1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file This implements the ScheduleDAGInstrs class, which implements 11 /// re-scheduling of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 16 #include "llvm/ADT/IntEqClasses.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/LiveIntervals.h" 25 #include "llvm/CodeGen/LivePhysRegs.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineInstrBundle.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/RegisterPressure.h" 36 #include "llvm/CodeGen/ScheduleDAG.h" 37 #include "llvm/CodeGen/ScheduleDFS.h" 38 #include "llvm/CodeGen/SlotIndexes.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/MC/LaneBitmask.h" 49 #include "llvm/MC/MCRegisterInfo.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/Format.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <iterator> 60 #include <string> 61 #include <utility> 62 #include <vector> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "machine-scheduler" 67 68 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 69 cl::ZeroOrMore, cl::init(false), 70 cl::desc("Enable use of AA during MI DAG construction")); 71 72 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 73 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 74 75 // Note: the two options below might be used in tuning compile time vs 76 // output quality. Setting HugeRegion so large that it will never be 77 // reached means best-effort, but may be slow. 78 79 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) 80 // together hold this many SUs, a reduction of maps will be done. 81 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, 82 cl::init(1000), cl::desc("The limit to use while constructing the DAG " 83 "prior to scheduling, at which point a trade-off " 84 "is made to avoid excessive compile time.")); 85 86 static cl::opt<unsigned> ReductionSize( 87 "dag-maps-reduction-size", cl::Hidden, 88 cl::desc("A huge scheduling region will have maps reduced by this many " 89 "nodes at a time. Defaults to HugeRegion / 2.")); 90 91 static unsigned getReductionSize() { 92 // Always reduce a huge region with half of the elements, except 93 // when user sets this number explicitly. 94 if (ReductionSize.getNumOccurrences() == 0) 95 return HugeRegion / 2; 96 return ReductionSize; 97 } 98 99 static void dumpSUList(ScheduleDAGInstrs::SUList &L) { 100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 101 dbgs() << "{ "; 102 for (const SUnit *su : L) { 103 dbgs() << "SU(" << su->NodeNum << ")"; 104 if (su != L.back()) 105 dbgs() << ", "; 106 } 107 dbgs() << "}\n"; 108 #endif 109 } 110 111 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 112 const MachineLoopInfo *mli, 113 bool RemoveKillFlags) 114 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 115 RemoveKillFlags(RemoveKillFlags), 116 UnknownValue(UndefValue::get( 117 Type::getVoidTy(mf.getFunction().getContext()))) { 118 DbgValues.clear(); 119 120 const TargetSubtargetInfo &ST = mf.getSubtarget(); 121 SchedModel.init(ST.getSchedModel(), &ST, TII); 122 } 123 124 /// If this machine instr has memory reference information and it can be 125 /// tracked to a normal reference to a known object, return the Value 126 /// for that object. This function returns false the memory location is 127 /// unknown or may alias anything. 128 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI, 129 const MachineFrameInfo &MFI, 130 UnderlyingObjectsVector &Objects, 131 const DataLayout &DL) { 132 auto allMMOsOkay = [&]() { 133 for (const MachineMemOperand *MMO : MI->memoperands()) { 134 if (MMO->isVolatile()) 135 return false; 136 137 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 138 // Function that contain tail calls don't have unique PseudoSourceValue 139 // objects. Two PseudoSourceValues might refer to the same or 140 // overlapping locations. The client code calling this function assumes 141 // this is not the case. So return a conservative answer of no known 142 // object. 143 if (MFI.hasTailCall()) 144 return false; 145 146 // For now, ignore PseudoSourceValues which may alias LLVM IR values 147 // because the code that uses this function has no way to cope with 148 // such aliases. 149 if (PSV->isAliased(&MFI)) 150 return false; 151 152 bool MayAlias = PSV->mayAlias(&MFI); 153 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 154 } else if (const Value *V = MMO->getValue()) { 155 SmallVector<Value *, 4> Objs; 156 if (!getUnderlyingObjectsForCodeGen(V, Objs, DL)) 157 return false; 158 159 for (Value *V : Objs) { 160 assert(isIdentifiedObject(V)); 161 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 162 } 163 } else 164 return false; 165 } 166 return true; 167 }; 168 169 if (!allMMOsOkay()) { 170 Objects.clear(); 171 return false; 172 } 173 174 return true; 175 } 176 177 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 178 BB = bb; 179 } 180 181 void ScheduleDAGInstrs::finishBlock() { 182 // Subclasses should no longer refer to the old block. 183 BB = nullptr; 184 } 185 186 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 187 MachineBasicBlock::iterator begin, 188 MachineBasicBlock::iterator end, 189 unsigned regioninstrs) { 190 assert(bb == BB && "startBlock should set BB"); 191 RegionBegin = begin; 192 RegionEnd = end; 193 NumRegionInstrs = regioninstrs; 194 } 195 196 void ScheduleDAGInstrs::exitRegion() { 197 // Nothing to do. 198 } 199 200 void ScheduleDAGInstrs::addSchedBarrierDeps() { 201 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 202 ExitSU.setInstr(ExitMI); 203 // Add dependencies on the defs and uses of the instruction. 204 if (ExitMI) { 205 for (const MachineOperand &MO : ExitMI->operands()) { 206 if (!MO.isReg() || MO.isDef()) continue; 207 unsigned Reg = MO.getReg(); 208 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 209 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 210 } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) { 211 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO)); 212 } 213 } 214 } 215 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) { 216 // For others, e.g. fallthrough, conditional branch, assume the exit 217 // uses all the registers that are livein to the successor blocks. 