1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling 11 // of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/PseudoSourceValue.h" 27 #include "llvm/CodeGen/RegisterPressure.h" 28 #include "llvm/CodeGen/ScheduleDFS.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/MC/MCInstrItineraries.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/Format.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetRegisterInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <queue> 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "misched" 44 45 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 46 cl::ZeroOrMore, cl::init(false), 47 cl::desc("Enable use of AA during MI DAG construction")); 48 49 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 50 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 51 52 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 53 const MachineLoopInfo *mli, 54 bool IsPostRAFlag, bool RemoveKillFlags, 55 LiveIntervals *lis) 56 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), LIS(lis), 57 IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags), 58 CanHandleTerminators(false), FirstDbgValue(nullptr) { 59 assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals"); 60 DbgValues.clear(); 61 assert(!(IsPostRA && MRI.getNumVirtRegs()) && 62 "Virtual registers must be removed prior to PostRA scheduling"); 63 64 const TargetSubtargetInfo &ST = mf.getSubtarget(); 65 SchedModel.init(ST.getSchedModel(), &ST, TII); 66 } 67 68 /// getUnderlyingObjectFromInt - This is the function that does the work of 69 /// looking through basic ptrtoint+arithmetic+inttoptr sequences. 70 static const Value *getUnderlyingObjectFromInt(const Value *V) { 71 do { 72 if (const Operator *U = dyn_cast<Operator>(V)) { 73 // If we find a ptrtoint, we can transfer control back to the 74 // regular getUnderlyingObjectFromInt. 75 if (U->getOpcode() == Instruction::PtrToInt) 76 return U->getOperand(0); 77 // If we find an add of a constant, a multiplied value, or a phi, it's 78 // likely that the other operand will lead us to the base 79 // object. We don't have to worry about the case where the 80 // object address is somehow being computed by the multiply, 81 // because our callers only care when the result is an 82 // identifiable object. 83 if (U->getOpcode() != Instruction::Add || 84 (!isa<ConstantInt>(U->getOperand(1)) && 85 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 86 !isa<PHINode>(U->getOperand(1)))) 87 return V; 88 V = U->getOperand(0); 89 } else { 90 return V; 91 } 92 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 93 } while (1); 94 } 95 96 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects 97 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. 98 static void getUnderlyingObjects(const Value *V, 99 SmallVectorImpl<Value *> &Objects) { 100 SmallPtrSet<const Value *, 16> Visited; 101 SmallVector<const Value *, 4> Working(1, V); 102 do { 103 V = Working.pop_back_val(); 104 105 SmallVector<Value *, 4> Objs; 106 GetUnderlyingObjects(const_cast<Value *>(V), Objs); 107 108 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 109 I != IE; ++I) { 110 V = *I; 111 if (!Visited.insert(V).second) 112 continue; 113 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 114 const Value *O = 115 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 116 if (O->getType()->isPointerTy()) { 117 Working.push_back(O); 118 continue; 119 } 120 } 121 Objects.push_back(const_cast<Value *>(V)); 122 } 123 } while (!Working.empty()); 124 } 125 126 typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType; 127 typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4> 128 UnderlyingObjectsVector; 129 130 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference 131 /// information and it can be tracked to a normal reference to a known 132 /// object, return the Value for that object. 133 static void getUnderlyingObjectsForInstr(const MachineInstr *MI, 134 const MachineFrameInfo *MFI, 135 UnderlyingObjectsVector &Objects) { 136 if (!MI->hasOneMemOperand() || 137 (!(*MI->memoperands_begin())->getValue() && 138 !(*MI->memoperands_begin())->getPseudoValue()) || 139 (*MI->memoperands_begin())->isVolatile()) 140 return; 141 142 if (const PseudoSourceValue *PSV = 143 (*MI->memoperands_begin())->getPseudoValue()) { 144 // For now, ignore PseudoSourceValues which may alias LLVM IR values 145 // because the code that uses this function has no way to cope with 146 // such aliases. 147 if (!PSV->isAliased(MFI)) { 148 bool MayAlias = PSV->mayAlias(MFI); 149 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 150 } 151 return; 152 } 153 154 const Value *V = (*MI->memoperands_begin())->getValue(); 155 if (!V) 156 return; 157 158 SmallVector<Value *, 4> Objs; 159 getUnderlyingObjects(V, Objs); 160 161 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 162 I != IE; ++I) { 163 V = *I; 164 165 if (!isIdentifiedObject(V)) { 166 Objects.clear(); 167 return; 168 } 169 170 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 171 } 172 } 173 174 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 175 BB = bb; 176 } 177 178 void ScheduleDAGInstrs::finishBlock() { 179 // Subclasses should no longer refer to the old block. 180 BB = nullptr; 181 } 182 183 /// Initialize the DAG and common scheduler state for the current scheduling 184 /// region. This does not actually create the DAG, only clears it. The 185 /// scheduling driver may call BuildSchedGraph multiple times per scheduling 186 /// region. 187 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 188 MachineBasicBlock::iterator begin, 189 MachineBasicBlock::iterator end, 190 unsigned regioninstrs) { 191 assert(bb == BB && "startBlock should set BB"); 192 RegionBegin = begin; 193 RegionEnd = end; 194 NumRegionInstrs = regioninstrs; 195 } 196 197 /// Close the current scheduling region. Don't clear any state in case the 198 /// driver wants to refer to the previous scheduling region. 199 void ScheduleDAGInstrs::exitRegion() { 200 // Nothing to do. 201 } 202 203 /// addSchedBarrierDeps - Add dependencies from instructions in the current 204 /// list of instructions being scheduled to scheduling barrier by adding 205 /// the exit SU to the register defs and use list. This is because we want to 206 /// make sure instructions which define registers that are either used by 207 /// the terminator or are live-out are properly scheduled. This is 208 /// especially important when the definition latency of the return value(s) 209 /// are too high to be hidden by the branch or when the liveout registers 210 /// used by instructions in the fallthrough block. 211 void ScheduleDAGInstrs::addSchedBarrierDeps() { 212 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 213 ExitSU.setInstr(ExitMI); 214 bool AllDepKnown = ExitMI && 215 (ExitMI->isCall() || ExitMI->isBarrier()); 216 if (ExitMI && AllDepKnown) { 217 // If it's a call or a barrier, add dependencies on the defs and uses of 218 // instruction. 