }
375   VRegDefs[Reg] = SU;
376 
377   // Add data dependence to any uses of this vreg before the next nearest def.
378   //
379   // TODO: Handle ExitSU properly.
380   //
381   // TODO: Data dependence could be handled more efficiently at the use-side.
382   std::vector<SUnit*> &UseList = VRegUses[Reg];
383   for (std::vector<SUnit*>::const_iterator UI = UseList.begin(),
384          UE = UseList.end(); UI != UE; ++UI) {
385     SUnit *UseSU = *UI;
386     if (UseSU == SU) continue;
387 
388     // TODO: Handle "special" address latencies cleanly.
389     const SDep& dep = SDep(SU, SDep::Data, SU->Latency, Reg);
390     if (!UnitLatencies) {
391       // Adjust the dependence latency using operand def/use information, then
392       // allow the target to perform its own adjustments.
393       ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
394       ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
395     }
396     UseSU->addPred(dep);
397   }
398   UseList.clear();
399 }
400 
401 /// addVRegUseDeps - Add register antidependencies from this SUnit to
402 /// instructions that occur later in the same scheduling region if they
403 /// write the virtual register referenced at OperIdx.
404 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
405   unsigned Reg = SU->getInstr()->getOperand(OperIdx).getReg();
406 
407   // Add antidependence to the following def of the vreg it uses.
408   SUnit *DefSU = VRegDefs[Reg];
409   if (DefSU && DefSU != SU)
410     DefSU->addPred(SDep(SU, SDep::Anti, 0, Reg));
411 
412   // Add this SUnit to the use list of the vreg it uses.
413   //
414   // TODO: pinch the DAG before we see too many uses to avoid quadratic
415   // behavior. Limiting the scheduling window can accomplish the same thing.
416   VRegUses[Reg].push_back(SU);
417 }
418 
419 void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
420   // We'll be allocating one SUnit for each instruction, plus one for
421   // the region exit node.
422   SUnits.reserve(BB->size());
423 
424   // We build scheduling units by walking a block's instruction list from bottom
425   // to top.
426 
427   // Remember where a generic side-effecting instruction is as we procede.
428   SUnit *BarrierChain = 0, *AliasChain = 0;
429 
430   // Memory references to specific known memory locations are tracked
431   // so that they can be given more precise dependencies. We track
432   // separately the known memory locations that may alias and those
433   // that are known not to alias
434   std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
435   std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
436 
437   // Remove any stale debug info; sometimes BuildSchedGraph is called again
438   // without emitting the info from the previous call.
439   DbgValues.clear();
440   FirstDbgValue = NULL;
441 
442   // Model data dependencies between instructions being scheduled and the
443   // ExitSU.
444   AddSchedBarrierDeps();
445 
446   for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
447     assert(Defs[i].empty() && "Only BuildGraph should push/pop Defs");
448   }
449 
450   // Reinitialize the large VReg vectors, while reusing the memory.
451   //
452   // Note: this can be an expensive part of DAG building. We may want to be more
453   // clever. Reevaluate after VRegUses goes away.
454   assert(VRegDefs.size() == 0 && VRegUses.size() == 0 &&
455          "Only BuildSchedGraph should access VRegDefs/Uses");
456   VRegDefs.resize(MF.getRegInfo().getNumVirtRegs());
457   VRegUses.resize(MF.getRegInfo().getNumVirtRegs());
458 
459   // Walk the list of instructions, from bottom moving up.
460   MachineInstr *PrevMI = NULL;
461   for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
462        MII != MIE; --MII) {
463     MachineInstr *MI = prior(MII);
464     if (MI && PrevMI) {
465       DbgValues.push_back(std::make_pair(PrevMI, MI));
466       PrevMI = NULL;
467     }
468 
469     if (MI->isDebugValue()) {
470       PrevMI = MI;
471       continue;
472     }
473 
474     assert(!MI->isTerminator() && !MI->isLabel() &&
475            "Cannot schedule terminators or labels!");
476     // Create the SUnit for this MI.
477     SUnit *SU = NewSUnit(MI);
478     SU->isCall = MI->isCall();
479     SU->isCommutable = MI->isCommutable();
480 
481     // Assign the Latency field of SU using target-provided information.
482     if (UnitLatencies)
483       SU->Latency = 1;
484     else
485       ComputeLatency(SU);
486 
487     // Add register-based dependencies (data, anti, and output).