218 for (const MachineBasicBlock *Succ : BB->successors()) { 219 for (const auto &LI : Succ->liveins()) { 220 if (!Uses.contains(LI.PhysReg)) 221 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 222 } 223 } 224 } 225 } 226 227 /// MO is an operand of SU's instruction that defines a physical register. Adds 228 /// data dependencies from SU to any uses of the physical register. 229 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 230 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 231 assert(MO.isDef() && "expect physreg def"); 232 233 // Ask the target if address-backscheduling is desirable, and if so how much. 234 const TargetSubtargetInfo &ST = MF.getSubtarget(); 235 236 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 237 Alias.isValid(); ++Alias) { 238 if (!Uses.contains(*Alias)) 239 continue; 240 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 241 SUnit *UseSU = I->SU; 242 if (UseSU == SU) 243 continue; 244 245 // Adjust the dependence latency using operand def/use information, 246 // then allow the target to perform its own adjustments. 247 int UseOp = I->OpIdx; 248 MachineInstr *RegUse = nullptr; 249 SDep Dep; 250 if (UseOp < 0) 251 Dep = SDep(SU, SDep::Artificial); 252 else { 253 // Set the hasPhysRegDefs only for physreg defs that have a use within 254 // the scheduling region. 255 SU->hasPhysRegDefs = true; 256 Dep = SDep(SU, SDep::Data, *Alias); 257 RegUse = UseSU->getInstr(); 258 } 259 Dep.setLatency( 260 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 261 UseOp)); 262 263 ST.adjustSchedDependency(SU, UseSU, Dep); 264 UseSU->addPred(Dep); 265 } 266 } 267 } 268 269 /// \brief Adds register dependencies (data, anti, and output) from this SUnit 270 /// to following instructions in the same scheduling region that depend the 271 /// physical register referenced at OperIdx. 272 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 273 MachineInstr *MI = SU->getInstr(); 274 MachineOperand &MO = MI->getOperand(OperIdx); 275 unsigned Reg = MO.getReg(); 276 // We do not need to track any dependencies for constant registers. 277 if (MRI.isConstantPhysReg(Reg)) 278 return; 279 280 // Optionally add output and anti dependencies. For anti 281 // dependencies we use a latency of 0 because for a multi-issue 282 // target we want to allow the defining instruction to issue 283 // in the same cycle as the using instruction. 284 // TODO: Using a latency of 1 here for output dependencies assumes 285 // there's no cost for reusing registers. 286 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 287 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 288 if (!Defs.contains(*Alias)) 289 continue; 290 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 291 SUnit *DefSU = I->SU; 292 if (DefSU == &ExitSU) 293 continue; 294 if (DefSU != SU && 295 (Kind != SDep::Output || !MO.isDead() || 296 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 297 if (Kind == SDep::Anti) 298 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 299 else { 300 SDep Dep(SU, Kind, /*Reg=*/*Alias); 301 Dep.setLatency( 302 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 303 DefSU->addPred(Dep); 304 } 305 } 306 } 307 } 308 309 if (!MO.isDef()) { 310 SU->hasPhysRegUses = true; 311 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 312 // retrieve the existing SUnits list for this register's uses. 313 // Push this SUnit on the use list. 314 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg)); 315 if (RemoveKillFlags) 316 MO.setIsKill(false); 317 } else { 318 addPhysRegDataDeps(SU, OperIdx); 319 320 // clear this register's use list 321 if (Uses.contains(Reg)) 322 Uses.eraseAll(Reg); 323 324 if (!MO.isDead()) { 325 Defs.eraseAll(Reg); 326 } else if (SU->isCall) { 327 // Calls will not be reordered because of chain dependencies (see 328 // below). Since call operands are dead, calls may continue to be added 329 // to the DefList making dependence checking quadratic in the size of 330 // the block. Instead, we leave only one call at the back of the 331 // DefList. 332 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 333 Reg2SUnitsMap::iterator B = P.first; 334 Reg2SUnitsMap::iterator I = P.second; 335 for (bool isBegin = I == B; !isBegin; /* empty */) { 336 isBegin = (--I) == B; 337 if (!I->SU->isCall) 338 break; 339 I = Defs.erase(I); 340 } 341 } 342 343 // Defs are pushed in the order they are visited and never reordered. 344 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 345 } 346 } 347 348 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 349 { 350 unsigned Reg = MO.getReg(); 351 // No point in tracking lanemasks if we don't have interesting subregisters. 352 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 353 if (!RC.HasDisjunctSubRegs) 354 return LaneBitmask::getAll(); 355 356 unsigned SubReg = MO.getSubReg(); 357 if (SubReg == 0) 358 return RC.getLaneMask(); 359 return TRI->getSubRegIndexLaneMask(SubReg); 360 } 361 362 /// Adds register output and data dependencies from this SUnit to instructions 363 /// that occur later in the same scheduling region if they read from or write to 364 /// the virtual register defined at OperIdx. 365 /// 366 /// TODO: Hoist loop induction variable increments. This has to be 367 /// reevaluated. Generally, IV scheduling should be done before coalescing. 368 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 369 MachineInstr *MI = SU->getInstr(); 370 MachineOperand &MO = MI->getOperand(OperIdx); 371 unsigned Reg = MO.getReg(); 372 373 LaneBitmask DefLaneMask; 374 LaneBitmask KillLaneMask; 375 if (TrackLaneMasks) { 376 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 377 DefLaneMask = getLaneMaskForMO(MO); 378 // If we have a <read-undef> flag, none of the lane values comes from an 379 // earlier instruction. 380 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask; 381 382 // Clear undef flag, we'll re-add it later once we know which subregister 383 // Def is first. 