1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
11 // of MachineInstrs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
16 #include "llvm/ADT/IntEqClasses.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/CodeGen/RegisterPressure.h"
30 #include "llvm/CodeGen/ScheduleDFS.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/Format.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
39 #include "llvm/Target/TargetSubtargetInfo.h"
40 #include <queue>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "misched"
45 
46 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
47     cl::ZeroOrMore, cl::init(false),
48     cl::desc("Enable use of AA during MI DAG construction"));
49 
50 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
51     cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
52 
53 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
54                                      const MachineLoopInfo *mli,
55                                      bool RemoveKillFlags)
56     : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
57       RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false),
58       TrackLaneMasks(false), FirstDbgValue(nullptr) {
59   DbgValues.clear();
60 
61   const TargetSubtargetInfo &ST = mf.getSubtarget();
62   SchedModel.init(ST.getSchedModel(), &ST, TII);
63 }
64 
65 /// getUnderlyingObjectFromInt - This is the function that does the work of
66 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
67 static const Value *getUnderlyingObjectFromInt(const Value *V) {
68   do {
69     if (const Operator *U = dyn_cast<Operator>(V)) {
70       // If we find a ptrtoint, we can transfer control back to the
71       // regular getUnderlyingObjectFromInt.
72       if (U->getOpcode() == Instruction::PtrToInt)
73         return U->getOperand(0);
74       // If we find an add of a constant, a multiplied value, or a phi, it's
75       // likely that the other operand will lead us to the base
76       // object. We don't have to worry about the case where the
77       // object address is somehow being computed by the multiply,
78       // because our callers only care when the result is an
79       // identifiable object.
80       if (U->getOpcode() != Instruction::Add ||
81           (!isa<ConstantInt>(U->getOperand(1)) &&
82            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
83            !isa<PHINode>(U->getOperand(1))))
84         return V;
85       V = U->getOperand(0);
86     } else {
87       return V;
88     }
89     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
90   } while (1);
91 }
92 
93 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
94 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
95 static void getUnderlyingObjects(const Value *V,
96                                  SmallVectorImpl<Value *> &Objects,
97                                  const DataLayout &DL) {
98   SmallPtrSet<const Value *, 16> Visited;
99   SmallVector<const Value *, 4> Working(1, V);
100   do {
101     V = Working.pop_back_val();
102 
103     SmallVector<Value *, 4> Objs;
104     GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
105 
106     for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
107          I != IE; ++I) {
108       V = *I;
109       if (!Visited.insert(V).second)
110         continue;
111       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
112         const Value *O =
113           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
114         if (O->getType()->isPointerTy()) {
115           Working.push_back(O);
116           continue;
117         }
118       }
119       Objects.push_back(const_cast<Value *>(V));
120     }
121   } while (!Working.empty());
122 }
123 
124 typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType;
125 typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4>
126 UnderlyingObjectsVector;
127 
128 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference
129 /// information and it can be tracked to a normal reference to a known
130 /// object, return the Value for that object.
131 static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
132                                          const MachineFrameInfo *MFI,
133                                          UnderlyingObjectsVector &Objects,
134                                          const DataLayout &DL) {
135   if (!MI->hasOneMemOperand() ||
136       (!(*MI->memoperands_begin())->getValue() &&
137        !(*MI->memoperands_begin())->getPseudoValue()) ||
138       (*MI->memoperands_begin())->isVolatile())
139     return;
140 
141   if (const PseudoSourceValue *PSV =
142       (*MI->memoperands_begin())->getPseudoValue()) {
143     // Function that contain tail calls don't have unique PseudoSourceValue
144     // objects. Two PseudoSourceValues might refer to the same or overlapping
145     // locations. The client code calling this function assumes this is not the
146     // case. So return a conservative answer of no known object.
147     if (MFI->hasTailCall())
148       return;
149 
150     // For now, ignore PseudoSourceValues which may alias LLVM IR values
151     // because the code that uses this function has no way to cope with
152     // such aliases.
153     if (!PSV->isAliased(MFI)) {
154       bool MayAlias = PSV->mayAlias(MFI);
155       Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
156     }
157     return;
158   }
159 
160   const Value *V = (*MI->memoperands_begin())->getValue();
161   if (!V)
162     return;
163 
164   SmallVector<Value *, 4> Objs;
165   getUnderlyingObjects(V, Objs, DL);
166 
167   for (Value *V : Objs) {
168     if (!isIdentifiedObject(V)) {
169       Objects.clear();
170       return;
171     }
172 
173     Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
174   }
175 }
176 
177 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
178   BB = bb;
179 }
180 
181 void ScheduleDAGInstrs::finishBlock() {
182   // Subclasses should no longer refer to the old block.
183   BB = nullptr;
184 }
185 
186 /// Initialize the DAG and common scheduler state for the current scheduling
187 /// region. This does not actually create the DAG, only clears it. The
188 /// scheduling driver may call BuildSchedGraph multiple times per scheduling
189 /// region.
190 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
191                                     MachineBasicBlock::iterator begin,
192                                     MachineBasicBlock::iterator end,
193                                     unsigned regioninstrs) {
194   assert(bb == BB && "startBlock should set BB");
195   RegionBegin = begin;
196   RegionEnd = end;
197   NumRegionInstrs = regioninstrs;
198 }
199 
200 /// Close the current scheduling region. Don't clear any state in case the
201 /// driver wants to refer to the previous scheduling region.
202 void ScheduleDAGInstrs::exitRegion() {
203   // Nothing to do.
204 }
205 
206 /// addSchedBarrierDeps - Add dependencies from instructions in the current
207 /// list of instructions being scheduled to scheduling barrier by adding
208 /// the exit SU to the register defs and use list. This is because we want to
209 /// make sure instructions which define registers that are either used by
210 /// the terminator or are live-out are properly scheduled. This is
211 /// especially important when the definition latency of the return value(s)
212 /// are too high to be hidden by the branch or when the liveout registers
213 /// used by instructions in the fallthrough block.
214 void ScheduleDAGInstrs::addSchedBarrierDeps() {
215   MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
216   ExitSU.setInstr(ExitMI);
217   bool AllDepKnown = ExitMI &&
218     (ExitMI->isCall() || ExitMI->isBarrier());
219   if (ExitMI && AllDepKnown) {
220     // If it's a call or a barrier, add dependencies on the defs and uses of
221     // instruction.
222     for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
223       const MachineOperand &MO = ExitMI->getOperand(i);
224       if (!MO.isReg() || MO.isDef()) continue;
225       unsigned Reg = MO.getReg();
226       if (Reg == 0) continue;
227 
228       if (TRI->isPhysicalRegister(Reg))
229         Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
230       else if (MO.readsReg()) // ignore undef operands
231         addVRegUseDeps(&ExitSU, i);
232     }
233   } else {
234     // For others, e.g. fallthrough, conditional branch, assume the exit
235     // uses all the registers that are livein to the successor blocks.
236     assert(Uses.empty() && "Uses in set before adding deps?");
237     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
238            SE = BB->succ_end(); SI != SE; ++SI)
239       for (const auto &LI : (*SI)->liveins()) {
240         if (!Uses.contains(LI.PhysReg))
241           Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
242       }
243   }
244 }
245 
246 /// MO is an operand of SU's instruction that defines a physical register. Add
247 /// data dependencies from SU to any uses of the physical register.
