1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling 11 // of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/PseudoSourceValue.h" 27 #include "llvm/CodeGen/RegisterPressure.h" 28 #include "llvm/CodeGen/ScheduleDFS.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/MC/MCInstrItineraries.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/Format.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetRegisterInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <queue> 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "misched" 44 45 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 46 cl::ZeroOrMore, cl::init(false), 47 cl::desc("Enable use of AA during MI DAG construction")); 48 49 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 50 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 51 52 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 53 const MachineLoopInfo *mli, 54 bool IsPostRAFlag, 55 bool RemoveKillFlags, 56 LiveIntervals *lis) 57 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), LIS(lis), 58 IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags), 59 CanHandleTerminators(false), FirstDbgValue(nullptr) { 60 assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals"); 61 DbgValues.clear(); 62 assert(!(IsPostRA && MRI.getNumVirtRegs()) && 63 "Virtual registers must be removed prior to PostRA scheduling"); 64 65 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 66 SchedModel.init(ST.getSchedModel(), &ST, TII); 67 } 68 69 /// getUnderlyingObjectFromInt - This is the function that does the work of 70 /// looking through basic ptrtoint+arithmetic+inttoptr sequences. 71 static const Value *getUnderlyingObjectFromInt(const Value *V) { 72 do { 73 if (const Operator *U = dyn_cast<Operator>(V)) { 74 // If we find a ptrtoint, we can transfer control back to the 75 // regular getUnderlyingObjectFromInt. 76 if (U->getOpcode() == Instruction::PtrToInt) 77 return U->getOperand(0); 78 // If we find an add of a constant, a multiplied value, or a phi, it's 79 // likely that the other operand will lead us to the base 80 // object. We don't have to worry about the case where the 81 // object address is somehow being computed by the multiply, 82 // because our callers only care when the result is an 83 // identifiable object. 84 if (U->getOpcode() != Instruction::Add || 85 (!isa<ConstantInt>(U->getOperand(1)) && 86 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 87 !isa<PHINode>(U->getOperand(1)))) 88 return V; 89 V = U->getOperand(0); 90 } else { 91 return V; 92 } 93 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 94 } while (1); 95 } 96 97 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects 98 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. 99 static void getUnderlyingObjects(const Value *V, 100 SmallVectorImpl<Value *> &Objects) { 101 SmallPtrSet<const Value *, 16> Visited; 102 SmallVector<const Value *, 4> Working(1, V); 103 do { 104 V = Working.pop_back_val(); 105 106 SmallVector<Value *, 4> Objs; 107 GetUnderlyingObjects(const_cast<Value *>(V), Objs); 108 109 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 110 I != IE; ++I) { 111 V = *I; 112 if (!Visited.insert(V).second) 113 continue; 114 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 115 const Value *O = 116 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 117 if (O->getType()->isPointerTy()) { 118 Working.push_back(O); 119 continue; 120 } 121 } 122 Objects.push_back(const_cast<Value *>(V)); 123 } 124 } while (!Working.empty()); 125 } 126 127 typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType; 128 typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4> 129 UnderlyingObjectsVector; 130 131 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference 132 /// information and it can be tracked to a normal reference to a known 133 /// object, return the Value for that object. 134 static void getUnderlyingObjectsForInstr(const MachineInstr *MI, 135 const MachineFrameInfo *MFI, 136 UnderlyingObjectsVector &Objects) { 137 if (!MI->hasOneMemOperand() || 138 (!(*MI->memoperands_begin())->getValue() && 139 !(*MI->memoperands_begin())->getPseudoValue()) || 140 (*MI->memoperands_begin())->isVolatile()) 141 return; 142 143 if (const PseudoSourceValue *PSV = 144 (*MI->memoperands_begin())->getPseudoValue()) { 145 // For now, ignore PseudoSourceValues which may alias LLVM IR values 146 // because the code that uses this function has no way to cope with 147 // such aliases. 148 if (!PSV->isAliased(MFI)) { 149 bool MayAlias = PSV->mayAlias(MFI); 150 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 151 } 152 return; 153 } 154 155 const Value *V = (*MI->memoperands_begin())->getValue(); 156 if (!V) 157 return; 158 159 SmallVector<Value *, 4> Objs; 160 getUnderlyingObjects(V, Objs); 161 162 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 163 I != IE; ++I) { 164 V = *I; 165 166 if (!isIdentifiedObject(V)) { 167 Objects.clear(); 168 return; 169 } 170 171 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 172 } 173 } 174 175 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 176 BB = bb; 177 } 178 179 void ScheduleDAGInstrs::finishBlock() { 180 // Subclasses should no longer refer to the old block. 181 BB = nullptr; 182 } 183 184 /// Initialize the DAG and common scheduler state for the current scheduling 185 /// region. This does not actually create the DAG, only clears it. The 186 /// scheduling driver may call BuildSchedGraph multiple times per scheduling 187 /// region. 188 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 189 MachineBasicBlock::iterator begin, 190 MachineBasicBlock::iterator end, 191 unsigned regioninstrs) { 192 assert(bb == BB && "startBlock should set BB"); 193 RegionBegin = begin; 194 RegionEnd = end; 195 NumRegionInstrs = regioninstrs; 196 } 197 198 /// Close the current scheduling region. Don't clear any state in case the 199 /// driver wants to refer to the previous scheduling region. 200 void ScheduleDAGInstrs::exitRegion() { 201 // Nothing to do. 202 } 203 204 /// addSchedBarrierDeps - Add dependencies from instructions in the current 205 /// list of instructions being scheduled to scheduling barrier by adding 206 /// the exit SU to the register defs and use list. This is because we want to 207 /// make sure instructions which define registers that are either used by 208 /// the terminator or are live-out are properly scheduled. This is 209 /// especially important when the definition latency of the return value(s) 210 /// are too high to be hidden by the branch or when the liveout registers 211 /// used by instructions in the fallthrough block. 212 void ScheduleDAGInstrs::addSchedBarrierDeps() { 213 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 214 ExitSU.setInstr(ExitMI); 215 bool AllDepKnown = ExitMI && 216 (ExitMI->isCall() || ExitMI->isBarrier()); 217 if (ExitMI && AllDepKnown) { 218 // If it's a call or a barrier, add dependencies on the defs and uses of 219 // instruction. 