384 MO.setIsUndef(false); 385 } else { 386 DefLaneMask = LaneBitmask::getAll(); 387 KillLaneMask = LaneBitmask::getAll(); 388 } 389 390 if (MO.isDead()) { 391 assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() && 392 "Dead defs should have no uses"); 393 } else { 394 // Add data dependence to all uses we found so far. 395 const TargetSubtargetInfo &ST = MF.getSubtarget(); 396 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 397 E = CurrentVRegUses.end(); I != E; /*empty*/) { 398 LaneBitmask LaneMask = I->LaneMask; 399 // Ignore uses of other lanes. 400 if ((LaneMask & KillLaneMask).none()) { 401 ++I; 402 continue; 403 } 404 405 if ((LaneMask & DefLaneMask).any()) { 406 SUnit *UseSU = I->SU; 407 MachineInstr *Use = UseSU->getInstr(); 408 SDep Dep(SU, SDep::Data, Reg); 409 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 410 I->OperandIndex)); 411 ST.adjustSchedDependency(SU, UseSU, Dep); 412 UseSU->addPred(Dep); 413 } 414 415 LaneMask &= ~KillLaneMask; 416 // If we found a Def for all lanes of this use, remove it from the list. 417 if (LaneMask.any()) { 418 I->LaneMask = LaneMask; 419 ++I; 420 } else 421 I = CurrentVRegUses.erase(I); 422 } 423 } 424 425 // Shortcut: Singly defined vregs do not have output/anti dependencies. 426 if (MRI.hasOneDef(Reg)) 427 return; 428 429 // Add output dependence to the next nearest defs of this vreg. 430 // 431 // Unless this definition is dead, the output dependence should be 432 // transitively redundant with antidependencies from this definition's 433 // uses. We're conservative for now until we have a way to guarantee the uses 434 // are not eliminated sometime during scheduling. The output dependence edge 435 // is also useful if output latency exceeds def-use latency. 436 LaneBitmask LaneMask = DefLaneMask; 437 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 438 CurrentVRegDefs.end())) { 439 // Ignore defs for other lanes. 440 if ((V2SU.LaneMask & LaneMask).none()) 441 continue; 442 // Add an output dependence. 443 SUnit *DefSU = V2SU.SU; 444 // Ignore additional defs of the same lanes in one instruction. This can 445 // happen because lanemasks are shared for targets with too many 446 // subregisters. We also use some representration tricks/hacks where we 447 // add super-register defs/uses, to imply that although we only access parts 448 // of the reg we care about the full one. 449 if (DefSU == SU) 450 continue; 451 SDep Dep(SU, SDep::Output, Reg); 452 Dep.setLatency( 453 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 454 DefSU->addPred(Dep); 455 456 // Update current definition. This can get tricky if the def was about a 457 // bigger lanemask before. We then have to shrink it and create a new 458 // VReg2SUnit for the non-overlapping part. 459 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 460 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 461 V2SU.SU = SU; 462 V2SU.LaneMask = OverlapMask; 463 if (NonOverlapMask.any()) 464 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); 465 } 466 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 467 if (LaneMask.any()) 468 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 469 } 470 471 /// \brief Adds a register data dependency if the instruction that defines the 472 /// virtual register used at OperIdx is mapped to an SUnit. Add a register 473 /// antidependency from this SUnit to instructions that occur later in the same 474 /// scheduling region if they write the virtual register. 475 /// 476 /// TODO: Handle ExitSU "uses" properly. 477 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 478 const MachineInstr *MI = SU->getInstr(); 479 const MachineOperand &MO = MI->getOperand(OperIdx); 480 unsigned Reg = MO.getReg(); 481 482 // Remember the use. Data dependencies will be added when we find the def. 483 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) 484 : LaneBitmask::getAll(); 485 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 486 487 // Add antidependences to the following defs of the vreg. 488 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 489 CurrentVRegDefs.end())) { 490 // Ignore defs for unrelated lanes. 491 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 492 if ((PrevDefLaneMask & LaneMask).none()) 493 continue; 494 if (V2SU.SU == SU) 495 continue; 496 497 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 498 } 499 } 500 501 /// Returns true if MI is an instruction we are unable to reason about 502 /// (like a call or something with unmodeled side effects). 503 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 504 return MI->isCall() || MI->hasUnmodeledSideEffects() || 505 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA)); 506 } 507 508 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, 509 unsigned Latency) { 510 if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) { 511 SDep Dep(SUa, SDep::MayAliasMem); 512 Dep.setLatency(Latency); 513 SUb->addPred(Dep); 514 } 515 } 516 517 /// \brief Creates an SUnit for each real instruction, numbered in top-down 518 /// topological order. The instruction order A < B, implies that no edge exists 519 /// from B to A. 520 /// 521 /// Map each real instruction to its SUnit. 522 /// 523 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 524 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 525 /// instead of pointers. 526 /// 527 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 528 /// the original instruction list. 529 void ScheduleDAGInstrs::initSUnits() { 530 // We'll be allocating one SUnit for each real instruction in the region, 531 // which is contained within a basic block. 532 SUnits.reserve(NumRegionInstrs); 533 534 for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) { 535 if (MI.isDebugValue()) 536 continue; 537 538 SUnit *SU = newSUnit(&MI); 539 MISUnitMap[&MI] = SU; 540 541 SU->isCall = MI.isCall(); 542 SU->isCommutable = MI.isCommutable(); 543 544 // Assign the Latency field of SU using target-provided information. 