248 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
249   const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
250   assert(MO.isDef() && "expect physreg def");
251 
252   // Ask the target if address-backscheduling is desirable, and if so how much.
253   const TargetSubtargetInfo &ST = MF.getSubtarget();
254 
255   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
256        Alias.isValid(); ++Alias) {
257     if (!Uses.contains(*Alias))
258       continue;
259     for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
260       SUnit *UseSU = I->SU;
261       if (UseSU == SU)
262         continue;
263 
264       // Adjust the dependence latency using operand def/use information,
265       // then allow the target to perform its own adjustments.
266       int UseOp = I->OpIdx;
267       MachineInstr *RegUse = nullptr;
268       SDep Dep;
269       if (UseOp < 0)
270         Dep = SDep(SU, SDep::Artificial);
271       else {
272         // Set the hasPhysRegDefs only for physreg defs that have a use within
273         // the scheduling region.
274         SU->hasPhysRegDefs = true;
275         Dep = SDep(SU, SDep::Data, *Alias);
276         RegUse = UseSU->getInstr();
277       }
278       Dep.setLatency(
279         SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
280                                          UseOp));
281 
282       ST.adjustSchedDependency(SU, UseSU, Dep);
283       UseSU->addPred(Dep);
284     }
285   }
286 }
287 
288 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
289 /// this SUnit to following instructions in the same scheduling region that
290 /// depend the physical register referenced at OperIdx.
291 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
292   MachineInstr *MI = SU->getInstr();
293   MachineOperand &MO = MI->getOperand(OperIdx);
294 
295   // Optionally add output and anti dependencies. For anti
296   // dependencies we use a latency of 0 because for a multi-issue
297   // target we want to allow the defining instruction to issue
298   // in the same cycle as the using instruction.
299   // TODO: Using a latency of 1 here for output dependencies assumes
300   //       there's no cost for reusing registers.
301   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
302   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
303        Alias.isValid(); ++Alias) {
304     if (!Defs.contains(*Alias))
305       continue;
306     for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
307       SUnit *DefSU = I->SU;
308       if (DefSU == &ExitSU)
309         continue;
310       if (DefSU != SU &&
311           (Kind != SDep::Output || !MO.isDead() ||
312            !DefSU->getInstr()->registerDefIsDead(*Alias))) {
313         if (Kind == SDep::Anti)
314           DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
315         else {
316           SDep Dep(SU, Kind, /*Reg=*/*Alias);
317           Dep.setLatency(
318             SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
319           DefSU->addPred(Dep);
320         }
321       }
322     }
323   }
324 
325   if (!MO.isDef()) {
326     SU->hasPhysRegUses = true;
327     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
328     // retrieve the existing SUnits list for this register's uses.
329     // Push this SUnit on the use list.
330     Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
331     if (RemoveKillFlags)
332       MO.setIsKill(false);
333   }
334   else {
335     addPhysRegDataDeps(SU, OperIdx);
336     unsigned Reg = MO.getReg();
337 
338     // clear this register's use list
339     if (Uses.contains(Reg))
340       Uses.eraseAll(Reg);
341 
342     if (!MO.isDead()) {
343       Defs.eraseAll(Reg);
344     } else if (SU->isCall) {
345       // Calls will not be reordered because of chain dependencies (see
346       // below). Since call operands are dead, calls may continue to be added
347       // to the DefList making dependence checking quadratic in the size of
348       // the block. Instead, we leave only one call at the back of the
349       // DefList.
350       Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
351       Reg2SUnitsMap::iterator B = P.first;
352       Reg2SUnitsMap::iterator I = P.second;
353       for (bool isBegin = I == B; !isBegin; /* empty */) {
354         isBegin = (--I) == B;
355         if (!I->SU->isCall)
356           break;
357         I = Defs.erase(I);
358       }
359     }
360 
361     // Defs are pushed in the order they are visited and never reordered.
362     Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
363   }
364 }
365 
366 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
367 {
368   unsigned Reg = MO.getReg();
369   // No point in tracking lanemasks if we don't have interesting subregisters.
370   const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
371   if (!RC.HasDisjunctSubRegs)
372     return ~0u;
373 
374   unsigned SubReg = MO.getSubReg();
375   if (SubReg == 0)
376     return RC.getLaneMask();
377   return TRI->getSubRegIndexLaneMask(SubReg);
378 }
379 
380 /// addVRegDefDeps - Add register output and data dependencies from this SUnit
381 /// to instructions that occur later in the same scheduling region if they read
382 /// from or write to the virtual register defined at OperIdx.
383 ///
384 /// TODO: Hoist loop induction variable increments. This has to be
385 /// reevaluated. Generally, IV scheduling should be done before coalescing.
386 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
387   MachineInstr *MI = SU->getInstr();
388   MachineOperand &MO = MI->getOperand(OperIdx);
389   unsigned Reg = MO.getReg();
390 
391   LaneBitmask DefLaneMask;
392   LaneBitmask KillLaneMask;
393   if (TrackLaneMasks) {
394     bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
395     DefLaneMask = getLaneMaskForMO(MO);
396     // If we have a <read-undef> flag, none of the lane values comes from an
397     // earlier instruction.
398     KillLaneMask = IsKill ? ~0u : DefLaneMask;
399 
400     // Clear undef flag, we'll re-add it later once we know which subregister
401     // Def is first.
402     MO.setIsUndef(false);
403   } else {
404     DefLaneMask = ~0u;
405     KillLaneMask = ~0u;
406   }
407 
408   if (MO.isDead()) {
409     assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() &&
410            "Dead defs should have no uses");
411   } else {
412     // Add data dependence to all uses we found so far.
413     const TargetSubtargetInfo &ST = MF.getSubtarget();
414     for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
415          E = CurrentVRegUses.end(); I != E; /*empty*/) {
416       LaneBitmask LaneMask = I->LaneMask;
417       // Ignore uses of other lanes.
418       if ((LaneMask & KillLaneMask) == 0) {
419         ++I;
420         continue;
421       }
422 
423       if ((LaneMask & DefLaneMask) != 0) {
424         SUnit *UseSU = I->SU;
425         MachineInstr *Use = UseSU->getInstr();
426         SDep Dep(SU, SDep::Data, Reg);
427         Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
428                                                         I->OperandIndex));
429         ST.adjustSchedDependency(SU, UseSU, Dep);
430         UseSU->addPred(Dep);
431       }
432 
433       LaneMask &= ~KillLaneMask;
434       // If we found a Def for all lanes of this use, remove it from the list.
435       if (LaneMask != 0) {
436         I->LaneMask = LaneMask;
437         ++I;
438       } else
439         I = CurrentVRegUses.erase(I);
440     }
441   }
442 
443   // Shortcut: Singly defined vregs do not have output/anti dependencies.
444   if (MRI.hasOneDef(Reg))
445     return;
446 
447   // Add output dependence to the next nearest defs of this vreg.
448   //
449   // Unless this definition is dead, the output dependence should be
450   // transitively redundant with antidependencies from this definition's
451   // uses. We're conservative for now until we have a way to guarantee the uses
452   // are not eliminated sometime during scheduling. The output dependence edge
453   // is also useful if output latency exceeds def-use latency.
