1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling 11 // of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 16 #include "llvm/ADT/IntEqClasses.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/PseudoSourceValue.h" 28 #include "llvm/CodeGen/RegisterPressure.h" 29 #include "llvm/CodeGen/ScheduleDFS.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/Format.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "misched" 45 46 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 47 cl::ZeroOrMore, cl::init(false), 48 cl::desc("Enable use of AA during MI DAG construction")); 49 50 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 51 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 52 53 // Note: the two options below might be used in tuning compile time vs 54 // output quality. Setting HugeRegion so large that it will never be 55 // reached means best-effort, but may be slow. 56 57 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) 58 // together hold this many SUs, a reduction of maps will be done. 59 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, 60 cl::init(1000), cl::desc("The limit to use while constructing the DAG " 61 "prior to scheduling, at which point a trade-off " 62 "is made to avoid excessive compile time.")); 63 64 static cl::opt<unsigned> ReductionSize( 65 "dag-maps-reduction-size", cl::Hidden, 66 cl::desc("A huge scheduling region will have maps reduced by this many " 67 "nodes at a time. Defaults to HugeRegion / 2.")); 68 69 static unsigned getReductionSize() { 70 // Always reduce a huge region with half of the elements, except 71 // when user sets this number explicitly. 72 if (ReductionSize.getNumOccurrences() == 0) 73 return HugeRegion / 2; 74 return ReductionSize; 75 } 76 77 static void dumpSUList(ScheduleDAGInstrs::SUList &L) { 78 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 79 dbgs() << "{ "; 80 for (const SUnit *su : L) { 81 dbgs() << "SU(" << su->NodeNum << ")"; 82 if (su != L.back()) 83 dbgs() << ", "; 84 } 85 dbgs() << "}\n"; 86 #endif 87 } 88 89 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 90 const MachineLoopInfo *mli, 91 bool RemoveKillFlags) 92 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 93 RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false), 94 TrackLaneMasks(false), AAForDep(nullptr), BarrierChain(nullptr), 95 UnknownValue(UndefValue::get( 96 Type::getVoidTy(mf.getFunction()->getContext()))), 97 FirstDbgValue(nullptr) { 98 DbgValues.clear(); 99 100 const TargetSubtargetInfo &ST = mf.getSubtarget(); 101 SchedModel.init(ST.getSchedModel(), &ST, TII); 102 } 103 104 /// getUnderlyingObjectFromInt - This is the function that does the work of 105 /// looking through basic ptrtoint+arithmetic+inttoptr sequences. 106 static const Value *getUnderlyingObjectFromInt(const Value *V) { 107 do { 108 if (const Operator *U = dyn_cast<Operator>(V)) { 109 // If we find a ptrtoint, we can transfer control back to the 110 // regular getUnderlyingObjectFromInt. 111 if (U->getOpcode() == Instruction::PtrToInt) 112 return U->getOperand(0); 113 // If we find an add of a constant, a multiplied value, or a phi, it's 114 // likely that the other operand will lead us to the base 115 // object. We don't have to worry about the case where the 116 // object address is somehow being computed by the multiply, 117 // because our callers only care when the result is an 118 // identifiable object. 119 if (U->getOpcode() != Instruction::Add || 120 (!isa<ConstantInt>(U->getOperand(1)) && 121 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 122 !isa<PHINode>(U->getOperand(1)))) 123 return V; 124 V = U->getOperand(0); 125 } else { 126 return V; 127 } 128 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 129 } while (1); 130 } 131 132 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects 133 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. 134 static void getUnderlyingObjects(const Value *V, 135 SmallVectorImpl<Value *> &Objects, 136 const DataLayout &DL) { 137 SmallPtrSet<const Value *, 16> Visited; 138 SmallVector<const Value *, 4> Working(1, V); 139 do { 140 V = Working.pop_back_val(); 141 142 SmallVector<Value *, 4> Objs; 143 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 144 145 for (Value *V : Objs) { 146 if (!Visited.insert(V).second) 147 continue; 148 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 149 const Value *O = 150 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 151 if (O->getType()->isPointerTy()) { 152 Working.push_back(O); 153 continue; 154 } 155 } 156 Objects.push_back(const_cast<Value *>(V)); 157 } 158 } while (!Working.empty()); 159 } 160 161 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference 162 /// information and it can be tracked to a normal reference to a known 163 /// object, return the Value for that object. 164 static void getUnderlyingObjectsForInstr(const MachineInstr *MI, 165 const MachineFrameInfo &MFI, 166 UnderlyingObjectsVector &Objects, 167 const DataLayout &DL) { 168 auto allMMOsOkay = [&]() { 169 for (const MachineMemOperand *MMO : MI->memoperands()) { 170 if (MMO->isVolatile()) 171 return false; 172 173 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 174 // Function that contain tail calls don't have unique PseudoSourceValue 175 // objects. Two PseudoSourceValues might refer to the same or 176 // overlapping locations. The client code calling this function assumes 177 // this is not the case. So return a conservative answer of no known 178 // object. 179 if (MFI.hasTailCall()) 180 return false; 181 182 // For now, ignore PseudoSourceValues which may alias LLVM IR values 183 // because the code that uses this function has no way to cope with 184 // such aliases. 185 if (PSV->isAliased(&MFI)) 186 return false; 187 188 bool MayAlias = PSV->mayAlias(&MFI); 189 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 190 } else if (const Value *V = MMO->getValue()) { 191 SmallVector<Value *, 4> Objs; 192 getUnderlyingObjects(V, Objs, DL); 193 194 for (Value *V : Objs) { 195 if (!isIdentifiedObject(V)) 196 return false; 197 198 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 199 } 200 } else 201 return false; 202 } 203 return true; 204 }; 205 206 if (!allMMOsOkay()) 207 Objects.clear(); 208 } 209 210 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 211 BB = bb; 212 } 213 214 void ScheduleDAGInstrs::finishBlock() { 215 // Subclasses should no longer refer to the old block. 216 BB = nullptr; 217 } 218 219 /// Initialize the DAG and common scheduler state for the current scheduling 220 /// region. This does not actually create the DAG, only clears it. The 221 /// scheduling driver may call BuildSchedGraph multiple times per scheduling 222 /// region. 223 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 224 MachineBasicBlock::iterator begin, 225 MachineBasicBlock::iterator end, 226 unsigned regioninstrs) { 227 assert(bb == BB && "startBlock should set BB"); 228 RegionBegin = begin; 229 RegionEnd = end; 230 NumRegionInstrs = regioninstrs; 231 } 232 233 /// Close the current scheduling region. Don't clear any state in case the 234 /// driver wants to refer to the previous scheduling region. 