488     for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
489       const MachineOperand &MO = MI->getOperand(j);
490       if (!MO.isReg()) continue;
491       unsigned Reg = MO.getReg();
492       if (Reg == 0) continue;
493 
494       if (TRI->isPhysicalRegister(Reg))
495         addPhysRegDeps(SU, j);
496       else {
497         assert(!IsPostRA && "Virtual register encountered!");
498         if (MO.isDef())
499           addVRegDefDeps(SU, j);
500         else
501           addVRegUseDeps(SU, j);
502       }
503     }
504 
505     // Add chain dependencies.
506     // Chain dependencies used to enforce memory order should have
507     // latency of 0 (except for true dependency of Store followed by
508     // aliased Load... we estimate that with a single cycle of latency
509     // assuming the hardware will bypass)
510     // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
511     // after stack slots are lowered to actual addresses.
512     // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
513     // produce more precise dependence information.
514 #define STORE_LOAD_LATENCY 1
515     unsigned TrueMemOrderLatency = 0;
516     if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
517         (MI->hasVolatileMemoryRef() &&
518          (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) {
519       // Be conservative with these and add dependencies on all memory
520       // references, even those that are known to not alias.
521       for (std::map<const Value *, SUnit *>::iterator I =
522              NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
523         I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
524       }
525       for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
526              NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
527         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
528           I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
529       }
530       NonAliasMemDefs.clear();
531       NonAliasMemUses.clear();
532       // Add SU to the barrier chain.
533       if (BarrierChain)
534         BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
535       BarrierChain = SU;
536 
537       // fall-through
538     new_alias_chain:
539       // Chain all possibly aliasing memory references though SU.
540       if (AliasChain)
541         AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
542       AliasChain = SU;
543       for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
544         PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
545       for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
546            E = AliasMemDefs.end(); I != E; ++I) {
547         I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
548       }
549       for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
550            AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
551         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
552           I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
553       }
554       PendingLoads.clear();
555       AliasMemDefs.clear();
556       AliasMemUses.clear();
557     } else if (MI->mayStore()) {
558       bool MayAlias = true;
559       TrueMemOrderLatency = STORE_LOAD_LATENCY;
560       if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
561         // A store to a specific PseudoSourceValue. Add precise dependencies.
562         // Record the def in MemDefs, first adding a dep if there is
563         // an existing def.
564         std::map<const Value *, SUnit *>::iterator I =
565           ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
566         std::map<const Value *, SUnit *>::iterator IE =
567           ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
568         if (I != IE) {
569           I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
570                                   /*isNormalMemory=*/true));
571           I->second = SU;
572         } else {
573           if (MayAlias)
574             AliasMemDefs[V] = SU;
575           else
576             NonAliasMemDefs[V] = SU;
577         }
578         // Handle the uses in MemUses, if there are any.
579         std::map<const Value *, std::vector<SUnit *> >::iterator J =
580           ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
581         std::map<const Value *, std::vector<SUnit *> >::iterator JE =
582           ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
583         if (J != JE) {
584           for (unsigned i = 0, e = J->second.size(); i != e; ++i)
585             J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
586                                        /*Reg=*/0, /*isNormalMemory=*/true));
587           J->second.clear();
588         }
589         if (MayAlias) {
590           // Add dependencies from all the PendingLoads, i.e. loads
591           // with no underlying object.
592           for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
593             PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
594           // Add dependence on alias chain, if needed.
595           if (AliasChain)
596             AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
597         }
598         // Add dependence on barrier chain, if needed.
599         if (BarrierChain)
600           BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
601       } else {
602         // Treat all other stores conservatively.
603         goto new_alias_chain;
604       }
605 
606       if (!ExitSU.isPred(SU))
607         // Push store's up a bit to avoid them getting in between cmp
608         // and branches.
609         ExitSU.addPred(SDep(SU, SDep::Order, 0,
610                             /*Reg=*/0, /*isNormalMemory=*/false,
611                             /*isMustAlias=*/false,
612                             /*isArtificial=*/true));
613     } else if (MI->mayLoad()) {
614       bool MayAlias = true;
615       TrueMemOrderLatency = 0;
616       if (MI->isInvariantLoad(AA)) {
617         // Invariant load, no chain dependencies needed!
618       } else {
619         if (const Value *V =
620             getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
621           // A load from a specific PseudoSourceValue. Add precise dependencies.
622           std::map<const Value *, SUnit *>::iterator I =
623             ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
624           std::map<const Value *, SUnit *>::iterator IE =
625             ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
626           if (I != IE)
627             I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
628                                     /*isNormalMemory=*/true));
629           if (MayAlias)
630             AliasMemUses[V].push_back(SU);
631           else
632             NonAliasMemUses[V].push_back(SU);
633         } else {
634           // A load with no underlying object. Depend on all
635           // potentially aliasing stores.