454   LaneBitmask LaneMask = DefLaneMask;
455   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
456                                      CurrentVRegDefs.end())) {
457     // Ignore defs for other lanes.
458     if ((V2SU.LaneMask & LaneMask) == 0)
459       continue;
460     // Add an output dependence.
461     SUnit *DefSU = V2SU.SU;
462     // Ignore additional defs of the same lanes in one instruction. This can
463     // happen because lanemasks are shared for targets with too many
464     // subregisters. We also use some representration tricks/hacks where we
465     // add super-register defs/uses, to imply that although we only access parts
466     // of the reg we care about the full one.
467     if (DefSU == SU)
468       continue;
469     SDep Dep(SU, SDep::Output, Reg);
470     Dep.setLatency(
471       SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
472     DefSU->addPred(Dep);
473 
474     // Update current definition. This can get tricky if the def was about a
475     // bigger lanemask before. We then have to shrink it and create a new
476     // VReg2SUnit for the non-overlapping part.
477     LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
478     LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
479     if (NonOverlapMask != 0)
480       CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, V2SU.SU));
481     V2SU.SU = SU;
482     V2SU.LaneMask = OverlapMask;
483   }
484   // If there was no CurrentVRegDefs entry for some lanes yet, create one.
485   if (LaneMask != 0)
486     CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
487 }
488 
489 /// addVRegUseDeps - Add a register data dependency if the instruction that
490 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
491 /// register antidependency from this SUnit to instructions that occur later in
492 /// the same scheduling region if they write the virtual register.
493 ///
494 /// TODO: Handle ExitSU "uses" properly.
495 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
496   const MachineInstr *MI = SU->getInstr();
497   const MachineOperand &MO = MI->getOperand(OperIdx);
498   unsigned Reg = MO.getReg();
499 
500   // Remember the use. Data dependencies will be added when we find the def.
501   LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u;
502   CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
503 
504   // Add antidependences to the following defs of the vreg.
505   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
506                                      CurrentVRegDefs.end())) {
507     // Ignore defs for unrelated lanes.
508     LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
509     if ((PrevDefLaneMask & LaneMask) == 0)
510       continue;
511     if (V2SU.SU == SU)
512       continue;
513 
514     V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
515   }
516 }
517 
518 /// Return true if MI is an instruction we are unable to reason about
519 /// (like a call or something with unmodeled side effects).
520 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
521   return MI->isCall() || MI->hasUnmodeledSideEffects() ||
522          (MI->hasOrderedMemoryRef() && !MI->isInvariantLoad(AA));
523 }
524 
525 // This MI might have either incomplete info, or known to be unsafe
526 // to deal with (i.e. volatile object).
527 static inline bool isUnsafeMemoryObject(MachineInstr *MI,
528                                         const MachineFrameInfo *MFI,
529                                         const DataLayout &DL) {
530   if (!MI || MI->memoperands_empty())
531     return true;
532   // We purposefully do no check for hasOneMemOperand() here
533   // in hope to trigger an assert downstream in order to
534   // finish implementation.
535   if ((*MI->memoperands_begin())->isVolatile() ||
536        MI->hasUnmodeledSideEffects())
537     return true;
538 
539   if ((*MI->memoperands_begin())->getPseudoValue()) {
540     // Similarly to getUnderlyingObjectForInstr:
541     // For now, ignore PseudoSourceValues which may alias LLVM IR values
542     // because the code that uses this function has no way to cope with
543     // such aliases.
544     return true;
545   }
546 
547   const Value *V = (*MI->memoperands_begin())->getValue();
548   if (!V)
549     return true;
550 
551   SmallVector<Value *, 4> Objs;
552   getUnderlyingObjects(V, Objs, DL);
553   for (Value *V : Objs) {
554     // Does this pointer refer to a distinct and identifiable object?
555     if (!isIdentifiedObject(V))
556       return true;
557   }
558 
559   return false;
560 }
561 
562 /// This returns true if the two MIs need a chain edge between them.
563 /// If these are not even memory operations, we still may need
564 /// chain deps between them. The question really is - could
565 /// these two MIs be reordered during scheduling from memory dependency
566 /// point of view.
567 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
568                              const DataLayout &DL, MachineInstr *MIa,
569                              MachineInstr *MIb) {
570   const MachineFunction *MF = MIa->getParent()->getParent();
571   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
572 
573   // Cover a trivial case - no edge is need to itself.
574   if (MIa == MIb)
575     return false;
576 
577   // Let the target decide if memory accesses cannot possibly overlap.
578   if ((MIa->mayLoad() || MIa->mayStore()) &&
579       (MIb->mayLoad() || MIb->mayStore()))
580     if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA))
581       return false;
582 
583   // FIXME: Need to handle multiple memory operands to support all targets.
584   if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
585     return true;
586 
587   if (isUnsafeMemoryObject(MIa, MFI, DL) || isUnsafeMemoryObject(MIb, MFI, DL))
588     return true;
589 
590   // If we are dealing with two "normal" loads, we do not need an edge
591   // between them - they could be reordered.
592   if (!MIa->mayStore() && !MIb->mayStore())
593     return false;
594 
595   // To this point analysis is generic. From here on we do need AA.
596   if (!AA)
597     return true;
598 
599   MachineMemOperand *MMOa = *MIa->memoperands_begin();
600   MachineMemOperand *MMOb = *MIb->memoperands_begin();
601 
602   if (!MMOa->getValue() || !MMOb->getValue())
603     return true;
604 
605   // The following interface to AA is fashioned after DAGCombiner::isAlias
606   // and operates with MachineMemOperand offset with some important
607   // assumptions:
608   //   - LLVM fundamentally assumes flat address spaces.
609   //   - MachineOperand offset can *only* result from legalization and
610   //     cannot affect queries other than the trivial case of overlap
611   //     checking.
612   //   - These offsets never wrap and never step outside
613   //     of allocated objects.
614   //   - There should never be any negative offsets here.
615   //
616   // FIXME: Modify API to hide this math from "user"
617   // FIXME: Even before we go to AA we can reason locally about some
618   // memory objects. It can save compile time, and possibly catch some
619   // corner cases not currently covered.
620 
621   assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
622   assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
623 
624   int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
625   int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
626   int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
627 
628   AliasResult AAResult =
629       AA->alias(MemoryLocation(MMOa->getValue(), Overlapa,
630                                UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
631                 MemoryLocation(MMOb->getValue(), Overlapb,
632                                UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
633 
634   return (AAResult != NoAlias);
635 }
636 
637 /// This recursive function iterates over chain deps of SUb looking for
638 /// "latest" node that needs a chain edge to SUa.
639 static unsigned iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
640                                  const DataLayout &DL, SUnit *SUa, SUnit *SUb,
641                                  SUnit *ExitSU, unsigned *Depth,
642                                  SmallPtrSetImpl<const SUnit *> &Visited) {
643   if (!SUa || !SUb || SUb == ExitSU)
644     return *Depth;
645 
646   // Remember visited nodes.
647   if (!Visited.insert(SUb).second)
648       return *Depth;
649   // If there is _some_ dependency already in place, do not
650   // descend any further.
651   // TODO: Need to make sure that if that dependency got eliminated or ignored
652   // for any reason in the future, we would not violate DAG topology.
653   // Currently it does not happen, but makes an implicit assumption about
654   // future implementation.
