1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling 11 // of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/PseudoSourceValue.h" 28 #include "llvm/CodeGen/RegisterPressure.h" 29 #include "llvm/CodeGen/ScheduleDFS.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/Format.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetRegisterInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <queue> 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "misched" 44 45 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 46 cl::ZeroOrMore, cl::init(false), 47 cl::desc("Enable use of AA during MI DAG construction")); 48 49 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 50 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 51 52 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 53 const MachineLoopInfo *mli, 54 LiveIntervals *LIS, 55 bool RemoveKillFlags) 56 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), LIS(LIS), 57 RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false), 58 FirstDbgValue(nullptr) { 59 DbgValues.clear(); 60 61 const TargetSubtargetInfo &ST = mf.getSubtarget(); 62 SchedModel.init(ST.getSchedModel(), &ST, TII); 63 } 64 65 /// getUnderlyingObjectFromInt - This is the function that does the work of 66 /// looking through basic ptrtoint+arithmetic+inttoptr sequences. 67 static const Value *getUnderlyingObjectFromInt(const Value *V) { 68 do { 69 if (const Operator *U = dyn_cast<Operator>(V)) { 70 // If we find a ptrtoint, we can transfer control back to the 71 // regular getUnderlyingObjectFromInt. 72 if (U->getOpcode() == Instruction::PtrToInt) 73 return U->getOperand(0); 74 // If we find an add of a constant, a multiplied value, or a phi, it's 75 // likely that the other operand will lead us to the base 76 // object. We don't have to worry about the case where the 77 // object address is somehow being computed by the multiply, 78 // because our callers only care when the result is an 79 // identifiable object. 80 if (U->getOpcode() != Instruction::Add || 81 (!isa<ConstantInt>(U->getOperand(1)) && 82 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 83 !isa<PHINode>(U->getOperand(1)))) 84 return V; 85 V = U->getOperand(0); 86 } else { 87 return V; 88 } 89 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 90 } while (1); 91 } 92 93 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects 94 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. 95 static void getUnderlyingObjects(const Value *V, 96 SmallVectorImpl<Value *> &Objects, 97 const DataLayout &DL) { 98 SmallPtrSet<const Value *, 16> Visited; 99 SmallVector<const Value *, 4> Working(1, V); 100 do { 101 V = Working.pop_back_val(); 102 103 SmallVector<Value *, 4> Objs; 104 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 105 106 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 107 I != IE; ++I) { 108 V = *I; 109 if (!Visited.insert(V).second) 110 continue; 111 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 112 const Value *O = 113 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 114 if (O->getType()->isPointerTy()) { 115 Working.push_back(O); 116 continue; 117 } 118 } 119 Objects.push_back(const_cast<Value *>(V)); 120 } 121 } while (!Working.empty()); 122 } 123 124 typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType; 125 typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4> 126 UnderlyingObjectsVector; 127 128 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference 129 /// information and it can be tracked to a normal reference to a known 130 /// object, return the Value for that object. 131 static void getUnderlyingObjectsForInstr(const MachineInstr *MI, 132 const MachineFrameInfo *MFI, 133 UnderlyingObjectsVector &Objects, 134 const DataLayout &DL) { 135 if (!MI->hasOneMemOperand() || 136 (!(*MI->memoperands_begin())->getValue() && 137 !(*MI->memoperands_begin())->getPseudoValue()) || 138 (*MI->memoperands_begin())->isVolatile()) 139 return; 140 141 if (const PseudoSourceValue *PSV = 142 (*MI->memoperands_begin())->getPseudoValue()) { 143 // Function that contain tail calls don't have unique PseudoSourceValue 144 // objects. Two PseudoSourceValues might refer to the same or overlapping 145 // locations. The client code calling this function assumes this is not the 146 // case. So return a conservative answer of no known object. 147 if (MFI->hasTailCall()) 148 return; 149 150 // For now, ignore PseudoSourceValues which may alias LLVM IR values 151 // because the code that uses this function has no way to cope with 152 // such aliases. 153 if (!PSV->isAliased(MFI)) { 154 bool MayAlias = PSV->mayAlias(MFI); 155 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 156 } 157 return; 158 } 159 160 const Value *V = (*MI->memoperands_begin())->getValue(); 161 if (!V) 162 return; 163 164 SmallVector<Value *, 4> Objs; 165 getUnderlyingObjects(V, Objs, DL); 166 167 for (Value *V : Objs) { 168 if (!isIdentifiedObject(V)) { 169 Objects.clear(); 170 return; 171 } 172 173 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 174 } 175 } 176 177 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 178 BB = bb; 179 } 180 181 void ScheduleDAGInstrs::finishBlock() { 182 // Subclasses should no longer refer to the old block. 183 BB = nullptr; 184 } 185 186 /// Initialize the DAG and common scheduler state for the current scheduling 187 /// region. This does not actually create the DAG, only clears it. The 188 /// scheduling driver may call BuildSchedGraph multiple times per scheduling 189 /// region. 190 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 191 MachineBasicBlock::iterator begin, 192 MachineBasicBlock::iterator end, 193 unsigned regioninstrs) { 194 assert(bb == BB && "startBlock should set BB"); 195 RegionBegin = begin; 196 RegionEnd = end; 197 NumRegionInstrs = regioninstrs; 198 } 199 200 /// Close the current scheduling region. Don't clear any state in case the 201 /// driver wants to refer to the previous scheduling region. 202 void ScheduleDAGInstrs::exitRegion() { 203 // Nothing to do. 204 } 205 206 /// addSchedBarrierDeps - Add dependencies from instructions in the current 207 /// list of instructions being scheduled to scheduling barrier by adding 208 /// the exit SU to the register defs and use list. This is because we want to 209 /// make sure instructions which define registers that are either used by 210 /// the terminator or are live-out are properly scheduled. This is 211 /// especially important when the definition latency of the return value(s) 212 /// are too high to be hidden by the branch or when the liveout registers 213 /// used by instructions in the fallthrough block. 214 void ScheduleDAGInstrs::addSchedBarrierDeps() { 215 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 216 ExitSU.setInstr(ExitMI); 217 bool AllDepKnown = ExitMI && 218 (ExitMI->isCall() || ExitMI->isBarrier()); 219 if (ExitMI && AllDepKnown) { 220 // If it's a call or a barrier, add dependencies on the defs and uses of 221 // instruction. 