235 void ScheduleDAGInstrs::exitRegion() { 236 // Nothing to do. 237 } 238 239 /// addSchedBarrierDeps - Add dependencies from instructions in the current 240 /// list of instructions being scheduled to scheduling barrier by adding 241 /// the exit SU to the register defs and use list. This is because we want to 242 /// make sure instructions which define registers that are either used by 243 /// the terminator or are live-out are properly scheduled. This is 244 /// especially important when the definition latency of the return value(s) 245 /// are too high to be hidden by the branch or when the liveout registers 246 /// used by instructions in the fallthrough block. 247 void ScheduleDAGInstrs::addSchedBarrierDeps() { 248 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 249 ExitSU.setInstr(ExitMI); 250 // Add dependencies on the defs and uses of the instruction. 251 if (ExitMI) { 252 for (const MachineOperand &MO : ExitMI->operands()) { 253 if (!MO.isReg() || MO.isDef()) continue; 254 unsigned Reg = MO.getReg(); 255 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 256 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 257 } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) { 258 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO)); 259 } 260 } 261 } 262 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) { 263 // For others, e.g. fallthrough, conditional branch, assume the exit 264 // uses all the registers that are livein to the successor blocks. 265 for (const MachineBasicBlock *Succ : BB->successors()) { 266 for (const auto &LI : Succ->liveins()) { 267 if (!Uses.contains(LI.PhysReg)) 268 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 269 } 270 } 271 } 272 } 273 274 /// MO is an operand of SU's instruction that defines a physical register. Add 275 /// data dependencies from SU to any uses of the physical register. 276 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 277 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 278 assert(MO.isDef() && "expect physreg def"); 279 280 // Ask the target if address-backscheduling is desirable, and if so how much. 281 const TargetSubtargetInfo &ST = MF.getSubtarget(); 282 283 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 284 Alias.isValid(); ++Alias) { 285 if (!Uses.contains(*Alias)) 286 continue; 287 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 288 SUnit *UseSU = I->SU; 289 if (UseSU == SU) 290 continue; 291 292 // Adjust the dependence latency using operand def/use information, 293 // then allow the target to perform its own adjustments. 294 int UseOp = I->OpIdx; 295 MachineInstr *RegUse = nullptr; 296 SDep Dep; 297 if (UseOp < 0) 298 Dep = SDep(SU, SDep::Artificial); 299 else { 300 // Set the hasPhysRegDefs only for physreg defs that have a use within 301 // the scheduling region. 302 SU->hasPhysRegDefs = true; 303 Dep = SDep(SU, SDep::Data, *Alias); 304 RegUse = UseSU->getInstr(); 305 } 306 Dep.setLatency( 307 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 308 UseOp)); 309 310 ST.adjustSchedDependency(SU, UseSU, Dep); 311 UseSU->addPred(Dep); 312 } 313 } 314 } 315 316 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from 317 /// this SUnit to following instructions in the same scheduling region that 318 /// depend the physical register referenced at OperIdx. 319 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 320 MachineInstr *MI = SU->getInstr(); 321 MachineOperand &MO = MI->getOperand(OperIdx); 322 unsigned Reg = MO.getReg(); 323 // We do not need to track any dependencies for constant registers. 324 if (MRI.isConstantPhysReg(Reg)) 325 return; 326 327 // Optionally add output and anti dependencies. For anti 328 // dependencies we use a latency of 0 because for a multi-issue 329 // target we want to allow the defining instruction to issue 330 // in the same cycle as the using instruction. 331 // TODO: Using a latency of 1 here for output dependencies assumes 332 // there's no cost for reusing registers. 333 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 334 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 335 if (!Defs.contains(*Alias)) 336 continue; 337 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 338 SUnit *DefSU = I->SU; 339 if (DefSU == &ExitSU) 340 continue; 341 if (DefSU != SU && 342 (Kind != SDep::Output || !MO.isDead() || 343 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 344 if (Kind == SDep::Anti) 345 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 346 else { 347 SDep Dep(SU, Kind, /*Reg=*/*Alias); 348 Dep.setLatency( 349 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 350 DefSU->addPred(Dep); 351 } 352 } 353 } 354 } 355 356 if (!MO.isDef()) { 357 SU->hasPhysRegUses = true; 358 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 359 // retrieve the existing SUnits list for this register's uses. 360 // Push this SUnit on the use list. 361 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg)); 362 if (RemoveKillFlags) 363 MO.setIsKill(false); 364 } else { 365 addPhysRegDataDeps(SU, OperIdx); 366 367 // clear this register's use list 368 if (Uses.contains(Reg)) 369 Uses.eraseAll(Reg); 370 371 if (!MO.isDead()) { 372 Defs.eraseAll(Reg); 373 } else if (SU->isCall) { 374 // Calls will not be reordered because of chain dependencies (see 375 // below). Since call operands are dead, calls may continue to be added 376 // to the DefList making dependence checking quadratic in the size of 377 // the block. Instead, we leave only one call at the back of the 378 // DefList. 379 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 380 Reg2SUnitsMap::iterator B = P.first; 381 Reg2SUnitsMap::iterator I = P.second; 382 for (bool isBegin = I == B; !isBegin; /* empty */) { 383 isBegin = (--I) == B; 384 if (!I->SU->isCall) 385 break; 386 I = Defs.erase(I); 387 } 388 } 389 390 // Defs are pushed in the order they are visited and never reordered. 391 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 392 } 393 } 394 395 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 396 { 397 unsigned Reg = MO.getReg(); 398 // No point in tracking lanemasks if we don't have interesting subregisters. 399 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 400 if (!RC.HasDisjunctSubRegs) 401 return ~0u; 402 403 unsigned SubReg = MO.getSubReg(); 404 if (SubReg == 0) 405 return RC.getLaneMask(); 406 return TRI->getSubRegIndexLaneMask(SubReg); 407 } 408 409 /// addVRegDefDeps - Add register output and data dependencies from this SUnit 410 /// to instructions that occur later in the same scheduling region if they read 411 /// from or write to the virtual register defined at OperIdx. 412 /// 413 /// TODO: Hoist loop induction variable increments. This has to be 414 /// reevaluated. Generally, IV scheduling should be done before coalescing. 415 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 416 MachineInstr *MI = SU->getInstr(); 417 MachineOperand &MO = MI->getOperand(OperIdx); 418 unsigned Reg = MO.getReg(); 419 420 LaneBitmask DefLaneMask; 421 LaneBitmask KillLaneMask; 422 if (TrackLaneMasks) { 423 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 424 DefLaneMask = getLaneMaskForMO(MO); 425 // If we have a <read-undef> flag, none of the lane values comes from an 426 // earlier instruction. 