220 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { 221 const MachineOperand &MO = ExitMI->getOperand(i); 222 if (!MO.isReg() || MO.isDef()) continue; 223 unsigned Reg = MO.getReg(); 224 if (Reg == 0) continue; 225 226 if (TRI->isPhysicalRegister(Reg)) 227 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 228 else { 229 assert(!IsPostRA && "Virtual register encountered after regalloc."); 230 if (MO.readsReg()) // ignore undef operands 231 addVRegUseDeps(&ExitSU, i); 232 } 233 } 234 } else { 235 // For others, e.g. fallthrough, conditional branch, assume the exit 236 // uses all the registers that are livein to the successor blocks. 237 assert(Uses.empty() && "Uses in set before adding deps?"); 238 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 239 SE = BB->succ_end(); SI != SE; ++SI) 240 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 241 E = (*SI)->livein_end(); I != E; ++I) { 242 unsigned Reg = *I; 243 if (!Uses.contains(Reg)) 244 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 245 } 246 } 247 } 248 249 /// MO is an operand of SU's instruction that defines a physical register. Add 250 /// data dependencies from SU to any uses of the physical register. 251 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 252 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 253 assert(MO.isDef() && "expect physreg def"); 254 255 // Ask the target if address-backscheduling is desirable, and if so how much. 256 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 257 258 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 259 Alias.isValid(); ++Alias) { 260 if (!Uses.contains(*Alias)) 261 continue; 262 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 263 SUnit *UseSU = I->SU; 264 if (UseSU == SU) 265 continue; 266 267 // Adjust the dependence latency using operand def/use information, 268 // then allow the target to perform its own adjustments. 269 int UseOp = I->OpIdx; 270 MachineInstr *RegUse = nullptr; 271 SDep Dep; 272 if (UseOp < 0) 273 Dep = SDep(SU, SDep::Artificial); 274 else { 275 // Set the hasPhysRegDefs only for physreg defs that have a use within 276 // the scheduling region. 277 SU->hasPhysRegDefs = true; 278 Dep = SDep(SU, SDep::Data, *Alias); 279 RegUse = UseSU->getInstr(); 280 } 281 Dep.setLatency( 282 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 283 UseOp)); 284 285 ST.adjustSchedDependency(SU, UseSU, Dep); 286 UseSU->addPred(Dep); 287 } 288 } 289 } 290 291 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from 292 /// this SUnit to following instructions in the same scheduling region that 293 /// depend the physical register referenced at OperIdx. 294 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 295 MachineInstr *MI = SU->getInstr(); 296 MachineOperand &MO = MI->getOperand(OperIdx); 297 298 // Optionally add output and anti dependencies. For anti 299 // dependencies we use a latency of 0 because for a multi-issue 300 // target we want to allow the defining instruction to issue 301 // in the same cycle as the using instruction. 302 // TODO: Using a latency of 1 here for output dependencies assumes 303 // there's no cost for reusing registers. 304 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 305 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 306 Alias.isValid(); ++Alias) { 307 if (!Defs.contains(*Alias)) 308 continue; 309 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 310 SUnit *DefSU = I->SU; 311 if (DefSU == &ExitSU) 312 continue; 313 if (DefSU != SU && 314 (Kind != SDep::Output || !MO.isDead() || 315 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 316 if (Kind == SDep::Anti) 317 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 318 else { 319 SDep Dep(SU, Kind, /*Reg=*/*Alias); 320 Dep.setLatency( 321 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 322 DefSU->addPred(Dep); 323 } 324 } 325 } 326 } 327 328 if (!MO.isDef()) { 329 SU->hasPhysRegUses = true; 330 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 331 // retrieve the existing SUnits list for this register's uses. 332 // Push this SUnit on the use list. 333 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); 334 if (RemoveKillFlags) 335 MO.setIsKill(false); 336 } 337 else { 338 addPhysRegDataDeps(SU, OperIdx); 339 unsigned Reg = MO.getReg(); 340 341 // clear this register's use list 342 if (Uses.contains(Reg)) 343 Uses.eraseAll(Reg); 344 345 if (!MO.isDead()) { 346 Defs.eraseAll(Reg); 347 } else if (SU->isCall) { 348 // Calls will not be reordered because of chain dependencies (see 349 // below). Since call operands are dead, calls may continue to be added 350 // to the DefList making dependence checking quadratic in the size of 351 // the block. Instead, we leave only one call at the back of the 352 // DefList. 353 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 354 Reg2SUnitsMap::iterator B = P.first; 355 Reg2SUnitsMap::iterator I = P.second; 356 for (bool isBegin = I == B; !isBegin; /* empty */) { 357 isBegin = (--I) == B; 358 if (!I->SU->isCall) 359 break; 360 I = Defs.erase(I); 361 } 362 } 363 364 // Defs are pushed in the order they are visited and never reordered. 365 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 366 } 367 } 368 369 /// addVRegDefDeps - Add register output and data dependencies from this SUnit 370 /// to instructions that occur later in the same scheduling region if they read 371 /// from or write to the virtual register defined at OperIdx. 372 /// 373 /// TODO: Hoist loop induction variable increments. This has to be 374 /// reevaluated. Generally, IV scheduling should be done before coalescing. 375 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 376 const MachineInstr *MI = SU->getInstr(); 377 unsigned Reg = MI->getOperand(OperIdx).getReg(); 378 379 // Singly defined vregs do not have output/anti dependencies. 380 // The current operand is a def, so we have at least one. 381 // Check here if there are any others... 382 if (MRI.hasOneDef(Reg)) 383 return; 384 385 // Add output dependence to the next nearest def of this vreg. 386 // 387 // Unless this definition is dead, the output dependence should be 388 // transitively redundant with antidependencies from this definition's 389 // uses. We're conservative for now until we have a way to guarantee the uses 390 // are not eliminated sometime during scheduling. The output dependence edge 391 // is also useful if output latency exceeds def-use latency. 