222 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { 223 const MachineOperand &MO = ExitMI->getOperand(i); 224 if (!MO.isReg() || MO.isDef()) continue; 225 unsigned Reg = MO.getReg(); 226 if (Reg == 0) continue; 227 228 if (TRI->isPhysicalRegister(Reg)) 229 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 230 else if (MO.readsReg()) // ignore undef operands 231 addVRegUseDeps(&ExitSU, i); 232 } 233 } else { 234 // For others, e.g. fallthrough, conditional branch, assume the exit 235 // uses all the registers that are livein to the successor blocks. 236 assert(Uses.empty() && "Uses in set before adding deps?"); 237 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 238 SE = BB->succ_end(); SI != SE; ++SI) 239 for (const auto &LI : (*SI)->liveins()) { 240 if (!Uses.contains(LI.PhysReg)) 241 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 242 } 243 } 244 } 245 246 /// MO is an operand of SU's instruction that defines a physical register. Add 247 /// data dependencies from SU to any uses of the physical register. 248 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 249 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 250 assert(MO.isDef() && "expect physreg def"); 251 252 // Ask the target if address-backscheduling is desirable, and if so how much. 253 const TargetSubtargetInfo &ST = MF.getSubtarget(); 254 255 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 256 Alias.isValid(); ++Alias) { 257 if (!Uses.contains(*Alias)) 258 continue; 259 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 260 SUnit *UseSU = I->SU; 261 if (UseSU == SU) 262 continue; 263 264 // Adjust the dependence latency using operand def/use information, 265 // then allow the target to perform its own adjustments. 266 int UseOp = I->OpIdx; 267 MachineInstr *RegUse = nullptr; 268 SDep Dep; 269 if (UseOp < 0) 270 Dep = SDep(SU, SDep::Artificial); 271 else { 272 // Set the hasPhysRegDefs only for physreg defs that have a use within 273 // the scheduling region. 274 SU->hasPhysRegDefs = true; 275 Dep = SDep(SU, SDep::Data, *Alias); 276 RegUse = UseSU->getInstr(); 277 } 278 Dep.setLatency( 279 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 280 UseOp)); 281 282 ST.adjustSchedDependency(SU, UseSU, Dep); 283 UseSU->addPred(Dep); 284 } 285 } 286 } 287 288 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from 289 /// this SUnit to following instructions in the same scheduling region that 290 /// depend the physical register referenced at OperIdx. 291 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 292 MachineInstr *MI = SU->getInstr(); 293 MachineOperand &MO = MI->getOperand(OperIdx); 294 295 // Optionally add output and anti dependencies. For anti 296 // dependencies we use a latency of 0 because for a multi-issue 297 // target we want to allow the defining instruction to issue 298 // in the same cycle as the using instruction. 299 // TODO: Using a latency of 1 here for output dependencies assumes 300 // there's no cost for reusing registers. 301 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 302 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 303 Alias.isValid(); ++Alias) { 304 if (!Defs.contains(*Alias)) 305 continue; 306 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 307 SUnit *DefSU = I->SU; 308 if (DefSU == &ExitSU) 309 continue; 310 if (DefSU != SU && 311 (Kind != SDep::Output || !MO.isDead() || 312 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 313 if (Kind == SDep::Anti) 314 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 315 else { 316 SDep Dep(SU, Kind, /*Reg=*/*Alias); 317 Dep.setLatency( 318 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 319 DefSU->addPred(Dep); 320 } 321 } 322 } 323 } 324 325 if (!MO.isDef()) { 326 SU->hasPhysRegUses = true; 327 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 328 // retrieve the existing SUnits list for this register's uses. 329 // Push this SUnit on the use list. 330 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); 331 if (RemoveKillFlags) 332 MO.setIsKill(false); 333 } 334 else { 335 addPhysRegDataDeps(SU, OperIdx); 336 unsigned Reg = MO.getReg(); 337 338 // clear this register's use list 339 if (Uses.contains(Reg)) 340 Uses.eraseAll(Reg); 341 342 if (!MO.isDead()) { 343 Defs.eraseAll(Reg); 344 } else if (SU->isCall) { 345 // Calls will not be reordered because of chain dependencies (see 346 // below). Since call operands are dead, calls may continue to be added 347 // to the DefList making dependence checking quadratic in the size of 348 // the block. Instead, we leave only one call at the back of the 349 // DefList. 350 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 351 Reg2SUnitsMap::iterator B = P.first; 352 Reg2SUnitsMap::iterator I = P.second; 353 for (bool isBegin = I == B; !isBegin; /* empty */) { 354 isBegin = (--I) == B; 355 if (!I->SU->isCall) 356 break; 357 I = Defs.erase(I); 358 } 359 } 360 361 // Defs are pushed in the order they are visited and never reordered. 362 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 363 } 364 } 365 366 /// addVRegDefDeps - Add register output and data dependencies from this SUnit 367 /// to instructions that occur later in the same scheduling region if they read 368 /// from or write to the virtual register defined at OperIdx. 369 /// 370 /// TODO: Hoist loop induction variable increments. This has to be 371 /// reevaluated. Generally, IV scheduling should be done before coalescing. 372 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 373 const MachineInstr *MI = SU->getInstr(); 374 unsigned Reg = MI->getOperand(OperIdx).getReg(); 375 376 // Singly defined vregs do not have output/anti dependencies. 377 // The current operand is a def, so we have at least one. 378 // Check here if there are any others... 379 if (MRI.hasOneDef(Reg)) 380 return; 381 382 // Add output dependence to the next nearest def of this vreg. 383 // 384 // Unless this definition is dead, the output dependence should be 385 // transitively redundant with antidependencies from this definition's 386 // uses. We're conservative for now until we have a way to guarantee the uses 387 // are not eliminated sometime during scheduling. The output dependence edge 388 // is also useful if output latency exceeds def-use latency. 389 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 390 if (DefI == VRegDefs.end()) 391 VRegDefs.insert(VReg2SUnit(Reg, SU)); 392 else { 393 SUnit *DefSU = DefI->SU; 394 if (DefSU != SU && DefSU != &ExitSU) { 395 SDep Dep(SU, SDep::Output, Reg); 396 Dep.setLatency( 397 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 398 DefSU->addPred(Dep); 399 } 400 DefI->SU = SU; 401 } 402 } 403 404 /// addVRegUseDeps - Add a register data dependency if the instruction that 405 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a 406 /// register antidependency from this SUnit to instructions that occur later in 407 /// the same scheduling region if they write the virtual register. 408 /// 409 /// TODO: Handle ExitSU "uses" properly. 410 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 411 MachineInstr *MI = SU->getInstr(); 412 unsigned Reg = MI->getOperand(OperIdx).getReg(); 413 414 // Record this local VReg use. 415 VReg2UseMap::iterator UI = VRegUses.find(Reg); 416 for (; UI != VRegUses.end(); ++UI) { 417 if (UI->SU == SU) 418 break; 419 } 420 if (UI == VRegUses.end()) 421 VRegUses.insert(VReg2SUnit(Reg, SU)); 422 423 // Lookup this operand's reaching definition. 