1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling 11 // of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "sched-instrs" 16 #include "llvm/Operator.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 20 #include "llvm/CodeGen/MachineFunctionPass.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/PseudoSourceValue.h" 24 #include "llvm/CodeGen/RegisterPressure.h" 25 #include "llvm/CodeGen/ScheduleDAGILP.h" 26 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 27 #include "llvm/MC/MCInstrItineraries.h" 28 #include "llvm/Target/TargetMachine.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetRegisterInfo.h" 31 #include "llvm/Target/TargetSubtargetInfo.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/Format.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/ADT/MapVector.h" 37 #include "llvm/ADT/SmallSet.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 using namespace llvm; 40 41 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 42 cl::ZeroOrMore, cl::init(false), 43 cl::desc("Enable use of AA during MI GAD construction")); 44 45 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 46 const MachineLoopInfo &mli, 47 const MachineDominatorTree &mdt, 48 bool IsPostRAFlag, 49 LiveIntervals *lis) 50 : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis), 51 IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) { 52 assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals"); 53 DbgValues.clear(); 54 assert(!(IsPostRA && MRI.getNumVirtRegs()) && 55 "Virtual registers must be removed prior to PostRA scheduling"); 56 57 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 58 SchedModel.init(*ST.getSchedModel(), &ST, TII); 59 } 60 61 /// getUnderlyingObjectFromInt - This is the function that does the work of 62 /// looking through basic ptrtoint+arithmetic+inttoptr sequences. 63 static const Value *getUnderlyingObjectFromInt(const Value *V) { 64 do { 65 if (const Operator *U = dyn_cast<Operator>(V)) { 66 // If we find a ptrtoint, we can transfer control back to the 67 // regular getUnderlyingObjectFromInt. 68 if (U->getOpcode() == Instruction::PtrToInt) 69 return U->getOperand(0); 70 // If we find an add of a constant or a multiplied value, it's 71 // likely that the other operand will lead us to the base 72 // object. We don't have to worry about the case where the 73 // object address is somehow being computed by the multiply, 74 // because our callers only care when the result is an 75 // identifiable object. 76 if (U->getOpcode() != Instruction::Add || 77 (!isa<ConstantInt>(U->getOperand(1)) && 78 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul)) 79 return V; 80 V = U->getOperand(0); 81 } else { 82 return V; 83 } 84 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 85 } while (1); 86 } 87 88 /// getUnderlyingObject - This is a wrapper around GetUnderlyingObject 89 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. 90 static const Value *getUnderlyingObject(const Value *V) { 91 // First just call Value::getUnderlyingObject to let it do what it does. 92 do { 93 V = GetUnderlyingObject(V); 94 // If it found an inttoptr, use special code to continue climing. 95 if (Operator::getOpcode(V) != Instruction::IntToPtr) 96 break; 97 const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 98 // If that succeeded in finding a pointer, continue the search. 99 if (!O->getType()->isPointerTy()) 100 break; 101 V = O; 102 } while (1); 103 return V; 104 } 105 106 /// getUnderlyingObjectForInstr - If this machine instr has memory reference 107 /// information and it can be tracked to a normal reference to a known 108 /// object, return the Value for that object. Otherwise return null. 109 static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI, 110 const MachineFrameInfo *MFI, 111 bool &MayAlias) { 112 MayAlias = true; 113 if (!MI->hasOneMemOperand() || 114 !(*MI->memoperands_begin())->getValue() || 115 (*MI->memoperands_begin())->isVolatile()) 116 return 0; 117 118 const Value *V = (*MI->memoperands_begin())->getValue(); 119 if (!V) 120 return 0; 121 122 V = getUnderlyingObject(V); 123 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { 124 // For now, ignore PseudoSourceValues which may alias LLVM IR values 125 // because the code that uses this function has no way to cope with 126 // such aliases. 127 if (PSV->isAliased(MFI)) 128 return 0; 129 130 MayAlias = PSV->mayAlias(MFI); 131 return V; 132 } 133 134 if (isIdentifiedObject(V)) 135 return V; 136 137 return 0; 138 } 139 140 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 141 BB = bb; 142 } 143 144 void ScheduleDAGInstrs::finishBlock() { 145 // Subclasses should no longer refer to the old block. 146 BB = 0; 147 } 148 149 /// Initialize the map with the number of registers. 