545 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 546 547 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 548 // 549 // Reserved resources block an instruction from issuing and stall the 550 // entire pipeline. These are identified by BufferSize=0. 551 // 552 // Unbuffered resources prevent execution of subsequent instructions that 553 // require the same resources. This is used for in-order execution pipelines 554 // within an out-of-order core. These are identified by BufferSize=1. 555 if (SchedModel.hasInstrSchedModel()) { 556 const MCSchedClassDesc *SC = getSchedClass(SU); 557 for (const MCWriteProcResEntry &PRE : 558 make_range(SchedModel.getWriteProcResBegin(SC), 559 SchedModel.getWriteProcResEnd(SC))) { 560 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) { 561 case 0: 562 SU->hasReservedResource = true; 563 break; 564 case 1: 565 SU->isUnbuffered = true; 566 break; 567 default: 568 break; 569 } 570 } 571 } 572 } 573 } 574 575 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { 576 /// Current total number of SUs in map. 577 unsigned NumNodes = 0; 578 579 /// 1 for loads, 0 for stores. (see comment in SUList) 580 unsigned TrueMemOrderLatency; 581 582 public: 583 Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {} 584 585 /// To keep NumNodes up to date, insert() is used instead of 586 /// this operator w/ push_back(). 587 ValueType &operator[](const SUList &Key) { 588 llvm_unreachable("Don't use. Use insert() instead."); }; 589 590 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling 591 /// reduce(). 592 void inline insert(SUnit *SU, ValueType V) { 593 MapVector::operator[](V).push_back(SU); 594 NumNodes++; 595 } 596 597 /// Clears the list of SUs mapped to V. 598 void inline clearList(ValueType V) { 599 iterator Itr = find(V); 600 if (Itr != end()) { 601 assert(NumNodes >= Itr->second.size()); 602 NumNodes -= Itr->second.size(); 603 604 Itr->second.clear(); 605 } 606 } 607 608 /// Clears map from all contents. 609 void clear() { 610 MapVector<ValueType, SUList>::clear(); 611 NumNodes = 0; 612 } 613 614 unsigned inline size() const { return NumNodes; } 615 616 /// Counts the number of SUs in this map after a reduction. 617 void reComputeSize() { 618 NumNodes = 0; 619 for (auto &I : *this) 620 NumNodes += I.second.size(); 621 } 622 623 unsigned inline getTrueMemOrderLatency() const { 624 return TrueMemOrderLatency; 625 } 626 627 void dump(); 628 }; 629 630 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 631 Value2SUsMap &Val2SUsMap) { 632 for (auto &I : Val2SUsMap) 633 addChainDependencies(SU, I.second, 634 Val2SUsMap.getTrueMemOrderLatency()); 635 } 636 637 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 638 Value2SUsMap &Val2SUsMap, 639 ValueType V) { 640 Value2SUsMap::iterator Itr = Val2SUsMap.find(V); 641 if (Itr != Val2SUsMap.end()) 642 addChainDependencies(SU, Itr->second, 643 Val2SUsMap.getTrueMemOrderLatency()); 644 } 645 646 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { 647 assert(BarrierChain != nullptr); 648 649 for (auto &I : map) { 650 SUList &sus = I.second; 651 for (auto *SU : sus) 652 SU->addPredBarrier(BarrierChain); 653 } 654 map.clear(); 655 } 656 657 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { 658 assert(BarrierChain != nullptr); 659 660 // Go through all lists of SUs. 661 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { 662 Value2SUsMap::iterator CurrItr = I++; 663 SUList &sus = CurrItr->second; 664 SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); 665 for (; SUItr != SUEE; ++SUItr) { 666 // Stop on BarrierChain or any instruction above it. 667 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) 668 break; 669 670 (*SUItr)->addPredBarrier(BarrierChain); 671 } 672 673 // Remove also the BarrierChain from list if present. 674 if (SUItr != SUEE && *SUItr == BarrierChain) 675 SUItr++; 676 677 // Remove all SUs that are now successors of BarrierChain. 678 if (SUItr != sus.begin()) 679 sus.erase(sus.begin(), SUItr); 680 } 681 682 // Remove all entries with empty su lists. 683 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { 684 return (mapEntry.second.empty()); }); 685 686 // Recompute the size of the map (NumNodes). 687 map.reComputeSize(); 688 } 689 690 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 691 RegPressureTracker *RPTracker, 692 PressureDiffs *PDiffs, 693 LiveIntervals *LIS, 694 bool TrackLaneMasks) { 695 const TargetSubtargetInfo &ST = MF.getSubtarget(); 696 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 697 : ST.useAA(); 698 AAForDep = UseAA ? AA : nullptr; 699 700 BarrierChain = nullptr; 701 702 this->TrackLaneMasks = TrackLaneMasks; 703 MISUnitMap.clear(); 704 ScheduleDAG::clearDAG(); 705 706 // Create an SUnit for each real instruction. 707 initSUnits(); 708 709 if (PDiffs) 710 PDiffs->init(SUnits.size()); 711 712 // We build scheduling units by walking a block's instruction list 713 // from bottom to top. 714 715 // Each MIs' memory operand(s) is analyzed to a list of underlying 716 // objects. The SU is then inserted in the SUList(s) mapped from the 717 // Value(s). Each Value thus gets mapped to lists of SUs depending 718 // on it, stores and loads kept separately. Two SUs are trivially 719 // non-aliasing if they both depend on only identified Values and do 720 // not share any common Value. 721 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); 722 723 // Certain memory accesses are known to not alias any SU in Stores 724 // or Loads, and have therefore their own 'NonAlias' 725 // domain. E.g. spill / reload instructions never alias LLVM I/R 726 // Values. It would be nice to assume that this type of memory 727 // accesses always have a proper memory operand modelling, and are 728 // therefore never unanalyzable, but this is conservatively not 729 // done. 730 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); 731 732 // Remove any stale debug info; sometimes BuildSchedGraph is called again 733 // without emitting the info from the previous call. 734 DbgValues.clear(); 735 FirstDbgValue = nullptr; 736 737 assert(Defs.empty() && Uses.empty() && 738 "Only BuildGraph should update Defs/Uses"); 739 Defs.setUniverse(TRI->getNumRegs()); 740 Uses.setUniverse(TRI->getNumRegs()); 741 742 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 743 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 744 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 745 CurrentVRegDefs.setUniverse(NumVirtRegs); 746 CurrentVRegUses.setUniverse(NumVirtRegs); 747 748 // Model data dependencies between instructions being scheduled and the 749 // ExitSU. 