427 KillLaneMask = IsKill ? ~0u : DefLaneMask; 428 429 // Clear undef flag, we'll re-add it later once we know which subregister 430 // Def is first. 431 MO.setIsUndef(false); 432 } else { 433 DefLaneMask = ~0u; 434 KillLaneMask = ~0u; 435 } 436 437 if (MO.isDead()) { 438 assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() && 439 "Dead defs should have no uses"); 440 } else { 441 // Add data dependence to all uses we found so far. 442 const TargetSubtargetInfo &ST = MF.getSubtarget(); 443 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 444 E = CurrentVRegUses.end(); I != E; /*empty*/) { 445 LaneBitmask LaneMask = I->LaneMask; 446 // Ignore uses of other lanes. 447 if ((LaneMask & KillLaneMask) == 0) { 448 ++I; 449 continue; 450 } 451 452 if ((LaneMask & DefLaneMask) != 0) { 453 SUnit *UseSU = I->SU; 454 MachineInstr *Use = UseSU->getInstr(); 455 SDep Dep(SU, SDep::Data, Reg); 456 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 457 I->OperandIndex)); 458 ST.adjustSchedDependency(SU, UseSU, Dep); 459 UseSU->addPred(Dep); 460 } 461 462 LaneMask &= ~KillLaneMask; 463 // If we found a Def for all lanes of this use, remove it from the list. 464 if (LaneMask != 0) { 465 I->LaneMask = LaneMask; 466 ++I; 467 } else 468 I = CurrentVRegUses.erase(I); 469 } 470 } 471 472 // Shortcut: Singly defined vregs do not have output/anti dependencies. 473 if (MRI.hasOneDef(Reg)) 474 return; 475 476 // Add output dependence to the next nearest defs of this vreg. 477 // 478 // Unless this definition is dead, the output dependence should be 479 // transitively redundant with antidependencies from this definition's 480 // uses. We're conservative for now until we have a way to guarantee the uses 481 // are not eliminated sometime during scheduling. The output dependence edge 482 // is also useful if output latency exceeds def-use latency. 483 LaneBitmask LaneMask = DefLaneMask; 484 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 485 CurrentVRegDefs.end())) { 486 // Ignore defs for other lanes. 487 if ((V2SU.LaneMask & LaneMask) == 0) 488 continue; 489 // Add an output dependence. 490 SUnit *DefSU = V2SU.SU; 491 // Ignore additional defs of the same lanes in one instruction. This can 492 // happen because lanemasks are shared for targets with too many 493 // subregisters. We also use some representration tricks/hacks where we 494 // add super-register defs/uses, to imply that although we only access parts 495 // of the reg we care about the full one. 496 if (DefSU == SU) 497 continue; 498 SDep Dep(SU, SDep::Output, Reg); 499 Dep.setLatency( 500 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 501 DefSU->addPred(Dep); 502 503 // Update current definition. This can get tricky if the def was about a 504 // bigger lanemask before. We then have to shrink it and create a new 505 // VReg2SUnit for the non-overlapping part. 506 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 507 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 508 V2SU.SU = SU; 509 V2SU.LaneMask = OverlapMask; 510 if (NonOverlapMask != 0) 511 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); 512 } 513 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 514 if (LaneMask != 0) 515 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 516 } 517 518 /// addVRegUseDeps - Add a register data dependency if the instruction that 519 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a 520 /// register antidependency from this SUnit to instructions that occur later in 521 /// the same scheduling region if they write the virtual register. 522 /// 523 /// TODO: Handle ExitSU "uses" properly. 524 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 525 const MachineInstr *MI = SU->getInstr(); 526 const MachineOperand &MO = MI->getOperand(OperIdx); 527 unsigned Reg = MO.getReg(); 528 529 // Remember the use. Data dependencies will be added when we find the def. 530 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u; 531 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 532 533 // Add antidependences to the following defs of the vreg. 534 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 535 CurrentVRegDefs.end())) { 536 // Ignore defs for unrelated lanes. 537 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 538 if ((PrevDefLaneMask & LaneMask) == 0) 539 continue; 540 if (V2SU.SU == SU) 541 continue; 542 543 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 544 } 545 } 546 547 /// Return true if MI is an instruction we are unable to reason about 548 /// (like a call or something with unmodeled side effects). 549 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 550 return MI->isCall() || MI->hasUnmodeledSideEffects() || 551 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA)); 552 } 553 554 /// This returns true if the two MIs need a chain edge between them. 555 /// This is called on normal stores and loads. 556 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 557 const DataLayout &DL, MachineInstr *MIa, 558 MachineInstr *MIb) { 559 const MachineFunction *MF = MIa->getParent()->getParent(); 560 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 561 562 assert ((MIa->mayStore() || MIb->mayStore()) && 563 "Dependency checked between two loads"); 564 565 // Let the target decide if memory accesses cannot possibly overlap. 566 if (TII->areMemAccessesTriviallyDisjoint(*MIa, *MIb, AA)) 567 return false; 568 569 // To this point analysis is generic. From here on we do need AA. 570 if (!AA) 571 return true; 572 573 // FIXME: Need to handle multiple memory operands to support all targets. 574 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 575 return true; 576 577 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 578 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 579 580 if (!MMOa->getValue() || !MMOb->getValue()) 581 return true; 582 583 // The following interface to AA is fashioned after DAGCombiner::isAlias 584 // and operates with MachineMemOperand offset with some important 585 // assumptions: 586 // - LLVM fundamentally assumes flat address spaces. 587 // - MachineOperand offset can *only* result from legalization and 588 // cannot affect queries other than the trivial case of overlap 589 // checking. 590 // - These offsets never wrap and never step outside 591 // of allocated objects. 592 // - There should never be any negative offsets here. 593 // 594 // FIXME: Modify API to hide this math from "user" 595 // FIXME: Even before we go to AA we can reason locally about some 596 // memory objects. It can save compile time, and possibly catch some 597 // corner cases not currently covered. 598 599 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 600 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 601 602 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 603 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 604 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 605 606 AliasResult AAResult = 607 AA->alias(MemoryLocation(MMOa->getValue(), Overlapa, 608 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 609 MemoryLocation(MMOb->getValue(), Overlapb, 610 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 611 612 return (AAResult != NoAlias); 613 } 614 615 /// Check whether two objects need a chain edge and add it if needed. 