150 void Reg2SUnitsMap::setRegLimit(unsigned Limit) { 151 PhysRegSet.setUniverse(Limit); 152 SUnits.resize(Limit); 153 } 154 155 /// Clear the map without deallocating storage. 156 void Reg2SUnitsMap::clear() { 157 for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) { 158 SUnits[*I].clear(); 159 } 160 PhysRegSet.clear(); 161 } 162 163 /// Initialize the DAG and common scheduler state for the current scheduling 164 /// region. This does not actually create the DAG, only clears it. The 165 /// scheduling driver may call BuildSchedGraph multiple times per scheduling 166 /// region. 167 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 168 MachineBasicBlock::iterator begin, 169 MachineBasicBlock::iterator end, 170 unsigned endcount) { 171 assert(bb == BB && "startBlock should set BB"); 172 RegionBegin = begin; 173 RegionEnd = end; 174 EndIndex = endcount; 175 MISUnitMap.clear(); 176 177 ScheduleDAG::clearDAG(); 178 } 179 180 /// Close the current scheduling region. Don't clear any state in case the 181 /// driver wants to refer to the previous scheduling region. 182 void ScheduleDAGInstrs::exitRegion() { 183 // Nothing to do. 184 } 185 186 /// addSchedBarrierDeps - Add dependencies from instructions in the current 187 /// list of instructions being scheduled to scheduling barrier by adding 188 /// the exit SU to the register defs and use list. This is because we want to 189 /// make sure instructions which define registers that are either used by 190 /// the terminator or are live-out are properly scheduled. This is 191 /// especially important when the definition latency of the return value(s) 192 /// are too high to be hidden by the branch or when the liveout registers 193 /// used by instructions in the fallthrough block. 194 void ScheduleDAGInstrs::addSchedBarrierDeps() { 195 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0; 196 ExitSU.setInstr(ExitMI); 197 bool AllDepKnown = ExitMI && 198 (ExitMI->isCall() || ExitMI->isBarrier()); 199 if (ExitMI && AllDepKnown) { 200 // If it's a call or a barrier, add dependencies on the defs and uses of 201 // instruction. 202 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { 203 const MachineOperand &MO = ExitMI->getOperand(i); 204 if (!MO.isReg() || MO.isDef()) continue; 205 unsigned Reg = MO.getReg(); 206 if (Reg == 0) continue; 207 208 if (TRI->isPhysicalRegister(Reg)) 209 Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1)); 210 else { 211 assert(!IsPostRA && "Virtual register encountered after regalloc."); 212 addVRegUseDeps(&ExitSU, i); 213 } 214 } 215 } else { 216 // For others, e.g. fallthrough, conditional branch, assume the exit 217 // uses all the registers that are livein to the successor blocks. 218 assert(Uses.empty() && "Uses in set before adding deps?"); 219 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 220 SE = BB->succ_end(); SI != SE; ++SI) 221 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 222 E = (*SI)->livein_end(); I != E; ++I) { 223 unsigned Reg = *I; 224 if (!Uses.contains(Reg)) 225 Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1)); 226 } 227 } 228 } 229 230 /// MO is an operand of SU's instruction that defines a physical register. Add 231 /// data dependencies from SU to any uses of the physical register. 232 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 233 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 234 assert(MO.isDef() && "expect physreg def"); 235 236 // Ask the target if address-backscheduling is desirable, and if so how much. 237 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 238 239 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 240 Alias.isValid(); ++Alias) { 241 if (!Uses.contains(*Alias)) 242 continue; 243 std::vector<PhysRegSUOper> &UseList = Uses[*Alias]; 244 for (unsigned i = 0, e = UseList.size(); i != e; ++i) { 245 SUnit *UseSU = UseList[i].SU; 246 if (UseSU == SU) 247 continue; 248 249 // Adjust the dependence latency using operand def/use information, 250 // then allow the target to perform its own adjustments. 251 int UseOp = UseList[i].OpIdx; 252 MachineInstr *RegUse = 0; 253 SDep Dep; 254 if (UseOp < 0) 255 Dep = SDep(SU, SDep::Artificial); 256 else { 257 Dep = SDep(SU, SDep::Data, *Alias); 258 RegUse = UseSU->getInstr(); 259 Dep.setMinLatency( 260 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, 261 RegUse, UseOp, /*FindMin=*/true)); 262 } 263 Dep.setLatency( 264 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, 265 RegUse, UseOp, /*FindMin=*/false)); 266 267 ST.adjustSchedDependency(SU, UseSU, Dep); 268 UseSU->addPred(Dep); 269 } 270 } 271 } 272 273 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from 274 /// this SUnit to following instructions in the same scheduling region that 275 /// depend the physical register referenced at OperIdx. 