750 addSchedBarrierDeps(); 751 752 // Walk the list of instructions, from bottom moving up. 753 MachineInstr *DbgMI = nullptr; 754 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 755 MII != MIE; --MII) { 756 MachineInstr &MI = *std::prev(MII); 757 if (DbgMI) { 758 DbgValues.push_back(std::make_pair(DbgMI, &MI)); 759 DbgMI = nullptr; 760 } 761 762 if (MI.isDebugValue()) { 763 DbgMI = &MI; 764 continue; 765 } 766 SUnit *SU = MISUnitMap[&MI]; 767 assert(SU && "No SUnit mapped to this MI"); 768 769 if (RPTracker) { 770 RegisterOperands RegOpers; 771 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); 772 if (TrackLaneMasks) { 773 SlotIndex SlotIdx = LIS->getInstructionIndex(MI); 774 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 775 } 776 if (PDiffs != nullptr) 777 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 778 779 if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI) 780 RPTracker->recedeSkipDebugValues(); 781 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); 782 RPTracker->recede(RegOpers); 783 } 784 785 assert( 786 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && 787 "Cannot schedule terminators or labels!"); 788 789 // Add register-based dependencies (data, anti, and output). 790 // For some instructions (calls, returns, inline-asm, etc.) there can 791 // be explicit uses and implicit defs, in which case the use will appear 792 // on the operand list before the def. Do two passes over the operand 793 // list to make sure that defs are processed before any uses. 794 bool HasVRegDef = false; 795 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 796 const MachineOperand &MO = MI.getOperand(j); 797 if (!MO.isReg() || !MO.isDef()) 798 continue; 799 unsigned Reg = MO.getReg(); 800 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 801 addPhysRegDeps(SU, j); 802 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 803 HasVRegDef = true; 804 addVRegDefDeps(SU, j); 805 } 806 } 807 // Now process all uses. 808 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 809 const MachineOperand &MO = MI.getOperand(j); 810 // Only look at use operands. 811 // We do not need to check for MO.readsReg() here because subsequent 812 // subregister defs will get output dependence edges and need no 813 // additional use dependencies. 814 if (!MO.isReg() || !MO.isUse()) 815 continue; 816 unsigned Reg = MO.getReg(); 817 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 818 addPhysRegDeps(SU, j); 819 } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) { 820 addVRegUseDeps(SU, j); 821 } 822 } 823 824 // If we haven't seen any uses in this scheduling region, create a 825 // dependence edge to ExitSU to model the live-out latency. This is required 826 // for vreg defs with no in-region use, and prefetches with no vreg def. 827 // 828 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 829 // check currently relies on being called before adding chain deps. 830 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { 831 SDep Dep(SU, SDep::Artificial); 832 Dep.setLatency(SU->Latency - 1); 833 ExitSU.addPred(Dep); 834 } 835 836 // Add memory dependencies (Note: isStoreToStackSlot and 837 // isLoadFromStackSLot are not usable after stack slots are lowered to 838 // actual addresses). 839 840 // This is a barrier event that acts as a pivotal node in the DAG. 841 if (isGlobalMemoryObject(AA, &MI)) { 842 843 // Become the barrier chain. 844 if (BarrierChain) 845 BarrierChain->addPredBarrier(SU); 846 BarrierChain = SU; 847 848 DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" 849 << BarrierChain->NodeNum << ").\n";); 850 851 // Add dependencies against everything below it and clear maps. 852 addBarrierChain(Stores); 853 addBarrierChain(Loads); 854 addBarrierChain(NonAliasStores); 855 addBarrierChain(NonAliasLoads); 856 857 continue; 858 } 859 860 // If it's not a store or a variant load, we're done. 861 if (!MI.mayStore() && 862 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))) 863 continue; 864 865 // Always add dependecy edge to BarrierChain if present. 866 if (BarrierChain) 867 BarrierChain->addPredBarrier(SU); 868 869 // Find the underlying objects for MI. The Objs vector is either 870 // empty, or filled with the Values of memory locations which this 871 // SU depends on. 872 UnderlyingObjectsVector Objs; 873 bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs, 874 MF.getDataLayout()); 875 876 if (MI.mayStore()) { 877 if (!ObjsFound) { 878 // An unknown store depends on all stores and loads. 879 addChainDependencies(SU, Stores); 880 addChainDependencies(SU, NonAliasStores); 881 addChainDependencies(SU, Loads); 882 addChainDependencies(SU, NonAliasLoads); 883 884 // Map this store to 'UnknownValue'. 885 Stores.insert(SU, UnknownValue); 886 } else { 887 // Add precise dependencies against all previously seen memory 888 // accesses mapped to the same Value(s). 889 for (const UnderlyingObject &UnderlObj : Objs) { 890 ValueType V = UnderlObj.getValue(); 891 bool ThisMayAlias = UnderlObj.mayAlias(); 892 893 // Add dependencies to previous stores and loads mapped to V. 894 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 895 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); 896 } 897 // Update the store map after all chains have been added to avoid adding 898 // self-loop edge if multiple underlying objects are present. 899 for (const UnderlyingObject &UnderlObj : Objs) { 900 ValueType V = UnderlObj.getValue(); 901 bool ThisMayAlias = UnderlObj.mayAlias(); 902 903 // Map this store to V. 904 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); 905 } 906 // The store may have dependencies to unanalyzable loads and 907 // stores. 