1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
11 // of MachineInstrs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
16 #include "llvm/ADT/IntEqClasses.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/PseudoSourceValue.h"
28 #include "llvm/CodeGen/RegisterPressure.h"
29 #include "llvm/CodeGen/ScheduleDFS.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/Format.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include "llvm/Target/TargetRegisterInfo.h"
40 #include "llvm/Target/TargetSubtargetInfo.h"
41 #include <queue>
42 
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "misched"
46 
47 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
48     cl::ZeroOrMore, cl::init(false),
49     cl::desc("Enable use of AA during MI DAG construction"));
50 
51 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
52     cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
53 
54 // Note: the two options below might be used in tuning compile time vs
55 // output quality. Setting HugeRegion so large that it will never be
56 // reached means best-effort, but may be slow.
57 
58 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
59 // together hold this many SUs, a reduction of maps will be done.
60 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
61     cl::init(1000), cl::desc("The limit to use while constructing the DAG "
62                              "prior to scheduling, at which point a trade-off "
63                              "is made to avoid excessive compile time."));
64 
65 static cl::opt<unsigned> ReductionSize("dag-maps-reduction-size", cl::Hidden,
66     cl::desc("A huge scheduling region will have maps reduced by this many "
67 	     "nodes at a time. Defaults to HugeRegion / 2."));
68 
69 static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
70 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
71   dbgs() << "{ ";
72   for (auto *su : L) {
73     dbgs() << "SU(" << su->NodeNum << ")";
74     if (su != L.back())
75       dbgs() << ", ";
76   }
77   dbgs() << "}\n";
78 #endif
79 }
80 
81 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
82                                      const MachineLoopInfo *mli,
83                                      bool RemoveKillFlags)
84     : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
85       RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false),
86       TrackLaneMasks(false), AAForDep(nullptr), BarrierChain(nullptr),
87       UnknownValue(UndefValue::get(
88                      Type::getVoidTy(mf.getFunction()->getContext()))),
89       FirstDbgValue(nullptr) {
90   DbgValues.clear();
91 
92   const TargetSubtargetInfo &ST = mf.getSubtarget();
93   SchedModel.init(ST.getSchedModel(), &ST, TII);
94 }
95 
96 /// getUnderlyingObjectFromInt - This is the function that does the work of
97 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
98 static const Value *getUnderlyingObjectFromInt(const Value *V) {
99   do {
100     if (const Operator *U = dyn_cast<Operator>(V)) {
101       // If we find a ptrtoint, we can transfer control back to the
102       // regular getUnderlyingObjectFromInt.
103       if (U->getOpcode() == Instruction::PtrToInt)
104         return U->getOperand(0);
105       // If we find an add of a constant, a multiplied value, or a phi, it's
106       // likely that the other operand will lead us to the base
107       // object. We don't have to worry about the case where the
108       // object address is somehow being computed by the multiply,
109       // because our callers only care when the result is an
110       // identifiable object.
111       if (U->getOpcode() != Instruction::Add ||
112           (!isa<ConstantInt>(U->getOperand(1)) &&
113            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
114            !isa<PHINode>(U->getOperand(1))))
115         return V;
116       V = U->getOperand(0);
117     } else {
118       return V;
119     }
120     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
121   } while (1);
122 }
123 
124 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
125 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
126 static void getUnderlyingObjects(const Value *V,
127                                  SmallVectorImpl<Value *> &Objects,
128                                  const DataLayout &DL) {
129   SmallPtrSet<const Value *, 16> Visited;
130   SmallVector<const Value *, 4> Working(1, V);
131   do {
132     V = Working.pop_back_val();
133 
134     SmallVector<Value *, 4> Objs;
135     GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
136 
137     for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
138          I != IE; ++I) {
139       V = *I;
140       if (!Visited.insert(V).second)
141         continue;
142       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
143         const Value *O =
144           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
145         if (O->getType()->isPointerTy()) {
146           Working.push_back(O);
147           continue;
148         }
149       }
150       Objects.push_back(const_cast<Value *>(V));
151     }
152   } while (!Working.empty());
153 }
154 
155 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference
156 /// information and it can be tracked to a normal reference to a known
157 /// object, return the Value for that object.
158 static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
159                                          const MachineFrameInfo *MFI,
160                                          UnderlyingObjectsVector &Objects,
161                                          const DataLayout &DL) {
162   if (!MI->hasOneMemOperand() ||
163       (!(*MI->memoperands_begin())->getValue() &&
164        !(*MI->memoperands_begin())->getPseudoValue()) ||
165       (*MI->memoperands_begin())->isVolatile())
166     return;
167 
168   if (const PseudoSourceValue *PSV =
169       (*MI->memoperands_begin())->getPseudoValue()) {
170     // Function that contain tail calls don't have unique PseudoSourceValue
171     // objects. Two PseudoSourceValues might refer to the same or overlapping
172     // locations. The client code calling this function assumes this is not the
173     // case. So return a conservative answer of no known object.
174     if (MFI->hasTailCall())
175       return;
176 
177     // For now, ignore PseudoSourceValues which may alias LLVM IR values
178     // because the code that uses this function has no way to cope with
179     // such aliases.
180     if (!PSV->isAliased(MFI)) {
181       bool MayAlias = PSV->mayAlias(MFI);
182       Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
183     }
184     return;
185   }
186 
187   const Value *V = (*MI->memoperands_begin())->getValue();
188   if (!V)
189     return;
190 
191   SmallVector<Value *, 4> Objs;
192   getUnderlyingObjects(V, Objs, DL);
193 
194   for (Value *V : Objs) {
195     if (!isIdentifiedObject(V)) {
196       Objects.clear();
197       return;
198     }
199 
200     Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
201   }
202 }
203 
204 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
205   BB = bb;
206 }
207 
208 void ScheduleDAGInstrs::finishBlock() {
209   // Subclasses should no longer refer to the old block.
210   BB = nullptr;
211 }
212 
213 /// Initialize the DAG and common scheduler state for the current scheduling
214 /// region. This does not actually create the DAG, only clears it. The
215 /// scheduling driver may call BuildSchedGraph multiple times per scheduling
216 /// region.