655   //
656   // Independently, if we encounter node that is some sort of global
657   // object (like a call) we already have full set of dependencies to it
658   // and we can stop descending.
659   if (SUa->isSucc(SUb) ||
660       isGlobalMemoryObject(AA, SUb->getInstr()))
661     return *Depth;
662 
663   // If we do need an edge, or we have exceeded depth budget,
664   // add that edge to the predecessors chain of SUb,
665   // and stop descending.
666   if (*Depth > 200 ||
667       MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) {
668     SUb->addPred(SDep(SUa, SDep::MayAliasMem));
669     return *Depth;
670   }
671   // Track current depth.
672   (*Depth)++;
673   // Iterate over memory dependencies only.
674   for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
675        I != E; ++I)
676     if (I->isNormalMemoryOrBarrier())
677       iterateChainSucc(AA, MFI, DL, SUa, I->getSUnit(), ExitSU, Depth, Visited);
678   return *Depth;
679 }
680 
681 /// This function assumes that "downward" from SU there exist
682 /// tail/leaf of already constructed DAG. It iterates downward and
683 /// checks whether SU can be aliasing any node dominated
684 /// by it.
685 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
686                             const DataLayout &DL, SUnit *SU, SUnit *ExitSU,
687                             std::set<SUnit *> &CheckList,
688                             unsigned LatencyToLoad) {
689   if (!SU)
690     return;
691 
692   SmallPtrSet<const SUnit*, 16> Visited;
693   unsigned Depth = 0;
694 
695   for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
696        I != IE; ++I) {
697     if (SU == *I)
698       continue;
699     if (MIsNeedChainEdge(AA, MFI, DL, SU->getInstr(), (*I)->getInstr())) {
700       SDep Dep(SU, SDep::MayAliasMem);
701       Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
702       (*I)->addPred(Dep);
703     }
704 
705     // Iterate recursively over all previously added memory chain
706     // successors. Keep track of visited nodes.
707     for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
708          JE = (*I)->Succs.end(); J != JE; ++J)
709       if (J->isNormalMemoryOrBarrier())
710         iterateChainSucc(AA, MFI, DL, SU, J->getSUnit(), ExitSU, &Depth,
711                          Visited);
712   }
713 }
714 
715 /// Check whether two objects need a chain edge, if so, add it
716 /// otherwise remember the rejected SU.
717 static inline void addChainDependency(AliasAnalysis *AA,
718                                       const MachineFrameInfo *MFI,
719                                       const DataLayout &DL, SUnit *SUa,
720                                       SUnit *SUb, std::set<SUnit *> &RejectList,
721                                       unsigned TrueMemOrderLatency = 0,
722                                       bool isNormalMemory = false) {
723   // If this is a false dependency,
724   // do not add the edge, but remember the rejected node.
725   if (MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) {
726     SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
727     Dep.setLatency(TrueMemOrderLatency);
728     SUb->addPred(Dep);
729   }
730   else {
731     // Duplicate entries should be ignored.
732     RejectList.insert(SUb);
733     DEBUG(dbgs() << "\tReject chain dep between SU("
734           << SUa->NodeNum << ") and SU("
735           << SUb->NodeNum << ")\n");
736   }
737 }
738 
739 /// Create an SUnit for each real instruction, numbered in top-down topological
740 /// order. The instruction order A < B, implies that no edge exists from B to A.
741 ///
742 /// Map each real instruction to its SUnit.
743 ///
744 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
745 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
746 /// instead of pointers.
747 ///
748 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
749 /// the original instruction list.
750 void ScheduleDAGInstrs::initSUnits() {
751   // We'll be allocating one SUnit for each real instruction in the region,
752   // which is contained within a basic block.
753   SUnits.reserve(NumRegionInstrs);
754 
755   for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
756     MachineInstr *MI = I;
757     if (MI->isDebugValue())
758       continue;
759 
760     SUnit *SU = newSUnit(MI);
761     MISUnitMap[MI] = SU;
762 
763     SU->isCall = MI->isCall();
764     SU->isCommutable = MI->isCommutable();
765 
766     // Assign the Latency field of SU using target-provided information.
767     SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
768 
769     // If this SUnit uses a reserved or unbuffered resource, mark it as such.
770     //
771     // Reserved resources block an instruction from issuing and stall the
772     // entire pipeline. These are identified by BufferSize=0.
773     //
774     // Unbuffered resources prevent execution of subsequent instructions that
775     // require the same resources. This is used for in-order execution pipelines
776     // within an out-of-order core. These are identified by BufferSize=1.
777     if (SchedModel.hasInstrSchedModel()) {
778       const MCSchedClassDesc *SC = getSchedClass(SU);
779       for (TargetSchedModel::ProcResIter
780              PI = SchedModel.getWriteProcResBegin(SC),
781              PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
782         switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
783         case 0:
784           SU->hasReservedResource = true;
785           break;
786         case 1:
787           SU->isUnbuffered = true;
788           break;
789         default:
790           break;
791         }
792       }
793     }
794   }
795 }
796 
797 void ScheduleDAGInstrs::collectVRegUses(SUnit *SU) {
798   const MachineInstr *MI = SU->getInstr();
799   for (const MachineOperand &MO : MI->operands()) {
800     if (!MO.isReg())
801       continue;
802     if (!MO.readsReg())
803       continue;
804     if (TrackLaneMasks && !MO.isUse())
805       continue;
806 
807     unsigned Reg = MO.getReg();
808     if (!TargetRegisterInfo::isVirtualRegister(Reg))
809       continue;
810 
811     // Ignore re-defs.
812     if (TrackLaneMasks) {
813       bool FoundDef = false;
814       for (const MachineOperand &MO2 : MI->operands()) {
815         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
816           FoundDef = true;
817           break;
818         }
819       }
820       if (FoundDef)
821         continue;
822     }
823 
824     // Record this local VReg use.
825     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
826     for (; UI != VRegUses.end(); ++UI) {
827       if (UI->SU == SU)
828         break;
829     }
830     if (UI == VRegUses.end())
831       VRegUses.insert(VReg2SUnit(Reg, 0, SU));
832   }
833 }
834 
835 /// If RegPressure is non-null, compute register pressure as a side effect. The
836 /// DAG builder is an efficient place to do it because it already visits
837 /// operands.
838 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
839                                         RegPressureTracker *RPTracker,
840                                         PressureDiffs *PDiffs,
841                                         LiveIntervals *LIS,
842                                         bool TrackLaneMasks) {
843   const TargetSubtargetInfo &ST = MF.getSubtarget();
844   bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
845                                                        : ST.useAA();
846   AliasAnalysis *AAForDep = UseAA ? AA : nullptr;
847 
848   this->TrackLaneMasks = TrackLaneMasks;
849   MISUnitMap.clear();
850   ScheduleDAG::clearDAG();
851 
852   // Create an SUnit for each real instruction.
853   initSUnits();
854 
855   if (PDiffs)
856     PDiffs->init(SUnits.size());
857 
858   // We build scheduling units by walking a block's instruction list from bottom
859   // to top.
860 
861   // Remember where a generic side-effecting instruction is as we proceed.