392 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 393 if (DefI == VRegDefs.end()) 394 VRegDefs.insert(VReg2SUnit(Reg, SU)); 395 else { 396 SUnit *DefSU = DefI->SU; 397 if (DefSU != SU && DefSU != &ExitSU) { 398 SDep Dep(SU, SDep::Output, Reg); 399 Dep.setLatency( 400 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 401 DefSU->addPred(Dep); 402 } 403 DefI->SU = SU; 404 } 405 } 406 407 /// addVRegUseDeps - Add a register data dependency if the instruction that 408 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a 409 /// register antidependency from this SUnit to instructions that occur later in 410 /// the same scheduling region if they write the virtual register. 411 /// 412 /// TODO: Handle ExitSU "uses" properly. 413 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 414 MachineInstr *MI = SU->getInstr(); 415 unsigned Reg = MI->getOperand(OperIdx).getReg(); 416 417 // Record this local VReg use. 418 VReg2UseMap::iterator UI = VRegUses.find(Reg); 419 for (; UI != VRegUses.end(); ++UI) { 420 if (UI->SU == SU) 421 break; 422 } 423 if (UI == VRegUses.end()) 424 VRegUses.insert(VReg2SUnit(Reg, SU)); 425 426 // Lookup this operand's reaching definition. 427 assert(LIS && "vreg dependencies requires LiveIntervals"); 428 LiveQueryResult LRQ 429 = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI)); 430 VNInfo *VNI = LRQ.valueIn(); 431 432 // VNI will be valid because MachineOperand::readsReg() is checked by caller. 433 assert(VNI && "No value to read by operand"); 434 MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); 435 // Phis and other noninstructions (after coalescing) have a NULL Def. 436 if (Def) { 437 SUnit *DefSU = getSUnit(Def); 438 if (DefSU) { 439 // The reaching Def lives within this scheduling region. 440 // Create a data dependence. 441 SDep dep(DefSU, SDep::Data, Reg); 442 // Adjust the dependence latency using operand def/use information, then 443 // allow the target to perform its own adjustments. 444 int DefOp = Def->findRegisterDefOperandIdx(Reg); 445 dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx)); 446 447 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 448 ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep)); 449 SU->addPred(dep); 450 } 451 } 452 453 // Add antidependence to the following def of the vreg it uses. 454 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 455 if (DefI != VRegDefs.end() && DefI->SU != SU) 456 DefI->SU->addPred(SDep(SU, SDep::Anti, Reg)); 457 } 458 459 /// Return true if MI is an instruction we are unable to reason about 460 /// (like a call or something with unmodeled side effects). 461 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 462 if (MI->isCall() || MI->hasUnmodeledSideEffects() || 463 (MI->hasOrderedMemoryRef() && 464 (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) 465 return true; 466 return false; 467 } 468 469 // This MI might have either incomplete info, or known to be unsafe 470 // to deal with (i.e. volatile object). 471 static inline bool isUnsafeMemoryObject(MachineInstr *MI, 472 const MachineFrameInfo *MFI) { 473 if (!MI || MI->memoperands_empty()) 474 return true; 475 // We purposefully do no check for hasOneMemOperand() here 476 // in hope to trigger an assert downstream in order to 477 // finish implementation. 478 if ((*MI->memoperands_begin())->isVolatile() || 479 MI->hasUnmodeledSideEffects()) 480 return true; 481 482 if ((*MI->memoperands_begin())->getPseudoValue()) { 483 // Similarly to getUnderlyingObjectForInstr: 484 // For now, ignore PseudoSourceValues which may alias LLVM IR values 485 // because the code that uses this function has no way to cope with 486 // such aliases. 487 return true; 488 } 489 490 const Value *V = (*MI->memoperands_begin())->getValue(); 491 if (!V) 492 return true; 493 494 SmallVector<Value *, 4> Objs; 495 getUnderlyingObjects(V, Objs); 496 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), 497 IE = Objs.end(); I != IE; ++I) { 498 // Does this pointer refer to a distinct and identifiable object? 499 if (!isIdentifiedObject(*I)) 500 return true; 501 } 502 503 return false; 504 } 505 506 /// This returns true if the two MIs need a chain edge betwee them. 507 /// If these are not even memory operations, we still may need 508 /// chain deps between them. The question really is - could 509 /// these two MIs be reordered during scheduling from memory dependency 510 /// point of view. 511 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 512 MachineInstr *MIa, 513 MachineInstr *MIb) { 514 const MachineFunction *MF = MIa->getParent()->getParent(); 515 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 516 517 // Cover a trivial case - no edge is need to itself. 518 if (MIa == MIb) 519 return false; 520 521 // Let the target decide if memory accesses cannot possibly overlap. 522 if ((MIa->mayLoad() || MIa->mayStore()) && 523 (MIb->mayLoad() || MIb->mayStore())) 524 if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA)) 525 return false; 526 527 // FIXME: Need to handle multiple memory operands to support all targets. 528 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 529 return true; 530 531 if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI)) 532 return true; 533 534 // If we are dealing with two "normal" loads, we do not need an edge 535 // between them - they could be reordered. 536 if (!MIa->mayStore() && !MIb->mayStore()) 537 return false; 538 539 // To this point analysis is generic. From here on we do need AA. 540 if (!AA) 541 return true; 542 543 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 544 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 545 546 if (!MMOa->getValue() || !MMOb->getValue()) 547 return true; 548 549 // The following interface to AA is fashioned after DAGCombiner::isAlias 550 // and operates with MachineMemOperand offset with some important 551 // assumptions: 552 // - LLVM fundamentally assumes flat address spaces. 553 // - MachineOperand offset can *only* result from legalization and 554 // cannot affect queries other than the trivial case of overlap 555 // checking. 556 // - These offsets never wrap and never step outside 557 // of allocated objects. 558 // - There should never be any negative offsets here. 559 // 560 // FIXME: Modify API to hide this math from "user" 561 // FIXME: Even before we go to AA we can reason locally about some 562 // memory objects. It can save compile time, and possibly catch some 563 // corner cases not currently covered. 564 565 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 566 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 567 568 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 569 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 570 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 571 572 AliasAnalysis::AliasResult AAResult = AA->alias( 573 AliasAnalysis::Location(MMOa->getValue(), Overlapa, 574 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 575 AliasAnalysis::Location(MMOb->getValue(), Overlapb, 576 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 577 578 return (AAResult != AliasAnalysis::NoAlias); 579 } 580 581 /// This recursive function iterates over chain deps of SUb looking for 582 /// "latest" node that needs a chain edge to SUa. 583 static unsigned 584 iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI, 585 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth, 586 SmallPtrSetImpl<const SUnit*> &Visited) { 587 if (!SUa || !SUb || SUb == ExitSU) 588 return *Depth; 589 590 // Remember visited nodes. 