908 addChainDependencies(SU, Loads, UnknownValue); 909 addChainDependencies(SU, Stores, UnknownValue); 910 } 911 } else { // SU is a load. 912 if (!ObjsFound) { 913 // An unknown load depends on all stores. 914 addChainDependencies(SU, Stores); 915 addChainDependencies(SU, NonAliasStores); 916 917 Loads.insert(SU, UnknownValue); 918 } else { 919 for (const UnderlyingObject &UnderlObj : Objs) { 920 ValueType V = UnderlObj.getValue(); 921 bool ThisMayAlias = UnderlObj.mayAlias(); 922 923 // Add precise dependencies against all previously seen stores 924 // mapping to the same Value(s). 925 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 926 927 // Map this load to V. 928 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); 929 } 930 // The load may have dependencies to unanalyzable stores. 931 addChainDependencies(SU, Stores, UnknownValue); 932 } 933 } 934 935 // Reduce maps if they grow huge. 936 if (Stores.size() + Loads.size() >= HugeRegion) { 937 DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); 938 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); 939 } 940 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { 941 DEBUG(dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); 942 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); 943 } 944 } 945 946 if (DbgMI) 947 FirstDbgValue = DbgMI; 948 949 Defs.clear(); 950 Uses.clear(); 951 CurrentVRegDefs.clear(); 952 CurrentVRegUses.clear(); 953 } 954 955 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { 956 PSV->printCustom(OS); 957 return OS; 958 } 959 960 void ScheduleDAGInstrs::Value2SUsMap::dump() { 961 for (auto &Itr : *this) { 962 if (Itr.first.is<const Value*>()) { 963 const Value *V = Itr.first.get<const Value*>(); 964 if (isa<UndefValue>(V)) 965 dbgs() << "Unknown"; 966 else 967 V->printAsOperand(dbgs()); 968 } 969 else if (Itr.first.is<const PseudoSourceValue*>()) 970 dbgs() << Itr.first.get<const PseudoSourceValue*>(); 971 else 972 llvm_unreachable("Unknown Value type."); 973 974 dbgs() << " : "; 975 dumpSUList(Itr.second); 976 } 977 } 978 979 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, 980 Value2SUsMap &loads, unsigned N) { 981 DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; 982 stores.dump(); 983 dbgs() << "Loading SUnits:\n"; 984 loads.dump()); 985 986 // Insert all SU's NodeNums into a vector and sort it. 987 std::vector<unsigned> NodeNums; 988 NodeNums.reserve(stores.size() + loads.size()); 989 for (auto &I : stores) 990 for (auto *SU : I.second) 991 NodeNums.push_back(SU->NodeNum); 992 for (auto &I : loads) 993 for (auto *SU : I.second) 994 NodeNums.push_back(SU->NodeNum); 995 std::sort(NodeNums.begin(), NodeNums.end()); 996 997 // The N last elements in NodeNums will be removed, and the SU with 998 // the lowest NodeNum of them will become the new BarrierChain to 999 // let the not yet seen SUs have a dependency to the removed SUs. 1000 assert(N <= NodeNums.size()); 1001 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; 1002 if (BarrierChain) { 1003 // The aliasing and non-aliasing maps reduce independently of each 1004 // other, but share a common BarrierChain. Check if the 1005 // newBarrierChain is above the former one. If it is not, it may 1006 // introduce a loop to use newBarrierChain, so keep the old one. 1007 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { 1008 BarrierChain->addPredBarrier(newBarrierChain); 1009 BarrierChain = newBarrierChain; 1010 DEBUG(dbgs() << "Inserting new barrier chain: SU(" 1011 << BarrierChain->NodeNum << ").\n";); 1012 } 1013 else 1014 DEBUG(dbgs() << "Keeping old barrier chain: SU(" 1015 << BarrierChain->NodeNum << ").\n";); 1016 } 1017 else 1018 BarrierChain = newBarrierChain; 1019 1020 insertBarrierChain(stores); 1021 insertBarrierChain(loads); 1022 1023 DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; 1024 stores.dump(); 1025 dbgs() << "Loading SUnits:\n"; 1026 loads.dump()); 1027 } 1028 1029 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs, 1030 MachineInstr &MI, bool addToLiveRegs) { 1031 for (MachineOperand &MO : MI.operands()) { 1032 if (!MO.isReg() || !MO.readsReg()) 1033 continue; 1034 unsigned Reg = MO.getReg(); 1035 if (!Reg) 1036 continue; 1037 1038 // Things that are available after the instruction are killed by it. 1039 bool IsKill = LiveRegs.available(MRI, Reg); 1040 MO.setIsKill(IsKill); 1041 if (addToLiveRegs) 1042 LiveRegs.addReg(Reg); 1043 } 1044 } 1045 1046 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) { 1047 DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n'); 1048 1049 LiveRegs.init(*TRI); 1050 LiveRegs.addLiveOuts(MBB); 1051 1052 // Examine block from end to start... 1053 for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) { 1054 if (MI.isDebugValue()) 1055 continue; 1056 1057 // Update liveness. Registers that are defed but not used in this 1058 // instruction are now dead. Mark register and all subregs as they 1059 // are completely defined. 1060 for (ConstMIBundleOperands O(MI); O.isValid(); ++O) { 1061 const MachineOperand &MO = *O; 1062 if (MO.isReg()) { 1063 if (!MO.isDef()) 1064 continue; 1065 unsigned Reg = MO.getReg(); 1066 if (!Reg) 1067 continue; 1068 LiveRegs.removeReg(Reg); 1069 } else if (MO.isRegMask()) { 1070 LiveRegs.removeRegsInMask(MO); 1071 } 1072 } 1073 1074 // If there is a bundle header fix it up first. 1075 if (!MI.isBundled()) { 1076 toggleKills(MRI, LiveRegs, MI, true); 1077 } else { 1078 MachineBasicBlock::instr_iterator First = MI.getIterator(); 1079 if (MI.isBundle()) { 1080 toggleKills(MRI, LiveRegs, MI, false); 1081 ++First; 1082 } 1083 // Some targets make the (questionable) assumtion that the instructions 1084 // inside the bundle are ordered and consequently only the last use of 1085 // a register inside the bundle can kill it. 1086 MachineBasicBlock::instr_iterator I = std::next(First); 1087 while (I->isBundledWithSucc()) 1088 ++I; 1089 do { 1090 if (!I->isDebugValue()) 1091 toggleKills(MRI, LiveRegs, *I, true); 1092 --I; 1093 } while(I != First); 1094 } 1095 } 1096 } 1097 1098 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1099 // Cannot completely remove virtual function even in release mode. 1100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1101 SU->getInstr()->dump(); 1102 #endif 1103 } 1104 1105 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1106 std::string s; 1107 raw_string_ostream oss(s); 1108 if (SU == &EntrySU) 1109 oss << "<entry>"; 1110 else if (SU == &ExitSU) 1111 oss << "<exit>"; 1112 else 1113 SU->getInstr()->print(oss, /*SkipOpers=*/true); 1114 return oss.str(); 1115 } 1116 1117 /// Return the basic block label. It is not necessarilly unique because a block 1118 /// contains multiple scheduling regions. But it is fine for visualization. 