424 assert(LIS && "vreg dependencies requires LiveIntervals"); 425 LiveQueryResult LRQ 426 = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI)); 427 VNInfo *VNI = LRQ.valueIn(); 428 429 // VNI will be valid because MachineOperand::readsReg() is checked by caller. 430 assert(VNI && "No value to read by operand"); 431 MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); 432 // Phis and other noninstructions (after coalescing) have a NULL Def. 433 if (Def) { 434 SUnit *DefSU = getSUnit(Def); 435 if (DefSU) { 436 // The reaching Def lives within this scheduling region. 437 // Create a data dependence. 438 SDep dep(DefSU, SDep::Data, Reg); 439 // Adjust the dependence latency using operand def/use information, then 440 // allow the target to perform its own adjustments. 441 int DefOp = Def->findRegisterDefOperandIdx(Reg); 442 dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx)); 443 444 const TargetSubtargetInfo &ST = MF.getSubtarget(); 445 ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep)); 446 SU->addPred(dep); 447 } 448 } 449 450 // Add antidependence to the following def of the vreg it uses. 451 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 452 if (DefI != VRegDefs.end() && DefI->SU != SU) 453 DefI->SU->addPred(SDep(SU, SDep::Anti, Reg)); 454 } 455 456 /// Return true if MI is an instruction we are unable to reason about 457 /// (like a call or something with unmodeled side effects). 458 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 459 return MI->isCall() || MI->hasUnmodeledSideEffects() || 460 (MI->hasOrderedMemoryRef() && 461 (!MI->mayLoad() || !MI->isInvariantLoad(AA))); 462 } 463 464 // This MI might have either incomplete info, or known to be unsafe 465 // to deal with (i.e. volatile object). 466 static inline bool isUnsafeMemoryObject(MachineInstr *MI, 467 const MachineFrameInfo *MFI, 468 const DataLayout &DL) { 469 if (!MI || MI->memoperands_empty()) 470 return true; 471 // We purposefully do no check for hasOneMemOperand() here 472 // in hope to trigger an assert downstream in order to 473 // finish implementation. 474 if ((*MI->memoperands_begin())->isVolatile() || 475 MI->hasUnmodeledSideEffects()) 476 return true; 477 478 if ((*MI->memoperands_begin())->getPseudoValue()) { 479 // Similarly to getUnderlyingObjectForInstr: 480 // For now, ignore PseudoSourceValues which may alias LLVM IR values 481 // because the code that uses this function has no way to cope with 482 // such aliases. 483 return true; 484 } 485 486 const Value *V = (*MI->memoperands_begin())->getValue(); 487 if (!V) 488 return true; 489 490 SmallVector<Value *, 4> Objs; 491 getUnderlyingObjects(V, Objs, DL); 492 for (Value *V : Objs) { 493 // Does this pointer refer to a distinct and identifiable object? 494 if (!isIdentifiedObject(V)) 495 return true; 496 } 497 498 return false; 499 } 500 501 /// This returns true if the two MIs need a chain edge between them. 502 /// If these are not even memory operations, we still may need 503 /// chain deps between them. The question really is - could 504 /// these two MIs be reordered during scheduling from memory dependency 505 /// point of view. 506 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 507 const DataLayout &DL, MachineInstr *MIa, 508 MachineInstr *MIb) { 509 const MachineFunction *MF = MIa->getParent()->getParent(); 510 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 511 512 // Cover a trivial case - no edge is need to itself. 513 if (MIa == MIb) 514 return false; 515 516 // Let the target decide if memory accesses cannot possibly overlap. 517 if ((MIa->mayLoad() || MIa->mayStore()) && 518 (MIb->mayLoad() || MIb->mayStore())) 519 if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA)) 520 return false; 521 522 // FIXME: Need to handle multiple memory operands to support all targets. 523 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 524 return true; 525 526 if (isUnsafeMemoryObject(MIa, MFI, DL) || isUnsafeMemoryObject(MIb, MFI, DL)) 527 return true; 528 529 // If we are dealing with two "normal" loads, we do not need an edge 530 // between them - they could be reordered. 531 if (!MIa->mayStore() && !MIb->mayStore()) 532 return false; 533 534 // To this point analysis is generic. From here on we do need AA. 535 if (!AA) 536 return true; 537 538 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 539 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 540 541 if (!MMOa->getValue() || !MMOb->getValue()) 542 return true; 543 544 // The following interface to AA is fashioned after DAGCombiner::isAlias 545 // and operates with MachineMemOperand offset with some important 546 // assumptions: 547 // - LLVM fundamentally assumes flat address spaces. 548 // - MachineOperand offset can *only* result from legalization and 549 // cannot affect queries other than the trivial case of overlap 550 // checking. 551 // - These offsets never wrap and never step outside 552 // of allocated objects. 553 // - There should never be any negative offsets here. 554 // 555 // FIXME: Modify API to hide this math from "user" 556 // FIXME: Even before we go to AA we can reason locally about some 557 // memory objects. It can save compile time, and possibly catch some 558 // corner cases not currently covered. 559 560 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 561 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 562 563 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 564 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 565 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 566 567 AliasResult AAResult = 568 AA->alias(MemoryLocation(MMOa->getValue(), Overlapa, 569 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 570 MemoryLocation(MMOb->getValue(), Overlapb, 571 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 572 573 return (AAResult != NoAlias); 574 } 575 576 /// This recursive function iterates over chain deps of SUb looking for 577 /// "latest" node that needs a chain edge to SUa. 578 static unsigned iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI, 579 const DataLayout &DL, SUnit *SUa, SUnit *SUb, 580 SUnit *ExitSU, unsigned *Depth, 581 SmallPtrSetImpl<const SUnit *> &Visited) { 582 if (!SUa || !SUb || SUb == ExitSU) 583 return *Depth; 584 585 // Remember visited nodes. 586 if (!Visited.insert(SUb).second) 587 return *Depth; 588 // If there is _some_ dependency already in place, do not 589 // descend any further. 590 // TODO: Need to make sure that if that dependency got eliminated or ignored 591 // for any reason in the future, we would not violate DAG topology. 592 // Currently it does not happen, but makes an implicit assumption about 593 // future implementation. 594 // 595 // Independently, if we encounter node that is some sort of global 596 // object (like a call) we already have full set of dependencies to it 597 // and we can stop descending. 