591 if (!Visited.insert(SUb).second) 592 return *Depth; 593 // If there is _some_ dependency already in place, do not 594 // descend any further. 595 // TODO: Need to make sure that if that dependency got eliminated or ignored 596 // for any reason in the future, we would not violate DAG topology. 597 // Currently it does not happen, but makes an implicit assumption about 598 // future implementation. 599 // 600 // Independently, if we encounter node that is some sort of global 601 // object (like a call) we already have full set of dependencies to it 602 // and we can stop descending. 603 if (SUa->isSucc(SUb) || 604 isGlobalMemoryObject(AA, SUb->getInstr())) 605 return *Depth; 606 607 // If we do need an edge, or we have exceeded depth budget, 608 // add that edge to the predecessors chain of SUb, 609 // and stop descending. 610 if (*Depth > 200 || 611 MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 612 SUb->addPred(SDep(SUa, SDep::MayAliasMem)); 613 return *Depth; 614 } 615 // Track current depth. 616 (*Depth)++; 617 // Iterate over memory dependencies only. 618 for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end(); 619 I != E; ++I) 620 if (I->isNormalMemoryOrBarrier()) 621 iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited); 622 return *Depth; 623 } 624 625 /// This function assumes that "downward" from SU there exist 626 /// tail/leaf of already constructed DAG. It iterates downward and 627 /// checks whether SU can be aliasing any node dominated 628 /// by it. 629 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI, 630 SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList, 631 unsigned LatencyToLoad) { 632 if (!SU) 633 return; 634 635 SmallPtrSet<const SUnit*, 16> Visited; 636 unsigned Depth = 0; 637 638 for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end(); 639 I != IE; ++I) { 640 if (SU == *I) 641 continue; 642 if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) { 643 SDep Dep(SU, SDep::MayAliasMem); 644 Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0); 645 (*I)->addPred(Dep); 646 } 647 648 // Iterate recursively over all previously added memory chain 649 // successors. Keep track of visited nodes. 650 for (SUnit::const_succ_iterator J = (*I)->Succs.begin(), 651 JE = (*I)->Succs.end(); J != JE; ++J) 652 if (J->isNormalMemoryOrBarrier()) 653 iterateChainSucc (AA, MFI, SU, J->getSUnit(), 654 ExitSU, &Depth, Visited); 655 } 656 } 657 658 /// Check whether two objects need a chain edge, if so, add it 659 /// otherwise remember the rejected SU. 660 static inline 661 void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI, 662 SUnit *SUa, SUnit *SUb, 663 std::set<SUnit *> &RejectList, 664 unsigned TrueMemOrderLatency = 0, 665 bool isNormalMemory = false) { 666 // If this is a false dependency, 667 // do not add the edge, but rememeber the rejected node. 668 if (MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 669 SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier); 670 Dep.setLatency(TrueMemOrderLatency); 671 SUb->addPred(Dep); 672 } 673 else { 674 // Duplicate entries should be ignored. 675 RejectList.insert(SUb); 676 DEBUG(dbgs() << "\tReject chain dep between SU(" 677 << SUa->NodeNum << ") and SU(" 678 << SUb->NodeNum << ")\n"); 679 } 680 } 681 682 /// Create an SUnit for each real instruction, numbered in top-down toplological 683 /// order. The instruction order A < B, implies that no edge exists from B to A. 684 /// 685 /// Map each real instruction to its SUnit. 686 /// 687 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 688 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 689 /// instead of pointers. 690 /// 691 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 692 /// the original instruction list. 693 void ScheduleDAGInstrs::initSUnits() { 694 // We'll be allocating one SUnit for each real instruction in the region, 695 // which is contained within a basic block. 696 SUnits.reserve(NumRegionInstrs); 697 698 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { 699 MachineInstr *MI = I; 700 if (MI->isDebugValue()) 701 continue; 702 703 SUnit *SU = newSUnit(MI); 704 MISUnitMap[MI] = SU; 705 706 SU->isCall = MI->isCall(); 707 SU->isCommutable = MI->isCommutable(); 708 709 // Assign the Latency field of SU using target-provided information. 710 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 711 712 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 713 // 714 // Reserved resources block an instruction from issuing and stall the 715 // entire pipeline. These are identified by BufferSize=0. 716 // 717 // Unbuffered resources prevent execution of subsequent instructions that 718 // require the same resources. This is used for in-order execution pipelines 719 // within an out-of-order core. These are identified by BufferSize=1. 720 if (SchedModel.hasInstrSchedModel()) { 721 const MCSchedClassDesc *SC = getSchedClass(SU); 722 for (TargetSchedModel::ProcResIter 723 PI = SchedModel.getWriteProcResBegin(SC), 724 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 725 switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) { 726 case 0: 727 SU->hasReservedResource = true; 728 break; 729 case 1: 730 SU->isUnbuffered = true; 731 break; 732 default: 733 break; 734 } 735 } 736 } 737 } 738 } 739 740 /// If RegPressure is non-null, compute register pressure as a side effect. The 741 /// DAG builder is an efficient place to do it because it already visits 742 /// operands. 743 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 744 RegPressureTracker *RPTracker, 745 PressureDiffs *PDiffs) { 746 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 747 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 748 : ST.useAA(); 749 AliasAnalysis *AAForDep = UseAA ? AA : nullptr; 750 751 MISUnitMap.clear(); 752 ScheduleDAG::clearDAG(); 753 754 // Create an SUnit for each real instruction. 755 initSUnits(); 756 757 if (PDiffs) 758 PDiffs->init(SUnits.size()); 759 760 // We build scheduling units by walking a block's instruction list from bottom 761 // to top. 762 763 // Remember where a generic side-effecting instruction is as we procede. 