1119 std::string ScheduleDAGInstrs::getDAGName() const { 1120 return "dag." + BB->getFullName(); 1121 } 1122 1123 //===----------------------------------------------------------------------===// 1124 // SchedDFSResult Implementation 1125 //===----------------------------------------------------------------------===// 1126 1127 namespace llvm { 1128 1129 /// Internal state used to compute SchedDFSResult. 1130 class SchedDFSImpl { 1131 SchedDFSResult &R; 1132 1133 /// Join DAG nodes into equivalence classes by their subtree. 1134 IntEqClasses SubtreeClasses; 1135 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1136 std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs; 1137 1138 struct RootData { 1139 unsigned NodeID; 1140 unsigned ParentNodeID; ///< Parent node (member of the parent subtree). 1141 unsigned SubInstrCount = 0; ///< Instr count in this tree only, not 1142 /// children. 1143 1144 RootData(unsigned id): NodeID(id), 1145 ParentNodeID(SchedDFSResult::InvalidSubtreeID) {} 1146 1147 unsigned getSparseSetIndex() const { return NodeID; } 1148 }; 1149 1150 SparseSet<RootData> RootSet; 1151 1152 public: 1153 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1154 RootSet.setUniverse(R.DFSNodeData.size()); 1155 } 1156 1157 /// Returns true if this node been visited by the DFS traversal. 1158 /// 1159 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1160 /// ID. Later, SubtreeID is updated but remains valid. 1161 bool isVisited(const SUnit *SU) const { 1162 return R.DFSNodeData[SU->NodeNum].SubtreeID 1163 != SchedDFSResult::InvalidSubtreeID; 1164 } 1165 1166 /// Initializes this node's instruction count. We don't need to flag the node 1167 /// visited until visitPostorder because the DAG cannot have cycles. 1168 void visitPreorder(const SUnit *SU) { 1169 R.DFSNodeData[SU->NodeNum].InstrCount = 1170 SU->getInstr()->isTransient() ? 0 : 1; 1171 } 1172 1173 /// Called once for each node after all predecessors are visited. Revisit this 1174 /// node's predecessors and potentially join them now that we know the ILP of 1175 /// the other predecessors. 1176 void visitPostorderNode(const SUnit *SU) { 1177 // Mark this node as the root of a subtree. It may be joined with its 1178 // successors later. 1179 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1180 RootData RData(SU->NodeNum); 1181 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1182 1183 // If any predecessors are still in their own subtree, they either cannot be 1184 // joined or are large enough to remain separate. If this parent node's 1185 // total instruction count is not greater than a child subtree by at least 1186 // the subtree limit, then try to join it now since splitting subtrees is 1187 // only useful if multiple high-pressure paths are possible. 1188 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1189 for (const SDep &PredDep : SU->Preds) { 1190 if (PredDep.getKind() != SDep::Data) 1191 continue; 1192 unsigned PredNum = PredDep.getSUnit()->NodeNum; 1193 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1194 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false); 1195 1196 // Either link or merge the TreeData entry from the child to the parent. 1197 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1198 // If the predecessor's parent is invalid, this is a tree edge and the 1199 // current node is the parent. 1200 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1201 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1202 } 1203 else if (RootSet.count(PredNum)) { 1204 // The predecessor is not a root, but is still in the root set. This 1205 // must be the new parent that it was just joined to. Note that 1206 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1207 // set to the original parent. 1208 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1209 RootSet.erase(PredNum); 1210 } 1211 } 1212 RootSet[SU->NodeNum] = RData; 1213 } 1214 1215 /// \brief Called once for each tree edge after calling visitPostOrderNode on 1216 /// the predecessor. Increment the parent node's instruction count and 1217 /// preemptively join this subtree to its parent's if it is small enough. 1218 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1219 R.DFSNodeData[Succ->NodeNum].InstrCount 1220 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1221 joinPredSubtree(PredDep, Succ); 1222 } 1223 1224 /// Adds a connection for cross edges. 1225 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1226 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1227 } 1228 1229 /// Sets each node's subtree ID to the representative ID and record 1230 /// connections between trees. 1231 void finalize() { 1232 SubtreeClasses.compress(); 1233 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1234 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1235 && "number of roots should match trees"); 1236 for (const RootData &Root : RootSet) { 1237 unsigned TreeID = SubtreeClasses[Root.NodeID]; 1238 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1239 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; 1240 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; 1241 // Note that SubInstrCount may be greater than InstrCount if we joined 1242 // subtrees across a cross edge. InstrCount will be attributed to the 1243 // original parent, while SubInstrCount will be attributed to the joined 1244 // parent. 