219 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { 220 const MachineOperand &MO = ExitMI->getOperand(i); 221 if (!MO.isReg() || MO.isDef()) continue; 222 unsigned Reg = MO.getReg(); 223 if (Reg == 0) continue; 224 225 if (TRI->isPhysicalRegister(Reg)) 226 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 227 else { 228 assert(!IsPostRA && "Virtual register encountered after regalloc."); 229 if (MO.readsReg()) // ignore undef operands 230 addVRegUseDeps(&ExitSU, i); 231 } 232 } 233 } else { 234 // For others, e.g. fallthrough, conditional branch, assume the exit 235 // uses all the registers that are livein to the successor blocks. 236 assert(Uses.empty() && "Uses in set before adding deps?"); 237 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 238 SE = BB->succ_end(); SI != SE; ++SI) 239 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 240 E = (*SI)->livein_end(); I != E; ++I) { 241 unsigned Reg = *I; 242 if (!Uses.contains(Reg)) 243 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 244 } 245 } 246 } 247 248 /// MO is an operand of SU's instruction that defines a physical register. Add 249 /// data dependencies from SU to any uses of the physical register. 250 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 251 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 252 assert(MO.isDef() && "expect physreg def"); 253 254 // Ask the target if address-backscheduling is desirable, and if so how much. 255 const TargetSubtargetInfo &ST = MF.getSubtarget(); 256 257 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 258 Alias.isValid(); ++Alias) { 259 if (!Uses.contains(*Alias)) 260 continue; 261 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 262 SUnit *UseSU = I->SU; 263 if (UseSU == SU) 264 continue; 265 266 // Adjust the dependence latency using operand def/use information, 267 // then allow the target to perform its own adjustments. 268 int UseOp = I->OpIdx; 269 MachineInstr *RegUse = nullptr; 270 SDep Dep; 271 if (UseOp < 0) 272 Dep = SDep(SU, SDep::Artificial); 273 else { 274 // Set the hasPhysRegDefs only for physreg defs that have a use within 275 // the scheduling region. 276 SU->hasPhysRegDefs = true; 277 Dep = SDep(SU, SDep::Data, *Alias); 278 RegUse = UseSU->getInstr(); 279 } 280 Dep.setLatency( 281 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 282 UseOp)); 283 284 ST.adjustSchedDependency(SU, UseSU, Dep); 285 UseSU->addPred(Dep); 286 } 287 } 288 } 289 290 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from 291 /// this SUnit to following instructions in the same scheduling region that 292 /// depend the physical register referenced at OperIdx. 293 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 294 MachineInstr *MI = SU->getInstr(); 295 MachineOperand &MO = MI->getOperand(OperIdx); 296 297 // Optionally add output and anti dependencies. For anti 298 // dependencies we use a latency of 0 because for a multi-issue 299 // target we want to allow the defining instruction to issue 300 // in the same cycle as the using instruction. 301 // TODO: Using a latency of 1 here for output dependencies assumes 302 // there's no cost for reusing registers. 303 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 304 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 305 Alias.isValid(); ++Alias) { 306 if (!Defs.contains(*Alias)) 307 continue; 308 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 309 SUnit *DefSU = I->SU; 310 if (DefSU == &ExitSU) 311 continue; 312 if (DefSU != SU && 313 (Kind != SDep::Output || !MO.isDead() || 314 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 315 if (Kind == SDep::Anti) 316 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 317 else { 318 SDep Dep(SU, Kind, /*Reg=*/*Alias); 319 Dep.setLatency( 320 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 321 DefSU->addPred(Dep); 322 } 323 } 324 } 325 } 326 327 if (!MO.isDef()) { 328 SU->hasPhysRegUses = true; 329 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 330 // retrieve the existing SUnits list for this register's uses. 331 // Push this SUnit on the use list. 332 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); 333 if (RemoveKillFlags) 334 MO.setIsKill(false); 335 } 336 else { 337 addPhysRegDataDeps(SU, OperIdx); 338 unsigned Reg = MO.getReg(); 339 340 // clear this register's use list 341 if (Uses.contains(Reg)) 342 Uses.eraseAll(Reg); 343 344 if (!MO.isDead()) { 345 Defs.eraseAll(Reg); 346 } else if (SU->isCall) { 347 // Calls will not be reordered because of chain dependencies (see 348 // below). Since call operands are dead, calls may continue to be added 349 // to the DefList making dependence checking quadratic in the size of 350 // the block. Instead, we leave only one call at the back of the 351 // DefList. 352 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 353 Reg2SUnitsMap::iterator B = P.first; 354 Reg2SUnitsMap::iterator I = P.second; 355 for (bool isBegin = I == B; !isBegin; /* empty */) { 356 isBegin = (--I) == B; 357 if (!I->SU->isCall) 358 break; 359 I = Defs.erase(I); 360 } 361 } 362 363 // Defs are pushed in the order they are visited and never reordered. 364 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 365 } 366 } 367 368 /// addVRegDefDeps - Add register output and data dependencies from this SUnit 369 /// to instructions that occur later in the same scheduling region if they read 370 /// from or write to the virtual register defined at OperIdx. 371 /// 372 /// TODO: Hoist loop induction variable increments. This has to be 373 /// reevaluated. Generally, IV scheduling should be done before coalescing. 374 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 375 const MachineInstr *MI = SU->getInstr(); 376 unsigned Reg = MI->getOperand(OperIdx).getReg(); 377 378 // Singly defined vregs do not have output/anti dependencies. 379 // The current operand is a def, so we have at least one. 380 // Check here if there are any others... 381 if (MRI.hasOneDef(Reg)) 382 return; 383 384 // Add output dependence to the next nearest def of this vreg. 385 // 386 // Unless this definition is dead, the output dependence should be 387 // transitively redundant with antidependencies from this definition's 388 // uses. We're conservative for now until we have a way to guarantee the uses 389 // are not eliminated sometime during scheduling. The output dependence edge 390 // is also useful if output latency exceeds def-use latency. 