764 SUnit *BarrierChain = nullptr, *AliasChain = nullptr; 765 766 // Memory references to specific known memory locations are tracked 767 // so that they can be given more precise dependencies. We track 768 // separately the known memory locations that may alias and those 769 // that are known not to alias 770 MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs; 771 MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; 772 std::set<SUnit*> RejectMemNodes; 773 774 // Remove any stale debug info; sometimes BuildSchedGraph is called again 775 // without emitting the info from the previous call. 776 DbgValues.clear(); 777 FirstDbgValue = nullptr; 778 779 assert(Defs.empty() && Uses.empty() && 780 "Only BuildGraph should update Defs/Uses"); 781 Defs.setUniverse(TRI->getNumRegs()); 782 Uses.setUniverse(TRI->getNumRegs()); 783 784 assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); 785 VRegUses.clear(); 786 VRegDefs.setUniverse(MRI.getNumVirtRegs()); 787 VRegUses.setUniverse(MRI.getNumVirtRegs()); 788 789 // Model data dependencies between instructions being scheduled and the 790 // ExitSU. 791 addSchedBarrierDeps(); 792 793 // Walk the list of instructions, from bottom moving up. 794 MachineInstr *DbgMI = nullptr; 795 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 796 MII != MIE; --MII) { 797 MachineInstr *MI = std::prev(MII); 798 if (MI && DbgMI) { 799 DbgValues.push_back(std::make_pair(DbgMI, MI)); 800 DbgMI = nullptr; 801 } 802 803 if (MI->isDebugValue()) { 804 DbgMI = MI; 805 continue; 806 } 807 SUnit *SU = MISUnitMap[MI]; 808 assert(SU && "No SUnit mapped to this MI"); 809 810 if (RPTracker) { 811 PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : nullptr; 812 RPTracker->recede(/*LiveUses=*/nullptr, PDiff); 813 assert(RPTracker->getPos() == std::prev(MII) && 814 "RPTracker can't find MI"); 815 } 816 817 assert( 818 (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) && 819 "Cannot schedule terminators or labels!"); 820 821 // Add register-based dependencies (data, anti, and output). 822 bool HasVRegDef = false; 823 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { 824 const MachineOperand &MO = MI->getOperand(j); 825 if (!MO.isReg()) continue; 826 unsigned Reg = MO.getReg(); 827 if (Reg == 0) continue; 828 829 if (TRI->isPhysicalRegister(Reg)) 830 addPhysRegDeps(SU, j); 831 else { 832 assert(!IsPostRA && "Virtual register encountered!"); 833 if (MO.isDef()) { 834 HasVRegDef = true; 835 addVRegDefDeps(SU, j); 836 } 837 else if (MO.readsReg()) // ignore undef operands 838 addVRegUseDeps(SU, j); 839 } 840 } 841 // If we haven't seen any uses in this scheduling region, create a 842 // dependence edge to ExitSU to model the live-out latency. This is required 843 // for vreg defs with no in-region use, and prefetches with no vreg def. 844 // 845 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 846 // check currently relies on being called before adding chain deps. 847 if (SU->NumSuccs == 0 && SU->Latency > 1 848 && (HasVRegDef || MI->mayLoad())) { 849 SDep Dep(SU, SDep::Artificial); 850 Dep.setLatency(SU->Latency - 1); 851 ExitSU.addPred(Dep); 852 } 853 854 // Add chain dependencies. 855 // Chain dependencies used to enforce memory order should have 856 // latency of 0 (except for true dependency of Store followed by 857 // aliased Load... we estimate that with a single cycle of latency 858 // assuming the hardware will bypass) 859 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable 860 // after stack slots are lowered to actual addresses. 861 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and 862 // produce more precise dependence information. 863 unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0; 864 if (isGlobalMemoryObject(AA, MI)) { 865 // Be conservative with these and add dependencies on all memory 866 // references, even those that are known to not alias. 867 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 868 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { 869 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 870 I->second[i]->addPred(SDep(SU, SDep::Barrier)); 871 } 872 } 873 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 874 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { 875 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 876 SDep Dep(SU, SDep::Barrier); 877 Dep.setLatency(TrueMemOrderLatency); 878 I->second[i]->addPred(Dep); 879 } 880 } 881 // Add SU to the barrier chain. 882 if (BarrierChain) 883 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 884 BarrierChain = SU; 885 // This is a barrier event that acts as a pivotal node in the DAG, 886 // so it is safe to clear list of exposed nodes. 887 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 888 TrueMemOrderLatency); 889 RejectMemNodes.clear(); 890 NonAliasMemDefs.clear(); 891 NonAliasMemUses.clear(); 892 893 // fall-through 894 new_alias_chain: 895 // Chain all possibly aliasing memory references through SU. 896 if (AliasChain) { 897 unsigned ChainLatency = 0; 898 if (AliasChain->getInstr()->mayLoad()) 899 ChainLatency = TrueMemOrderLatency; 900 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes, 901 ChainLatency); 902 } 903 AliasChain = SU; 904 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 905 addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes, 906 TrueMemOrderLatency); 907 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 908 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) { 909 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 910 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes); 911 } 912 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 913 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { 914 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 915 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes, 916 TrueMemOrderLatency); 917 } 918 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 919 TrueMemOrderLatency); 920 PendingLoads.clear(); 921 AliasMemDefs.clear(); 922 AliasMemUses.clear(); 923 } else if (MI->mayStore()) { 924 // Add dependence on barrier chain, if needed. 925 // There is no point to check aliasing on barrier event. Even if 926 // SU and barrier _could_ be reordered, they should not. In addition, 927 // we have lost all RejectMemNodes below barrier. 928 if (BarrierChain) 929 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 930 931 UnderlyingObjectsVector Objs; 932 getUnderlyingObjectsForInstr(MI, MFI, Objs); 933 934 if (Objs.empty()) { 935 // Treat all other stores conservatively. 936 goto new_alias_chain; 937 } 938 939 bool MayAlias = false; 940 for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end(); 941 K != KE; ++K) { 942 ValueType V = K->getPointer(); 943 bool ThisMayAlias = K->getInt(); 944 if (ThisMayAlias) 945 MayAlias = true; 946 947 // A store to a specific PseudoSourceValue. Add precise dependencies. 948 // Record the def in MemDefs, first adding a dep if there is 949 // an existing def. 950 MapVector<ValueType, std::vector<SUnit *> >::iterator I = 951 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 952 MapVector<ValueType, std::vector<SUnit *> >::iterator IE = 953 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 954 if (I != IE) { 955 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 956 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes, 957 0, true); 958 959 // If we're not using AA, then we only need one store per object. 