217 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
218                                     MachineBasicBlock::iterator begin,
219                                     MachineBasicBlock::iterator end,
220                                     unsigned regioninstrs) {
221   assert(bb == BB && "startBlock should set BB");
222   RegionBegin = begin;
223   RegionEnd = end;
224   NumRegionInstrs = regioninstrs;
225 }
226 
227 /// Close the current scheduling region. Don't clear any state in case the
228 /// driver wants to refer to the previous scheduling region.
229 void ScheduleDAGInstrs::exitRegion() {
230   // Nothing to do.
231 }
232 
233 /// addSchedBarrierDeps - Add dependencies from instructions in the current
234 /// list of instructions being scheduled to scheduling barrier by adding
235 /// the exit SU to the register defs and use list. This is because we want to
236 /// make sure instructions which define registers that are either used by
237 /// the terminator or are live-out are properly scheduled. This is
238 /// especially important when the definition latency of the return value(s)
239 /// are too high to be hidden by the branch or when the liveout registers
240 /// used by instructions in the fallthrough block.
241 void ScheduleDAGInstrs::addSchedBarrierDeps() {
242   MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
243   ExitSU.setInstr(ExitMI);
244   bool AllDepKnown = ExitMI &&
245     (ExitMI->isCall() || ExitMI->isBarrier());
246   if (ExitMI && AllDepKnown) {
247     // If it's a call or a barrier, add dependencies on the defs and uses of
248     // instruction.
249     for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
250       const MachineOperand &MO = ExitMI->getOperand(i);
251       if (!MO.isReg() || MO.isDef()) continue;
252       unsigned Reg = MO.getReg();
253       if (Reg == 0) continue;
254 
255       if (TRI->isPhysicalRegister(Reg))
256         Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
257       else if (MO.readsReg()) // ignore undef operands
258         addVRegUseDeps(&ExitSU, i);
259     }
260   } else {
261     // For others, e.g. fallthrough, conditional branch, assume the exit
262     // uses all the registers that are livein to the successor blocks.
263     assert(Uses.empty() && "Uses in set before adding deps?");
264     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
265            SE = BB->succ_end(); SI != SE; ++SI)
266       for (const auto &LI : (*SI)->liveins()) {
267         if (!Uses.contains(LI.PhysReg))
268           Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
269       }
270   }
271 }
272 
273 /// MO is an operand of SU's instruction that defines a physical register. Add
274 /// data dependencies from SU to any uses of the physical register.
275 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
276   const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
277   assert(MO.isDef() && "expect physreg def");
278 
279   // Ask the target if address-backscheduling is desirable, and if so how much.
280   const TargetSubtargetInfo &ST = MF.getSubtarget();
281 
282   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
283        Alias.isValid(); ++Alias) {
284     if (!Uses.contains(*Alias))
285       continue;
286     for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
287       SUnit *UseSU = I->SU;
288       if (UseSU == SU)
289         continue;
290 
291       // Adjust the dependence latency using operand def/use information,
292       // then allow the target to perform its own adjustments.
293       int UseOp = I->OpIdx;
294       MachineInstr *RegUse = nullptr;
295       SDep Dep;
296       if (UseOp < 0)
297         Dep = SDep(SU, SDep::Artificial);
298       else {
299         // Set the hasPhysRegDefs only for physreg defs that have a use within
300         // the scheduling region.
301         SU->hasPhysRegDefs = true;
302         Dep = SDep(SU, SDep::Data, *Alias);
303         RegUse = UseSU->getInstr();
304       }
305       Dep.setLatency(
306         SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
307                                          UseOp));
308 
309       ST.adjustSchedDependency(SU, UseSU, Dep);
310       UseSU->addPred(Dep);
311     }
312   }
313 }
314 
315 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
316 /// this SUnit to following instructions in the same scheduling region that
317 /// depend the physical register referenced at OperIdx.
318 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
319   MachineInstr *MI = SU->getInstr();
320   MachineOperand &MO = MI->getOperand(OperIdx);
321 
322   // Optionally add output and anti dependencies. For anti
323   // dependencies we use a latency of 0 because for a multi-issue
324   // target we want to allow the defining instruction to issue
325   // in the same cycle as the using instruction.
326   // TODO: Using a latency of 1 here for output dependencies assumes
327   //       there's no cost for reusing registers.
328   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
329   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
330        Alias.isValid(); ++Alias) {
331     if (!Defs.contains(*Alias))
332       continue;
333     for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
334       SUnit *DefSU = I->SU;
335       if (DefSU == &ExitSU)
336         continue;
337       if (DefSU != SU &&
338           (Kind != SDep::Output || !MO.isDead() ||
339            !DefSU->getInstr()->registerDefIsDead(*Alias))) {
340         if (Kind == SDep::Anti)
341           DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
342         else {
343           SDep Dep(SU, Kind, /*Reg=*/*Alias);
344           Dep.setLatency(
345             SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
346           DefSU->addPred(Dep);
347         }
348       }
349     }
350   }
351 
352   if (!MO.isDef()) {
353     SU->hasPhysRegUses = true;
354     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
355     // retrieve the existing SUnits list for this register's uses.
356     // Push this SUnit on the use list.
357     Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
358     if (RemoveKillFlags)
359       MO.setIsKill(false);
360   }
361   else {
362     addPhysRegDataDeps(SU, OperIdx);
363     unsigned Reg = MO.getReg();
364 
365     // clear this register's use list
366     if (Uses.contains(Reg))
367       Uses.eraseAll(Reg);
368 
369     if (!MO.isDead()) {
370       Defs.eraseAll(Reg);
371     } else if (SU->isCall) {
372       // Calls will not be reordered because of chain dependencies (see
373       // below). Since call operands are dead, calls may continue to be added
374       // to the DefList making dependence checking quadratic in the size of
375       // the block. Instead, we leave only one call at the back of the
376       // DefList.
377       Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
378       Reg2SUnitsMap::iterator B = P.first;
379       Reg2SUnitsMap::iterator I = P.second;
380       for (bool isBegin = I == B; !isBegin; /* empty */) {
381         isBegin = (--I) == B;
382         if (!I->SU->isCall)
383           break;
384         I = Defs.erase(I);
385       }
386     }
387 
388     // Defs are pushed in the order they are visited and never reordered.
389     Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
390   }
391 }
392 
393 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
394 {
395   unsigned Reg = MO.getReg();
396   // No point in tracking lanemasks if we don't have interesting subregisters.