862   SUnit *BarrierChain = nullptr, *AliasChain = nullptr;
863 
864   // Memory references to specific known memory locations are tracked
865   // so that they can be given more precise dependencies. We track
866   // separately the known memory locations that may alias and those
867   // that are known not to alias
868   MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs;
869   MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
870   std::set<SUnit*> RejectMemNodes;
871 
872   // Remove any stale debug info; sometimes BuildSchedGraph is called again
873   // without emitting the info from the previous call.
874   DbgValues.clear();
875   FirstDbgValue = nullptr;
876 
877   assert(Defs.empty() && Uses.empty() &&
878          "Only BuildGraph should update Defs/Uses");
879   Defs.setUniverse(TRI->getNumRegs());
880   Uses.setUniverse(TRI->getNumRegs());
881 
882   assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
883   assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
884   unsigned NumVirtRegs = MRI.getNumVirtRegs();
885   CurrentVRegDefs.setUniverse(NumVirtRegs);
886   CurrentVRegUses.setUniverse(NumVirtRegs);
887 
888   VRegUses.clear();
889   VRegUses.setUniverse(NumVirtRegs);
890 
891   // Model data dependencies between instructions being scheduled and the
892   // ExitSU.
893   addSchedBarrierDeps();
894 
895   // Walk the list of instructions, from bottom moving up.
896   MachineInstr *DbgMI = nullptr;
897   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
898        MII != MIE; --MII) {
899     MachineInstr *MI = std::prev(MII);
900     if (MI && DbgMI) {
901       DbgValues.push_back(std::make_pair(DbgMI, MI));
902       DbgMI = nullptr;
903     }
904 
905     if (MI->isDebugValue()) {
906       DbgMI = MI;
907       continue;
908     }
909     SUnit *SU = MISUnitMap[MI];
910     assert(SU && "No SUnit mapped to this MI");
911 
912     if (RPTracker) {
913       collectVRegUses(SU);
914 
915       RegisterOperands RegOpers;
916       RegOpers.collect(*MI, *TRI, MRI, TrackLaneMasks, false);
917       if (TrackLaneMasks) {
918         SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
919         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
920       }
921       if (PDiffs != nullptr)
922         PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
923 
924       RPTracker->recedeSkipDebugValues();
925       assert(&*RPTracker->getPos() == MI && "RPTracker in sync");
926       RPTracker->recede(RegOpers);
927     }
928 
929     assert(
930         (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) &&
931         "Cannot schedule terminators or labels!");
932 
933     // Add register-based dependencies (data, anti, and output).
934     bool HasVRegDef = false;
935     for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
936       const MachineOperand &MO = MI->getOperand(j);
937       if (!MO.isReg()) continue;
938       unsigned Reg = MO.getReg();
939       if (Reg == 0) continue;
940 
941       if (TRI->isPhysicalRegister(Reg))
942         addPhysRegDeps(SU, j);
943       else {
944         if (MO.isDef()) {
945           HasVRegDef = true;
946           addVRegDefDeps(SU, j);
947         }
948         else if (MO.readsReg()) // ignore undef operands
949           addVRegUseDeps(SU, j);
950       }
951     }
952     // If we haven't seen any uses in this scheduling region, create a
953     // dependence edge to ExitSU to model the live-out latency. This is required
954     // for vreg defs with no in-region use, and prefetches with no vreg def.
955     //
956     // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
957     // check currently relies on being called before adding chain deps.
958     if (SU->NumSuccs == 0 && SU->Latency > 1
959         && (HasVRegDef || MI->mayLoad())) {
960       SDep Dep(SU, SDep::Artificial);
961       Dep.setLatency(SU->Latency - 1);
962       ExitSU.addPred(Dep);
963     }
964 
965     // Add chain dependencies.
966     // Chain dependencies used to enforce memory order should have
967     // latency of 0 (except for true dependency of Store followed by
968     // aliased Load... we estimate that with a single cycle of latency
969     // assuming the hardware will bypass)
970     // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
971     // after stack slots are lowered to actual addresses.
972     // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
973     // produce more precise dependence information.
974     unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
975     if (isGlobalMemoryObject(AA, MI)) {
976       // Be conservative with these and add dependencies on all memory
977       // references, even those that are known to not alias.
978       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
979              NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
980         for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
981           I->second[i]->addPred(SDep(SU, SDep::Barrier));
982         }
983       }
984       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
985              NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
986         for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
987           SDep Dep(SU, SDep::Barrier);
988           Dep.setLatency(TrueMemOrderLatency);
989           I->second[i]->addPred(Dep);
990         }
991       }
992       // Add SU to the barrier chain.
993       if (BarrierChain)
994         BarrierChain->addPred(SDep(SU, SDep::Barrier));
995       BarrierChain = SU;
996       // This is a barrier event that acts as a pivotal node in the DAG,
997       // so it is safe to clear list of exposed nodes.
998       adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes,
999                       TrueMemOrderLatency);
1000       RejectMemNodes.clear();
1001       NonAliasMemDefs.clear();
1002       NonAliasMemUses.clear();
1003 
1004       // fall-through
1005     new_alias_chain:
1006       // Chain all possibly aliasing memory references through SU.
1007       if (AliasChain) {
1008         unsigned ChainLatency = 0;
1009         if (AliasChain->getInstr()->mayLoad())
1010           ChainLatency = TrueMemOrderLatency;
1011         addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain,
1012                            RejectMemNodes, ChainLatency);
1013       }
1014       AliasChain = SU;
1015       for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
1016         addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1017                            PendingLoads[k], RejectMemNodes,
1018                            TrueMemOrderLatency);
1019       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1020            AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) {
1021         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1022           addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1023                              I->second[i], RejectMemNodes);
1024       }
1025       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1026            AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
1027         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1028           addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1029                              I->second[i], RejectMemNodes, TrueMemOrderLatency);
1030       }
1031       // This call must come after calls to addChainDependency() since it
1032       // consumes the 'RejectMemNodes' list that addChainDependency() possibly
1033       // adds to.
1034       adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes,
1035                       TrueMemOrderLatency);
1036       PendingLoads.clear();
1037       AliasMemDefs.clear();
1038       AliasMemUses.clear();
1039     } else if (MI->mayStore()) {
1040       // Add dependence on barrier chain, if needed.
1041       // There is no point to check aliasing on barrier event. Even if
1042       // SU and barrier _could_ be reordered, they should not. In addition,
1043       // we have lost all RejectMemNodes below barrier.
1044       if (BarrierChain)
1045         BarrierChain->addPred(SDep(SU, SDep::Barrier));
1046 
1047       UnderlyingObjectsVector Objs;
1048       getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout());
1049 
1050       if (Objs.empty()) {
1051         // Treat all other stores conservatively.
1052         goto new_alias_chain;
1053       }
1054 
1055       bool MayAlias = false;
1056       for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
1057            K != KE; ++K) {
1058         ValueType V = K->getPointer();
1059         bool ThisMayAlias = K->getInt();
1060         if (ThisMayAlias)
1061           MayAlias = true;
1062 
1063         // A store to a specific PseudoSourceValue. Add precise dependencies.
1064         // Record the def in MemDefs, first adding a dep if there is
1065         // an existing def.
1066         MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1067           ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
1068         MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
1069           ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
1070         if (I != IE) {
1071           for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1072             addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1073                                I->second[i], RejectMemNodes, 0, true);
1074 
1075           // If we're not using AA, then we only need one store per object.