960 if (!AAForDep) 961 I->second.clear(); 962 I->second.push_back(SU); 963 } else { 964 if (ThisMayAlias) { 965 if (!AAForDep) 966 AliasMemDefs[V].clear(); 967 AliasMemDefs[V].push_back(SU); 968 } else { 969 if (!AAForDep) 970 NonAliasMemDefs[V].clear(); 971 NonAliasMemDefs[V].push_back(SU); 972 } 973 } 974 // Handle the uses in MemUses, if there are any. 975 MapVector<ValueType, std::vector<SUnit *> >::iterator J = 976 ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); 977 MapVector<ValueType, std::vector<SUnit *> >::iterator JE = 978 ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); 979 if (J != JE) { 980 for (unsigned i = 0, e = J->second.size(); i != e; ++i) 981 addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes, 982 TrueMemOrderLatency, true); 983 J->second.clear(); 984 } 985 } 986 if (MayAlias) { 987 // Add dependencies from all the PendingLoads, i.e. loads 988 // with no underlying object. 989 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 990 addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes, 991 TrueMemOrderLatency); 992 // Add dependence on alias chain, if needed. 993 if (AliasChain) 994 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes); 995 // But we also should check dependent instructions for the 996 // SU in question. 997 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 998 TrueMemOrderLatency); 999 } 1000 } else if (MI->mayLoad()) { 1001 bool MayAlias = true; 1002 if (MI->isInvariantLoad(AA)) { 1003 // Invariant load, no chain dependencies needed! 1004 } else { 1005 UnderlyingObjectsVector Objs; 1006 getUnderlyingObjectsForInstr(MI, MFI, Objs); 1007 1008 if (Objs.empty()) { 1009 // A load with no underlying object. Depend on all 1010 // potentially aliasing stores. 1011 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 1012 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) 1013 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1014 addChainDependency(AAForDep, MFI, SU, I->second[i], 1015 RejectMemNodes); 1016 1017 PendingLoads.push_back(SU); 1018 MayAlias = true; 1019 } else { 1020 MayAlias = false; 1021 } 1022 1023 for (UnderlyingObjectsVector::iterator 1024 J = Objs.begin(), JE = Objs.end(); J != JE; ++J) { 1025 ValueType V = J->getPointer(); 1026 bool ThisMayAlias = J->getInt(); 1027 1028 if (ThisMayAlias) 1029 MayAlias = true; 1030 1031 // A load from a specific PseudoSourceValue. Add precise dependencies. 1032 MapVector<ValueType, std::vector<SUnit *> >::iterator I = 1033 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 1034 MapVector<ValueType, std::vector<SUnit *> >::iterator IE = 1035 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 1036 if (I != IE) 1037 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1038 addChainDependency(AAForDep, MFI, SU, I->second[i], 1039 RejectMemNodes, 0, true); 1040 if (ThisMayAlias) 1041 AliasMemUses[V].push_back(SU); 1042 else 1043 NonAliasMemUses[V].push_back(SU); 1044 } 1045 if (MayAlias) 1046 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0); 1047 // Add dependencies on alias and barrier chains, if needed. 1048 if (MayAlias && AliasChain) 1049 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes); 1050 if (BarrierChain) 1051 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 1052 } 1053 } 1054 } 1055 if (DbgMI) 1056 FirstDbgValue = DbgMI; 1057 1058 Defs.clear(); 1059 Uses.clear(); 1060 VRegDefs.clear(); 1061 PendingLoads.clear(); 1062 } 1063 1064 /// \brief Initialize register live-range state for updating kills. 1065 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { 1066 // Start with no live registers. 1067 LiveRegs.reset(); 1068 1069 // Examine the live-in regs of all successors. 1070 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 1071 SE = BB->succ_end(); SI != SE; ++SI) { 1072 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 1073 E = (*SI)->livein_end(); I != E; ++I) { 1074 unsigned Reg = *I; 1075 // Repeat, for reg and all subregs. 1076 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1077 SubRegs.isValid(); ++SubRegs) 1078 LiveRegs.set(*SubRegs); 1079 } 1080 } 1081 } 1082 1083 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) { 1084 // Setting kill flag... 1085 if (!MO.isKill()) { 1086 MO.setIsKill(true); 1087 return false; 1088 } 1089 1090 // If MO itself is live, clear the kill flag... 1091 if (LiveRegs.test(MO.getReg())) { 1092 MO.setIsKill(false); 1093 return false; 1094 } 1095 1096 // If any subreg of MO is live, then create an imp-def for that 1097 // subreg and keep MO marked as killed. 1098 MO.setIsKill(false); 1099 bool AllDead = true; 1100 const unsigned SuperReg = MO.getReg(); 1101 MachineInstrBuilder MIB(MF, MI); 1102 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { 1103 if (LiveRegs.test(*SubRegs)) { 1104 MIB.addReg(*SubRegs, RegState::ImplicitDefine); 1105 AllDead = false; 1106 } 1107 } 1108 1109 if(AllDead) 1110 MO.setIsKill(true); 1111 return false; 1112 } 1113 1114 // FIXME: Reuse the LivePhysRegs utility for this. 1115 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { 1116 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); 1117 1118 LiveRegs.resize(TRI->getNumRegs()); 1119 BitVector killedRegs(TRI->getNumRegs()); 1120 1121 startBlockForKills(MBB); 1122 1123 // Examine block from end to start... 1124 unsigned Count = MBB->size(); 1125 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); 1126 I != E; --Count) { 1127 MachineInstr *MI = --I; 1128 if (MI->isDebugValue()) 1129 continue; 1130 1131 // Update liveness. Registers that are defed but not used in this 1132 // instruction are now dead. Mark register and all subregs as they 1133 // are completely defined. 1134 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1135 MachineOperand &MO = MI->getOperand(i); 1136 if (MO.isRegMask()) 1137 LiveRegs.clearBitsNotInMask(MO.getRegMask()); 1138 if (!MO.isReg()) continue; 1139 unsigned Reg = MO.getReg(); 1140 if (Reg == 0) continue; 1141 if (!MO.isDef()) continue; 1142 // Ignore two-addr defs. 1143 if (MI->isRegTiedToUseOperand(i)) continue; 1144 1145 // Repeat for reg and all subregs. 1146 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1147 SubRegs.isValid(); ++SubRegs) 1148 LiveRegs.reset(*SubRegs); 1149 } 1150 1151 // Examine all used registers and set/clear kill flag. When a 1152 // register is used multiple times we only set the kill flag on 1153 // the first use. Don't set kill flags on undef operands. 