397   const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
398   if (!RC.HasDisjunctSubRegs)
399     return ~0u;
400 
401   unsigned SubReg = MO.getSubReg();
402   if (SubReg == 0)
403     return RC.getLaneMask();
404   return TRI->getSubRegIndexLaneMask(SubReg);
405 }
406 
407 /// addVRegDefDeps - Add register output and data dependencies from this SUnit
408 /// to instructions that occur later in the same scheduling region if they read
409 /// from or write to the virtual register defined at OperIdx.
410 ///
411 /// TODO: Hoist loop induction variable increments. This has to be
412 /// reevaluated. Generally, IV scheduling should be done before coalescing.
413 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
414   MachineInstr *MI = SU->getInstr();
415   MachineOperand &MO = MI->getOperand(OperIdx);
416   unsigned Reg = MO.getReg();
417 
418   LaneBitmask DefLaneMask;
419   LaneBitmask KillLaneMask;
420   if (TrackLaneMasks) {
421     bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
422     DefLaneMask = getLaneMaskForMO(MO);
423     // If we have a <read-undef> flag, none of the lane values comes from an
424     // earlier instruction.
425     KillLaneMask = IsKill ? ~0u : DefLaneMask;
426 
427     // Clear undef flag, we'll re-add it later once we know which subregister
428     // Def is first.
429     MO.setIsUndef(false);
430   } else {
431     DefLaneMask = ~0u;
432     KillLaneMask = ~0u;
433   }
434 
435   if (MO.isDead()) {
436     assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() &&
437            "Dead defs should have no uses");
438   } else {
439     // Add data dependence to all uses we found so far.
440     const TargetSubtargetInfo &ST = MF.getSubtarget();
441     for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
442          E = CurrentVRegUses.end(); I != E; /*empty*/) {
443       LaneBitmask LaneMask = I->LaneMask;
444       // Ignore uses of other lanes.
445       if ((LaneMask & KillLaneMask) == 0) {
446         ++I;
447         continue;
448       }
449 
450       if ((LaneMask & DefLaneMask) != 0) {
451         SUnit *UseSU = I->SU;
452         MachineInstr *Use = UseSU->getInstr();
453         SDep Dep(SU, SDep::Data, Reg);
454         Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
455                                                         I->OperandIndex));
456         ST.adjustSchedDependency(SU, UseSU, Dep);
457         UseSU->addPred(Dep);
458       }
459 
460       LaneMask &= ~KillLaneMask;
461       // If we found a Def for all lanes of this use, remove it from the list.
462       if (LaneMask != 0) {
463         I->LaneMask = LaneMask;
464         ++I;
465       } else
466         I = CurrentVRegUses.erase(I);
467     }
468   }
469 
470   // Shortcut: Singly defined vregs do not have output/anti dependencies.
471   if (MRI.hasOneDef(Reg))
472     return;
473 
474   // Add output dependence to the next nearest defs of this vreg.
475   //
476   // Unless this definition is dead, the output dependence should be
477   // transitively redundant with antidependencies from this definition's
478   // uses. We're conservative for now until we have a way to guarantee the uses
479   // are not eliminated sometime during scheduling. The output dependence edge
480   // is also useful if output latency exceeds def-use latency.
481   LaneBitmask LaneMask = DefLaneMask;
482   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
483                                      CurrentVRegDefs.end())) {
484     // Ignore defs for other lanes.
485     if ((V2SU.LaneMask & LaneMask) == 0)
486       continue;
487     // Add an output dependence.
488     SUnit *DefSU = V2SU.SU;
489     // Ignore additional defs of the same lanes in one instruction. This can
490     // happen because lanemasks are shared for targets with too many
491     // subregisters. We also use some representration tricks/hacks where we
492     // add super-register defs/uses, to imply that although we only access parts
493     // of the reg we care about the full one.
494     if (DefSU == SU)
495       continue;
496     SDep Dep(SU, SDep::Output, Reg);
497     Dep.setLatency(
498       SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
499     DefSU->addPred(Dep);
500 
501     // Update current definition. This can get tricky if the def was about a
502     // bigger lanemask before. We then have to shrink it and create a new
503     // VReg2SUnit for the non-overlapping part.
504     LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
505     LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
506     if (NonOverlapMask != 0)
507       CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, V2SU.SU));
508     V2SU.SU = SU;
509     V2SU.LaneMask = OverlapMask;
510   }
511   // If there was no CurrentVRegDefs entry for some lanes yet, create one.
512   if (LaneMask != 0)
513     CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
514 }
515 
516 /// addVRegUseDeps - Add a register data dependency if the instruction that
517 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
518 /// register antidependency from this SUnit to instructions that occur later in
519 /// the same scheduling region if they write the virtual register.
520 ///
521 /// TODO: Handle ExitSU "uses" properly.
522 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
523   const MachineInstr *MI = SU->getInstr();
524   const MachineOperand &MO = MI->getOperand(OperIdx);
525   unsigned Reg = MO.getReg();
526 
527   // Remember the use. Data dependencies will be added when we find the def.
528   LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u;
529   CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
530 
531   // Add antidependences to the following defs of the vreg.
532   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
533                                      CurrentVRegDefs.end())) {
534     // Ignore defs for unrelated lanes.
535     LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
536     if ((PrevDefLaneMask & LaneMask) == 0)
537       continue;
538     if (V2SU.SU == SU)
539       continue;
540 
541     V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
542   }
543 }
544 
545 /// Return true if MI is an instruction we are unable to reason about
546 /// (like a call or something with unmodeled side effects).
547 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
548   return MI->isCall() || MI->hasUnmodeledSideEffects() ||
549          (MI->hasOrderedMemoryRef() && !MI->isInvariantLoad(AA));
550 }
551 
552 /// This returns true if the two MIs need a chain edge between them.
553 /// This is called on normal stores and loads.
554 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
555                              const DataLayout &DL, MachineInstr *MIa,
556                              MachineInstr *MIb) {
557   const MachineFunction *MF = MIa->getParent()->getParent();
558   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
559 
560   assert ((MIa->mayStore() || MIb->mayStore()) &&
561           "Dependency checked between two loads");
562 
563   // Let the target decide if memory accesses cannot possibly overlap.
564   if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA))
565     return false;
566 
567   // To this point analysis is generic. From here on we do need AA.
568   if (!AA)
569     return true;
570 
571   // FIXME: Need to handle multiple memory operands to support all targets.