276 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 277 const MachineInstr *MI = SU->getInstr(); 278 const MachineOperand &MO = MI->getOperand(OperIdx); 279 280 // Optionally add output and anti dependencies. For anti 281 // dependencies we use a latency of 0 because for a multi-issue 282 // target we want to allow the defining instruction to issue 283 // in the same cycle as the using instruction. 284 // TODO: Using a latency of 1 here for output dependencies assumes 285 // there's no cost for reusing registers. 286 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 287 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 288 Alias.isValid(); ++Alias) { 289 if (!Defs.contains(*Alias)) 290 continue; 291 std::vector<PhysRegSUOper> &DefList = Defs[*Alias]; 292 for (unsigned i = 0, e = DefList.size(); i != e; ++i) { 293 SUnit *DefSU = DefList[i].SU; 294 if (DefSU == &ExitSU) 295 continue; 296 if (DefSU != SU && 297 (Kind != SDep::Output || !MO.isDead() || 298 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 299 if (Kind == SDep::Anti) 300 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 301 else { 302 SDep Dep(SU, Kind, /*Reg=*/*Alias); 303 unsigned OutLatency = 304 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()); 305 Dep.setMinLatency(OutLatency); 306 Dep.setLatency(OutLatency); 307 DefSU->addPred(Dep); 308 } 309 } 310 } 311 } 312 313 if (!MO.isDef()) { 314 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 315 // retrieve the existing SUnits list for this register's uses. 316 // Push this SUnit on the use list. 317 Uses[MO.getReg()].push_back(PhysRegSUOper(SU, OperIdx)); 318 } 319 else { 320 addPhysRegDataDeps(SU, OperIdx); 321 322 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 323 // retrieve the existing SUnits list for this register's defs. 324 std::vector<PhysRegSUOper> &DefList = Defs[MO.getReg()]; 325 326 // clear this register's use list 327 if (Uses.contains(MO.getReg())) 328 Uses[MO.getReg()].clear(); 329 330 if (!MO.isDead()) 331 DefList.clear(); 332 333 // Calls will not be reordered because of chain dependencies (see 334 // below). Since call operands are dead, calls may continue to be added 335 // to the DefList making dependence checking quadratic in the size of 336 // the block. Instead, we leave only one call at the back of the 337 // DefList. 338 if (SU->isCall) { 339 while (!DefList.empty() && DefList.back().SU->isCall) 340 DefList.pop_back(); 341 } 342 // Defs are pushed in the order they are visited and never reordered. 343 DefList.push_back(PhysRegSUOper(SU, OperIdx)); 344 } 345 } 346 347 /// addVRegDefDeps - Add register output and data dependencies from this SUnit 348 /// to instructions that occur later in the same scheduling region if they read 349 /// from or write to the virtual register defined at OperIdx. 350 /// 351 /// TODO: Hoist loop induction variable increments. This has to be 352 /// reevaluated. Generally, IV scheduling should be done before coalescing. 353 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 354 const MachineInstr *MI = SU->getInstr(); 355 unsigned Reg = MI->getOperand(OperIdx).getReg(); 356 357 // Singly defined vregs do not have output/anti dependencies. 358 // The current operand is a def, so we have at least one. 359 // Check here if there are any others... 360 if (MRI.hasOneDef(Reg)) 361 return; 362 363 // Add output dependence to the next nearest def of this vreg. 364 // 365 // Unless this definition is dead, the output dependence should be 366 // transitively redundant with antidependencies from this definition's 367 // uses. We're conservative for now until we have a way to guarantee the uses 368 // are not eliminated sometime during scheduling. The output dependence edge 369 // is also useful if output latency exceeds def-use latency. 370 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 371 if (DefI == VRegDefs.end()) 372 VRegDefs.insert(VReg2SUnit(Reg, SU)); 373 else { 374 SUnit *DefSU = DefI->SU; 375 if (DefSU != SU && DefSU != &ExitSU) { 376 SDep Dep(SU, SDep::Output, Reg); 377 unsigned OutLatency = 378 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()); 379 Dep.setMinLatency(OutLatency); 380 Dep.setLatency(OutLatency); 381 DefSU->addPred(Dep); 382 } 383 DefI->SU = SU; 384 } 385 } 386 387 /// addVRegUseDeps - Add a register data dependency if the instruction that 388 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a 389 /// register antidependency from this SUnit to instructions that occur later in 390 /// the same scheduling region if they write the virtual register. 391 /// 392 /// TODO: Handle ExitSU "uses" properly. 