1154 killedRegs.reset(); 1155 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1156 MachineOperand &MO = MI->getOperand(i); 1157 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1158 unsigned Reg = MO.getReg(); 1159 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1160 1161 bool kill = false; 1162 if (!killedRegs.test(Reg)) { 1163 kill = true; 1164 // A register is not killed if any subregs are live... 1165 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 1166 if (LiveRegs.test(*SubRegs)) { 1167 kill = false; 1168 break; 1169 } 1170 } 1171 1172 // If subreg is not live, then register is killed if it became 1173 // live in this instruction 1174 if (kill) 1175 kill = !LiveRegs.test(Reg); 1176 } 1177 1178 if (MO.isKill() != kill) { 1179 DEBUG(dbgs() << "Fixing " << MO << " in "); 1180 // Warning: toggleKillFlag may invalidate MO. 1181 toggleKillFlag(MI, MO); 1182 DEBUG(MI->dump()); 1183 } 1184 1185 killedRegs.set(Reg); 1186 } 1187 1188 // Mark any used register (that is not using undef) and subregs as 1189 // now live... 1190 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1191 MachineOperand &MO = MI->getOperand(i); 1192 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1193 unsigned Reg = MO.getReg(); 1194 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1195 1196 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1197 SubRegs.isValid(); ++SubRegs) 1198 LiveRegs.set(*SubRegs); 1199 } 1200 } 1201 } 1202 1203 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1204 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1205 SU->getInstr()->dump(); 1206 #endif 1207 } 1208 1209 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1210 std::string s; 1211 raw_string_ostream oss(s); 1212 if (SU == &EntrySU) 1213 oss << "<entry>"; 1214 else if (SU == &ExitSU) 1215 oss << "<exit>"; 1216 else 1217 SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true); 1218 return oss.str(); 1219 } 1220 1221 /// Return the basic block label. It is not necessarilly unique because a block 1222 /// contains multiple scheduling regions. But it is fine for visualization. 1223 std::string ScheduleDAGInstrs::getDAGName() const { 1224 return "dag." + BB->getFullName(); 1225 } 1226 1227 //===----------------------------------------------------------------------===// 1228 // SchedDFSResult Implementation 1229 //===----------------------------------------------------------------------===// 1230 1231 namespace llvm { 1232 /// \brief Internal state used to compute SchedDFSResult. 1233 class SchedDFSImpl { 1234 SchedDFSResult &R; 1235 1236 /// Join DAG nodes into equivalence classes by their subtree. 1237 IntEqClasses SubtreeClasses; 1238 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1239 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 1240 1241 struct RootData { 1242 unsigned NodeID; 1243 unsigned ParentNodeID; // Parent node (member of the parent subtree). 1244 unsigned SubInstrCount; // Instr count in this tree only, not children. 1245 1246 RootData(unsigned id): NodeID(id), 1247 ParentNodeID(SchedDFSResult::InvalidSubtreeID), 1248 SubInstrCount(0) {} 1249 1250 unsigned getSparseSetIndex() const { return NodeID; } 1251 }; 1252 1253 SparseSet<RootData> RootSet; 1254 1255 public: 1256 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1257 RootSet.setUniverse(R.DFSNodeData.size()); 1258 } 1259 1260 /// Return true if this node been visited by the DFS traversal. 1261 /// 1262 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1263 /// ID. Later, SubtreeID is updated but remains valid. 1264 bool isVisited(const SUnit *SU) const { 1265 return R.DFSNodeData[SU->NodeNum].SubtreeID 1266 != SchedDFSResult::InvalidSubtreeID; 1267 } 1268 1269 /// Initialize this node's instruction count. We don't need to flag the node 1270 /// visited until visitPostorder because the DAG cannot have cycles. 1271 void visitPreorder(const SUnit *SU) { 1272 R.DFSNodeData[SU->NodeNum].InstrCount = 1273 SU->getInstr()->isTransient() ? 0 : 1; 1274 } 1275 1276 /// Called once for each node after all predecessors are visited. Revisit this 1277 /// node's predecessors and potentially join them now that we know the ILP of 1278 /// the other predecessors. 1279 void visitPostorderNode(const SUnit *SU) { 1280 // Mark this node as the root of a subtree. It may be joined with its 1281 // successors later. 1282 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1283 RootData RData(SU->NodeNum); 1284 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1285 1286 // If any predecessors are still in their own subtree, they either cannot be 1287 // joined or are large enough to remain separate. If this parent node's 1288 // total instruction count is not greater than a child subtree by at least 1289 // the subtree limit, then try to join it now since splitting subtrees is 1290 // only useful if multiple high-pressure paths are possible. 1291 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1292 for (SUnit::const_pred_iterator 1293 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1294 if (PI->getKind() != SDep::Data) 1295 continue; 1296 unsigned PredNum = PI->getSUnit()->NodeNum; 1297 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1298 joinPredSubtree(*PI, SU, /*CheckLimit=*/false); 1299 1300 // Either link or merge the TreeData entry from the child to the parent. 1301 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1302 // If the predecessor's parent is invalid, this is a tree edge and the 1303 // current node is the parent. 1304 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1305 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1306 } 1307 else if (RootSet.count(PredNum)) { 1308 // The predecessor is not a root, but is still in the root set. This 1309 // must be the new parent that it was just joined to. Note that 1310 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1311 // set to the original parent. 1312 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1313 RootSet.erase(PredNum); 1314 } 1315 } 1316 RootSet[SU->NodeNum] = RData; 1317 } 1318 1319 /// Called once for each tree edge after calling visitPostOrderNode on the 1320 /// predecessor. Increment the parent node's instruction count and 1321 /// preemptively join this subtree to its parent's if it is small enough. 1322 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1323 R.DFSNodeData[Succ->NodeNum].InstrCount 1324 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1325 joinPredSubtree(PredDep, Succ); 1326 } 1327 1328 /// Add a connection for cross edges. 1329 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1330 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1331 } 1332 1333 /// Set each node's subtree ID to the representative ID and record connections 1334 /// between trees. 