598 if (SUa->isSucc(SUb) || 599 isGlobalMemoryObject(AA, SUb->getInstr())) 600 return *Depth; 601 602 // If we do need an edge, or we have exceeded depth budget, 603 // add that edge to the predecessors chain of SUb, 604 // and stop descending. 605 if (*Depth > 200 || 606 MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) { 607 SUb->addPred(SDep(SUa, SDep::MayAliasMem)); 608 return *Depth; 609 } 610 // Track current depth. 611 (*Depth)++; 612 // Iterate over memory dependencies only. 613 for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end(); 614 I != E; ++I) 615 if (I->isNormalMemoryOrBarrier()) 616 iterateChainSucc(AA, MFI, DL, SUa, I->getSUnit(), ExitSU, Depth, Visited); 617 return *Depth; 618 } 619 620 /// This function assumes that "downward" from SU there exist 621 /// tail/leaf of already constructed DAG. It iterates downward and 622 /// checks whether SU can be aliasing any node dominated 623 /// by it. 624 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI, 625 const DataLayout &DL, SUnit *SU, SUnit *ExitSU, 626 std::set<SUnit *> &CheckList, 627 unsigned LatencyToLoad) { 628 if (!SU) 629 return; 630 631 SmallPtrSet<const SUnit*, 16> Visited; 632 unsigned Depth = 0; 633 634 for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end(); 635 I != IE; ++I) { 636 if (SU == *I) 637 continue; 638 if (MIsNeedChainEdge(AA, MFI, DL, SU->getInstr(), (*I)->getInstr())) { 639 SDep Dep(SU, SDep::MayAliasMem); 640 Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0); 641 (*I)->addPred(Dep); 642 } 643 644 // Iterate recursively over all previously added memory chain 645 // successors. Keep track of visited nodes. 646 for (SUnit::const_succ_iterator J = (*I)->Succs.begin(), 647 JE = (*I)->Succs.end(); J != JE; ++J) 648 if (J->isNormalMemoryOrBarrier()) 649 iterateChainSucc(AA, MFI, DL, SU, J->getSUnit(), ExitSU, &Depth, 650 Visited); 651 } 652 } 653 654 /// Check whether two objects need a chain edge, if so, add it 655 /// otherwise remember the rejected SU. 656 static inline void addChainDependency(AliasAnalysis *AA, 657 const MachineFrameInfo *MFI, 658 const DataLayout &DL, SUnit *SUa, 659 SUnit *SUb, std::set<SUnit *> &RejectList, 660 unsigned TrueMemOrderLatency = 0, 661 bool isNormalMemory = false) { 662 // If this is a false dependency, 663 // do not add the edge, but remember the rejected node. 664 if (MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) { 665 SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier); 666 Dep.setLatency(TrueMemOrderLatency); 667 SUb->addPred(Dep); 668 } 669 else { 670 // Duplicate entries should be ignored. 671 RejectList.insert(SUb); 672 DEBUG(dbgs() << "\tReject chain dep between SU(" 673 << SUa->NodeNum << ") and SU(" 674 << SUb->NodeNum << ")\n"); 675 } 676 } 677 678 /// Create an SUnit for each real instruction, numbered in top-down topological 679 /// order. The instruction order A < B, implies that no edge exists from B to A. 680 /// 681 /// Map each real instruction to its SUnit. 682 /// 683 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 684 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 685 /// instead of pointers. 686 /// 687 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 688 /// the original instruction list. 689 void ScheduleDAGInstrs::initSUnits() { 690 // We'll be allocating one SUnit for each real instruction in the region, 691 // which is contained within a basic block. 692 SUnits.reserve(NumRegionInstrs); 693 694 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { 695 MachineInstr *MI = I; 696 if (MI->isDebugValue()) 697 continue; 698 699 SUnit *SU = newSUnit(MI); 700 MISUnitMap[MI] = SU; 701 702 SU->isCall = MI->isCall(); 703 SU->isCommutable = MI->isCommutable(); 704 705 // Assign the Latency field of SU using target-provided information. 706 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 707 708 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 709 // 710 // Reserved resources block an instruction from issuing and stall the 711 // entire pipeline. These are identified by BufferSize=0. 712 // 713 // Unbuffered resources prevent execution of subsequent instructions that 714 // require the same resources. This is used for in-order execution pipelines 715 // within an out-of-order core. These are identified by BufferSize=1. 716 if (SchedModel.hasInstrSchedModel()) { 717 const MCSchedClassDesc *SC = getSchedClass(SU); 718 for (TargetSchedModel::ProcResIter 719 PI = SchedModel.getWriteProcResBegin(SC), 720 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 721 switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) { 722 case 0: 723 SU->hasReservedResource = true; 724 break; 725 case 1: 726 SU->isUnbuffered = true; 727 break; 728 default: 729 break; 730 } 731 } 732 } 733 } 734 } 735 736 /// If RegPressure is non-null, compute register pressure as a side effect. The 737 /// DAG builder is an efficient place to do it because it already visits 738 /// operands. 739 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 740 RegPressureTracker *RPTracker, 741 PressureDiffs *PDiffs) { 742 const TargetSubtargetInfo &ST = MF.getSubtarget(); 743 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 744 : ST.useAA(); 745 AliasAnalysis *AAForDep = UseAA ? AA : nullptr; 746 747 MISUnitMap.clear(); 748 ScheduleDAG::clearDAG(); 749 750 // Create an SUnit for each real instruction. 751 initSUnits(); 752 753 if (PDiffs) 754 PDiffs->init(SUnits.size()); 755 756 // We build scheduling units by walking a block's instruction list from bottom 757 // to top. 758 759 // Remember where a generic side-effecting instruction is as we proceed. 760 SUnit *BarrierChain = nullptr, *AliasChain = nullptr; 761 762 // Memory references to specific known memory locations are tracked 763 // so that they can be given more precise dependencies. We track 764 // separately the known memory locations that may alias and those 765 // that are known not to alias 766 MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs; 767 MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; 768 std::set<SUnit*> RejectMemNodes; 769 770 // Remove any stale debug info; sometimes BuildSchedGraph is called again 771 // without emitting the info from the previous call. 772 DbgValues.clear(); 773 FirstDbgValue = nullptr; 774 775 assert(Defs.empty() && Uses.empty() && 776 "Only BuildGraph should update Defs/Uses"); 777 Defs.setUniverse(TRI->getNumRegs()); 778 Uses.setUniverse(TRI->getNumRegs()); 779 780 assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); 781 VRegUses.clear(); 782 VRegDefs.setUniverse(MRI.getNumVirtRegs()); 783 VRegUses.setUniverse(MRI.getNumVirtRegs()); 784 785 // Model data dependencies between instructions being scheduled and the 786 // ExitSU. 