393 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 394 MachineInstr *MI = SU->getInstr(); 395 unsigned Reg = MI->getOperand(OperIdx).getReg(); 396 397 // Lookup this operand's reaching definition. 398 assert(LIS && "vreg dependencies requires LiveIntervals"); 399 LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI)); 400 VNInfo *VNI = LRQ.valueIn(); 401 402 // VNI will be valid because MachineOperand::readsReg() is checked by caller. 403 assert(VNI && "No value to read by operand"); 404 MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); 405 // Phis and other noninstructions (after coalescing) have a NULL Def. 406 if (Def) { 407 SUnit *DefSU = getSUnit(Def); 408 if (DefSU) { 409 // The reaching Def lives within this scheduling region. 410 // Create a data dependence. 411 SDep dep(DefSU, SDep::Data, Reg); 412 // Adjust the dependence latency using operand def/use information, then 413 // allow the target to perform its own adjustments. 414 int DefOp = Def->findRegisterDefOperandIdx(Reg); 415 dep.setLatency( 416 SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, false)); 417 dep.setMinLatency( 418 SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, true)); 419 420 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 421 ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep)); 422 SU->addPred(dep); 423 } 424 } 425 426 // Add antidependence to the following def of the vreg it uses. 427 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 428 if (DefI != VRegDefs.end() && DefI->SU != SU) 429 DefI->SU->addPred(SDep(SU, SDep::Anti, Reg)); 430 } 431 432 /// Return true if MI is an instruction we are unable to reason about 433 /// (like a call or something with unmodeled side effects). 434 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 435 if (MI->isCall() || MI->hasUnmodeledSideEffects() || 436 (MI->hasOrderedMemoryRef() && 437 (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) 438 return true; 439 return false; 440 } 441 442 // This MI might have either incomplete info, or known to be unsafe 443 // to deal with (i.e. volatile object). 444 static inline bool isUnsafeMemoryObject(MachineInstr *MI, 445 const MachineFrameInfo *MFI) { 446 if (!MI || MI->memoperands_empty()) 447 return true; 448 // We purposefully do no check for hasOneMemOperand() here 449 // in hope to trigger an assert downstream in order to 450 // finish implementation. 451 if ((*MI->memoperands_begin())->isVolatile() || 452 MI->hasUnmodeledSideEffects()) 453 return true; 454 455 const Value *V = (*MI->memoperands_begin())->getValue(); 456 if (!V) 457 return true; 458 459 V = getUnderlyingObject(V); 460 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { 461 // Similarly to getUnderlyingObjectForInstr: 462 // For now, ignore PseudoSourceValues which may alias LLVM IR values 463 // because the code that uses this function has no way to cope with 464 // such aliases. 465 if (PSV->isAliased(MFI)) 466 return true; 467 } 468 // Does this pointer refer to a distinct and identifiable object? 469 if (!isIdentifiedObject(V)) 470 return true; 471 472 return false; 473 } 474 475 /// This returns true if the two MIs need a chain edge betwee them. 476 /// If these are not even memory operations, we still may need 477 /// chain deps between them. The question really is - could 478 /// these two MIs be reordered during scheduling from memory dependency 479 /// point of view. 480 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 481 MachineInstr *MIa, 482 MachineInstr *MIb) { 483 // Cover a trivial case - no edge is need to itself. 484 if (MIa == MIb) 485 return false; 486 487 if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI)) 488 return true; 489 490 // If we are dealing with two "normal" loads, we do not need an edge 491 // between them - they could be reordered. 492 if (!MIa->mayStore() && !MIb->mayStore()) 493 return false; 494 495 // To this point analysis is generic. From here on we do need AA. 496 if (!AA) 497 return true; 498 499 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 500 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 501 502 // FIXME: Need to handle multiple memory operands to support all targets. 503 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 504 llvm_unreachable("Multiple memory operands."); 505 506 // The following interface to AA is fashioned after DAGCombiner::isAlias 507 // and operates with MachineMemOperand offset with some important 508 // assumptions: 509 // - LLVM fundamentally assumes flat address spaces. 510 // - MachineOperand offset can *only* result from legalization and 511 // cannot affect queries other than the trivial case of overlap 512 // checking. 513 // - These offsets never wrap and never step outside 514 // of allocated objects. 