616 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, 617 unsigned Latency) { 618 if (MIsNeedChainEdge(AAForDep, &MFI, MF.getDataLayout(), SUa->getInstr(), 619 SUb->getInstr())) { 620 SDep Dep(SUa, SDep::MayAliasMem); 621 Dep.setLatency(Latency); 622 SUb->addPred(Dep); 623 } 624 } 625 626 /// Create an SUnit for each real instruction, numbered in top-down topological 627 /// order. The instruction order A < B, implies that no edge exists from B to A. 628 /// 629 /// Map each real instruction to its SUnit. 630 /// 631 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 632 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 633 /// instead of pointers. 634 /// 635 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 636 /// the original instruction list. 637 void ScheduleDAGInstrs::initSUnits() { 638 // We'll be allocating one SUnit for each real instruction in the region, 639 // which is contained within a basic block. 640 SUnits.reserve(NumRegionInstrs); 641 642 for (MachineInstr &MI : llvm::make_range(RegionBegin, RegionEnd)) { 643 if (MI.isDebugValue()) 644 continue; 645 646 SUnit *SU = newSUnit(&MI); 647 MISUnitMap[&MI] = SU; 648 649 SU->isCall = MI.isCall(); 650 SU->isCommutable = MI.isCommutable(); 651 652 // Assign the Latency field of SU using target-provided information. 653 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 654 655 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 656 // 657 // Reserved resources block an instruction from issuing and stall the 658 // entire pipeline. These are identified by BufferSize=0. 659 // 660 // Unbuffered resources prevent execution of subsequent instructions that 661 // require the same resources. This is used for in-order execution pipelines 662 // within an out-of-order core. These are identified by BufferSize=1. 663 if (SchedModel.hasInstrSchedModel()) { 664 const MCSchedClassDesc *SC = getSchedClass(SU); 665 for (const MCWriteProcResEntry &PRE : 666 make_range(SchedModel.getWriteProcResBegin(SC), 667 SchedModel.getWriteProcResEnd(SC))) { 668 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) { 669 case 0: 670 SU->hasReservedResource = true; 671 break; 672 case 1: 673 SU->isUnbuffered = true; 674 break; 675 default: 676 break; 677 } 678 } 679 } 680 } 681 } 682 683 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { 684 685 /// Current total number of SUs in map. 686 unsigned NumNodes; 687 688 /// 1 for loads, 0 for stores. (see comment in SUList) 689 unsigned TrueMemOrderLatency; 690 public: 691 692 Value2SUsMap(unsigned lat = 0) : NumNodes(0), TrueMemOrderLatency(lat) {} 693 694 /// To keep NumNodes up to date, insert() is used instead of 695 /// this operator w/ push_back(). 696 ValueType &operator[](const SUList &Key) { 697 llvm_unreachable("Don't use. Use insert() instead."); }; 698 699 /// Add SU to the SUList of V. If Map grows huge, reduce its size 700 /// by calling reduce(). 701 void inline insert(SUnit *SU, ValueType V) { 702 MapVector::operator[](V).push_back(SU); 703 NumNodes++; 704 } 705 706 /// Clears the list of SUs mapped to V. 707 void inline clearList(ValueType V) { 708 iterator Itr = find(V); 709 if (Itr != end()) { 710 assert (NumNodes >= Itr->second.size()); 711 NumNodes -= Itr->second.size(); 712 713 Itr->second.clear(); 714 } 715 } 716 717 /// Clears map from all contents. 718 void clear() { 719 MapVector<ValueType, SUList>::clear(); 720 NumNodes = 0; 721 } 722 723 unsigned inline size() const { return NumNodes; } 724 725 /// Count the number of SUs in this map after a reduction. 726 void reComputeSize(void) { 727 NumNodes = 0; 728 for (auto &I : *this) 729 NumNodes += I.second.size(); 730 } 731 732 unsigned inline getTrueMemOrderLatency() const { 733 return TrueMemOrderLatency; 734 } 735 736 void dump(); 737 }; 738 739 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 740 Value2SUsMap &Val2SUsMap) { 741 for (auto &I : Val2SUsMap) 742 addChainDependencies(SU, I.second, 743 Val2SUsMap.getTrueMemOrderLatency()); 744 } 745 746 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 747 Value2SUsMap &Val2SUsMap, 748 ValueType V) { 749 Value2SUsMap::iterator Itr = Val2SUsMap.find(V); 750 if (Itr != Val2SUsMap.end()) 751 addChainDependencies(SU, Itr->second, 752 Val2SUsMap.getTrueMemOrderLatency()); 753 } 754 755 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { 756 assert (BarrierChain != nullptr); 757 758 for (auto &I : map) { 759 SUList &sus = I.second; 760 for (auto *SU : sus) 761 SU->addPredBarrier(BarrierChain); 762 } 763 map.clear(); 764 } 765 766 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { 767 assert (BarrierChain != nullptr); 768 769 // Go through all lists of SUs. 770 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { 771 Value2SUsMap::iterator CurrItr = I++; 772 SUList &sus = CurrItr->second; 773 SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); 774 for (; SUItr != SUEE; ++SUItr) { 775 // Stop on BarrierChain or any instruction above it. 776 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) 777 break; 778 779 (*SUItr)->addPredBarrier(BarrierChain); 780 } 781 782 // Remove also the BarrierChain from list if present. 783 if (SUItr != SUEE && *SUItr == BarrierChain) 784 SUItr++; 785 786 // Remove all SUs that are now successors of BarrierChain. 787 if (SUItr != sus.begin()) 788 sus.erase(sus.begin(), SUItr); 789 } 790 791 // Remove all entries with empty su lists. 792 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { 793 return (mapEntry.second.empty()); }); 794 795 // Recompute the size of the map (NumNodes). 796 map.reComputeSize(); 797 } 798 799 /// If RegPressure is non-null, compute register pressure as a side effect. The 800 /// DAG builder is an efficient place to do it because it already visits 801 /// operands. 802 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 803 RegPressureTracker *RPTracker, 804 PressureDiffs *PDiffs, 805 LiveIntervals *LIS, 806 bool TrackLaneMasks) { 807 const TargetSubtargetInfo &ST = MF.getSubtarget(); 808 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 809 : ST.useAA(); 810 AAForDep = UseAA ? AA : nullptr; 811 812 BarrierChain = nullptr; 813 814 this->TrackLaneMasks = TrackLaneMasks; 815 MISUnitMap.clear(); 816 ScheduleDAG::clearDAG(); 817 818 // Create an SUnit for each real instruction. 819 initSUnits(); 820 821 if (PDiffs) 822 PDiffs->init(SUnits.size()); 823 824 // We build scheduling units by walking a block's instruction list 825 // from bottom to top. 826 827 // Each MIs' memory operand(s) is analyzed to a list of underlying 828 // objects. The SU is then inserted in the SUList(s) mapped from the 829 // Value(s). Each Value thus gets mapped to lists of SUs depending 830 // on it, stores and loads kept separately. Two SUs are trivially 831 // non-aliasing if they both depend on only identified Values and do 832 // not share any common Value. 