391 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 392 if (DefI == VRegDefs.end()) 393 VRegDefs.insert(VReg2SUnit(Reg, SU)); 394 else { 395 SUnit *DefSU = DefI->SU; 396 if (DefSU != SU && DefSU != &ExitSU) { 397 SDep Dep(SU, SDep::Output, Reg); 398 Dep.setLatency( 399 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 400 DefSU->addPred(Dep); 401 } 402 DefI->SU = SU; 403 } 404 } 405 406 /// addVRegUseDeps - Add a register data dependency if the instruction that 407 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a 408 /// register antidependency from this SUnit to instructions that occur later in 409 /// the same scheduling region if they write the virtual register. 410 /// 411 /// TODO: Handle ExitSU "uses" properly. 412 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 413 MachineInstr *MI = SU->getInstr(); 414 unsigned Reg = MI->getOperand(OperIdx).getReg(); 415 416 // Record this local VReg use. 417 VReg2UseMap::iterator UI = VRegUses.find(Reg); 418 for (; UI != VRegUses.end(); ++UI) { 419 if (UI->SU == SU) 420 break; 421 } 422 if (UI == VRegUses.end()) 423 VRegUses.insert(VReg2SUnit(Reg, SU)); 424 425 // Lookup this operand's reaching definition. 426 assert(LIS && "vreg dependencies requires LiveIntervals"); 427 LiveQueryResult LRQ 428 = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI)); 429 VNInfo *VNI = LRQ.valueIn(); 430 431 // VNI will be valid because MachineOperand::readsReg() is checked by caller. 432 assert(VNI && "No value to read by operand"); 433 MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); 434 // Phis and other noninstructions (after coalescing) have a NULL Def. 435 if (Def) { 436 SUnit *DefSU = getSUnit(Def); 437 if (DefSU) { 438 // The reaching Def lives within this scheduling region. 439 // Create a data dependence. 440 SDep dep(DefSU, SDep::Data, Reg); 441 // Adjust the dependence latency using operand def/use information, then 442 // allow the target to perform its own adjustments. 443 int DefOp = Def->findRegisterDefOperandIdx(Reg); 444 dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx)); 445 446 const TargetSubtargetInfo &ST = MF.getSubtarget(); 447 ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep)); 448 SU->addPred(dep); 449 } 450 } 451 452 // Add antidependence to the following def of the vreg it uses. 453 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 454 if (DefI != VRegDefs.end() && DefI->SU != SU) 455 DefI->SU->addPred(SDep(SU, SDep::Anti, Reg)); 456 } 457 458 /// Return true if MI is an instruction we are unable to reason about 459 /// (like a call or something with unmodeled side effects). 460 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 461 if (MI->isCall() || MI->hasUnmodeledSideEffects() || 462 (MI->hasOrderedMemoryRef() && 463 (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) 464 return true; 465 return false; 466 } 467 468 // This MI might have either incomplete info, or known to be unsafe 469 // to deal with (i.e. volatile object). 470 static inline bool isUnsafeMemoryObject(MachineInstr *MI, 471 const MachineFrameInfo *MFI) { 472 if (!MI || MI->memoperands_empty()) 473 return true; 474 // We purposefully do no check for hasOneMemOperand() here 475 // in hope to trigger an assert downstream in order to 476 // finish implementation. 477 if ((*MI->memoperands_begin())->isVolatile() || 478 MI->hasUnmodeledSideEffects()) 479 return true; 480 481 if ((*MI->memoperands_begin())->getPseudoValue()) { 482 // Similarly to getUnderlyingObjectForInstr: 483 // For now, ignore PseudoSourceValues which may alias LLVM IR values 484 // because the code that uses this function has no way to cope with 485 // such aliases. 486 return true; 487 } 488 489 const Value *V = (*MI->memoperands_begin())->getValue(); 490 if (!V) 491 return true; 492 493 SmallVector<Value *, 4> Objs; 494 getUnderlyingObjects(V, Objs); 495 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), 496 IE = Objs.end(); I != IE; ++I) { 497 // Does this pointer refer to a distinct and identifiable object? 498 if (!isIdentifiedObject(*I)) 499 return true; 500 } 501 502 return false; 503 } 504 505 /// This returns true if the two MIs need a chain edge betwee them. 506 /// If these are not even memory operations, we still may need 507 /// chain deps between them. The question really is - could 508 /// these two MIs be reordered during scheduling from memory dependency 509 /// point of view. 510 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 511 MachineInstr *MIa, 512 MachineInstr *MIb) { 513 const MachineFunction *MF = MIa->getParent()->getParent(); 514 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 515 516 // Cover a trivial case - no edge is need to itself. 517 if (MIa == MIb) 518 return false; 519 520 // Let the target decide if memory accesses cannot possibly overlap. 521 if ((MIa->mayLoad() || MIa->mayStore()) && 522 (MIb->mayLoad() || MIb->mayStore())) 523 if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA)) 524 return false; 525 526 // FIXME: Need to handle multiple memory operands to support all targets. 527 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 528 return true; 529 530 if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI)) 531 return true; 532 533 // If we are dealing with two "normal" loads, we do not need an edge 534 // between them - they could be reordered. 535 if (!MIa->mayStore() && !MIb->mayStore()) 536 return false; 537 538 // To this point analysis is generic. From here on we do need AA. 539 if (!AA) 540 return true; 541 542 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 543 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 544 545 if (!MMOa->getValue() || !MMOb->getValue()) 546 return true; 547 548 // The following interface to AA is fashioned after DAGCombiner::isAlias 549 // and operates with MachineMemOperand offset with some important 550 // assumptions: 551 // - LLVM fundamentally assumes flat address spaces. 552 // - MachineOperand offset can *only* result from legalization and 553 // cannot affect queries other than the trivial case of overlap 554 // checking. 555 // - These offsets never wrap and never step outside 556 // of allocated objects. 557 // - There should never be any negative offsets here. 558 // 559 // FIXME: Modify API to hide this math from "user" 560 // FIXME: Even before we go to AA we can reason locally about some 561 // memory objects. It can save compile time, and possibly catch some 562 // corner cases not currently covered. 563 564 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 565 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 566 567 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 568 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 569 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 570 571 AliasAnalysis::AliasResult AAResult = AA->alias( 572 AliasAnalysis::Location(MMOa->getValue(), Overlapa, 573 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 574 AliasAnalysis::Location(MMOb->getValue(), Overlapb, 575 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 576 577 return (AAResult != AliasAnalysis::NoAlias); 578 } 579 580 /// This recursive function iterates over chain deps of SUb looking for 581 /// "latest" node that needs a chain edge to SUa. 582 static unsigned 583 iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI, 584 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth, 585 SmallPtrSetImpl<const SUnit*> &Visited) { 586 if (!SUa || !SUb || SUb == ExitSU) 587 return *Depth; 588 589 // Remember visited nodes. 