515 // - There should never be any negative offsets here. 516 // 517 // FIXME: Modify API to hide this math from "user" 518 // FIXME: Even before we go to AA we can reason locally about some 519 // memory objects. It can save compile time, and possibly catch some 520 // corner cases not currently covered. 521 522 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 523 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 524 525 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 526 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 527 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 528 529 AliasAnalysis::AliasResult AAResult = AA->alias( 530 AliasAnalysis::Location(MMOa->getValue(), Overlapa, 531 MMOa->getTBAAInfo()), 532 AliasAnalysis::Location(MMOb->getValue(), Overlapb, 533 MMOb->getTBAAInfo())); 534 535 return (AAResult != AliasAnalysis::NoAlias); 536 } 537 538 /// This recursive function iterates over chain deps of SUb looking for 539 /// "latest" node that needs a chain edge to SUa. 540 static unsigned 541 iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI, 542 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth, 543 SmallPtrSet<const SUnit*, 16> &Visited) { 544 if (!SUa || !SUb || SUb == ExitSU) 545 return *Depth; 546 547 // Remember visited nodes. 548 if (!Visited.insert(SUb)) 549 return *Depth; 550 // If there is _some_ dependency already in place, do not 551 // descend any further. 552 // TODO: Need to make sure that if that dependency got eliminated or ignored 553 // for any reason in the future, we would not violate DAG topology. 554 // Currently it does not happen, but makes an implicit assumption about 555 // future implementation. 556 // 557 // Independently, if we encounter node that is some sort of global 558 // object (like a call) we already have full set of dependencies to it 559 // and we can stop descending. 560 if (SUa->isSucc(SUb) || 561 isGlobalMemoryObject(AA, SUb->getInstr())) 562 return *Depth; 563 564 // If we do need an edge, or we have exceeded depth budget, 565 // add that edge to the predecessors chain of SUb, 566 // and stop descending. 567 if (*Depth > 200 || 568 MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 569 SUb->addPred(SDep(SUa, SDep::MayAliasMem)); 570 return *Depth; 571 } 572 // Track current depth. 573 (*Depth)++; 574 // Iterate over chain dependencies only. 575 for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end(); 576 I != E; ++I) 577 if (I->isCtrl()) 578 iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited); 579 return *Depth; 580 } 581 582 /// This function assumes that "downward" from SU there exist 583 /// tail/leaf of already constructed DAG. It iterates downward and 584 /// checks whether SU can be aliasing any node dominated 585 /// by it. 586 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI, 587 SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList, 588 unsigned LatencyToLoad) { 589 if (!SU) 590 return; 591 592 SmallPtrSet<const SUnit*, 16> Visited; 593 unsigned Depth = 0; 594 595 for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end(); 596 I != IE; ++I) { 597 if (SU == *I) 598 continue; 599 if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) { 600 SDep Dep(SU, SDep::MayAliasMem); 601 Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0); 602 (*I)->addPred(Dep); 603 } 604 // Now go through all the chain successors and iterate from them. 605 // Keep track of visited nodes. 606 for (SUnit::const_succ_iterator J = (*I)->Succs.begin(), 607 JE = (*I)->Succs.end(); J != JE; ++J) 608 if (J->isCtrl()) 609 iterateChainSucc (AA, MFI, SU, J->getSUnit(), 610 ExitSU, &Depth, Visited); 611 } 612 } 613 614 /// Check whether two objects need a chain edge, if so, add it 615 /// otherwise remember the rejected SU. 616 static inline 617 void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI, 618 SUnit *SUa, SUnit *SUb, 619 std::set<SUnit *> &RejectList, 620 unsigned TrueMemOrderLatency = 0, 621 bool isNormalMemory = false) { 622 // If this is a false dependency, 623 // do not add the edge, but rememeber the rejected node. 624 if (!EnableAASchedMI || 625 MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 626 SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier); 627 Dep.setLatency(TrueMemOrderLatency); 628 SUb->addPred(Dep); 629 } 630 else { 631 // Duplicate entries should be ignored. 632 RejectList.insert(SUb); 633 DEBUG(dbgs() << "\tReject chain dep between SU(" 634 << SUa->NodeNum << ") and SU(" 635 << SUb->NodeNum << ")\n"); 636 } 637 } 638 639 /// Create an SUnit for each real instruction, numbered in top-down toplological 640 /// order. The instruction order A < B, implies that no edge exists from B to A. 641 /// 642 /// Map each real instruction to its SUnit. 