572   if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
573     return true;
574 
575   MachineMemOperand *MMOa = *MIa->memoperands_begin();
576   MachineMemOperand *MMOb = *MIb->memoperands_begin();
577 
578   if (!MMOa->getValue() || !MMOb->getValue())
579     return true;
580 
581   // The following interface to AA is fashioned after DAGCombiner::isAlias
582   // and operates with MachineMemOperand offset with some important
583   // assumptions:
584   //   - LLVM fundamentally assumes flat address spaces.
585   //   - MachineOperand offset can *only* result from legalization and
586   //     cannot affect queries other than the trivial case of overlap
587   //     checking.
588   //   - These offsets never wrap and never step outside
589   //     of allocated objects.
590   //   - There should never be any negative offsets here.
591   //
592   // FIXME: Modify API to hide this math from "user"
593   // FIXME: Even before we go to AA we can reason locally about some
594   // memory objects. It can save compile time, and possibly catch some
595   // corner cases not currently covered.
596 
597   assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
598   assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
599 
600   int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
601   int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
602   int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
603 
604   AliasResult AAResult =
605       AA->alias(MemoryLocation(MMOa->getValue(), Overlapa,
606                                UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
607                 MemoryLocation(MMOb->getValue(), Overlapb,
608                                UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
609 
610   return (AAResult != NoAlias);
611 }
612 
613 /// Check whether two objects need a chain edge and add it if needed.
614 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
615                                             unsigned Latency) {
616   if (MIsNeedChainEdge(AAForDep, MFI, MF.getDataLayout(), SUa->getInstr(),
617 		       SUb->getInstr())) {
618     SDep Dep(SUa, SDep::MayAliasMem);
619     Dep.setLatency(Latency);
620     SUb->addPred(Dep);
621   }
622 }
623 
624 /// Create an SUnit for each real instruction, numbered in top-down topological
625 /// order. The instruction order A < B, implies that no edge exists from B to A.
626 ///
627 /// Map each real instruction to its SUnit.
628 ///
629 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
630 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
631 /// instead of pointers.
632 ///
633 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
634 /// the original instruction list.
635 void ScheduleDAGInstrs::initSUnits() {
636   // We'll be allocating one SUnit for each real instruction in the region,
637   // which is contained within a basic block.
638   SUnits.reserve(NumRegionInstrs);
639 
640   for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
641     MachineInstr *MI = I;
642     if (MI->isDebugValue())
643       continue;
644 
645     SUnit *SU = newSUnit(MI);
646     MISUnitMap[MI] = SU;
647 
648     SU->isCall = MI->isCall();
649     SU->isCommutable = MI->isCommutable();
650 
651     // Assign the Latency field of SU using target-provided information.
652     SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
653 
654     // If this SUnit uses a reserved or unbuffered resource, mark it as such.
655     //
656     // Reserved resources block an instruction from issuing and stall the
657     // entire pipeline. These are identified by BufferSize=0.
658     //
659     // Unbuffered resources prevent execution of subsequent instructions that
660     // require the same resources. This is used for in-order execution pipelines
661     // within an out-of-order core. These are identified by BufferSize=1.
662     if (SchedModel.hasInstrSchedModel()) {
663       const MCSchedClassDesc *SC = getSchedClass(SU);
664       for (TargetSchedModel::ProcResIter
665              PI = SchedModel.getWriteProcResBegin(SC),
666              PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
667         switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
668         case 0:
669           SU->hasReservedResource = true;
670           break;
671         case 1:
672           SU->isUnbuffered = true;
673           break;
674         default:
675           break;
676         }
677       }
678     }
679   }
680 }
681 
682 void ScheduleDAGInstrs::collectVRegUses(SUnit *SU) {
683   const MachineInstr *MI = SU->getInstr();
684   for (const MachineOperand &MO : MI->operands()) {
685     if (!MO.isReg())
686       continue;
687     if (!MO.readsReg())
688       continue;
689     if (TrackLaneMasks && !MO.isUse())
690       continue;
691 
692     unsigned Reg = MO.getReg();
693     if (!TargetRegisterInfo::isVirtualRegister(Reg))
694       continue;
695 
696     // Ignore re-defs.
697     if (TrackLaneMasks) {
698       bool FoundDef = false;
699       for (const MachineOperand &MO2 : MI->operands()) {
700         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
701           FoundDef = true;
702           break;
703         }
704       }
705       if (FoundDef)
706         continue;
707     }
708 
709     // Record this local VReg use.
710     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
711     for (; UI != VRegUses.end(); ++UI) {
712       if (UI->SU == SU)
713         break;
714     }
715     if (UI == VRegUses.end())
716       VRegUses.insert(VReg2SUnit(Reg, 0, SU));
717   }
718 }
719 
720 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
721 
722   /// Current total number of SUs in map.
723   unsigned NumNodes;
724 
725   /// 1 for loads, 0 for stores. (see comment in SUList)
726   unsigned TrueMemOrderLatency;
727 public:
728 
729   Value2SUsMap(unsigned lat = 0) : NumNodes(0), TrueMemOrderLatency(lat) {}
730 
731   /// To keep NumNodes up to date, insert() is used instead of
732   /// this operator w/ push_back().
733   ValueType &operator[](const SUList &Key) {
734     llvm_unreachable("Don't use. Use insert() instead."); };
735 
736   /// Add SU to the SUList of V. If Map grows huge, reduce its size
737   /// by calling reduce().
738   void inline insert(SUnit *SU, ValueType V) {
739     MapVector::operator[](V).push_back(SU);
740     NumNodes++;
741   }
742 
743   /// Clears the list of SUs mapped to V.
744   void inline clearList(ValueType V) {
745     iterator Itr = find(V);
746     if (Itr != end()) {
747       assert (NumNodes >= Itr->second.size());
748       NumNodes -= Itr->second.size();
749 
750       Itr->second.clear();
751     }
752   }
753 
754   /// Clears map from all contents.
755   void clear() {
756     MapVector<ValueType, SUList>::clear();
757     NumNodes = 0;
758   }
759 
760   unsigned inline size() const { return NumNodes; }
761 
762   /// Count the number of SUs in this map after a reduction.