590 if (!Visited.insert(SUb).second) 591 return *Depth; 592 // If there is _some_ dependency already in place, do not 593 // descend any further. 594 // TODO: Need to make sure that if that dependency got eliminated or ignored 595 // for any reason in the future, we would not violate DAG topology. 596 // Currently it does not happen, but makes an implicit assumption about 597 // future implementation. 598 // 599 // Independently, if we encounter node that is some sort of global 600 // object (like a call) we already have full set of dependencies to it 601 // and we can stop descending. 602 if (SUa->isSucc(SUb) || 603 isGlobalMemoryObject(AA, SUb->getInstr())) 604 return *Depth; 605 606 // If we do need an edge, or we have exceeded depth budget, 607 // add that edge to the predecessors chain of SUb, 608 // and stop descending. 609 if (*Depth > 200 || 610 MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 611 SUb->addPred(SDep(SUa, SDep::MayAliasMem)); 612 return *Depth; 613 } 614 // Track current depth. 615 (*Depth)++; 616 // Iterate over memory dependencies only. 617 for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end(); 618 I != E; ++I) 619 if (I->isNormalMemoryOrBarrier()) 620 iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited); 621 return *Depth; 622 } 623 624 /// This function assumes that "downward" from SU there exist 625 /// tail/leaf of already constructed DAG. It iterates downward and 626 /// checks whether SU can be aliasing any node dominated 627 /// by it. 628 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI, 629 SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList, 630 unsigned LatencyToLoad) { 631 if (!SU) 632 return; 633 634 SmallPtrSet<const SUnit*, 16> Visited; 635 unsigned Depth = 0; 636 637 for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end(); 638 I != IE; ++I) { 639 if (SU == *I) 640 continue; 641 if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) { 642 SDep Dep(SU, SDep::MayAliasMem); 643 Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0); 644 (*I)->addPred(Dep); 645 } 646 647 // Iterate recursively over all previously added memory chain 648 // successors. Keep track of visited nodes. 649 for (SUnit::const_succ_iterator J = (*I)->Succs.begin(), 650 JE = (*I)->Succs.end(); J != JE; ++J) 651 if (J->isNormalMemoryOrBarrier()) 652 iterateChainSucc (AA, MFI, SU, J->getSUnit(), 653 ExitSU, &Depth, Visited); 654 } 655 } 656 657 /// Check whether two objects need a chain edge, if so, add it 658 /// otherwise remember the rejected SU. 659 static inline 660 void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI, 661 SUnit *SUa, SUnit *SUb, 662 std::set<SUnit *> &RejectList, 663 unsigned TrueMemOrderLatency = 0, 664 bool isNormalMemory = false) { 665 // If this is a false dependency, 666 // do not add the edge, but rememeber the rejected node. 667 if (MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 668 SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier); 669 Dep.setLatency(TrueMemOrderLatency); 670 SUb->addPred(Dep); 671 } 672 else { 673 // Duplicate entries should be ignored. 674 RejectList.insert(SUb); 675 DEBUG(dbgs() << "\tReject chain dep between SU(" 676 << SUa->NodeNum << ") and SU(" 677 << SUb->NodeNum << ")\n"); 678 } 679 } 680 681 /// Create an SUnit for each real instruction, numbered in top-down toplological 682 /// order. The instruction order A < B, implies that no edge exists from B to A. 683 /// 684 /// Map each real instruction to its SUnit. 685 /// 686 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 687 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 688 /// instead of pointers. 689 /// 690 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 691 /// the original instruction list. 692 void ScheduleDAGInstrs::initSUnits() { 693 // We'll be allocating one SUnit for each real instruction in the region, 694 // which is contained within a basic block. 695 SUnits.reserve(NumRegionInstrs); 696 697 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { 698 MachineInstr *MI = I; 699 if (MI->isDebugValue()) 700 continue; 701 702 SUnit *SU = newSUnit(MI); 703 MISUnitMap[MI] = SU; 704 705 SU->isCall = MI->isCall(); 706 SU->isCommutable = MI->isCommutable(); 707 708 // Assign the Latency field of SU using target-provided information. 709 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 710 711 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 712 // 713 // Reserved resources block an instruction from issuing and stall the 714 // entire pipeline. These are identified by BufferSize=0. 715 // 716 // Unbuffered resources prevent execution of subsequent instructions that 717 // require the same resources. This is used for in-order execution pipelines 718 // within an out-of-order core. These are identified by BufferSize=1. 719 if (SchedModel.hasInstrSchedModel()) { 720 const MCSchedClassDesc *SC = getSchedClass(SU); 721 for (TargetSchedModel::ProcResIter 722 PI = SchedModel.getWriteProcResBegin(SC), 723 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 724 switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) { 725 case 0: 726 SU->hasReservedResource = true; 727 break; 728 case 1: 729 SU->isUnbuffered = true; 730 break; 731 default: 732 break; 733 } 734 } 735 } 736 } 737 } 738 739 /// If RegPressure is non-null, compute register pressure as a side effect. The 740 /// DAG builder is an efficient place to do it because it already visits 741 /// operands. 742 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 743 RegPressureTracker *RPTracker, 744 PressureDiffs *PDiffs) { 745 const TargetSubtargetInfo &ST = MF.getSubtarget(); 746 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 747 : ST.useAA(); 748 AliasAnalysis *AAForDep = UseAA ? AA : nullptr; 749 750 MISUnitMap.clear(); 751 ScheduleDAG::clearDAG(); 752 753 // Create an SUnit for each real instruction. 754 initSUnits(); 755 756 if (PDiffs) 757 PDiffs->init(SUnits.size()); 758 759 // We build scheduling units by walking a block's instruction list from bottom 760 // to top. 761 762 // Remember where a generic side-effecting instruction is as we procede. 