787 addSchedBarrierDeps(); 788 789 // Walk the list of instructions, from bottom moving up. 790 MachineInstr *DbgMI = nullptr; 791 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 792 MII != MIE; --MII) { 793 MachineInstr *MI = std::prev(MII); 794 if (MI && DbgMI) { 795 DbgValues.push_back(std::make_pair(DbgMI, MI)); 796 DbgMI = nullptr; 797 } 798 799 if (MI->isDebugValue()) { 800 DbgMI = MI; 801 continue; 802 } 803 SUnit *SU = MISUnitMap[MI]; 804 assert(SU && "No SUnit mapped to this MI"); 805 806 if (RPTracker) { 807 PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : nullptr; 808 RPTracker->recede(/*LiveUses=*/nullptr, PDiff); 809 assert(RPTracker->getPos() == std::prev(MII) && 810 "RPTracker can't find MI"); 811 } 812 813 assert( 814 (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) && 815 "Cannot schedule terminators or labels!"); 816 817 // Add register-based dependencies (data, anti, and output). 818 bool HasVRegDef = false; 819 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { 820 const MachineOperand &MO = MI->getOperand(j); 821 if (!MO.isReg()) continue; 822 unsigned Reg = MO.getReg(); 823 if (Reg == 0) continue; 824 825 if (TRI->isPhysicalRegister(Reg)) 826 addPhysRegDeps(SU, j); 827 else { 828 if (MO.isDef()) { 829 HasVRegDef = true; 830 addVRegDefDeps(SU, j); 831 } 832 else if (MO.readsReg()) // ignore undef operands 833 addVRegUseDeps(SU, j); 834 } 835 } 836 // If we haven't seen any uses in this scheduling region, create a 837 // dependence edge to ExitSU to model the live-out latency. This is required 838 // for vreg defs with no in-region use, and prefetches with no vreg def. 839 // 840 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 841 // check currently relies on being called before adding chain deps. 842 if (SU->NumSuccs == 0 && SU->Latency > 1 843 && (HasVRegDef || MI->mayLoad())) { 844 SDep Dep(SU, SDep::Artificial); 845 Dep.setLatency(SU->Latency - 1); 846 ExitSU.addPred(Dep); 847 } 848 849 // Add chain dependencies. 850 // Chain dependencies used to enforce memory order should have 851 // latency of 0 (except for true dependency of Store followed by 852 // aliased Load... we estimate that with a single cycle of latency 853 // assuming the hardware will bypass) 854 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable 855 // after stack slots are lowered to actual addresses. 856 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and 857 // produce more precise dependence information. 858 unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0; 859 if (isGlobalMemoryObject(AA, MI)) { 860 // Be conservative with these and add dependencies on all memory 861 // references, even those that are known to not alias. 862 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 863 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { 864 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 865 I->second[i]->addPred(SDep(SU, SDep::Barrier)); 866 } 867 } 868 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 869 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { 870 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 871 SDep Dep(SU, SDep::Barrier); 872 Dep.setLatency(TrueMemOrderLatency); 873 I->second[i]->addPred(Dep); 874 } 875 } 876 // Add SU to the barrier chain. 877 if (BarrierChain) 878 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 879 BarrierChain = SU; 880 // This is a barrier event that acts as a pivotal node in the DAG, 881 // so it is safe to clear list of exposed nodes. 882 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes, 883 TrueMemOrderLatency); 884 RejectMemNodes.clear(); 885 NonAliasMemDefs.clear(); 886 NonAliasMemUses.clear(); 887 888 // fall-through 889 new_alias_chain: 890 // Chain all possibly aliasing memory references through SU. 891 if (AliasChain) { 892 unsigned ChainLatency = 0; 893 if (AliasChain->getInstr()->mayLoad()) 894 ChainLatency = TrueMemOrderLatency; 895 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain, 896 RejectMemNodes, ChainLatency); 897 } 898 AliasChain = SU; 899 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 900 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 901 PendingLoads[k], RejectMemNodes, 902 TrueMemOrderLatency); 903 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 904 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) { 905 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 906 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 907 I->second[i], RejectMemNodes); 908 } 909 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 910 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { 911 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 912 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 913 I->second[i], RejectMemNodes, TrueMemOrderLatency); 914 } 915 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes, 916 TrueMemOrderLatency); 917 PendingLoads.clear(); 918 AliasMemDefs.clear(); 919 AliasMemUses.clear(); 920 } else if (MI->mayStore()) { 921 // Add dependence on barrier chain, if needed. 922 // There is no point to check aliasing on barrier event. Even if 923 // SU and barrier _could_ be reordered, they should not. In addition, 924 // we have lost all RejectMemNodes below barrier. 925 if (BarrierChain) 926 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 927 928 UnderlyingObjectsVector Objs; 929 getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout()); 930 931 if (Objs.empty()) { 932 // Treat all other stores conservatively. 933 goto new_alias_chain; 934 } 935 936 bool MayAlias = false; 937 for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end(); 938 K != KE; ++K) { 939 ValueType V = K->getPointer(); 940 bool ThisMayAlias = K->getInt(); 941 if (ThisMayAlias) 942 MayAlias = true; 943 944 // A store to a specific PseudoSourceValue. Add precise dependencies. 945 // Record the def in MemDefs, first adding a dep if there is 946 // an existing def. 947 MapVector<ValueType, std::vector<SUnit *> >::iterator I = 948 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 949 MapVector<ValueType, std::vector<SUnit *> >::iterator IE = 950 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 951 if (I != IE) { 952 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 953 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 954 I->second[i], RejectMemNodes, 0, true); 955 956 // If we're not using AA, then we only need one store per object. 957 if (!AAForDep) 958 I->second.clear(); 959 I->second.push_back(SU); 960 } else { 961 if (ThisMayAlias) { 962 if (!AAForDep) 963 AliasMemDefs[V].clear(); 964 AliasMemDefs[V].push_back(SU); 965 } else { 966 if (!AAForDep) 967 NonAliasMemDefs[V].clear(); 968 NonAliasMemDefs[V].push_back(SU); 969 } 970 } 971 // Handle the uses in MemUses, if there are any. 972 MapVector<ValueType, std::vector<SUnit *> >::iterator J = 973 ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); 974 MapVector<ValueType, std::vector<SUnit *> >::iterator JE = 975 ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); 976 if (J != JE) { 977 for (unsigned i = 0, e = J->second.size(); i != e; ++i) 978 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 979 J->second[i], RejectMemNodes, 980 TrueMemOrderLatency, true); 981 J->second.clear(); 982 } 983 } 984 if (MayAlias) { 985 // Add dependencies from all the PendingLoads, i.e. loads 986 // with no underlying object. 987 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 988 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 989 PendingLoads[k], RejectMemNodes, 990 TrueMemOrderLatency); 991 // Add dependence on alias chain, if needed. 