763   void reComputeSize(void) {
764     NumNodes = 0;
765     for (auto &I : *this)
766       NumNodes += I.second.size();
767   }
768 
769   unsigned inline getTrueMemOrderLatency() const {
770     return TrueMemOrderLatency;
771   }
772 
773   void dump();
774 };
775 
776 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
777                                              Value2SUsMap &Val2SUsMap) {
778   for (auto &I : Val2SUsMap)
779     addChainDependencies(SU, I.second,
780                          Val2SUsMap.getTrueMemOrderLatency());
781 }
782 
783 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
784                                              Value2SUsMap &Val2SUsMap,
785                                              ValueType V) {
786   Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
787   if (Itr != Val2SUsMap.end())
788     addChainDependencies(SU, Itr->second,
789                          Val2SUsMap.getTrueMemOrderLatency());
790 }
791 
792 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
793   assert (BarrierChain != nullptr);
794 
795   for (auto &I : map) {
796     SUList &sus = I.second;
797     for (auto *SU : sus)
798       SU->addPredBarrier(BarrierChain);
799   }
800   map.clear();
801 }
802 
803 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
804   assert (BarrierChain != nullptr);
805 
806   // Go through all lists of SUs.
807   for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
808     Value2SUsMap::iterator CurrItr = I++;
809     SUList &sus = CurrItr->second;
810     SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
811     for (; SUItr != SUEE; ++SUItr) {
812       // Stop on BarrierChain or any instruction above it.
813       if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
814         break;
815 
816       (*SUItr)->addPredBarrier(BarrierChain);
817     }
818 
819     // Remove also the BarrierChain from list if present.
820     if (*SUItr == BarrierChain)
821       SUItr++;
822 
823     // Remove all SUs that are now successors of BarrierChain.
824     if (SUItr != sus.begin())
825       sus.erase(sus.begin(), SUItr);
826   }
827 
828   // Remove all entries with empty su lists.
829   map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
830       return (mapEntry.second.empty()); });
831 
832   // Recompute the size of the map (NumNodes).
833   map.reComputeSize();
834 }
835 
836 /// If RegPressure is non-null, compute register pressure as a side effect. The
837 /// DAG builder is an efficient place to do it because it already visits
838 /// operands.
839 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
840                                         RegPressureTracker *RPTracker,
841                                         PressureDiffs *PDiffs,
842                                         LiveIntervals *LIS,
843                                         bool TrackLaneMasks) {
844   const TargetSubtargetInfo &ST = MF.getSubtarget();
845   bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
846                                                        : ST.useAA();
847   AAForDep = UseAA ? AA : nullptr;
848 
849   BarrierChain = nullptr;
850 
851   this->TrackLaneMasks = TrackLaneMasks;
852   MISUnitMap.clear();
853   ScheduleDAG::clearDAG();
854 
855   // Create an SUnit for each real instruction.
856   initSUnits();
857 
858   if (PDiffs)
859     PDiffs->init(SUnits.size());
860 
861   // We build scheduling units by walking a block's instruction list
862   // from bottom to top.
863 
864   // Each MIs' memory operand(s) is analyzed to a list of underlying
865   // objects. The SU is then inserted in the SUList(s) mapped from the
866   // Value(s). Each Value thus gets mapped to lists of SUs depending
867   // on it, stores and loads kept separately. Two SUs are trivially
868   // non-aliasing if they both depend on only identified Values and do
869   // not share any common Value.
870   Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
871 
872   // Certain memory accesses are known to not alias any SU in Stores
873   // or Loads, and have therefore their own 'NonAlias'
874   // domain. E.g. spill / reload instructions never alias LLVM I/R
875   // Values. It would be nice to assume that this type of memory
876   // accesses always have a proper memory operand modelling, and are
877   // therefore never unanalyzable, but this is conservatively not
878   // done.
879   Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
880 
881   // Always reduce a huge region with half of the elements, except
882   // when user sets this number explicitly.
883   if (ReductionSize.getNumOccurrences() == 0)
884     ReductionSize = (HugeRegion / 2);
885 
886   // Remove any stale debug info; sometimes BuildSchedGraph is called again
887   // without emitting the info from the previous call.
888   DbgValues.clear();
889   FirstDbgValue = nullptr;
890 
891   assert(Defs.empty() && Uses.empty() &&
892          "Only BuildGraph should update Defs/Uses");
893   Defs.setUniverse(TRI->getNumRegs());
894   Uses.setUniverse(TRI->getNumRegs());
895 
896   assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
897   assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
898   unsigned NumVirtRegs = MRI.getNumVirtRegs();
899   CurrentVRegDefs.setUniverse(NumVirtRegs);
900   CurrentVRegUses.setUniverse(NumVirtRegs);
901 
902   VRegUses.clear();
903   VRegUses.setUniverse(NumVirtRegs);
904 
905   // Model data dependencies between instructions being scheduled and the
906   // ExitSU.
907   addSchedBarrierDeps();
908 
909   // Walk the list of instructions, from bottom moving up.
910   MachineInstr *DbgMI = nullptr;
911   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
912        MII != MIE; --MII) {
913     MachineInstr *MI = std::prev(MII);
914     if (MI && DbgMI) {
915       DbgValues.push_back(std::make_pair(DbgMI, MI));
916       DbgMI = nullptr;
917     }
918 
919     if (MI->isDebugValue()) {
920       DbgMI = MI;
921       continue;
922     }
923     SUnit *SU = MISUnitMap[MI];
924     assert(SU && "No SUnit mapped to this MI");
925 
926     if (RPTracker) {
927       collectVRegUses(SU);
928 
929       RegisterOperands RegOpers;
930       RegOpers.collect(*MI, *TRI, MRI, TrackLaneMasks, false);
931       if (TrackLaneMasks) {
932         SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
933         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
934       }
935       if (PDiffs != nullptr)
936         PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
937 
938       RPTracker->recedeSkipDebugValues();
939       assert(&*RPTracker->getPos() == MI && "RPTracker in sync");
940       RPTracker->recede(RegOpers);
941     }
942 
943     assert(
944         (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) &&
945         "Cannot schedule terminators or labels!");
946 
947     // Add register-based dependencies (data, anti, and output).