763 SUnit *BarrierChain = nullptr, *AliasChain = nullptr; 764 765 // Memory references to specific known memory locations are tracked 766 // so that they can be given more precise dependencies. We track 767 // separately the known memory locations that may alias and those 768 // that are known not to alias 769 MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs; 770 MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; 771 std::set<SUnit*> RejectMemNodes; 772 773 // Remove any stale debug info; sometimes BuildSchedGraph is called again 774 // without emitting the info from the previous call. 775 DbgValues.clear(); 776 FirstDbgValue = nullptr; 777 778 assert(Defs.empty() && Uses.empty() && 779 "Only BuildGraph should update Defs/Uses"); 780 Defs.setUniverse(TRI->getNumRegs()); 781 Uses.setUniverse(TRI->getNumRegs()); 782 783 assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); 784 VRegUses.clear(); 785 VRegDefs.setUniverse(MRI.getNumVirtRegs()); 786 VRegUses.setUniverse(MRI.getNumVirtRegs()); 787 788 // Model data dependencies between instructions being scheduled and the 789 // ExitSU. 790 addSchedBarrierDeps(); 791 792 // Walk the list of instructions, from bottom moving up. 793 MachineInstr *DbgMI = nullptr; 794 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 795 MII != MIE; --MII) { 796 MachineInstr *MI = std::prev(MII); 797 if (MI && DbgMI) { 798 DbgValues.push_back(std::make_pair(DbgMI, MI)); 799 DbgMI = nullptr; 800 } 801 802 if (MI->isDebugValue()) { 803 DbgMI = MI; 804 continue; 805 } 806 SUnit *SU = MISUnitMap[MI]; 807 assert(SU && "No SUnit mapped to this MI"); 808 809 if (RPTracker) { 810 PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : nullptr; 811 RPTracker->recede(/*LiveUses=*/nullptr, PDiff); 812 assert(RPTracker->getPos() == std::prev(MII) && 813 "RPTracker can't find MI"); 814 } 815 816 assert( 817 (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) && 818 "Cannot schedule terminators or labels!"); 819 820 // Add register-based dependencies (data, anti, and output). 821 bool HasVRegDef = false; 822 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { 823 const MachineOperand &MO = MI->getOperand(j); 824 if (!MO.isReg()) continue; 825 unsigned Reg = MO.getReg(); 826 if (Reg == 0) continue; 827 828 if (TRI->isPhysicalRegister(Reg)) 829 addPhysRegDeps(SU, j); 830 else { 831 assert(!IsPostRA && "Virtual register encountered!"); 832 if (MO.isDef()) { 833 HasVRegDef = true; 834 addVRegDefDeps(SU, j); 835 } 836 else if (MO.readsReg()) // ignore undef operands 837 addVRegUseDeps(SU, j); 838 } 839 } 840 // If we haven't seen any uses in this scheduling region, create a 841 // dependence edge to ExitSU to model the live-out latency. This is required 842 // for vreg defs with no in-region use, and prefetches with no vreg def. 843 // 844 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 845 // check currently relies on being called before adding chain deps. 846 if (SU->NumSuccs == 0 && SU->Latency > 1 847 && (HasVRegDef || MI->mayLoad())) { 848 SDep Dep(SU, SDep::Artificial); 849 Dep.setLatency(SU->Latency - 1); 850 ExitSU.addPred(Dep); 851 } 852 853 // Add chain dependencies. 854 // Chain dependencies used to enforce memory order should have 855 // latency of 0 (except for true dependency of Store followed by 856 // aliased Load... we estimate that with a single cycle of latency 857 // assuming the hardware will bypass) 858 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable 859 // after stack slots are lowered to actual addresses. 860 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and 861 // produce more precise dependence information. 862 unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0; 863 if (isGlobalMemoryObject(AA, MI)) { 864 // Be conservative with these and add dependencies on all memory 865 // references, even those that are known to not alias. 866 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 867 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { 868 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 869 I->second[i]->addPred(SDep(SU, SDep::Barrier)); 870 } 871 } 872 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 873 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { 874 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 875 SDep Dep(SU, SDep::Barrier); 876 Dep.setLatency(TrueMemOrderLatency); 877 I->second[i]->addPred(Dep); 878 } 879 } 880 // Add SU to the barrier chain. 881 if (BarrierChain) 882 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 883 BarrierChain = SU; 884 // This is a barrier event that acts as a pivotal node in the DAG, 885 // so it is safe to clear list of exposed nodes. 886 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 887 TrueMemOrderLatency); 888 RejectMemNodes.clear(); 889 NonAliasMemDefs.clear(); 890 NonAliasMemUses.clear(); 891 892 // fall-through 893 new_alias_chain: 894 // Chain all possibly aliasing memory references through SU. 895 if (AliasChain) { 896 unsigned ChainLatency = 0; 897 if (AliasChain->getInstr()->mayLoad()) 898 ChainLatency = TrueMemOrderLatency; 899 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes, 900 ChainLatency); 901 } 902 AliasChain = SU; 903 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 904 addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes, 905 TrueMemOrderLatency); 906 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 907 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) { 908 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 909 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes); 910 } 911 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 912 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { 913 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 914 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes, 915 TrueMemOrderLatency); 916 } 917 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 918 TrueMemOrderLatency); 919 PendingLoads.clear(); 920 AliasMemDefs.clear(); 921 AliasMemUses.clear(); 922 } else if (MI->mayStore()) { 923 // Add dependence on barrier chain, if needed. 924 // There is no point to check aliasing on barrier event. Even if 925 // SU and barrier _could_ be reordered, they should not. In addition, 926 // we have lost all RejectMemNodes below barrier. 927 if (BarrierChain) 928 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 929 930 UnderlyingObjectsVector Objs; 931 getUnderlyingObjectsForInstr(MI, MFI, Objs); 932 933 if (Objs.empty()) { 934 // Treat all other stores conservatively. 935 goto new_alias_chain; 936 } 937 938 bool MayAlias = false; 939 for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end(); 940 K != KE; ++K) { 941 ValueType V = K->getPointer(); 942 bool ThisMayAlias = K->getInt(); 943 if (ThisMayAlias) 944 MayAlias = true; 945 946 // A store to a specific PseudoSourceValue. Add precise dependencies. 947 // Record the def in MemDefs, first adding a dep if there is 948 // an existing def. 949 MapVector<ValueType, std::vector<SUnit *> >::iterator I = 950 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 951 MapVector<ValueType, std::vector<SUnit *> >::iterator IE = 952 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 953 if (I != IE) { 954 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 955 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes, 956 0, true); 957 958 // If we're not using AA, then we only need one store per object. 