833 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); 834 835 // Certain memory accesses are known to not alias any SU in Stores 836 // or Loads, and have therefore their own 'NonAlias' 837 // domain. E.g. spill / reload instructions never alias LLVM I/R 838 // Values. It would be nice to assume that this type of memory 839 // accesses always have a proper memory operand modelling, and are 840 // therefore never unanalyzable, but this is conservatively not 841 // done. 842 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); 843 844 // Remove any stale debug info; sometimes BuildSchedGraph is called again 845 // without emitting the info from the previous call. 846 DbgValues.clear(); 847 FirstDbgValue = nullptr; 848 849 assert(Defs.empty() && Uses.empty() && 850 "Only BuildGraph should update Defs/Uses"); 851 Defs.setUniverse(TRI->getNumRegs()); 852 Uses.setUniverse(TRI->getNumRegs()); 853 854 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 855 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 856 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 857 CurrentVRegDefs.setUniverse(NumVirtRegs); 858 CurrentVRegUses.setUniverse(NumVirtRegs); 859 860 // Model data dependencies between instructions being scheduled and the 861 // ExitSU. 862 addSchedBarrierDeps(); 863 864 // Walk the list of instructions, from bottom moving up. 865 MachineInstr *DbgMI = nullptr; 866 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 867 MII != MIE; --MII) { 868 MachineInstr &MI = *std::prev(MII); 869 if (DbgMI) { 870 DbgValues.push_back(std::make_pair(DbgMI, &MI)); 871 DbgMI = nullptr; 872 } 873 874 if (MI.isDebugValue()) { 875 DbgMI = &MI; 876 continue; 877 } 878 SUnit *SU = MISUnitMap[&MI]; 879 assert(SU && "No SUnit mapped to this MI"); 880 881 if (RPTracker) { 882 RegisterOperands RegOpers; 883 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); 884 if (TrackLaneMasks) { 885 SlotIndex SlotIdx = LIS->getInstructionIndex(MI); 886 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 887 } 888 if (PDiffs != nullptr) 889 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 890 891 RPTracker->recedeSkipDebugValues(); 892 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); 893 RPTracker->recede(RegOpers); 894 } 895 896 assert( 897 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && 898 "Cannot schedule terminators or labels!"); 899 900 // Add register-based dependencies (data, anti, and output). 901 // For some instructions (calls, returns, inline-asm, etc.) there can 902 // be explicit uses and implicit defs, in which case the use will appear 903 // on the operand list before the def. Do two passes over the operand 904 // list to make sure that defs are processed before any uses. 905 bool HasVRegDef = false; 906 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 907 const MachineOperand &MO = MI.getOperand(j); 908 if (!MO.isReg() || !MO.isDef()) 909 continue; 910 unsigned Reg = MO.getReg(); 911 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 912 addPhysRegDeps(SU, j); 913 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 914 HasVRegDef = true; 915 addVRegDefDeps(SU, j); 916 } 917 } 918 // Now process all uses. 919 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 920 const MachineOperand &MO = MI.getOperand(j); 921 // Only look at use operands. 922 // We do not need to check for MO.readsReg() here because subsequent 923 // subregister defs will get output dependence edges and need no 924 // additional use dependencies. 925 if (!MO.isReg() || !MO.isUse()) 926 continue; 927 unsigned Reg = MO.getReg(); 928 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 929 addPhysRegDeps(SU, j); 930 } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) { 931 addVRegUseDeps(SU, j); 932 } 933 } 934 935 // If we haven't seen any uses in this scheduling region, create a 936 // dependence edge to ExitSU to model the live-out latency. This is required 937 // for vreg defs with no in-region use, and prefetches with no vreg def. 938 // 939 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 940 // check currently relies on being called before adding chain deps. 941 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { 942 SDep Dep(SU, SDep::Artificial); 943 Dep.setLatency(SU->Latency - 1); 944 ExitSU.addPred(Dep); 945 } 946 947 // Add memory dependencies (Note: isStoreToStackSlot and 948 // isLoadFromStackSLot are not usable after stack slots are lowered to 949 // actual addresses). 950 951 // This is a barrier event that acts as a pivotal node in the DAG. 952 if (isGlobalMemoryObject(AA, &MI)) { 953 954 // Become the barrier chain. 955 if (BarrierChain) 956 BarrierChain->addPredBarrier(SU); 957 BarrierChain = SU; 958 959 DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" 960 << BarrierChain->NodeNum << ").\n";); 961 962 // Add dependencies against everything below it and clear maps. 963 addBarrierChain(Stores); 964 addBarrierChain(Loads); 965 addBarrierChain(NonAliasStores); 966 addBarrierChain(NonAliasLoads); 967 968 continue; 969 } 970 971 // If it's not a store or a variant load, we're done. 972 if (!MI.mayStore() && 973 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))) 974 continue; 975 976 // Always add dependecy edge to BarrierChain if present. 977 if (BarrierChain) 978 BarrierChain->addPredBarrier(SU); 979 980 // Find the underlying objects for MI. The Objs vector is either 981 // empty, or filled with the Values of memory locations which this 982 // SU depends on. An empty vector means the memory location is 983 // unknown, and may alias anything. 984 UnderlyingObjectsVector Objs; 985 getUnderlyingObjectsForInstr(&MI, MFI, Objs, MF.getDataLayout()); 986 987 if (MI.mayStore()) { 988 if (Objs.empty()) { 989 // An unknown store depends on all stores and loads. 990 addChainDependencies(SU, Stores); 991 addChainDependencies(SU, NonAliasStores); 992 addChainDependencies(SU, Loads); 993 addChainDependencies(SU, NonAliasLoads); 994 995 // Map this store to 'UnknownValue'. 996 Stores.insert(SU, UnknownValue); 997 } else { 998 // Add precise dependencies against all previously seen memory 999 // accesses mapped to the same Value(s). 1000 for (const UnderlyingObject &UnderlObj : Objs) { 1001 ValueType V = UnderlObj.getValue(); 1002 bool ThisMayAlias = UnderlObj.mayAlias(); 1003 1004 // Add dependencies to previous stores and loads mapped to V. 1005 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 1006 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); 1007 } 1008 // Update the store map after all chains have been added to avoid adding 1009 // self-loop edge if multiple underlying objects are present. 1010 for (const UnderlyingObject &UnderlObj : Objs) { 1011 ValueType V = UnderlObj.getValue(); 1012 bool ThisMayAlias = UnderlObj.mayAlias(); 1013 1014 // Map this store to V. 1015 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); 1016 } 1017 // The store may have dependencies to unanalyzable loads and 1018 // stores. 1019 addChainDependencies(SU, Loads, UnknownValue); 1020 addChainDependencies(SU, Stores, UnknownValue); 1021 } 1022 } else { // SU is a load. 1023 if (Objs.empty()) { 1024 // An unknown load depends on all stores. 1025 addChainDependencies(SU, Stores); 1026 addChainDependencies(SU, NonAliasStores); 1027 1028 Loads.insert(SU, UnknownValue); 1029 } else { 1030 for (const UnderlyingObject &UnderlObj : Objs) { 1031 ValueType V = UnderlObj.getValue(); 1032 bool ThisMayAlias = UnderlObj.mayAlias(); 1033 1034 // Add precise dependencies against all previously seen stores 1035 // mapping to the same Value(s). 