992 if (AliasChain) 993 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain, 994 RejectMemNodes); 995 } 996 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes, 997 TrueMemOrderLatency); 998 } else if (MI->mayLoad()) { 999 bool MayAlias = true; 1000 if (MI->isInvariantLoad(AA)) { 1001 // Invariant load, no chain dependencies needed! 1002 } else { 1003 UnderlyingObjectsVector Objs; 1004 getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout()); 1005 1006 if (Objs.empty()) { 1007 // A load with no underlying object. Depend on all 1008 // potentially aliasing stores. 1009 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 1010 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) 1011 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1012 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 1013 I->second[i], RejectMemNodes); 1014 1015 PendingLoads.push_back(SU); 1016 MayAlias = true; 1017 } else { 1018 MayAlias = false; 1019 } 1020 1021 for (UnderlyingObjectsVector::iterator 1022 J = Objs.begin(), JE = Objs.end(); J != JE; ++J) { 1023 ValueType V = J->getPointer(); 1024 bool ThisMayAlias = J->getInt(); 1025 1026 if (ThisMayAlias) 1027 MayAlias = true; 1028 1029 // A load from a specific PseudoSourceValue. Add precise dependencies. 1030 MapVector<ValueType, std::vector<SUnit *> >::iterator I = 1031 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 1032 MapVector<ValueType, std::vector<SUnit *> >::iterator IE = 1033 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 1034 if (I != IE) 1035 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1036 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 1037 I->second[i], RejectMemNodes, 0, true); 1038 if (ThisMayAlias) 1039 AliasMemUses[V].push_back(SU); 1040 else 1041 NonAliasMemUses[V].push_back(SU); 1042 } 1043 if (MayAlias) 1044 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, 1045 RejectMemNodes, /*Latency=*/0); 1046 // Add dependencies on alias and barrier chains, if needed. 1047 if (MayAlias && AliasChain) 1048 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain, 1049 RejectMemNodes); 1050 if (BarrierChain) 1051 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 1052 } 1053 } 1054 } 1055 if (DbgMI) 1056 FirstDbgValue = DbgMI; 1057 1058 Defs.clear(); 1059 Uses.clear(); 1060 VRegDefs.clear(); 1061 PendingLoads.clear(); 1062 } 1063 1064 /// \brief Initialize register live-range state for updating kills. 1065 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { 1066 // Start with no live registers. 1067 LiveRegs.reset(); 1068 1069 // Examine the live-in regs of all successors. 1070 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 1071 SE = BB->succ_end(); SI != SE; ++SI) { 1072 for (const auto &LI : (*SI)->liveins()) { 1073 // Repeat, for reg and all subregs. 1074 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 1075 SubRegs.isValid(); ++SubRegs) 1076 LiveRegs.set(*SubRegs); 1077 } 1078 } 1079 } 1080 1081 /// \brief If we change a kill flag on the bundle instruction implicit register 1082 /// operands, then we also need to propagate that to any instructions inside 1083 /// the bundle which had the same kill state. 1084 static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg, 1085 bool NewKillState) { 1086 if (MI->getOpcode() != TargetOpcode::BUNDLE) 1087 return; 1088 1089 // Walk backwards from the last instruction in the bundle to the first. 1090 // Once we set a kill flag on an instruction, we bail out, as otherwise we 1091 // might set it on too many operands. We will clear as many flags as we 1092 // can though. 1093 MachineBasicBlock::instr_iterator Begin = MI->getIterator(); 1094 MachineBasicBlock::instr_iterator End = getBundleEnd(MI); 1095 while (Begin != End) { 1096 for (MachineOperand &MO : (--End)->operands()) { 1097 if (!MO.isReg() || MO.isDef() || Reg != MO.getReg()) 1098 continue; 1099 1100 // DEBUG_VALUE nodes do not contribute to code generation and should 1101 // always be ignored. Failure to do so may result in trying to modify 1102 // KILL flags on DEBUG_VALUE nodes, which is distressing. 1103 if (MO.isDebug()) 1104 continue; 1105 1106 // If the register has the internal flag then it could be killing an 1107 // internal def of the register. In this case, just skip. We only want 1108 // to toggle the flag on operands visible outside the bundle. 1109 if (MO.isInternalRead()) 1110 continue; 1111 1112 if (MO.isKill() == NewKillState) 1113 continue; 1114 MO.setIsKill(NewKillState); 1115 if (NewKillState) 1116 return; 1117 } 1118 } 1119 } 1120 1121 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) { 1122 // Setting kill flag... 1123 if (!MO.isKill()) { 1124 MO.setIsKill(true); 1125 toggleBundleKillFlag(MI, MO.getReg(), true); 1126 return false; 1127 } 1128 1129 // If MO itself is live, clear the kill flag... 1130 if (LiveRegs.test(MO.getReg())) { 1131 MO.setIsKill(false); 1132 toggleBundleKillFlag(MI, MO.getReg(), false); 1133 return false; 1134 } 1135 1136 // If any subreg of MO is live, then create an imp-def for that 1137 // subreg and keep MO marked as killed. 1138 MO.setIsKill(false); 1139 toggleBundleKillFlag(MI, MO.getReg(), false); 1140 bool AllDead = true; 1141 const unsigned SuperReg = MO.getReg(); 1142 MachineInstrBuilder MIB(MF, MI); 1143 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { 1144 if (LiveRegs.test(*SubRegs)) { 1145 MIB.addReg(*SubRegs, RegState::ImplicitDefine); 1146 AllDead = false; 1147 } 1148 } 1149 1150 if(AllDead) { 1151 MO.setIsKill(true); 1152 toggleBundleKillFlag(MI, MO.getReg(), true); 1153 } 1154 return false; 1155 } 1156 1157 // FIXME: Reuse the LivePhysRegs utility for this. 1158 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { 1159 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); 1160 1161 LiveRegs.resize(TRI->getNumRegs()); 1162 BitVector killedRegs(TRI->getNumRegs()); 1163 1164 startBlockForKills(MBB); 1165 1166 // Examine block from end to start... 1167 unsigned Count = MBB->size(); 1168 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); 1169 I != E; --Count) { 1170 MachineInstr *MI = --I; 1171 if (MI->isDebugValue()) 1172 continue; 1173 1174 // Update liveness. Registers that are defed but not used in this 1175 // instruction are now dead. Mark register and all subregs as they 1176 // are completely defined. 1177 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1178 MachineOperand &MO = MI->getOperand(i); 1179 if (MO.isRegMask()) 1180 LiveRegs.clearBitsNotInMask(MO.getRegMask()); 1181 if (!MO.isReg()) continue; 1182 unsigned Reg = MO.getReg(); 1183 if (Reg == 0) continue; 1184 if (!MO.isDef()) continue; 1185 // Ignore two-addr defs. 1186 if (MI->isRegTiedToUseOperand(i)) continue; 1187 1188 // Repeat for reg and all subregs. 1189 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1190 SubRegs.isValid(); ++SubRegs) 1191 LiveRegs.reset(*SubRegs); 1192 } 1193 1194 // Examine all used registers and set/clear kill flag. When a 1195 // register is used multiple times we only set the kill flag on 1196 // the first use. Don't set kill flags on undef operands. 