643 /// 644 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 645 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 646 /// instead of pointers. 647 /// 648 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 649 /// the original instruction list. 650 void ScheduleDAGInstrs::initSUnits() { 651 // We'll be allocating one SUnit for each real instruction in the region, 652 // which is contained within a basic block. 653 SUnits.reserve(BB->size()); 654 655 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { 656 MachineInstr *MI = I; 657 if (MI->isDebugValue()) 658 continue; 659 660 SUnit *SU = newSUnit(MI); 661 MISUnitMap[MI] = SU; 662 663 SU->isCall = MI->isCall(); 664 SU->isCommutable = MI->isCommutable(); 665 666 // Assign the Latency field of SU using target-provided information. 667 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 668 } 669 } 670 671 /// If RegPressure is non null, compute register pressure as a side effect. The 672 /// DAG builder is an efficient place to do it because it already visits 673 /// operands. 674 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 675 RegPressureTracker *RPTracker) { 676 // Create an SUnit for each real instruction. 677 initSUnits(); 678 679 // We build scheduling units by walking a block's instruction list from bottom 680 // to top. 681 682 // Remember where a generic side-effecting instruction is as we procede. 683 SUnit *BarrierChain = 0, *AliasChain = 0; 684 685 // Memory references to specific known memory locations are tracked 686 // so that they can be given more precise dependencies. We track 687 // separately the known memory locations that may alias and those 688 // that are known not to alias 689 MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs; 690 MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; 691 std::set<SUnit*> RejectMemNodes; 692 693 // Remove any stale debug info; sometimes BuildSchedGraph is called again 694 // without emitting the info from the previous call. 695 DbgValues.clear(); 696 FirstDbgValue = NULL; 697 698 assert(Defs.empty() && Uses.empty() && 699 "Only BuildGraph should update Defs/Uses"); 700 Defs.setRegLimit(TRI->getNumRegs()); 701 Uses.setRegLimit(TRI->getNumRegs()); 702 703 assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); 704 // FIXME: Allow SparseSet to reserve space for the creation of virtual 705 // registers during scheduling. Don't artificially inflate the Universe 706 // because we want to assert that vregs are not created during DAG building. 707 VRegDefs.setUniverse(MRI.getNumVirtRegs()); 708 709 // Model data dependencies between instructions being scheduled and the 710 // ExitSU. 711 addSchedBarrierDeps(); 712 713 // Walk the list of instructions, from bottom moving up. 714 MachineInstr *PrevMI = NULL; 715 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 716 MII != MIE; --MII) { 717 MachineInstr *MI = prior(MII); 718 if (MI && PrevMI) { 719 DbgValues.push_back(std::make_pair(PrevMI, MI)); 720 PrevMI = NULL; 721 } 722 723 if (MI->isDebugValue()) { 724 PrevMI = MI; 725 continue; 726 } 727 if (RPTracker) { 728 RPTracker->recede(); 729 assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI"); 730 } 731 732 assert((!MI->isTerminator() || CanHandleTerminators) && !MI->isLabel() && 733 "Cannot schedule terminators or labels!"); 734 735 SUnit *SU = MISUnitMap[MI]; 736 assert(SU && "No SUnit mapped to this MI"); 737 738 // Add register-based dependencies (data, anti, and output). 739 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { 740 const MachineOperand &MO = MI->getOperand(j); 741 if (!MO.isReg()) continue; 742 unsigned Reg = MO.getReg(); 743 if (Reg == 0) continue; 744 745 if (TRI->isPhysicalRegister(Reg)) 746 addPhysRegDeps(SU, j); 747 else { 748 assert(!IsPostRA && "Virtual register encountered!"); 749 if (MO.isDef()) 750 addVRegDefDeps(SU, j); 751 else if (MO.readsReg()) // ignore undef operands 752 addVRegUseDeps(SU, j); 753 } 754 } 755 756 // Add chain dependencies. 757 // Chain dependencies used to enforce memory order should have 758 // latency of 0 (except for true dependency of Store followed by 759 // aliased Load... we estimate that with a single cycle of latency 760 // assuming the hardware will bypass) 761 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable 762 // after stack slots are lowered to actual addresses. 763 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and 764 // produce more precise dependence information. 765 unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0; 766 if (isGlobalMemoryObject(AA, MI)) { 767 // Be conservative with these and add dependencies on all memory 768 // references, even those that are known to not alias. 