1335 void finalize() { 1336 SubtreeClasses.compress(); 1337 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1338 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1339 && "number of roots should match trees"); 1340 for (SparseSet<RootData>::const_iterator 1341 RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) { 1342 unsigned TreeID = SubtreeClasses[RI->NodeID]; 1343 if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1344 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID]; 1345 R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount; 1346 // Note that SubInstrCount may be greater than InstrCount if we joined 1347 // subtrees across a cross edge. InstrCount will be attributed to the 1348 // original parent, while SubInstrCount will be attributed to the joined 1349 // parent. 1350 } 1351 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1352 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1353 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1354 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1355 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1356 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1357 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1358 } 1359 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator 1360 I = ConnectionPairs.begin(), E = ConnectionPairs.end(); 1361 I != E; ++I) { 1362 unsigned PredTree = SubtreeClasses[I->first->NodeNum]; 1363 unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; 1364 if (PredTree == SuccTree) 1365 continue; 1366 unsigned Depth = I->first->getDepth(); 1367 addConnection(PredTree, SuccTree, Depth); 1368 addConnection(SuccTree, PredTree, Depth); 1369 } 1370 } 1371 1372 protected: 1373 /// Join the predecessor subtree with the successor that is its DFS 1374 /// parent. Apply some heuristics before joining. 1375 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1376 bool CheckLimit = true) { 1377 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1378 1379 // Check if the predecessor is already joined. 1380 const SUnit *PredSU = PredDep.getSUnit(); 1381 unsigned PredNum = PredSU->NodeNum; 1382 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1383 return false; 1384 1385 // Four is the magic number of successors before a node is considered a 1386 // pinch point. 1387 unsigned NumDataSucs = 0; 1388 for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(), 1389 SE = PredSU->Succs.end(); SI != SE; ++SI) { 1390 if (SI->getKind() == SDep::Data) { 1391 if (++NumDataSucs >= 4) 1392 return false; 1393 } 1394 } 1395 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1396 return false; 1397 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1398 SubtreeClasses.join(Succ->NodeNum, PredNum); 1399 return true; 1400 } 1401 1402 /// Called by finalize() to record a connection between trees. 1403 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1404 if (!Depth) 1405 return; 1406 1407 do { 1408 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1409 R.SubtreeConnections[FromTree]; 1410 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator 1411 I = Connections.begin(), E = Connections.end(); I != E; ++I) { 1412 if (I->TreeID == ToTree) { 1413 I->Level = std::max(I->Level, Depth); 1414 return; 1415 } 1416 } 1417 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1418 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1419 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1420 } 1421 }; 1422 } // namespace llvm 1423 1424 namespace { 1425 /// \brief Manage the stack used by a reverse depth-first search over the DAG. 1426 class SchedDAGReverseDFS { 1427 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 1428 public: 1429 bool isComplete() const { return DFSStack.empty(); } 1430 1431 void follow(const SUnit *SU) { 1432 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1433 } 1434 void advance() { ++DFSStack.back().second; } 1435 1436 const SDep *backtrack() { 1437 DFSStack.pop_back(); 1438 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1439 } 1440 1441 const SUnit *getCurr() const { return DFSStack.back().first; } 1442 1443 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1444 1445 SUnit::const_pred_iterator getPredEnd() const { 1446 return getCurr()->Preds.end(); 1447 } 1448 }; 1449 } // anonymous 1450 1451 static bool hasDataSucc(const SUnit *SU) { 1452 for (SUnit::const_succ_iterator 1453 SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) { 1454 if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode()) 1455 return true; 1456 } 1457 return false; 1458 } 1459 1460 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first 1461 /// search from this root. 1462 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1463 if (!IsBottomUp) 1464 llvm_unreachable("Top-down ILP metric is unimplemnted"); 1465 1466 SchedDFSImpl Impl(*this); 1467 for (ArrayRef<SUnit>::const_iterator 1468 SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) { 1469 const SUnit *SU = &*SI; 1470 if (Impl.isVisited(SU) || hasDataSucc(SU)) 1471 continue; 1472 1473 SchedDAGReverseDFS DFS; 1474 Impl.visitPreorder(SU); 1475 DFS.follow(SU); 1476 for (;;) { 1477 // Traverse the leftmost path as far as possible. 1478 while (DFS.getPred() != DFS.getPredEnd()) { 1479 const SDep &PredDep = *DFS.getPred(); 1480 DFS.advance(); 1481 // Ignore non-data edges. 1482 if (PredDep.getKind() != SDep::Data 1483 || PredDep.getSUnit()->isBoundaryNode()) { 1484 continue; 1485 } 1486 // An already visited edge is a cross edge, assuming an acyclic DAG. 1487 if (Impl.isVisited(PredDep.getSUnit())) { 1488 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1489 continue; 1490 } 1491 Impl.visitPreorder(PredDep.getSUnit()); 1492 DFS.follow(PredDep.getSUnit()); 1493 } 1494 // Visit the top of the stack in postorder and backtrack. 1495 const SUnit *Child = DFS.getCurr(); 1496 const SDep *PredDep = DFS.backtrack(); 1497 Impl.visitPostorderNode(Child); 1498 if (PredDep) 1499 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1500 if (DFS.isComplete()) 1501 break; 1502 } 1503 } 1504 Impl.finalize(); 1505 } 1506 1507 /// The root of the given SubtreeID was just scheduled. For all subtrees 1508 /// connected to this tree, record the depth of the connection so that the 1509 /// nearest connected subtrees can be prioritized. 1510 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1511 for (SmallVectorImpl<Connection>::const_iterator 1512 I = SubtreeConnections[SubtreeID].begin(), 1513 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { 1514 SubtreeConnectLevels[I->TreeID] = 1515 std::max(SubtreeConnectLevels[I->TreeID], I->Level); 1516 DEBUG(dbgs() << " Tree: " << I->TreeID 1517 << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); 1518 } 1519 } 1520 1521 LLVM_DUMP_METHOD 1522 void ILPValue::print(raw_ostream &OS) const { 1523 OS << InstrCount << " / " << Length << " = "; 1524 if (!Length) 1525 OS << "BADILP"; 1526 else 1527 OS << format("%g", ((double)InstrCount / Length)); 1528 } 1529 1530 LLVM_DUMP_METHOD 1531 void ILPValue::dump() const { 1532 dbgs() << *this << '\n'; 1533 } 1534 1535 namespace llvm { 1536 1537 LLVM_DUMP_METHOD 1538 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1539 Val.print(OS); 1540 return OS; 1541 } 1542 1543 } // namespace llvm 1544