948     bool HasVRegDef = false;
949     for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
950       const MachineOperand &MO = MI->getOperand(j);
951       if (!MO.isReg()) continue;
952       unsigned Reg = MO.getReg();
953       if (Reg == 0) continue;
954 
955       if (TRI->isPhysicalRegister(Reg))
956         addPhysRegDeps(SU, j);
957       else {
958         if (MO.isDef()) {
959           HasVRegDef = true;
960           addVRegDefDeps(SU, j);
961         }
962         else if (MO.readsReg()) // ignore undef operands
963           addVRegUseDeps(SU, j);
964       }
965     }
966     // If we haven't seen any uses in this scheduling region, create a
967     // dependence edge to ExitSU to model the live-out latency. This is required
968     // for vreg defs with no in-region use, and prefetches with no vreg def.
969     //
970     // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
971     // check currently relies on being called before adding chain deps.
972     if (SU->NumSuccs == 0 && SU->Latency > 1
973         && (HasVRegDef || MI->mayLoad())) {
974       SDep Dep(SU, SDep::Artificial);
975       Dep.setLatency(SU->Latency - 1);
976       ExitSU.addPred(Dep);
977     }
978 
979     // Add memory dependencies (Note: isStoreToStackSlot and
980     // isLoadFromStackSLot are not usable after stack slots are lowered to
981     // actual addresses).
982 
983     // This is a barrier event that acts as a pivotal node in the DAG.
984     if (isGlobalMemoryObject(AA, MI)) {
985 
986       // Become the barrier chain.
987       if (BarrierChain)
988         BarrierChain->addPredBarrier(SU);
989       BarrierChain = SU;
990 
991       DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
992             << BarrierChain->NodeNum << ").\n";);
993 
994       // Add dependencies against everything below it and clear maps.
995       addBarrierChain(Stores);
996       addBarrierChain(Loads);
997       addBarrierChain(NonAliasStores);
998       addBarrierChain(NonAliasLoads);
999 
1000       continue;
1001     }
1002 
1003     // If it's not a store or a variant load, we're done.
1004     if (!MI->mayStore() && !(MI->mayLoad() && !MI->isInvariantLoad(AA)))
1005       continue;
1006 
1007     // Always add dependecy edge to BarrierChain if present.
1008     if (BarrierChain)
1009       BarrierChain->addPredBarrier(SU);
1010 
1011     // Find the underlying objects for MI. The Objs vector is either
1012     // empty, or filled with the Values of memory locations which this
1013     // SU depends on. An empty vector means the memory location is
1014     // unknown, and may alias anything.
1015     UnderlyingObjectsVector Objs;
1016     getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout());
1017 
1018     if (MI->mayStore()) {
1019       if (Objs.empty()) {
1020         // An unknown store depends on all stores and loads.
1021         addChainDependencies(SU, Stores);
1022         addChainDependencies(SU, NonAliasStores);
1023         addChainDependencies(SU, Loads);
1024         addChainDependencies(SU, NonAliasLoads);
1025 
1026         // Map this store to 'UnknownValue'.
1027         Stores.insert(SU, UnknownValue);
1028         continue;
1029       }
1030 
1031       // Add precise dependencies against all previously seen memory
1032       // accesses mapped to the same Value(s).
1033       for (auto &underlObj : Objs) {
1034         ValueType V = underlObj.getPointer();
1035         bool ThisMayAlias = underlObj.getInt();
1036 
1037         Value2SUsMap &stores_ = (ThisMayAlias ? Stores : NonAliasStores);
1038 
1039         // Add dependencies to previous stores and loads mapped to V.
1040         addChainDependencies(SU, stores_, V);
1041         addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
1042 
1043         // Map this store to V.
1044         stores_.insert(SU, V);
1045       }
1046       // The store may have dependencies to unanalyzable loads and
1047       // stores.
1048       addChainDependencies(SU, Loads, UnknownValue);
1049       addChainDependencies(SU, Stores, UnknownValue);
1050     }
1051     else { // SU is a load.
1052       if (Objs.empty()) {
1053         // An unknown load depends on all stores.
1054         addChainDependencies(SU, Stores);
1055         addChainDependencies(SU, NonAliasStores);
1056 
1057         Loads.insert(SU, UnknownValue);
1058         continue;
1059       }
1060 
1061       for (auto &underlObj : Objs) {
1062         ValueType V = underlObj.getPointer();
1063         bool ThisMayAlias = underlObj.getInt();
1064 
1065         // Add precise dependencies against all previously seen stores
1066         // mapping to the same Value(s).
1067         addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
1068 
1069         // Map this load to V.
1070         (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
1071       }
1072       // The load may have dependencies to unanalyzable stores.
1073       addChainDependencies(SU, Stores, UnknownValue);
1074     }
1075 
1076     // Reduce maps if they grow huge.
1077     if (Stores.size() + Loads.size() >= HugeRegion) {
1078       DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
1079       reduceHugeMemNodeMaps(Stores, Loads, ReductionSize);
1080     }
1081     if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
1082       DEBUG(dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
1083       reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, ReductionSize);
1084     }
1085   }
1086 
1087   if (DbgMI)
1088     FirstDbgValue = DbgMI;
1089 
1090   Defs.clear();
1091   Uses.clear();
1092   CurrentVRegDefs.clear();
1093   CurrentVRegUses.clear();
1094 }
1095 
1096 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
1097   PSV->printCustom(OS);
1098   return OS;
1099 }
1100 
1101 void ScheduleDAGInstrs::Value2SUsMap::dump() {
1102   for (auto &Itr : *this) {
1103     if (Itr.first.is<const Value*>()) {
1104       const Value *V = Itr.first.get<const Value*>();
1105       if (isa<UndefValue>(V))
1106         dbgs() << "Unknown";
1107       else
1108         V->printAsOperand(dbgs());
1109     }
1110     else if (Itr.first.is<const PseudoSourceValue*>())
1111       dbgs() <<  Itr.first.get<const PseudoSourceValue*>();
1112     else
1113       llvm_unreachable("Unknown Value type.");
1114 
1115     dbgs() << " : ";
1116     dumpSUList(Itr.second);
1117   }
1118 }
1119 
1120 /// Reduce maps in FIFO order, by N SUs. This is better than turning
1121 /// every Nth memory SU into BarrierChain in buildSchedGraph(), since
1122 /// it avoids unnecessary edges between seen SUs above the new
1123 /// BarrierChain, and those below it.
1124 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
1125                                               Value2SUsMap &loads, unsigned N) {
1126   DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n";
1127         stores.dump();
1128         dbgs() << "Loading SUnits:\n";
1129         loads.dump());
1130 
1131   // Insert all SU's NodeNums into a vector and sort it.