959 if (!AAForDep) 960 I->second.clear(); 961 I->second.push_back(SU); 962 } else { 963 if (ThisMayAlias) { 964 if (!AAForDep) 965 AliasMemDefs[V].clear(); 966 AliasMemDefs[V].push_back(SU); 967 } else { 968 if (!AAForDep) 969 NonAliasMemDefs[V].clear(); 970 NonAliasMemDefs[V].push_back(SU); 971 } 972 } 973 // Handle the uses in MemUses, if there are any. 974 MapVector<ValueType, std::vector<SUnit *> >::iterator J = 975 ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); 976 MapVector<ValueType, std::vector<SUnit *> >::iterator JE = 977 ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); 978 if (J != JE) { 979 for (unsigned i = 0, e = J->second.size(); i != e; ++i) 980 addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes, 981 TrueMemOrderLatency, true); 982 J->second.clear(); 983 } 984 } 985 if (MayAlias) { 986 // Add dependencies from all the PendingLoads, i.e. loads 987 // with no underlying object. 988 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 989 addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes, 990 TrueMemOrderLatency); 991 // Add dependence on alias chain, if needed. 992 if (AliasChain) 993 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes); 994 } 995 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 996 TrueMemOrderLatency); 997 } else if (MI->mayLoad()) { 998 bool MayAlias = true; 999 if (MI->isInvariantLoad(AA)) { 1000 // Invariant load, no chain dependencies needed! 1001 } else { 1002 UnderlyingObjectsVector Objs; 1003 getUnderlyingObjectsForInstr(MI, MFI, Objs); 1004 1005 if (Objs.empty()) { 1006 // A load with no underlying object. Depend on all 1007 // potentially aliasing stores. 1008 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 1009 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) 1010 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1011 addChainDependency(AAForDep, MFI, SU, I->second[i], 1012 RejectMemNodes); 1013 1014 PendingLoads.push_back(SU); 1015 MayAlias = true; 1016 } else { 1017 MayAlias = false; 1018 } 1019 1020 for (UnderlyingObjectsVector::iterator 1021 J = Objs.begin(), JE = Objs.end(); J != JE; ++J) { 1022 ValueType V = J->getPointer(); 1023 bool ThisMayAlias = J->getInt(); 1024 1025 if (ThisMayAlias) 1026 MayAlias = true; 1027 1028 // A load from a specific PseudoSourceValue. Add precise dependencies. 1029 MapVector<ValueType, std::vector<SUnit *> >::iterator I = 1030 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 1031 MapVector<ValueType, std::vector<SUnit *> >::iterator IE = 1032 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 1033 if (I != IE) 1034 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1035 addChainDependency(AAForDep, MFI, SU, I->second[i], 1036 RejectMemNodes, 0, true); 1037 if (ThisMayAlias) 1038 AliasMemUses[V].push_back(SU); 1039 else 1040 NonAliasMemUses[V].push_back(SU); 1041 } 1042 if (MayAlias) 1043 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0); 1044 // Add dependencies on alias and barrier chains, if needed. 1045 if (MayAlias && AliasChain) 1046 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes); 1047 if (BarrierChain) 1048 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 1049 } 1050 } 1051 } 1052 if (DbgMI) 1053 FirstDbgValue = DbgMI; 1054 1055 Defs.clear(); 1056 Uses.clear(); 1057 VRegDefs.clear(); 1058 PendingLoads.clear(); 1059 } 1060 1061 /// \brief Initialize register live-range state for updating kills. 1062 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { 1063 // Start with no live registers. 1064 LiveRegs.reset(); 1065 1066 // Examine the live-in regs of all successors. 1067 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 1068 SE = BB->succ_end(); SI != SE; ++SI) { 1069 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 1070 E = (*SI)->livein_end(); I != E; ++I) { 1071 unsigned Reg = *I; 1072 // Repeat, for reg and all subregs. 1073 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1074 SubRegs.isValid(); ++SubRegs) 1075 LiveRegs.set(*SubRegs); 1076 } 1077 } 1078 } 1079 1080 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) { 1081 // Setting kill flag... 1082 if (!MO.isKill()) { 1083 MO.setIsKill(true); 1084 return false; 1085 } 1086 1087 // If MO itself is live, clear the kill flag... 1088 if (LiveRegs.test(MO.getReg())) { 1089 MO.setIsKill(false); 1090 return false; 1091 } 1092 1093 // If any subreg of MO is live, then create an imp-def for that 1094 // subreg and keep MO marked as killed. 1095 MO.setIsKill(false); 1096 bool AllDead = true; 1097 const unsigned SuperReg = MO.getReg(); 1098 MachineInstrBuilder MIB(MF, MI); 1099 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { 1100 if (LiveRegs.test(*SubRegs)) { 1101 MIB.addReg(*SubRegs, RegState::ImplicitDefine); 1102 AllDead = false; 1103 } 1104 } 1105 1106 if(AllDead) 1107 MO.setIsKill(true); 1108 return false; 1109 } 1110 1111 // FIXME: Reuse the LivePhysRegs utility for this. 1112 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { 1113 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); 1114 1115 LiveRegs.resize(TRI->getNumRegs()); 1116 BitVector killedRegs(TRI->getNumRegs()); 1117 1118 startBlockForKills(MBB); 1119 1120 // Examine block from end to start... 1121 unsigned Count = MBB->size(); 1122 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); 1123 I != E; --Count) { 1124 MachineInstr *MI = --I; 1125 if (MI->isDebugValue()) 1126 continue; 1127 1128 // Update liveness. Registers that are defed but not used in this 1129 // instruction are now dead. Mark register and all subregs as they 1130 // are completely defined. 1131 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1132 MachineOperand &MO = MI->getOperand(i); 1133 if (MO.isRegMask()) 1134 LiveRegs.clearBitsNotInMask(MO.getRegMask()); 1135 if (!MO.isReg()) continue; 1136 unsigned Reg = MO.getReg(); 1137 if (Reg == 0) continue; 1138 if (!MO.isDef()) continue; 1139 // Ignore two-addr defs. 1140 if (MI->isRegTiedToUseOperand(i)) continue; 1141 1142 // Repeat for reg and all subregs. 1143 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1144 SubRegs.isValid(); ++SubRegs) 1145 LiveRegs.reset(*SubRegs); 1146 } 1147 1148 // Examine all used registers and set/clear kill flag. When a 1149 // register is used multiple times we only set the kill flag on 1150 // the first use. Don't set kill flags on undef operands. 