636           for (std::map<const Value *, SUnit *>::iterator I =
637                  AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
638             I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
639 
640           PendingLoads.push_back(SU);
641           MayAlias = true;
642         }
643 
644         // Add dependencies on alias and barrier chains, if needed.
645         if (MayAlias && AliasChain)
646           AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
647         if (BarrierChain)
648           BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
649       }
650     }
651   }
652   if (PrevMI)
653     FirstDbgValue = PrevMI;
654 
655   for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
656     Defs[i].clear();
657     Uses[i].clear();
658   }
659   VRegDefs.clear();
660   VRegUses.clear();
661   PendingLoads.clear();
662 }
663 
664 void ScheduleDAGInstrs::FinishBlock() {
665   // Nothing to do.
666 }
667 
668 void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
669   // Compute the latency for the node.
670   if (!InstrItins || InstrItins->isEmpty()) {
671     SU->Latency = 1;
672 
673     // Simplistic target-independent heuristic: assume that loads take
674     // extra time.
675     if (SU->getInstr()->mayLoad())
676       SU->Latency += 2;
677   } else {
678     SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
679   }
680 }
681 
682 void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
683                                               SDep& dep) const {
684   if (!InstrItins || InstrItins->isEmpty())
685     return;
686 
687   // For a data dependency with a known register...
688   if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
689     return;
690 
691   const unsigned Reg = dep.getReg();
692 
693   // ... find the definition of the register in the defining
694   // instruction
695   MachineInstr *DefMI = Def->getInstr();
696   int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
697   if (DefIdx != -1) {
698     const MachineOperand &MO = DefMI->getOperand(DefIdx);
699     if (MO.isReg() && MO.isImplicit() &&
700         DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
701       // This is an implicit def, getOperandLatency() won't return the correct
702       // latency. e.g.
703       //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
704       //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
705       // What we want is to compute latency between def of %D6/%D7 and use of
706       // %Q3 instead.
707       DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
708     }
709     MachineInstr *UseMI = Use->getInstr();
710     // For all uses of the register, calculate the maxmimum latency
711     int Latency = -1;
712     if (UseMI) {
713       for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
714         const MachineOperand &MO = UseMI->getOperand(i);
715         if (!MO.isReg() || !MO.isUse())
716           continue;
717         unsigned MOReg = MO.getReg();
718         if (MOReg != Reg)
719           continue;
720 
721         int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
722                                               UseMI, i);
723         Latency = std::max(Latency, UseCycle);
724       }
725     } else {
726       // UseMI is null, then it must be a scheduling barrier.
727       if (!InstrItins || InstrItins->isEmpty())
728         return;
729       unsigned DefClass = DefMI->getDesc().getSchedClass();
730       Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
731     }
732 
733     // If we found a latency, then replace the existing dependence latency.
734     if (Latency >= 0)
735       dep.setLatency(Latency);
736   }
737 }
738 
739 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
740   SU->getInstr()->dump();
741 }
742 
743 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
744   std::string s;
745   raw_string_ostream oss(s);
746   if (SU == &EntrySU)
747     oss << "<entry>";
748   else if (SU == &ExitSU)
749     oss << "<exit>";
750   else
751     SU->getInstr()->print(oss);
752   return oss.str();
753 }
754 
755 // EmitSchedule - Emit the machine code in scheduled order.
756 MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
757   Begin = InsertPos;
758 
759   // If first instruction was a DBG_VALUE then put it back.
760   if (FirstDbgValue)
761     BB->splice(InsertPos, BB, FirstDbgValue);
762 
763   // Then re-insert them according to the given schedule.
764   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
765     if (SUnit *SU = Sequence[i])
766       BB->splice(InsertPos, BB, SU->getInstr());
767     else
768       // Null SUnit* is a noop.
769       EmitNoop();
770 
771     // Update the Begin iterator, as the first instruction in the block
772     // may have been scheduled later.
773     if (i == 0)
774       Begin = prior(InsertPos);
775   }
776 
777   // Reinsert any remaining debug_values.
778   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
779          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
780     std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
781     MachineInstr *DbgValue = P.first;
782     MachineBasicBlock::iterator OrigPrivMI = P.second;
783     BB->splice(++OrigPrivMI, BB, DbgValue);
784   }
785   DbgValues.clear();
786   FirstDbgValue = NULL;
787   return BB;
788 }
789