1132   std::vector<unsigned> NodeNums;
1133   NodeNums.reserve(stores.size() + loads.size());
1134   for (auto &I : stores)
1135     for (auto *SU : I.second)
1136       NodeNums.push_back(SU->NodeNum);
1137   for (auto &I : loads)
1138     for (auto *SU : I.second)
1139       NodeNums.push_back(SU->NodeNum);
1140   std::sort(NodeNums.begin(), NodeNums.end());
1141 
1142   // The N last elements in NodeNums will be removed, and the SU with
1143   // the lowest NodeNum of them will become the new BarrierChain to
1144   // let the not yet seen SUs have a dependency to the removed SUs.
1145   assert (N <= NodeNums.size());
1146   SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
1147   if (BarrierChain) {
1148     // The aliasing and non-aliasing maps reduce independently of each
1149     // other, but share a common BarrierChain. Check if the
1150     // newBarrierChain is above the former one. If it is not, it may
1151     // introduce a loop to use newBarrierChain, so keep the old one.
1152     if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
1153       BarrierChain->addPredBarrier(newBarrierChain);
1154       BarrierChain = newBarrierChain;
1155       DEBUG(dbgs() << "Inserting new barrier chain: SU("
1156             << BarrierChain->NodeNum << ").\n";);
1157     }
1158     else
1159       DEBUG(dbgs() << "Keeping old barrier chain: SU("
1160             << BarrierChain->NodeNum << ").\n";);
1161   }
1162   else
1163     BarrierChain = newBarrierChain;
1164 
1165   insertBarrierChain(stores);
1166   insertBarrierChain(loads);
1167 
1168   DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n";
1169         stores.dump();
1170         dbgs() << "Loading SUnits:\n";
1171         loads.dump());
1172 }
1173 
1174 /// \brief Initialize register live-range state for updating kills.
1175 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
1176   // Start with no live registers.
1177   LiveRegs.reset();
1178 
1179   // Examine the live-in regs of all successors.
1180   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
1181        SE = BB->succ_end(); SI != SE; ++SI) {
1182     for (const auto &LI : (*SI)->liveins()) {
1183       // Repeat, for reg and all subregs.
1184       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
1185            SubRegs.isValid(); ++SubRegs)
1186         LiveRegs.set(*SubRegs);
1187     }
1188   }
1189 }
1190 
1191 /// \brief If we change a kill flag on the bundle instruction implicit register
1192 /// operands, then we also need to propagate that to any instructions inside
1193 /// the bundle which had the same kill state.
1194 static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg,
1195                                  bool NewKillState) {
1196   if (MI->getOpcode() != TargetOpcode::BUNDLE)
1197     return;
1198 
1199   // Walk backwards from the last instruction in the bundle to the first.
1200   // Once we set a kill flag on an instruction, we bail out, as otherwise we
1201   // might set it on too many operands.  We will clear as many flags as we
1202   // can though.
1203   MachineBasicBlock::instr_iterator Begin = MI->getIterator();
1204   MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
1205   while (Begin != End) {
1206     for (MachineOperand &MO : (--End)->operands()) {
1207       if (!MO.isReg() || MO.isDef() || Reg != MO.getReg())
1208         continue;
1209 
1210       // DEBUG_VALUE nodes do not contribute to code generation and should
1211       // always be ignored.  Failure to do so may result in trying to modify
1212       // KILL flags on DEBUG_VALUE nodes, which is distressing.
1213       if (MO.isDebug())
1214         continue;
1215 
1216       // If the register has the internal flag then it could be killing an
1217       // internal def of the register.  In this case, just skip.  We only want
1218       // to toggle the flag on operands visible outside the bundle.
1219       if (MO.isInternalRead())
1220         continue;
1221 
1222       if (MO.isKill() == NewKillState)
1223         continue;
1224       MO.setIsKill(NewKillState);
1225       if (NewKillState)
1226         return;
1227     }
1228   }
1229 }
1230 
1231 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
1232   // Setting kill flag...
1233   if (!MO.isKill()) {
1234     MO.setIsKill(true);
1235     toggleBundleKillFlag(MI, MO.getReg(), true);
1236     return false;
1237   }
1238 
1239   // If MO itself is live, clear the kill flag...
1240   if (LiveRegs.test(MO.getReg())) {
1241     MO.setIsKill(false);
1242     toggleBundleKillFlag(MI, MO.getReg(), false);
1243     return false;
1244   }
1245 
1246   // If any subreg of MO is live, then create an imp-def for that
1247   // subreg and keep MO marked as killed.
1248   MO.setIsKill(false);
1249   toggleBundleKillFlag(MI, MO.getReg(), false);
1250   bool AllDead = true;
1251   const unsigned SuperReg = MO.getReg();
1252   MachineInstrBuilder MIB(MF, MI);
1253   for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
1254     if (LiveRegs.test(*SubRegs)) {
1255       MIB.addReg(*SubRegs, RegState::ImplicitDefine);
1256       AllDead = false;
1257     }
1258   }
1259 
1260   if(AllDead) {
1261     MO.setIsKill(true);
1262     toggleBundleKillFlag(MI, MO.getReg(), true);
1263   }
1264   return false;
1265 }
1266 
1267 // FIXME: Reuse the LivePhysRegs utility for this.
1268 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
1269   DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
1270 
1271   LiveRegs.resize(TRI->getNumRegs());
1272   BitVector killedRegs(TRI->getNumRegs());
1273 
1274   startBlockForKills(MBB);
1275 
1276   // Examine block from end to start...
1277   unsigned Count = MBB->size();
1278   for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
1279        I != E; --Count) {
1280     MachineInstr *MI = --I;
1281     if (MI->isDebugValue())
1282       continue;
1283 
1284     // Update liveness.  Registers that are defed but not used in this
1285     // instruction are now dead. Mark register and all subregs as they
1286     // are completely defined.
1287     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1288       MachineOperand &MO = MI->getOperand(i);
1289       if (MO.isRegMask())
1290         LiveRegs.clearBitsNotInMask(MO.getRegMask());
1291       if (!MO.isReg()) continue;
1292       unsigned Reg = MO.getReg();
1293       if (Reg == 0) continue;
1294       if (!MO.isDef()) continue;
1295       // Ignore two-addr defs.