1151 killedRegs.reset(); 1152 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1153 MachineOperand &MO = MI->getOperand(i); 1154 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1155 unsigned Reg = MO.getReg(); 1156 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1157 1158 bool kill = false; 1159 if (!killedRegs.test(Reg)) { 1160 kill = true; 1161 // A register is not killed if any subregs are live... 1162 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 1163 if (LiveRegs.test(*SubRegs)) { 1164 kill = false; 1165 break; 1166 } 1167 } 1168 1169 // If subreg is not live, then register is killed if it became 1170 // live in this instruction 1171 if (kill) 1172 kill = !LiveRegs.test(Reg); 1173 } 1174 1175 if (MO.isKill() != kill) { 1176 DEBUG(dbgs() << "Fixing " << MO << " in "); 1177 // Warning: toggleKillFlag may invalidate MO. 1178 toggleKillFlag(MI, MO); 1179 DEBUG(MI->dump()); 1180 } 1181 1182 killedRegs.set(Reg); 1183 } 1184 1185 // Mark any used register (that is not using undef) and subregs as 1186 // now live... 1187 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1188 MachineOperand &MO = MI->getOperand(i); 1189 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1190 unsigned Reg = MO.getReg(); 1191 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1192 1193 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1194 SubRegs.isValid(); ++SubRegs) 1195 LiveRegs.set(*SubRegs); 1196 } 1197 } 1198 } 1199 1200 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1201 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1202 SU->getInstr()->dump(); 1203 #endif 1204 } 1205 1206 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1207 std::string s; 1208 raw_string_ostream oss(s); 1209 if (SU == &EntrySU) 1210 oss << "<entry>"; 1211 else if (SU == &ExitSU) 1212 oss << "<exit>"; 1213 else 1214 SU->getInstr()->print(oss, /*SkipOpers=*/true); 1215 return oss.str(); 1216 } 1217 1218 /// Return the basic block label. It is not necessarilly unique because a block 1219 /// contains multiple scheduling regions. But it is fine for visualization. 1220 std::string ScheduleDAGInstrs::getDAGName() const { 1221 return "dag." + BB->getFullName(); 1222 } 1223 1224 //===----------------------------------------------------------------------===// 1225 // SchedDFSResult Implementation 1226 //===----------------------------------------------------------------------===// 1227 1228 namespace llvm { 1229 /// \brief Internal state used to compute SchedDFSResult. 1230 class SchedDFSImpl { 1231 SchedDFSResult &R; 1232 1233 /// Join DAG nodes into equivalence classes by their subtree. 1234 IntEqClasses SubtreeClasses; 1235 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1236 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 1237 1238 struct RootData { 1239 unsigned NodeID; 1240 unsigned ParentNodeID; // Parent node (member of the parent subtree). 1241 unsigned SubInstrCount; // Instr count in this tree only, not children. 1242 1243 RootData(unsigned id): NodeID(id), 1244 ParentNodeID(SchedDFSResult::InvalidSubtreeID), 1245 SubInstrCount(0) {} 1246 1247 unsigned getSparseSetIndex() const { return NodeID; } 1248 }; 1249 1250 SparseSet<RootData> RootSet; 1251 1252 public: 1253 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1254 RootSet.setUniverse(R.DFSNodeData.size()); 1255 } 1256 1257 /// Return true if this node been visited by the DFS traversal. 1258 /// 1259 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1260 /// ID. Later, SubtreeID is updated but remains valid. 1261 bool isVisited(const SUnit *SU) const { 1262 return R.DFSNodeData[SU->NodeNum].SubtreeID 1263 != SchedDFSResult::InvalidSubtreeID; 1264 } 1265 1266 /// Initialize this node's instruction count. We don't need to flag the node 1267 /// visited until visitPostorder because the DAG cannot have cycles. 1268 void visitPreorder(const SUnit *SU) { 1269 R.DFSNodeData[SU->NodeNum].InstrCount = 1270 SU->getInstr()->isTransient() ? 0 : 1; 1271 } 1272 1273 /// Called once for each node after all predecessors are visited. Revisit this 1274 /// node's predecessors and potentially join them now that we know the ILP of 1275 /// the other predecessors. 1276 void visitPostorderNode(const SUnit *SU) { 1277 // Mark this node as the root of a subtree. It may be joined with its 1278 // successors later. 1279 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1280 RootData RData(SU->NodeNum); 1281 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1282 1283 // If any predecessors are still in their own subtree, they either cannot be 1284 // joined or are large enough to remain separate. If this parent node's 1285 // total instruction count is not greater than a child subtree by at least 1286 // the subtree limit, then try to join it now since splitting subtrees is 1287 // only useful if multiple high-pressure paths are possible. 1288 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1289 for (SUnit::const_pred_iterator 1290 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1291 if (PI->getKind() != SDep::Data) 1292 continue; 1293 unsigned PredNum = PI->getSUnit()->NodeNum; 1294 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1295 joinPredSubtree(*PI, SU, /*CheckLimit=*/false); 1296 1297 // Either link or merge the TreeData entry from the child to the parent. 1298 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1299 // If the predecessor's parent is invalid, this is a tree edge and the 1300 // current node is the parent. 1301 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1302 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1303 } 1304 else if (RootSet.count(PredNum)) { 1305 // The predecessor is not a root, but is still in the root set. This 1306 // must be the new parent that it was just joined to. Note that 1307 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1308 // set to the original parent. 1309 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1310 RootSet.erase(PredNum); 1311 } 1312 } 1313 RootSet[SU->NodeNum] = RData; 1314 } 1315 1316 /// Called once for each tree edge after calling visitPostOrderNode on the 1317 /// predecessor. Increment the parent node's instruction count and 1318 /// preemptively join this subtree to its parent's if it is small enough. 1319 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1320 R.DFSNodeData[Succ->NodeNum].InstrCount 1321 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1322 joinPredSubtree(PredDep, Succ); 1323 } 1324 1325 /// Add a connection for cross edges. 1326 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1327 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1328 } 1329 1330 /// Set each node's subtree ID to the representative ID and record connections 1331 /// between trees. 1332 void finalize() { 1333 SubtreeClasses.compress(); 1334 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1335 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1336 && "number of roots should match trees"); 1337 for (SparseSet<RootData>::const_iterator 1338 RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) { 1339 unsigned TreeID = SubtreeClasses[RI->NodeID]; 1340 if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1341 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID]; 1342 R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount; 1343 // Note that SubInstrCount may be greater than InstrCount if we joined 1344 // subtrees across a cross edge. InstrCount will be attributed to the 1345 // original parent, while SubInstrCount will be attributed to the joined 1346 // parent. 