1036 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 1037 1038 // Map this load to V. 1039 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); 1040 } 1041 // The load may have dependencies to unanalyzable stores. 1042 addChainDependencies(SU, Stores, UnknownValue); 1043 } 1044 } 1045 1046 // Reduce maps if they grow huge. 1047 if (Stores.size() + Loads.size() >= HugeRegion) { 1048 DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); 1049 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); 1050 } 1051 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { 1052 DEBUG(dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); 1053 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); 1054 } 1055 } 1056 1057 if (DbgMI) 1058 FirstDbgValue = DbgMI; 1059 1060 Defs.clear(); 1061 Uses.clear(); 1062 CurrentVRegDefs.clear(); 1063 CurrentVRegUses.clear(); 1064 } 1065 1066 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { 1067 PSV->printCustom(OS); 1068 return OS; 1069 } 1070 1071 void ScheduleDAGInstrs::Value2SUsMap::dump() { 1072 for (auto &Itr : *this) { 1073 if (Itr.first.is<const Value*>()) { 1074 const Value *V = Itr.first.get<const Value*>(); 1075 if (isa<UndefValue>(V)) 1076 dbgs() << "Unknown"; 1077 else 1078 V->printAsOperand(dbgs()); 1079 } 1080 else if (Itr.first.is<const PseudoSourceValue*>()) 1081 dbgs() << Itr.first.get<const PseudoSourceValue*>(); 1082 else 1083 llvm_unreachable("Unknown Value type."); 1084 1085 dbgs() << " : "; 1086 dumpSUList(Itr.second); 1087 } 1088 } 1089 1090 /// Reduce maps in FIFO order, by N SUs. This is better than turning 1091 /// every Nth memory SU into BarrierChain in buildSchedGraph(), since 1092 /// it avoids unnecessary edges between seen SUs above the new 1093 /// BarrierChain, and those below it. 1094 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, 1095 Value2SUsMap &loads, unsigned N) { 1096 DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; 1097 stores.dump(); 1098 dbgs() << "Loading SUnits:\n"; 1099 loads.dump()); 1100 1101 // Insert all SU's NodeNums into a vector and sort it. 1102 std::vector<unsigned> NodeNums; 1103 NodeNums.reserve(stores.size() + loads.size()); 1104 for (auto &I : stores) 1105 for (auto *SU : I.second) 1106 NodeNums.push_back(SU->NodeNum); 1107 for (auto &I : loads) 1108 for (auto *SU : I.second) 1109 NodeNums.push_back(SU->NodeNum); 1110 std::sort(NodeNums.begin(), NodeNums.end()); 1111 1112 // The N last elements in NodeNums will be removed, and the SU with 1113 // the lowest NodeNum of them will become the new BarrierChain to 1114 // let the not yet seen SUs have a dependency to the removed SUs. 1115 assert (N <= NodeNums.size()); 1116 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; 1117 if (BarrierChain) { 1118 // The aliasing and non-aliasing maps reduce independently of each 1119 // other, but share a common BarrierChain. Check if the 1120 // newBarrierChain is above the former one. If it is not, it may 1121 // introduce a loop to use newBarrierChain, so keep the old one. 1122 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { 1123 BarrierChain->addPredBarrier(newBarrierChain); 1124 BarrierChain = newBarrierChain; 1125 DEBUG(dbgs() << "Inserting new barrier chain: SU(" 1126 << BarrierChain->NodeNum << ").\n";); 1127 } 1128 else 1129 DEBUG(dbgs() << "Keeping old barrier chain: SU(" 1130 << BarrierChain->NodeNum << ").\n";); 1131 } 1132 else 1133 BarrierChain = newBarrierChain; 1134 1135 insertBarrierChain(stores); 1136 insertBarrierChain(loads); 1137 1138 DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; 1139 stores.dump(); 1140 dbgs() << "Loading SUnits:\n"; 1141 loads.dump()); 1142 } 1143 1144 /// \brief Initialize register live-range state for updating kills. 1145 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { 1146 // Start with no live registers. 1147 LiveRegs.reset(); 1148 1149 // Examine the live-in regs of all successors. 1150 for (const MachineBasicBlock *Succ : BB->successors()) { 1151 for (const auto &LI : Succ->liveins()) { 1152 // Repeat, for reg and all subregs. 1153 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 1154 SubRegs.isValid(); ++SubRegs) 1155 LiveRegs.set(*SubRegs); 1156 } 1157 } 1158 } 1159 1160 /// \brief If we change a kill flag on the bundle instruction implicit register 1161 /// operands, then we also need to propagate that to any instructions inside 1162 /// the bundle which had the same kill state. 1163 static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg, 1164 bool NewKillState, 1165 const TargetRegisterInfo *TRI) { 1166 if (MI->getOpcode() != TargetOpcode::BUNDLE) 1167 return; 1168 1169 // Walk backwards from the last instruction in the bundle to the first. 1170 // Once we set a kill flag on an instruction, we bail out, as otherwise we 1171 // might set it on too many operands. We will clear as many flags as we 1172 // can though. 1173 MachineBasicBlock::instr_iterator Begin = MI->getIterator(); 1174 MachineBasicBlock::instr_iterator End = getBundleEnd(Begin); 1175 while (Begin != End) { 1176 if (NewKillState) { 1177 if ((--End)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 1178 return; 1179 } else 1180 (--End)->clearRegisterKills(Reg, TRI); 1181 } 1182 } 1183 1184 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) { 1185 // Setting kill flag... 1186 if (!MO.isKill()) { 1187 MO.setIsKill(true); 1188 toggleBundleKillFlag(MI, MO.getReg(), true, TRI); 1189 return false; 1190 } 1191 1192 // If MO itself is live, clear the kill flag... 1193 if (LiveRegs.test(MO.getReg())) { 1194 MO.setIsKill(false); 1195 toggleBundleKillFlag(MI, MO.getReg(), false, TRI); 1196 return false; 1197 } 1198 1199 // If any subreg of MO is live, then create an imp-def for that 1200 // subreg and keep MO marked as killed. 1201 MO.setIsKill(false); 1202 toggleBundleKillFlag(MI, MO.getReg(), false, TRI); 1203 bool AllDead = true; 1204 const unsigned SuperReg = MO.getReg(); 1205 MachineInstrBuilder MIB(MF, MI); 1206 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { 1207 if (LiveRegs.test(*SubRegs)) { 1208 MIB.addReg(*SubRegs, RegState::ImplicitDefine); 1209 AllDead = false; 1210 } 1211 } 1212 1213 if(AllDead) { 1214 MO.setIsKill(true); 1215 toggleBundleKillFlag(MI, MO.getReg(), true, TRI); 1216 } 1217 return false; 1218 } 1219 1220 // FIXME: Reuse the LivePhysRegs utility for this. 1221 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { 1222 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); 1223 1224 LiveRegs.resize(TRI->getNumRegs()); 1225 BitVector killedRegs(TRI->getNumRegs()); 1226 1227 startBlockForKills(MBB); 1228 1229 // Examine block from end to start... 1230 unsigned Count = MBB->size(); 1231 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); 1232 I != E; --Count) { 1233 MachineInstr &MI = *--I; 1234 if (MI.isDebugValue()) 1235 continue; 1236 1237 // Update liveness. Registers that are defed but not used in this 1238 // instruction are now dead. Mark register and all subregs as they 1239 // are completely defined. 1240 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1241 MachineOperand &MO = MI.getOperand(i); 1242 if (MO.isRegMask()) 1243 LiveRegs.clearBitsNotInMask(MO.getRegMask()); 1244 if (!MO.isReg()) continue; 1245 unsigned Reg = MO.getReg(); 1246 if (Reg == 0) continue; 1247 if (!MO.isDef()) continue; 1248 // Ignore two-addr defs. 1249 if (MI.isRegTiedToUseOperand(i)) continue; 1250 1251 // Repeat for reg and all subregs. 