1245 } 1246 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1247 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1248 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1249 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1250 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1251 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1252 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1253 } 1254 for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) { 1255 unsigned PredTree = SubtreeClasses[P.first->NodeNum]; 1256 unsigned SuccTree = SubtreeClasses[P.second->NodeNum]; 1257 if (PredTree == SuccTree) 1258 continue; 1259 unsigned Depth = P.first->getDepth(); 1260 addConnection(PredTree, SuccTree, Depth); 1261 addConnection(SuccTree, PredTree, Depth); 1262 } 1263 } 1264 1265 protected: 1266 /// Joins the predecessor subtree with the successor that is its DFS parent. 1267 /// Applies some heuristics before joining. 1268 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1269 bool CheckLimit = true) { 1270 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1271 1272 // Check if the predecessor is already joined. 1273 const SUnit *PredSU = PredDep.getSUnit(); 1274 unsigned PredNum = PredSU->NodeNum; 1275 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1276 return false; 1277 1278 // Four is the magic number of successors before a node is considered a 1279 // pinch point. 1280 unsigned NumDataSucs = 0; 1281 for (const SDep &SuccDep : PredSU->Succs) { 1282 if (SuccDep.getKind() == SDep::Data) { 1283 if (++NumDataSucs >= 4) 1284 return false; 1285 } 1286 } 1287 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1288 return false; 1289 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1290 SubtreeClasses.join(Succ->NodeNum, PredNum); 1291 return true; 1292 } 1293 1294 /// Called by finalize() to record a connection between trees. 1295 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1296 if (!Depth) 1297 return; 1298 1299 do { 1300 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1301 R.SubtreeConnections[FromTree]; 1302 for (SchedDFSResult::Connection &C : Connections) { 1303 if (C.TreeID == ToTree) { 1304 C.Level = std::max(C.Level, Depth); 1305 return; 1306 } 1307 } 1308 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1309 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1310 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1311 } 1312 }; 1313 1314 } // end namespace llvm 1315 1316 namespace { 1317 1318 /// Manage the stack used by a reverse depth-first search over the DAG. 1319 class SchedDAGReverseDFS { 1320 std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack; 1321 1322 public: 1323 bool isComplete() const { return DFSStack.empty(); } 1324 1325 void follow(const SUnit *SU) { 1326 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1327 } 1328 void advance() { ++DFSStack.back().second; } 1329 1330 const SDep *backtrack() { 1331 DFSStack.pop_back(); 1332 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1333 } 1334 1335 const SUnit *getCurr() const { return DFSStack.back().first; } 1336 1337 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1338 1339 SUnit::const_pred_iterator getPredEnd() const { 1340 return getCurr()->Preds.end(); 1341 } 1342 }; 1343 1344 } // end anonymous namespace 1345 1346 static bool hasDataSucc(const SUnit *SU) { 1347 for (const SDep &SuccDep : SU->Succs) { 1348 if (SuccDep.getKind() == SDep::Data && 1349 !SuccDep.getSUnit()->isBoundaryNode()) 1350 return true; 1351 } 1352 return false; 1353 } 1354 1355 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first 1356 /// search from this root. 1357 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1358 if (!IsBottomUp) 1359 llvm_unreachable("Top-down ILP metric is unimplemented"); 1360 1361 SchedDFSImpl Impl(*this); 1362 for (const SUnit &SU : SUnits) { 1363 if (Impl.isVisited(&SU) || hasDataSucc(&SU)) 1364 continue; 1365 1366 SchedDAGReverseDFS DFS; 1367 Impl.visitPreorder(&SU); 1368 DFS.follow(&SU); 1369 while (true) { 1370 // Traverse the leftmost path as far as possible. 1371 while (DFS.getPred() != DFS.getPredEnd()) { 1372 const SDep &PredDep = *DFS.getPred(); 1373 DFS.advance(); 1374 // Ignore non-data edges. 1375 if (PredDep.getKind() != SDep::Data 1376 || PredDep.getSUnit()->isBoundaryNode()) { 1377 continue; 1378 } 1379 // An already visited edge is a cross edge, assuming an acyclic DAG. 1380 if (Impl.isVisited(PredDep.getSUnit())) { 1381 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1382 continue; 1383 } 1384 Impl.visitPreorder(PredDep.getSUnit()); 1385 DFS.follow(PredDep.getSUnit()); 1386 } 1387 // Visit the top of the stack in postorder and backtrack. 1388 const SUnit *Child = DFS.getCurr(); 1389 const SDep *PredDep = DFS.backtrack(); 1390 Impl.visitPostorderNode(Child); 1391 if (PredDep) 1392 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1393 if (DFS.isComplete()) 1394 break; 1395 } 1396 } 1397 Impl.finalize(); 1398 } 1399 1400 /// The root of the given SubtreeID was just scheduled. For all subtrees 1401 /// connected to this tree, record the depth of the connection so that the 1402 /// nearest connected subtrees can be prioritized. 1403 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1404 for (const Connection &C : SubtreeConnections[SubtreeID]) { 1405 SubtreeConnectLevels[C.TreeID] = 1406 std::max(SubtreeConnectLevels[C.TreeID], C.Level); 1407 DEBUG(dbgs() << " Tree: " << C.TreeID 1408 << " @" << SubtreeConnectLevels[C.TreeID] << '\n'); 1409 } 1410 } 1411 1412 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1413 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const { 1414 OS << InstrCount << " / " << Length << " = "; 1415 if (!Length) 1416 OS << "BADILP"; 1417 else 1418 OS << format("%g", ((double)InstrCount / Length)); 1419 } 1420 1421 LLVM_DUMP_METHOD void ILPValue::dump() const { 1422 dbgs() << *this << '\n'; 1423 } 1424 1425 namespace llvm { 1426 1427 LLVM_DUMP_METHOD 1428 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1429 Val.print(OS); 1430 return OS; 1431 } 1432 1433 } // end namespace llvm 1434 1435 #endif 1436