1197 killedRegs.reset(); 1198 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1199 MachineOperand &MO = MI->getOperand(i); 1200 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1201 unsigned Reg = MO.getReg(); 1202 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1203 1204 bool kill = false; 1205 if (!killedRegs.test(Reg)) { 1206 kill = true; 1207 // A register is not killed if any subregs are live... 1208 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 1209 if (LiveRegs.test(*SubRegs)) { 1210 kill = false; 1211 break; 1212 } 1213 } 1214 1215 // If subreg is not live, then register is killed if it became 1216 // live in this instruction 1217 if (kill) 1218 kill = !LiveRegs.test(Reg); 1219 } 1220 1221 if (MO.isKill() != kill) { 1222 DEBUG(dbgs() << "Fixing " << MO << " in "); 1223 // Warning: toggleKillFlag may invalidate MO. 1224 toggleKillFlag(MI, MO); 1225 DEBUG(MI->dump()); 1226 DEBUG(if (MI->getOpcode() == TargetOpcode::BUNDLE) { 1227 MachineBasicBlock::instr_iterator Begin = MI->getIterator(); 1228 MachineBasicBlock::instr_iterator End = getBundleEnd(MI); 1229 while (++Begin != End) 1230 DEBUG(Begin->dump()); 1231 }); 1232 } 1233 1234 killedRegs.set(Reg); 1235 } 1236 1237 // Mark any used register (that is not using undef) and subregs as 1238 // now live... 1239 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1240 MachineOperand &MO = MI->getOperand(i); 1241 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1242 unsigned Reg = MO.getReg(); 1243 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1244 1245 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1246 SubRegs.isValid(); ++SubRegs) 1247 LiveRegs.set(*SubRegs); 1248 } 1249 } 1250 } 1251 1252 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1253 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1254 SU->getInstr()->dump(); 1255 #endif 1256 } 1257 1258 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1259 std::string s; 1260 raw_string_ostream oss(s); 1261 if (SU == &EntrySU) 1262 oss << "<entry>"; 1263 else if (SU == &ExitSU) 1264 oss << "<exit>"; 1265 else 1266 SU->getInstr()->print(oss, /*SkipOpers=*/true); 1267 return oss.str(); 1268 } 1269 1270 /// Return the basic block label. It is not necessarilly unique because a block 1271 /// contains multiple scheduling regions. But it is fine for visualization. 1272 std::string ScheduleDAGInstrs::getDAGName() const { 1273 return "dag." + BB->getFullName(); 1274 } 1275 1276 //===----------------------------------------------------------------------===// 1277 // SchedDFSResult Implementation 1278 //===----------------------------------------------------------------------===// 1279 1280 namespace llvm { 1281 /// \brief Internal state used to compute SchedDFSResult. 1282 class SchedDFSImpl { 1283 SchedDFSResult &R; 1284 1285 /// Join DAG nodes into equivalence classes by their subtree. 1286 IntEqClasses SubtreeClasses; 1287 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1288 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 1289 1290 struct RootData { 1291 unsigned NodeID; 1292 unsigned ParentNodeID; // Parent node (member of the parent subtree). 1293 unsigned SubInstrCount; // Instr count in this tree only, not children. 1294 1295 RootData(unsigned id): NodeID(id), 1296 ParentNodeID(SchedDFSResult::InvalidSubtreeID), 1297 SubInstrCount(0) {} 1298 1299 unsigned getSparseSetIndex() const { return NodeID; } 1300 }; 1301 1302 SparseSet<RootData> RootSet; 1303 1304 public: 1305 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1306 RootSet.setUniverse(R.DFSNodeData.size()); 1307 } 1308 1309 /// Return true if this node been visited by the DFS traversal. 1310 /// 1311 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1312 /// ID. Later, SubtreeID is updated but remains valid. 1313 bool isVisited(const SUnit *SU) const { 1314 return R.DFSNodeData[SU->NodeNum].SubtreeID 1315 != SchedDFSResult::InvalidSubtreeID; 1316 } 1317 1318 /// Initialize this node's instruction count. We don't need to flag the node 1319 /// visited until visitPostorder because the DAG cannot have cycles. 1320 void visitPreorder(const SUnit *SU) { 1321 R.DFSNodeData[SU->NodeNum].InstrCount = 1322 SU->getInstr()->isTransient() ? 0 : 1; 1323 } 1324 1325 /// Called once for each node after all predecessors are visited. Revisit this 1326 /// node's predecessors and potentially join them now that we know the ILP of 1327 /// the other predecessors. 1328 void visitPostorderNode(const SUnit *SU) { 1329 // Mark this node as the root of a subtree. It may be joined with its 1330 // successors later. 1331 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1332 RootData RData(SU->NodeNum); 1333 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1334 1335 // If any predecessors are still in their own subtree, they either cannot be 1336 // joined or are large enough to remain separate. If this parent node's 1337 // total instruction count is not greater than a child subtree by at least 1338 // the subtree limit, then try to join it now since splitting subtrees is 1339 // only useful if multiple high-pressure paths are possible. 1340 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1341 for (SUnit::const_pred_iterator 1342 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1343 if (PI->getKind() != SDep::Data) 1344 continue; 1345 unsigned PredNum = PI->getSUnit()->NodeNum; 1346 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1347 joinPredSubtree(*PI, SU, /*CheckLimit=*/false); 1348 1349 // Either link or merge the TreeData entry from the child to the parent. 1350 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1351 // If the predecessor's parent is invalid, this is a tree edge and the 1352 // current node is the parent. 1353 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1354 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1355 } 1356 else if (RootSet.count(PredNum)) { 1357 // The predecessor is not a root, but is still in the root set. This 1358 // must be the new parent that it was just joined to. Note that 1359 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1360 // set to the original parent. 1361 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1362 RootSet.erase(PredNum); 1363 } 1364 } 1365 RootSet[SU->NodeNum] = RData; 1366 } 1367 1368 /// Called once for each tree edge after calling visitPostOrderNode on the 1369 /// predecessor. Increment the parent node's instruction count and 1370 /// preemptively join this subtree to its parent's if it is small enough. 1371 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1372 R.DFSNodeData[Succ->NodeNum].InstrCount 1373 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1374 joinPredSubtree(PredDep, Succ); 1375 } 1376 1377 /// Add a connection for cross edges. 1378 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1379 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1380 } 1381 1382 /// Set each node's subtree ID to the representative ID and record connections 1383 /// between trees. 