1252 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1253 SubRegs.isValid(); ++SubRegs) 1254 LiveRegs.reset(*SubRegs); 1255 } 1256 1257 // Examine all used registers and set/clear kill flag. When a 1258 // register is used multiple times we only set the kill flag on 1259 // the first use. Don't set kill flags on undef operands. 1260 killedRegs.reset(); 1261 1262 // toggleKillFlag can append new operands (implicit defs), so using 1263 // a range-based loop is not safe. The new operands will be appended 1264 // at the end of the operand list and they don't need to be visited, 1265 // so iterating until the currently last operand is ok. 1266 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1267 MachineOperand &MO = MI.getOperand(i); 1268 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1269 unsigned Reg = MO.getReg(); 1270 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1271 1272 bool kill = false; 1273 if (!killedRegs.test(Reg)) { 1274 kill = true; 1275 // A register is not killed if any subregs are live... 1276 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 1277 if (LiveRegs.test(*SubRegs)) { 1278 kill = false; 1279 break; 1280 } 1281 } 1282 1283 // If subreg is not live, then register is killed if it became 1284 // live in this instruction 1285 if (kill) 1286 kill = !LiveRegs.test(Reg); 1287 } 1288 1289 if (MO.isKill() != kill) { 1290 DEBUG(dbgs() << "Fixing " << MO << " in "); 1291 toggleKillFlag(&MI, MO); 1292 DEBUG(MI.dump()); 1293 DEBUG({ 1294 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1295 MachineBasicBlock::instr_iterator Begin = MI.getIterator(); 1296 MachineBasicBlock::instr_iterator End = getBundleEnd(Begin); 1297 while (++Begin != End) 1298 DEBUG(Begin->dump()); 1299 } 1300 }); 1301 } 1302 1303 killedRegs.set(Reg); 1304 } 1305 1306 // Mark any used register (that is not using undef) and subregs as 1307 // now live... 1308 for (const MachineOperand &MO : MI.operands()) { 1309 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1310 unsigned Reg = MO.getReg(); 1311 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1312 1313 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1314 SubRegs.isValid(); ++SubRegs) 1315 LiveRegs.set(*SubRegs); 1316 } 1317 } 1318 } 1319 1320 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1321 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1322 SU->getInstr()->dump(); 1323 #endif 1324 } 1325 1326 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1327 std::string s; 1328 raw_string_ostream oss(s); 1329 if (SU == &EntrySU) 1330 oss << "<entry>"; 1331 else if (SU == &ExitSU) 1332 oss << "<exit>"; 1333 else 1334 SU->getInstr()->print(oss, /*SkipOpers=*/true); 1335 return oss.str(); 1336 } 1337 1338 /// Return the basic block label. It is not necessarilly unique because a block 1339 /// contains multiple scheduling regions. But it is fine for visualization. 1340 std::string ScheduleDAGInstrs::getDAGName() const { 1341 return "dag." + BB->getFullName(); 1342 } 1343 1344 //===----------------------------------------------------------------------===// 1345 // SchedDFSResult Implementation 1346 //===----------------------------------------------------------------------===// 1347 1348 namespace llvm { 1349 /// \brief Internal state used to compute SchedDFSResult. 1350 class SchedDFSImpl { 1351 SchedDFSResult &R; 1352 1353 /// Join DAG nodes into equivalence classes by their subtree. 1354 IntEqClasses SubtreeClasses; 1355 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1356 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 1357 1358 struct RootData { 1359 unsigned NodeID; 1360 unsigned ParentNodeID; // Parent node (member of the parent subtree). 1361 unsigned SubInstrCount; // Instr count in this tree only, not children. 1362 1363 RootData(unsigned id): NodeID(id), 1364 ParentNodeID(SchedDFSResult::InvalidSubtreeID), 1365 SubInstrCount(0) {} 1366 1367 unsigned getSparseSetIndex() const { return NodeID; } 1368 }; 1369 1370 SparseSet<RootData> RootSet; 1371 1372 public: 1373 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1374 RootSet.setUniverse(R.DFSNodeData.size()); 1375 } 1376 1377 /// Return true if this node been visited by the DFS traversal. 1378 /// 1379 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1380 /// ID. Later, SubtreeID is updated but remains valid. 1381 bool isVisited(const SUnit *SU) const { 1382 return R.DFSNodeData[SU->NodeNum].SubtreeID 1383 != SchedDFSResult::InvalidSubtreeID; 1384 } 1385 1386 /// Initialize this node's instruction count. We don't need to flag the node 1387 /// visited until visitPostorder because the DAG cannot have cycles. 1388 void visitPreorder(const SUnit *SU) { 1389 R.DFSNodeData[SU->NodeNum].InstrCount = 1390 SU->getInstr()->isTransient() ? 0 : 1; 1391 } 1392 1393 /// Called once for each node after all predecessors are visited. Revisit this 1394 /// node's predecessors and potentially join them now that we know the ILP of 1395 /// the other predecessors. 1396 void visitPostorderNode(const SUnit *SU) { 1397 // Mark this node as the root of a subtree. It may be joined with its 1398 // successors later. 1399 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1400 RootData RData(SU->NodeNum); 1401 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1402 1403 // If any predecessors are still in their own subtree, they either cannot be 1404 // joined or are large enough to remain separate. If this parent node's 1405 // total instruction count is not greater than a child subtree by at least 1406 // the subtree limit, then try to join it now since splitting subtrees is 1407 // only useful if multiple high-pressure paths are possible. 1408 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1409 for (const SDep &PredDep : SU->Preds) { 1410 if (PredDep.getKind() != SDep::Data) 1411 continue; 1412 unsigned PredNum = PredDep.getSUnit()->NodeNum; 1413 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1414 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false); 1415 1416 // Either link or merge the TreeData entry from the child to the parent. 1417 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1418 // If the predecessor's parent is invalid, this is a tree edge and the 1419 // current node is the parent. 1420 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1421 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1422 } 1423 else if (RootSet.count(PredNum)) { 1424 // The predecessor is not a root, but is still in the root set. This 1425 // must be the new parent that it was just joined to. Note that 1426 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1427 // set to the original parent. 1428 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1429 RootSet.erase(PredNum); 1430 } 1431 } 1432 RootSet[SU->NodeNum] = RData; 1433 } 1434 1435 /// Called once for each tree edge after calling visitPostOrderNode on the 1436 /// predecessor. Increment the parent node's instruction count and 1437 /// preemptively join this subtree to its parent's if it is small enough. 