769 for (MapVector<const Value *, SUnit *>::iterator I = 770 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { 771 I->second->addPred(SDep(SU, SDep::Barrier)); 772 } 773 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I = 774 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { 775 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 776 SDep Dep(SU, SDep::Barrier); 777 Dep.setLatency(TrueMemOrderLatency); 778 I->second[i]->addPred(Dep); 779 } 780 } 781 // Add SU to the barrier chain. 782 if (BarrierChain) 783 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 784 BarrierChain = SU; 785 // This is a barrier event that acts as a pivotal node in the DAG, 786 // so it is safe to clear list of exposed nodes. 787 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 788 TrueMemOrderLatency); 789 RejectMemNodes.clear(); 790 NonAliasMemDefs.clear(); 791 NonAliasMemUses.clear(); 792 793 // fall-through 794 new_alias_chain: 795 // Chain all possibly aliasing memory references though SU. 796 if (AliasChain) { 797 unsigned ChainLatency = 0; 798 if (AliasChain->getInstr()->mayLoad()) 799 ChainLatency = TrueMemOrderLatency; 800 addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes, 801 ChainLatency); 802 } 803 AliasChain = SU; 804 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 805 addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes, 806 TrueMemOrderLatency); 807 for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(), 808 E = AliasMemDefs.end(); I != E; ++I) 809 addChainDependency(AA, MFI, SU, I->second, RejectMemNodes); 810 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I = 811 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { 812 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 813 addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes, 814 TrueMemOrderLatency); 815 } 816 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 817 TrueMemOrderLatency); 818 PendingLoads.clear(); 819 AliasMemDefs.clear(); 820 AliasMemUses.clear(); 821 } else if (MI->mayStore()) { 822 bool MayAlias = true; 823 if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { 824 // A store to a specific PseudoSourceValue. Add precise dependencies. 825 // Record the def in MemDefs, first adding a dep if there is 826 // an existing def. 827 MapVector<const Value *, SUnit *>::iterator I = 828 ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 829 MapVector<const Value *, SUnit *>::iterator IE = 830 ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 831 if (I != IE) { 832 addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true); 833 I->second = SU; 834 } else { 835 if (MayAlias) 836 AliasMemDefs[V] = SU; 837 else 838 NonAliasMemDefs[V] = SU; 839 } 840 // Handle the uses in MemUses, if there are any. 841 MapVector<const Value *, std::vector<SUnit *> >::iterator J = 842 ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); 843 MapVector<const Value *, std::vector<SUnit *> >::iterator JE = 844 ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); 845 if (J != JE) { 846 for (unsigned i = 0, e = J->second.size(); i != e; ++i) 847 addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes, 848 TrueMemOrderLatency, true); 849 J->second.clear(); 850 } 851 if (MayAlias) { 852 // Add dependencies from all the PendingLoads, i.e. loads 853 // with no underlying object. 854 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 855 addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes, 856 TrueMemOrderLatency); 857 // Add dependence on alias chain, if needed. 858 if (AliasChain) 859 addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes); 860 // But we also should check dependent instructions for the 861 // SU in question. 862 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 863 TrueMemOrderLatency); 864 } 865 // Add dependence on barrier chain, if needed. 866 // There is no point to check aliasing on barrier event. Even if 867 // SU and barrier _could_ be reordered, they should not. In addition, 868 // we have lost all RejectMemNodes below barrier. 869 if (BarrierChain) 870 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 871 } else { 872 // Treat all other stores conservatively. 873 goto new_alias_chain; 874 } 875 876 if (!ExitSU.isPred(SU)) 877 // Push store's up a bit to avoid them getting in between cmp 878 // and branches. 879 ExitSU.addPred(SDep(SU, SDep::Artificial)); 880 } else if (MI->mayLoad()) { 881 bool MayAlias = true; 882 if (MI->isInvariantLoad(AA)) { 883 // Invariant load, no chain dependencies needed! 884 } else { 885 if (const Value *V = 886 getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { 887 // A load from a specific PseudoSourceValue. Add precise dependencies. 