1076           if (!AAForDep)
1077             I->second.clear();
1078           I->second.push_back(SU);
1079         } else {
1080           if (ThisMayAlias) {
1081             if (!AAForDep)
1082               AliasMemDefs[V].clear();
1083             AliasMemDefs[V].push_back(SU);
1084           } else {
1085             if (!AAForDep)
1086               NonAliasMemDefs[V].clear();
1087             NonAliasMemDefs[V].push_back(SU);
1088           }
1089         }
1090         // Handle the uses in MemUses, if there are any.
1091         MapVector<ValueType, std::vector<SUnit *> >::iterator J =
1092           ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
1093         MapVector<ValueType, std::vector<SUnit *> >::iterator JE =
1094           ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
1095         if (J != JE) {
1096           for (unsigned i = 0, e = J->second.size(); i != e; ++i)
1097             addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1098                                J->second[i], RejectMemNodes,
1099                                TrueMemOrderLatency, true);
1100           J->second.clear();
1101         }
1102       }
1103       if (MayAlias) {
1104         // Add dependencies from all the PendingLoads, i.e. loads
1105         // with no underlying object.
1106         for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
1107           addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1108                              PendingLoads[k], RejectMemNodes,
1109                              TrueMemOrderLatency);
1110         // Add dependence on alias chain, if needed.
1111         if (AliasChain)
1112           addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain,
1113                              RejectMemNodes);
1114       }
1115       // This call must come after calls to addChainDependency() since it
1116       // consumes the 'RejectMemNodes' list that addChainDependency() possibly
1117       // adds to.
1118       adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes,
1119                       TrueMemOrderLatency);
1120     } else if (MI->mayLoad()) {
1121       bool MayAlias = true;
1122       if (MI->isInvariantLoad(AA)) {
1123         // Invariant load, no chain dependencies needed!
1124       } else {
1125         UnderlyingObjectsVector Objs;
1126         getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout());
1127 
1128         if (Objs.empty()) {
1129           // A load with no underlying object. Depend on all
1130           // potentially aliasing stores.
1131           for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1132                  AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
1133             for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1134               addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1135                                  I->second[i], RejectMemNodes);
1136 
1137           PendingLoads.push_back(SU);
1138           MayAlias = true;
1139         } else {
1140           MayAlias = false;
1141         }
1142 
1143         for (UnderlyingObjectsVector::iterator
1144              J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
1145           ValueType V = J->getPointer();
1146           bool ThisMayAlias = J->getInt();
1147 
1148           if (ThisMayAlias)
1149             MayAlias = true;
1150 
1151           // A load from a specific PseudoSourceValue. Add precise dependencies.
1152           MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1153             ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
1154           MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
1155             ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
1156           if (I != IE)
1157             for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1158               addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1159                                  I->second[i], RejectMemNodes, 0, true);
1160           if (ThisMayAlias)
1161             AliasMemUses[V].push_back(SU);
1162           else
1163             NonAliasMemUses[V].push_back(SU);
1164         }
1165         // Add dependencies on alias and barrier chains, if needed.
1166         if (MayAlias && AliasChain)
1167           addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain,
1168                              RejectMemNodes);
1169         if (MayAlias)
1170           // This call must come after calls to addChainDependency() since it
1171           // consumes the 'RejectMemNodes' list that addChainDependency()
1172           // possibly adds to.
1173           adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU,
1174                           RejectMemNodes, /*Latency=*/0);
1175         if (BarrierChain)
1176           BarrierChain->addPred(SDep(SU, SDep::Barrier));
1177       }
1178     }
1179   }
1180   if (DbgMI)
1181     FirstDbgValue = DbgMI;
1182 
1183   Defs.clear();
1184   Uses.clear();
1185   CurrentVRegDefs.clear();
1186   CurrentVRegUses.clear();
1187   PendingLoads.clear();
1188 }
1189 
1190 /// \brief Initialize register live-range state for updating kills.
1191 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
1192   // Start with no live registers.
1193   LiveRegs.reset();
1194 
1195   // Examine the live-in regs of all successors.
1196   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
1197        SE = BB->succ_end(); SI != SE; ++SI) {
1198     for (const auto &LI : (*SI)->liveins()) {
1199       // Repeat, for reg and all subregs.
1200       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
1201            SubRegs.isValid(); ++SubRegs)
1202         LiveRegs.set(*SubRegs);
1203     }
1204   }
1205 }
1206 
1207 /// \brief If we change a kill flag on the bundle instruction implicit register
1208 /// operands, then we also need to propagate that to any instructions inside
1209 /// the bundle which had the same kill state.
1210 static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg,
1211                                  bool NewKillState) {
1212   if (MI->getOpcode() != TargetOpcode::BUNDLE)
1213     return;
1214 
1215   // Walk backwards from the last instruction in the bundle to the first.
1216   // Once we set a kill flag on an instruction, we bail out, as otherwise we
1217   // might set it on too many operands.  We will clear as many flags as we
1218   // can though.
1219   MachineBasicBlock::instr_iterator Begin = MI->getIterator();
1220   MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
1221   while (Begin != End) {
1222     for (MachineOperand &MO : (--End)->operands()) {
1223       if (!MO.isReg() || MO.isDef() || Reg != MO.getReg())
1224         continue;
1225 
1226       // DEBUG_VALUE nodes do not contribute to code generation and should
1227       // always be ignored.  Failure to do so may result in trying to modify
1228       // KILL flags on DEBUG_VALUE nodes, which is distressing.
1229       if (MO.isDebug())
1230         continue;
1231 
1232       // If the register has the internal flag then it could be killing an
1233       // internal def of the register.  In this case, just skip.  We only want
1234       // to toggle the flag on operands visible outside the bundle.
1235       if (MO.isInternalRead())
1236         continue;
1237 
1238       if (MO.isKill() == NewKillState)
1239         continue;
1240       MO.setIsKill(NewKillState);
1241       if (NewKillState)
1242         return;
1243     }
1244   }
1245 }
1246 
1247 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
1248   // Setting kill flag...
1249   if (!MO.isKill()) {
1250     MO.setIsKill(true);
1251     toggleBundleKillFlag(MI, MO.getReg(), true);
1252     return false;
1253   }
1254 
1255   // If MO itself is live, clear the kill flag...
1256   if (LiveRegs.test(MO.getReg())) {
1257     MO.setIsKill(false);
1258     toggleBundleKillFlag(MI, MO.getReg(), false);
1259     return false;
1260   }
1261 
1262   // If any subreg of MO is live, then create an imp-def for that
1263   // subreg and keep MO marked as killed.
1264   MO.setIsKill(false);
1265   toggleBundleKillFlag(MI, MO.getReg(), false);
1266   bool AllDead = true;
1267   const unsigned SuperReg = MO.getReg();
1268   MachineInstrBuilder MIB(MF, MI);
1269   for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
1270     if (LiveRegs.test(*SubRegs)) {
1271       MIB.addReg(*SubRegs, RegState::ImplicitDefine);
1272       AllDead = false;
1273     }
1274   }
1275 
1276   if(AllDead) {
1277     MO.setIsKill(true);
1278     toggleBundleKillFlag(MI, MO.getReg(), true);
1279   }
1280   return false;
1281 }
1282 
1283 // FIXME: Reuse the LivePhysRegs utility for this.