1347 } 1348 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1349 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1350 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1351 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1352 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1353 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1354 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1355 } 1356 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator 1357 I = ConnectionPairs.begin(), E = ConnectionPairs.end(); 1358 I != E; ++I) { 1359 unsigned PredTree = SubtreeClasses[I->first->NodeNum]; 1360 unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; 1361 if (PredTree == SuccTree) 1362 continue; 1363 unsigned Depth = I->first->getDepth(); 1364 addConnection(PredTree, SuccTree, Depth); 1365 addConnection(SuccTree, PredTree, Depth); 1366 } 1367 } 1368 1369 protected: 1370 /// Join the predecessor subtree with the successor that is its DFS 1371 /// parent. Apply some heuristics before joining. 1372 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1373 bool CheckLimit = true) { 1374 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1375 1376 // Check if the predecessor is already joined. 1377 const SUnit *PredSU = PredDep.getSUnit(); 1378 unsigned PredNum = PredSU->NodeNum; 1379 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1380 return false; 1381 1382 // Four is the magic number of successors before a node is considered a 1383 // pinch point. 1384 unsigned NumDataSucs = 0; 1385 for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(), 1386 SE = PredSU->Succs.end(); SI != SE; ++SI) { 1387 if (SI->getKind() == SDep::Data) { 1388 if (++NumDataSucs >= 4) 1389 return false; 1390 } 1391 } 1392 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1393 return false; 1394 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1395 SubtreeClasses.join(Succ->NodeNum, PredNum); 1396 return true; 1397 } 1398 1399 /// Called by finalize() to record a connection between trees. 1400 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1401 if (!Depth) 1402 return; 1403 1404 do { 1405 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1406 R.SubtreeConnections[FromTree]; 1407 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator 1408 I = Connections.begin(), E = Connections.end(); I != E; ++I) { 1409 if (I->TreeID == ToTree) { 1410 I->Level = std::max(I->Level, Depth); 1411 return; 1412 } 1413 } 1414 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1415 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1416 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1417 } 1418 }; 1419 } // namespace llvm 1420 1421 namespace { 1422 /// \brief Manage the stack used by a reverse depth-first search over the DAG. 1423 class SchedDAGReverseDFS { 1424 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 1425 public: 1426 bool isComplete() const { return DFSStack.empty(); } 1427 1428 void follow(const SUnit *SU) { 1429 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1430 } 1431 void advance() { ++DFSStack.back().second; } 1432 1433 const SDep *backtrack() { 1434 DFSStack.pop_back(); 1435 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1436 } 1437 1438 const SUnit *getCurr() const { return DFSStack.back().first; } 1439 1440 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1441 1442 SUnit::const_pred_iterator getPredEnd() const { 1443 return getCurr()->Preds.end(); 1444 } 1445 }; 1446 } // anonymous 1447 1448 static bool hasDataSucc(const SUnit *SU) { 1449 for (SUnit::const_succ_iterator 1450 SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) { 1451 if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode()) 1452 return true; 1453 } 1454 return false; 1455 } 1456 1457 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first 1458 /// search from this root. 1459 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1460 if (!IsBottomUp) 1461 llvm_unreachable("Top-down ILP metric is unimplemnted"); 1462 1463 SchedDFSImpl Impl(*this); 1464 for (ArrayRef<SUnit>::const_iterator 1465 SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) { 1466 const SUnit *SU = &*SI; 1467 if (Impl.isVisited(SU) || hasDataSucc(SU)) 1468 continue; 1469 1470 SchedDAGReverseDFS DFS; 1471 Impl.visitPreorder(SU); 1472 DFS.follow(SU); 1473 for (;;) { 1474 // Traverse the leftmost path as far as possible. 1475 while (DFS.getPred() != DFS.getPredEnd()) { 1476 const SDep &PredDep = *DFS.getPred(); 1477 DFS.advance(); 1478 // Ignore non-data edges. 1479 if (PredDep.getKind() != SDep::Data 1480 || PredDep.getSUnit()->isBoundaryNode()) { 1481 continue; 1482 } 1483 // An already visited edge is a cross edge, assuming an acyclic DAG. 1484 if (Impl.isVisited(PredDep.getSUnit())) { 1485 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1486 continue; 1487 } 1488 Impl.visitPreorder(PredDep.getSUnit()); 1489 DFS.follow(PredDep.getSUnit()); 1490 } 1491 // Visit the top of the stack in postorder and backtrack. 1492 const SUnit *Child = DFS.getCurr(); 1493 const SDep *PredDep = DFS.backtrack(); 1494 Impl.visitPostorderNode(Child); 1495 if (PredDep) 1496 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1497 if (DFS.isComplete()) 1498 break; 1499 } 1500 } 1501 Impl.finalize(); 1502 } 1503 1504 /// The root of the given SubtreeID was just scheduled. For all subtrees 1505 /// connected to this tree, record the depth of the connection so that the 1506 /// nearest connected subtrees can be prioritized. 1507 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1508 for (SmallVectorImpl<Connection>::const_iterator 1509 I = SubtreeConnections[SubtreeID].begin(), 1510 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { 1511 SubtreeConnectLevels[I->TreeID] = 1512 std::max(SubtreeConnectLevels[I->TreeID], I->Level); 1513 DEBUG(dbgs() << " Tree: " << I->TreeID 1514 << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); 1515 } 1516 } 1517 1518 LLVM_DUMP_METHOD 1519 void ILPValue::print(raw_ostream &OS) const { 1520 OS << InstrCount << " / " << Length << " = "; 1521 if (!Length) 1522 OS << "BADILP"; 1523 else 1524 OS << format("%g", ((double)InstrCount / Length)); 1525 } 1526 1527 LLVM_DUMP_METHOD 1528 void ILPValue::dump() const { 1529 dbgs() << *this << '\n'; 1530 } 1531 1532 namespace llvm { 1533 1534 LLVM_DUMP_METHOD 1535 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1536 Val.print(OS); 1537 return OS; 1538 } 1539 1540 } // namespace llvm 1541