1384 void finalize() { 1385 SubtreeClasses.compress(); 1386 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1387 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1388 && "number of roots should match trees"); 1389 for (SparseSet<RootData>::const_iterator 1390 RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) { 1391 unsigned TreeID = SubtreeClasses[RI->NodeID]; 1392 if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1393 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID]; 1394 R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount; 1395 // Note that SubInstrCount may be greater than InstrCount if we joined 1396 // subtrees across a cross edge. InstrCount will be attributed to the 1397 // original parent, while SubInstrCount will be attributed to the joined 1398 // parent. 1399 } 1400 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1401 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1402 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1403 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1404 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1405 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1406 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1407 } 1408 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator 1409 I = ConnectionPairs.begin(), E = ConnectionPairs.end(); 1410 I != E; ++I) { 1411 unsigned PredTree = SubtreeClasses[I->first->NodeNum]; 1412 unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; 1413 if (PredTree == SuccTree) 1414 continue; 1415 unsigned Depth = I->first->getDepth(); 1416 addConnection(PredTree, SuccTree, Depth); 1417 addConnection(SuccTree, PredTree, Depth); 1418 } 1419 } 1420 1421 protected: 1422 /// Join the predecessor subtree with the successor that is its DFS 1423 /// parent. Apply some heuristics before joining. 1424 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1425 bool CheckLimit = true) { 1426 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1427 1428 // Check if the predecessor is already joined. 1429 const SUnit *PredSU = PredDep.getSUnit(); 1430 unsigned PredNum = PredSU->NodeNum; 1431 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1432 return false; 1433 1434 // Four is the magic number of successors before a node is considered a 1435 // pinch point. 1436 unsigned NumDataSucs = 0; 1437 for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(), 1438 SE = PredSU->Succs.end(); SI != SE; ++SI) { 1439 if (SI->getKind() == SDep::Data) { 1440 if (++NumDataSucs >= 4) 1441 return false; 1442 } 1443 } 1444 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1445 return false; 1446 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1447 SubtreeClasses.join(Succ->NodeNum, PredNum); 1448 return true; 1449 } 1450 1451 /// Called by finalize() to record a connection between trees. 1452 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1453 if (!Depth) 1454 return; 1455 1456 do { 1457 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1458 R.SubtreeConnections[FromTree]; 1459 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator 1460 I = Connections.begin(), E = Connections.end(); I != E; ++I) { 1461 if (I->TreeID == ToTree) { 1462 I->Level = std::max(I->Level, Depth); 1463 return; 1464 } 1465 } 1466 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1467 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1468 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1469 } 1470 }; 1471 } // namespace llvm 1472 1473 namespace { 1474 /// \brief Manage the stack used by a reverse depth-first search over the DAG. 1475 class SchedDAGReverseDFS { 1476 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 1477 public: 1478 bool isComplete() const { return DFSStack.empty(); } 1479 1480 void follow(const SUnit *SU) { 1481 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1482 } 1483 void advance() { ++DFSStack.back().second; } 1484 1485 const SDep *backtrack() { 1486 DFSStack.pop_back(); 1487 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1488 } 1489 1490 const SUnit *getCurr() const { return DFSStack.back().first; } 1491 1492 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1493 1494 SUnit::const_pred_iterator getPredEnd() const { 1495 return getCurr()->Preds.end(); 1496 } 1497 }; 1498 } // anonymous 1499 1500 static bool hasDataSucc(const SUnit *SU) { 1501 for (SUnit::const_succ_iterator 1502 SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) { 1503 if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode()) 1504 return true; 1505 } 1506 return false; 1507 } 1508 1509 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first 1510 /// search from this root. 1511 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1512 if (!IsBottomUp) 1513 llvm_unreachable("Top-down ILP metric is unimplemnted"); 1514 1515 SchedDFSImpl Impl(*this); 1516 for (ArrayRef<SUnit>::const_iterator 1517 SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) { 1518 const SUnit *SU = &*SI; 1519 if (Impl.isVisited(SU) || hasDataSucc(SU)) 1520 continue; 1521 1522 SchedDAGReverseDFS DFS; 1523 Impl.visitPreorder(SU); 1524 DFS.follow(SU); 1525 for (;;) { 1526 // Traverse the leftmost path as far as possible. 1527 while (DFS.getPred() != DFS.getPredEnd()) { 1528 const SDep &PredDep = *DFS.getPred(); 1529 DFS.advance(); 1530 // Ignore non-data edges. 1531 if (PredDep.getKind() != SDep::Data 1532 || PredDep.getSUnit()->isBoundaryNode()) { 1533 continue; 1534 } 1535 // An already visited edge is a cross edge, assuming an acyclic DAG. 1536 if (Impl.isVisited(PredDep.getSUnit())) { 1537 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1538 continue; 1539 } 1540 Impl.visitPreorder(PredDep.getSUnit()); 1541 DFS.follow(PredDep.getSUnit()); 1542 } 1543 // Visit the top of the stack in postorder and backtrack. 1544 const SUnit *Child = DFS.getCurr(); 1545 const SDep *PredDep = DFS.backtrack(); 1546 Impl.visitPostorderNode(Child); 1547 if (PredDep) 1548 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1549 if (DFS.isComplete()) 1550 break; 1551 } 1552 } 1553 Impl.finalize(); 1554 } 1555 1556 /// The root of the given SubtreeID was just scheduled. For all subtrees 1557 /// connected to this tree, record the depth of the connection so that the 1558 /// nearest connected subtrees can be prioritized. 1559 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1560 for (SmallVectorImpl<Connection>::const_iterator 1561 I = SubtreeConnections[SubtreeID].begin(), 1562 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { 1563 SubtreeConnectLevels[I->TreeID] = 1564 std::max(SubtreeConnectLevels[I->TreeID], I->Level); 1565 DEBUG(dbgs() << " Tree: " << I->TreeID 1566 << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); 1567 } 1568 } 1569 1570 LLVM_DUMP_METHOD 1571 void ILPValue::print(raw_ostream &OS) const { 1572 OS << InstrCount << " / " << Length << " = "; 1573 if (!Length) 1574 OS << "BADILP"; 1575 else 1576 OS << format("%g", ((double)InstrCount / Length)); 1577 } 1578 1579 LLVM_DUMP_METHOD 1580 void ILPValue::dump() const { 1581 dbgs() << *this << '\n'; 1582 } 1583 1584 namespace llvm { 1585 1586 LLVM_DUMP_METHOD 1587 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1588 Val.print(OS); 1589 return OS; 1590 } 1591 1592 } // namespace llvm 1593