1284 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
1285   DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
1286 
1287   LiveRegs.resize(TRI->getNumRegs());
1288   BitVector killedRegs(TRI->getNumRegs());
1289 
1290   startBlockForKills(MBB);
1291 
1292   // Examine block from end to start...
1293   unsigned Count = MBB->size();
1294   for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
1295        I != E; --Count) {
1296     MachineInstr *MI = --I;
1297     if (MI->isDebugValue())
1298       continue;
1299 
1300     // Update liveness.  Registers that are defed but not used in this
1301     // instruction are now dead. Mark register and all subregs as they
1302     // are completely defined.
1303     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1304       MachineOperand &MO = MI->getOperand(i);
1305       if (MO.isRegMask())
1306         LiveRegs.clearBitsNotInMask(MO.getRegMask());
1307       if (!MO.isReg()) continue;
1308       unsigned Reg = MO.getReg();
1309       if (Reg == 0) continue;
1310       if (!MO.isDef()) continue;
1311       // Ignore two-addr defs.
1312       if (MI->isRegTiedToUseOperand(i)) continue;
1313 
1314       // Repeat for reg and all subregs.
1315       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1316            SubRegs.isValid(); ++SubRegs)
1317         LiveRegs.reset(*SubRegs);
1318     }
1319 
1320     // Examine all used registers and set/clear kill flag. When a
1321     // register is used multiple times we only set the kill flag on
1322     // the first use. Don't set kill flags on undef operands.
1323     killedRegs.reset();
1324     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1325       MachineOperand &MO = MI->getOperand(i);
1326       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1327       unsigned Reg = MO.getReg();
1328       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1329 
1330       bool kill = false;
1331       if (!killedRegs.test(Reg)) {
1332         kill = true;
1333         // A register is not killed if any subregs are live...
1334         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
1335           if (LiveRegs.test(*SubRegs)) {
1336             kill = false;
1337             break;
1338           }
1339         }
1340 
1341         // If subreg is not live, then register is killed if it became
1342         // live in this instruction
1343         if (kill)
1344           kill = !LiveRegs.test(Reg);
1345       }
1346 
1347       if (MO.isKill() != kill) {
1348         DEBUG(dbgs() << "Fixing " << MO << " in ");
1349         // Warning: toggleKillFlag may invalidate MO.
1350         toggleKillFlag(MI, MO);
1351         DEBUG(MI->dump());
1352         DEBUG(if (MI->getOpcode() == TargetOpcode::BUNDLE) {
1353           MachineBasicBlock::instr_iterator Begin = MI->getIterator();
1354           MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
1355           while (++Begin != End)
1356             DEBUG(Begin->dump());
1357         });
1358       }
1359 
1360       killedRegs.set(Reg);
1361     }
1362 
1363     // Mark any used register (that is not using undef) and subregs as
1364     // now live...
1365     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1366       MachineOperand &MO = MI->getOperand(i);
1367       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1368       unsigned Reg = MO.getReg();
1369       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1370 
1371       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1372            SubRegs.isValid(); ++SubRegs)
1373         LiveRegs.set(*SubRegs);
1374     }
1375   }
1376 }
1377 
1378 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
1379 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1380   SU->getInstr()->dump();
1381 #endif
1382 }
1383 
1384 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1385   std::string s;
1386   raw_string_ostream oss(s);
1387   if (SU == &EntrySU)
1388     oss << "<entry>";
1389   else if (SU == &ExitSU)
1390     oss << "<exit>";
1391   else
1392     SU->getInstr()->print(oss, /*SkipOpers=*/true);
1393   return oss.str();
1394 }
1395 
1396 /// Return the basic block label. It is not necessarilly unique because a block
1397 /// contains multiple scheduling regions. But it is fine for visualization.
1398 std::string ScheduleDAGInstrs::getDAGName() const {
1399   return "dag." + BB->getFullName();
1400 }
1401 
1402 //===----------------------------------------------------------------------===//
1403 // SchedDFSResult Implementation
1404 //===----------------------------------------------------------------------===//
1405 
1406 namespace llvm {
1407 /// \brief Internal state used to compute SchedDFSResult.
1408 class SchedDFSImpl {
1409   SchedDFSResult &R;
1410 
1411   /// Join DAG nodes into equivalence classes by their subtree.
1412   IntEqClasses SubtreeClasses;
1413   /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1414   std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1415 
1416   struct RootData {
1417     unsigned NodeID;
1418     unsigned ParentNodeID;  // Parent node (member of the parent subtree).
1419     unsigned SubInstrCount; // Instr count in this tree only, not children.
1420 
1421     RootData(unsigned id): NodeID(id),
1422                            ParentNodeID(SchedDFSResult::InvalidSubtreeID),
1423                            SubInstrCount(0) {}
1424 
1425     unsigned getSparseSetIndex() const { return NodeID; }
1426   };
1427 
1428   SparseSet<RootData> RootSet;
1429 
1430 public:
1431   SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1432     RootSet.setUniverse(R.DFSNodeData.size());
1433   }
1434 
1435   /// Return true if this node been visited by the DFS traversal.
1436   ///
1437   /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1438   /// ID. Later, SubtreeID is updated but remains valid.
1439   bool isVisited(const SUnit *SU) const {
1440     return R.DFSNodeData[SU->NodeNum].SubtreeID
1441       != SchedDFSResult::InvalidSubtreeID;
1442   }
1443 
1444   /// Initialize this node's instruction count. We don't need to flag the node
1445   /// visited until visitPostorder because the DAG cannot have cycles.
1446   void visitPreorder(const SUnit *SU) {
1447     R.DFSNodeData[SU->NodeNum].InstrCount =
1448       SU->getInstr()->isTransient() ? 0 : 1;
1449   }
1450 
1451   /// Called once for each node after all predecessors are visited. Revisit this
1452   /// node's predecessors and potentially join them now that we know the ILP of
1453   /// the other predecessors.
1454   void visitPostorderNode(const SUnit *SU) {
1455     // Mark this node as the root of a subtree. It may be joined with its
1456     // successors later.
1457     R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1458     RootData RData(SU->NodeNum);
1459     RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1460 
1461     // If any predecessors are still in their own subtree, they either cannot be
1462     // joined or are large enough to remain separate. If this parent node's
1463     // total instruction count is not greater than a child subtree by at least
1464     // the subtree limit, then try to join it now since splitting subtrees is
1465     // only useful if multiple high-pressure paths are possible.
1466     unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1467     for (SUnit::const_pred_iterator
1468            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1469       if (PI->getKind() != SDep::Data)
1470         continue;
1471       unsigned PredNum = PI->getSUnit()->NodeNum;
1472       if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1473         joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
1474 
1475       // Either link or merge the TreeData entry from the child to the parent.
1476       if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1477         // If the predecessor's parent is invalid, this is a tree edge and the
1478         // current node is the parent.
1479         if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1480           RootSet[PredNum].ParentNodeID = SU->NodeNum;
1481       }
1482       else if (RootSet.count(PredNum)) {
1483         // The predecessor is not a root, but is still in the root set. This
1484         // must be the new parent that it was just joined to. Note that
1485         // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1486         // set to the original parent.