1438 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1439 R.DFSNodeData[Succ->NodeNum].InstrCount 1440 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1441 joinPredSubtree(PredDep, Succ); 1442 } 1443 1444 /// Add a connection for cross edges. 1445 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1446 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1447 } 1448 1449 /// Set each node's subtree ID to the representative ID and record connections 1450 /// between trees. 1451 void finalize() { 1452 SubtreeClasses.compress(); 1453 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1454 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1455 && "number of roots should match trees"); 1456 for (const RootData &Root : RootSet) { 1457 unsigned TreeID = SubtreeClasses[Root.NodeID]; 1458 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1459 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; 1460 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; 1461 // Note that SubInstrCount may be greater than InstrCount if we joined 1462 // subtrees across a cross edge. InstrCount will be attributed to the 1463 // original parent, while SubInstrCount will be attributed to the joined 1464 // parent. 1465 } 1466 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1467 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1468 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1469 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1470 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1471 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1472 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1473 } 1474 for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) { 1475 unsigned PredTree = SubtreeClasses[P.first->NodeNum]; 1476 unsigned SuccTree = SubtreeClasses[P.second->NodeNum]; 1477 if (PredTree == SuccTree) 1478 continue; 1479 unsigned Depth = P.first->getDepth(); 1480 addConnection(PredTree, SuccTree, Depth); 1481 addConnection(SuccTree, PredTree, Depth); 1482 } 1483 } 1484 1485 protected: 1486 /// Join the predecessor subtree with the successor that is its DFS 1487 /// parent. Apply some heuristics before joining. 1488 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1489 bool CheckLimit = true) { 1490 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1491 1492 // Check if the predecessor is already joined. 1493 const SUnit *PredSU = PredDep.getSUnit(); 1494 unsigned PredNum = PredSU->NodeNum; 1495 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1496 return false; 1497 1498 // Four is the magic number of successors before a node is considered a 1499 // pinch point. 1500 unsigned NumDataSucs = 0; 1501 for (const SDep &SuccDep : PredSU->Succs) { 1502 if (SuccDep.getKind() == SDep::Data) { 1503 if (++NumDataSucs >= 4) 1504 return false; 1505 } 1506 } 1507 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1508 return false; 1509 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1510 SubtreeClasses.join(Succ->NodeNum, PredNum); 1511 return true; 1512 } 1513 1514 /// Called by finalize() to record a connection between trees. 1515 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1516 if (!Depth) 1517 return; 1518 1519 do { 1520 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1521 R.SubtreeConnections[FromTree]; 1522 for (SchedDFSResult::Connection &C : Connections) { 1523 if (C.TreeID == ToTree) { 1524 C.Level = std::max(C.Level, Depth); 1525 return; 1526 } 1527 } 1528 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1529 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1530 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1531 } 1532 }; 1533 } // namespace llvm 1534 1535 namespace { 1536 /// \brief Manage the stack used by a reverse depth-first search over the DAG. 1537 class SchedDAGReverseDFS { 1538 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 1539 public: 1540 bool isComplete() const { return DFSStack.empty(); } 1541 1542 void follow(const SUnit *SU) { 1543 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1544 } 1545 void advance() { ++DFSStack.back().second; } 1546 1547 const SDep *backtrack() { 1548 DFSStack.pop_back(); 1549 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1550 } 1551 1552 const SUnit *getCurr() const { return DFSStack.back().first; } 1553 1554 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1555 1556 SUnit::const_pred_iterator getPredEnd() const { 1557 return getCurr()->Preds.end(); 1558 } 1559 }; 1560 } // anonymous 1561 1562 static bool hasDataSucc(const SUnit *SU) { 1563 for (const SDep &SuccDep : SU->Succs) { 1564 if (SuccDep.getKind() == SDep::Data && 1565 !SuccDep.getSUnit()->isBoundaryNode()) 1566 return true; 1567 } 1568 return false; 1569 } 1570 1571 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first 1572 /// search from this root. 1573 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1574 if (!IsBottomUp) 1575 llvm_unreachable("Top-down ILP metric is unimplemnted"); 1576 1577 SchedDFSImpl Impl(*this); 1578 for (const SUnit &SU : SUnits) { 1579 if (Impl.isVisited(&SU) || hasDataSucc(&SU)) 1580 continue; 1581 1582 SchedDAGReverseDFS DFS; 1583 Impl.visitPreorder(&SU); 1584 DFS.follow(&SU); 1585 for (;;) { 1586 // Traverse the leftmost path as far as possible. 1587 while (DFS.getPred() != DFS.getPredEnd()) { 1588 const SDep &PredDep = *DFS.getPred(); 1589 DFS.advance(); 1590 // Ignore non-data edges. 1591 if (PredDep.getKind() != SDep::Data 1592 || PredDep.getSUnit()->isBoundaryNode()) { 1593 continue; 1594 } 1595 // An already visited edge is a cross edge, assuming an acyclic DAG. 1596 if (Impl.isVisited(PredDep.getSUnit())) { 1597 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1598 continue; 1599 } 1600 Impl.visitPreorder(PredDep.getSUnit()); 1601 DFS.follow(PredDep.getSUnit()); 1602 } 1603 // Visit the top of the stack in postorder and backtrack. 1604 const SUnit *Child = DFS.getCurr(); 1605 const SDep *PredDep = DFS.backtrack(); 1606 Impl.visitPostorderNode(Child); 1607 if (PredDep) 1608 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1609 if (DFS.isComplete()) 1610 break; 1611 } 1612 } 1613 Impl.finalize(); 1614 } 1615 1616 /// The root of the given SubtreeID was just scheduled. For all subtrees 1617 /// connected to this tree, record the depth of the connection so that the 1618 /// nearest connected subtrees can be prioritized. 1619 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1620 for (const Connection &C : SubtreeConnections[SubtreeID]) { 1621 SubtreeConnectLevels[C.TreeID] = 1622 std::max(SubtreeConnectLevels[C.TreeID], C.Level); 1623 DEBUG(dbgs() << " Tree: " << C.TreeID 1624 << " @" << SubtreeConnectLevels[C.TreeID] << '\n'); 1625 } 1626 } 1627 1628 LLVM_DUMP_METHOD 1629 void ILPValue::print(raw_ostream &OS) const { 1630 OS << InstrCount << " / " << Length << " = "; 1631 if (!Length) 1632 OS << "BADILP"; 1633 else 1634 OS << format("%g", ((double)InstrCount / Length)); 1635 } 1636 1637 LLVM_DUMP_METHOD 1638 void ILPValue::dump() const { 1639 dbgs() << *this << '\n'; 1640 } 1641 1642 namespace llvm { 1643 1644 LLVM_DUMP_METHOD 1645 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1646 Val.print(OS); 1647 return OS; 1648 } 1649 1650 } // namespace llvm 1651