888 MapVector<const Value *, SUnit *>::iterator I = 889 ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 890 MapVector<const Value *, SUnit *>::iterator IE = 891 ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 892 if (I != IE) 893 addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true); 894 if (MayAlias) 895 AliasMemUses[V].push_back(SU); 896 else 897 NonAliasMemUses[V].push_back(SU); 898 } else { 899 // A load with no underlying object. Depend on all 900 // potentially aliasing stores. 901 for (MapVector<const Value *, SUnit *>::iterator I = 902 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) 903 addChainDependency(AA, MFI, SU, I->second, RejectMemNodes); 904 905 PendingLoads.push_back(SU); 906 MayAlias = true; 907 } 908 if (MayAlias) 909 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0); 910 // Add dependencies on alias and barrier chains, if needed. 911 if (MayAlias && AliasChain) 912 addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes); 913 if (BarrierChain) 914 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 915 } 916 } 917 } 918 if (PrevMI) 919 FirstDbgValue = PrevMI; 920 921 Defs.clear(); 922 Uses.clear(); 923 VRegDefs.clear(); 924 PendingLoads.clear(); 925 } 926 927 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 928 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 929 SU->getInstr()->dump(); 930 #endif 931 } 932 933 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 934 std::string s; 935 raw_string_ostream oss(s); 936 if (SU == &EntrySU) 937 oss << "<entry>"; 938 else if (SU == &ExitSU) 939 oss << "<exit>"; 940 else 941 SU->getInstr()->print(oss); 942 return oss.str(); 943 } 944 945 /// Return the basic block label. It is not necessarilly unique because a block 946 /// contains multiple scheduling regions. But it is fine for visualization. 947 std::string ScheduleDAGInstrs::getDAGName() const { 948 return "dag." + BB->getFullName(); 949 } 950 951 namespace { 952 /// \brief Manage the stack used by a reverse depth-first search over the DAG. 953 class SchedDAGReverseDFS { 954 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 955 public: 956 bool isComplete() const { return DFSStack.empty(); } 957 958 void follow(const SUnit *SU) { 959 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 960 } 961 void advance() { ++DFSStack.back().second; } 962 963 void backtrack() { DFSStack.pop_back(); } 964 965 const SUnit *getCurr() const { return DFSStack.back().first; } 966 967 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 968 969 SUnit::const_pred_iterator getPredEnd() const { 970 return getCurr()->Preds.end(); 971 } 972 }; 973 } // anonymous 974 975 void ScheduleDAGILP::resize(unsigned NumSUnits) { 976 ILPValues.resize(NumSUnits); 977 } 978 979 ILPValue ScheduleDAGILP::getILP(const SUnit *SU) { 980 return ILPValues[SU->NodeNum]; 981 } 982 983 // A leaf node has an ILP of 1/1. 984 static ILPValue initILP(const SUnit *SU) { 985 unsigned Cnt = SU->getInstr()->isTransient() ? 0 : 1; 986 return ILPValue(Cnt, 1 + SU->getDepth()); 987 } 988 989 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first 990 /// search from this root. 991 void ScheduleDAGILP::computeILP(const SUnit *Root) { 992 if (!IsBottomUp) 993 llvm_unreachable("Top-down ILP metric is unimplemnted"); 994 995 SchedDAGReverseDFS DFS; 996 // Mark a node visited by validating it. 997 ILPValues[Root->NodeNum] = initILP(Root); 998 DFS.follow(Root); 999 for (;;) { 1000 // Traverse the leftmost path as far as possible. 1001 while (DFS.getPred() != DFS.getPredEnd()) { 1002 const SUnit *PredSU = DFS.getPred()->getSUnit(); 1003 DFS.advance(); 1004 // If the pred is already valid, skip it. 1005 if (ILPValues[PredSU->NodeNum].isValid()) 1006 continue; 1007 ILPValues[PredSU->NodeNum] = initILP(PredSU); 1008 DFS.follow(PredSU); 1009 } 1010 // Visit the top of the stack in postorder and backtrack. 1011 unsigned PredCount = ILPValues[DFS.getCurr()->NodeNum].InstrCount; 1012 DFS.backtrack(); 1013 if (DFS.isComplete()) 1014 break; 1015 // Add the recently finished predecessor's bottom-up descendent count. 1016 ILPValues[DFS.getCurr()->NodeNum].InstrCount += PredCount; 1017 } 1018 } 1019 1020 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1021 void ILPValue::print(raw_ostream &OS) const { 1022 if (!isValid()) 1023 OS << "BADILP"; 1024 OS << InstrCount << " / " << Cycles << " = " 1025 << format("%g", ((double)InstrCount / Cycles)); 1026 } 1027 1028 void ILPValue::dump() const { 1029 dbgs() << *this << '\n'; 1030 } 1031 1032 namespace llvm { 1033 1034 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1035 Val.print(OS); 1036 return OS; 1037 } 1038 1039 } // namespace llvm 1040 #endif // !NDEBUG || LLVM_ENABLE_DUMP 1041