1487         RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1488         RootSet.erase(PredNum);
1489       }
1490     }
1491     RootSet[SU->NodeNum] = RData;
1492   }
1493 
1494   /// Called once for each tree edge after calling visitPostOrderNode on the
1495   /// predecessor. Increment the parent node's instruction count and
1496   /// preemptively join this subtree to its parent's if it is small enough.
1497   void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1498     R.DFSNodeData[Succ->NodeNum].InstrCount
1499       += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1500     joinPredSubtree(PredDep, Succ);
1501   }
1502 
1503   /// Add a connection for cross edges.
1504   void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1505     ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1506   }
1507 
1508   /// Set each node's subtree ID to the representative ID and record connections
1509   /// between trees.
1510   void finalize() {
1511     SubtreeClasses.compress();
1512     R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1513     assert(SubtreeClasses.getNumClasses() == RootSet.size()
1514            && "number of roots should match trees");
1515     for (SparseSet<RootData>::const_iterator
1516            RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
1517       unsigned TreeID = SubtreeClasses[RI->NodeID];
1518       if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1519         R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
1520       R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
1521       // Note that SubInstrCount may be greater than InstrCount if we joined
1522       // subtrees across a cross edge. InstrCount will be attributed to the
1523       // original parent, while SubInstrCount will be attributed to the joined
1524       // parent.
1525     }
1526     R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1527     R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1528     DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1529     for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1530       R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1531       DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1532             << R.DFSNodeData[Idx].SubtreeID << '\n');
1533     }
1534     for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
1535            I = ConnectionPairs.begin(), E = ConnectionPairs.end();
1536          I != E; ++I) {
1537       unsigned PredTree = SubtreeClasses[I->first->NodeNum];
1538       unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
1539       if (PredTree == SuccTree)
1540         continue;
1541       unsigned Depth = I->first->getDepth();
1542       addConnection(PredTree, SuccTree, Depth);
1543       addConnection(SuccTree, PredTree, Depth);
1544     }
1545   }
1546 
1547 protected:
1548   /// Join the predecessor subtree with the successor that is its DFS
1549   /// parent. Apply some heuristics before joining.
1550   bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1551                        bool CheckLimit = true) {
1552     assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1553 
1554     // Check if the predecessor is already joined.
1555     const SUnit *PredSU = PredDep.getSUnit();
1556     unsigned PredNum = PredSU->NodeNum;
1557     if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1558       return false;
1559 
1560     // Four is the magic number of successors before a node is considered a
1561     // pinch point.
1562     unsigned NumDataSucs = 0;
1563     for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
1564            SE = PredSU->Succs.end(); SI != SE; ++SI) {
1565       if (SI->getKind() == SDep::Data) {
1566         if (++NumDataSucs >= 4)
1567           return false;
1568       }
1569     }
1570     if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1571       return false;
1572     R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1573     SubtreeClasses.join(Succ->NodeNum, PredNum);
1574     return true;
1575   }
1576 
1577   /// Called by finalize() to record a connection between trees.
1578   void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1579     if (!Depth)
1580       return;
1581 
1582     do {
1583       SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1584         R.SubtreeConnections[FromTree];
1585       for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
1586              I = Connections.begin(), E = Connections.end(); I != E; ++I) {
1587         if (I->TreeID == ToTree) {
1588           I->Level = std::max(I->Level, Depth);
1589           return;
1590         }
1591       }
1592       Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1593       FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1594     } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1595   }
1596 };
1597 } // namespace llvm
1598 
1599 namespace {
1600 /// \brief Manage the stack used by a reverse depth-first search over the DAG.
1601 class SchedDAGReverseDFS {
1602   std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1603 public:
1604   bool isComplete() const { return DFSStack.empty(); }
1605 
1606   void follow(const SUnit *SU) {
1607     DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1608   }
1609   void advance() { ++DFSStack.back().second; }
1610 
1611   const SDep *backtrack() {
1612     DFSStack.pop_back();
1613     return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1614   }
1615 
1616   const SUnit *getCurr() const { return DFSStack.back().first; }
1617 
1618   SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1619 
1620   SUnit::const_pred_iterator getPredEnd() const {
1621     return getCurr()->Preds.end();
1622   }
1623 };
1624 } // anonymous
1625 
1626 static bool hasDataSucc(const SUnit *SU) {
1627   for (SUnit::const_succ_iterator
1628          SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
1629     if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
1630       return true;
1631   }
1632   return false;
1633 }
1634 
1635 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1636 /// search from this root.
1637 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1638   if (!IsBottomUp)
1639     llvm_unreachable("Top-down ILP metric is unimplemnted");
1640 
1641   SchedDFSImpl Impl(*this);
1642   for (ArrayRef<SUnit>::const_iterator
1643          SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
1644     const SUnit *SU = &*SI;
1645     if (Impl.isVisited(SU) || hasDataSucc(SU))
1646       continue;
1647 
1648     SchedDAGReverseDFS DFS;
1649     Impl.visitPreorder(SU);
1650     DFS.follow(SU);
1651     for (;;) {
1652       // Traverse the leftmost path as far as possible.
1653       while (DFS.getPred() != DFS.getPredEnd()) {
1654         const SDep &PredDep = *DFS.getPred();
1655         DFS.advance();
1656         // Ignore non-data edges.
1657         if (PredDep.getKind() != SDep::Data
1658             || PredDep.getSUnit()->isBoundaryNode()) {
1659           continue;
1660         }
1661         // An already visited edge is a cross edge, assuming an acyclic DAG.
1662         if (Impl.isVisited(PredDep.getSUnit())) {
1663           Impl.visitCrossEdge(PredDep, DFS.getCurr());
1664           continue;
1665         }
1666         Impl.visitPreorder(PredDep.getSUnit());
1667         DFS.follow(PredDep.getSUnit());
1668       }
1669       // Visit the top of the stack in postorder and backtrack.
1670       const SUnit *Child = DFS.getCurr();
1671       const SDep *PredDep = DFS.backtrack();
1672       Impl.visitPostorderNode(Child);
1673       if (PredDep)
1674         Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1675       if (DFS.isComplete())
1676         break;
1677     }
1678   }
1679   Impl.finalize();
1680 }
1681 
1682 /// The root of the given SubtreeID was just scheduled. For all subtrees
1683 /// connected to this tree, record the depth of the connection so that the
1684 /// nearest connected subtrees can be prioritized.
1685 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1686   for (SmallVectorImpl<Connection>::const_iterator
1687          I = SubtreeConnections[SubtreeID].begin(),
1688          E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
1689     SubtreeConnectLevels[I->TreeID] =
1690       std::max(SubtreeConnectLevels[I->TreeID], I->Level);
1691     DEBUG(dbgs() << "  Tree: " << I->TreeID
1692           << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
1693   }
1694 }
1695 
1696 LLVM_DUMP_METHOD
1697 void ILPValue::print(raw_ostream &OS) const {
1698   OS << InstrCount << " / " << Length << " = ";
1699   if (!Length)
1700     OS << "BADILP";
1701   else
1702     OS << format("%g", ((double)InstrCount / Length));
1703 }
1704 
1705 LLVM_DUMP_METHOD
1706 void ILPValue::dump() const {
1707   dbgs() << *this << '\n';
1708 }
1709 
1710 namespace llvm {
1711 
1712 LLVM_DUMP_METHOD
1713 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1714   Val.print(OS);
1715   return OS;
1716 }
1717 
1718 } // namespace llvm
1719