1296       if (MI->isRegTiedToUseOperand(i)) continue;
1297 
1298       // Repeat for reg and all subregs.
1299       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1300            SubRegs.isValid(); ++SubRegs)
1301         LiveRegs.reset(*SubRegs);
1302     }
1303 
1304     // Examine all used registers and set/clear kill flag. When a
1305     // register is used multiple times we only set the kill flag on
1306     // the first use. Don't set kill flags on undef operands.
1307     killedRegs.reset();
1308     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1309       MachineOperand &MO = MI->getOperand(i);
1310       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1311       unsigned Reg = MO.getReg();
1312       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1313 
1314       bool kill = false;
1315       if (!killedRegs.test(Reg)) {
1316         kill = true;
1317         // A register is not killed if any subregs are live...
1318         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
1319           if (LiveRegs.test(*SubRegs)) {
1320             kill = false;
1321             break;
1322           }
1323         }
1324 
1325         // If subreg is not live, then register is killed if it became
1326         // live in this instruction
1327         if (kill)
1328           kill = !LiveRegs.test(Reg);
1329       }
1330 
1331       if (MO.isKill() != kill) {
1332         DEBUG(dbgs() << "Fixing " << MO << " in ");
1333         // Warning: toggleKillFlag may invalidate MO.
1334         toggleKillFlag(MI, MO);
1335         DEBUG(MI->dump());
1336         DEBUG(if (MI->getOpcode() == TargetOpcode::BUNDLE) {
1337           MachineBasicBlock::instr_iterator Begin = MI->getIterator();
1338           MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
1339           while (++Begin != End)
1340             DEBUG(Begin->dump());
1341         });
1342       }
1343 
1344       killedRegs.set(Reg);
1345     }
1346 
1347     // Mark any used register (that is not using undef) and subregs as
1348     // now live...
1349     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1350       MachineOperand &MO = MI->getOperand(i);
1351       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1352       unsigned Reg = MO.getReg();
1353       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1354 
1355       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1356            SubRegs.isValid(); ++SubRegs)
1357         LiveRegs.set(*SubRegs);
1358     }
1359   }
1360 }
1361 
1362 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
1363 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1364   SU->getInstr()->dump();
1365 #endif
1366 }
1367 
1368 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1369   std::string s;
1370   raw_string_ostream oss(s);
1371   if (SU == &EntrySU)
1372     oss << "<entry>";
1373   else if (SU == &ExitSU)
1374     oss << "<exit>";
1375   else
1376     SU->getInstr()->print(oss, /*SkipOpers=*/true);
1377   return oss.str();
1378 }
1379 
1380 /// Return the basic block label. It is not necessarilly unique because a block
1381 /// contains multiple scheduling regions. But it is fine for visualization.
1382 std::string ScheduleDAGInstrs::getDAGName() const {
1383   return "dag." + BB->getFullName();
1384 }
1385 
1386 //===----------------------------------------------------------------------===//
1387 // SchedDFSResult Implementation
1388 //===----------------------------------------------------------------------===//
1389 
1390 namespace llvm {
1391 /// \brief Internal state used to compute SchedDFSResult.
1392 class SchedDFSImpl {
1393   SchedDFSResult &R;
1394 
1395   /// Join DAG nodes into equivalence classes by their subtree.
1396   IntEqClasses SubtreeClasses;
1397   /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1398   std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1399 
1400   struct RootData {
1401     unsigned NodeID;
1402     unsigned ParentNodeID;  // Parent node (member of the parent subtree).
1403     unsigned SubInstrCount; // Instr count in this tree only, not children.
1404 
1405     RootData(unsigned id): NodeID(id),
1406                            ParentNodeID(SchedDFSResult::InvalidSubtreeID),
1407                            SubInstrCount(0) {}
1408 
1409     unsigned getSparseSetIndex() const { return NodeID; }
1410   };
1411 
1412   SparseSet<RootData> RootSet;
1413 
1414 public:
1415   SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1416     RootSet.setUniverse(R.DFSNodeData.size());
1417   }
1418 
1419   /// Return true if this node been visited by the DFS traversal.
1420   ///
1421   /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1422   /// ID. Later, SubtreeID is updated but remains valid.
1423   bool isVisited(const SUnit *SU) const {
1424     return R.DFSNodeData[SU->NodeNum].SubtreeID
1425       != SchedDFSResult::InvalidSubtreeID;
1426   }
1427 
1428   /// Initialize this node's instruction count. We don't need to flag the node
1429   /// visited until visitPostorder because the DAG cannot have cycles.
1430   void visitPreorder(const SUnit *SU) {
1431     R.DFSNodeData[SU->NodeNum].InstrCount =
1432       SU->getInstr()->isTransient() ? 0 : 1;
1433   }
1434 
1435   /// Called once for each node after all predecessors are visited. Revisit this
1436   /// node's predecessors and potentially join them now that we know the ILP of
1437   /// the other predecessors.
1438   void visitPostorderNode(const SUnit *SU) {
1439     // Mark this node as the root of a subtree. It may be joined with its
1440     // successors later.
1441     R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1442     RootData RData(SU->NodeNum);
1443     RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1444 
1445     // If any predecessors are still in their own subtree, they either cannot be
1446     // joined or are large enough to remain separate. If this parent node's
1447     // total instruction count is not greater than a child subtree by at least
1448     // the subtree limit, then try to join it now since splitting subtrees is
1449     // only useful if multiple high-pressure paths are possible.
1450     unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1451     for (SUnit::const_pred_iterator
1452            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1453       if (PI->getKind() != SDep::Data)
1454         continue;
1455       unsigned PredNum = PI->getSUnit()->NodeNum;
1456       if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1457         joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
1458 
1459       // Either link or merge the TreeData entry from the child to the parent.
1460       if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1461         // If the predecessor's parent is invalid, this is a tree edge and the
1462         // current node is the parent.
1463         if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1464           RootSet[PredNum].ParentNodeID = SU->NodeNum;
1465       }
1466       else if (RootSet.count(PredNum)) {
1467         // The predecessor is not a root, but is still in the root set. This
1468         // must be the new parent that it was just joined to. Note that
1469         // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1470         // set to the original parent.
1471         RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1472         RootSet.erase(PredNum);
1473       }
1474     }
1475     RootSet[SU->NodeNum] = RData;
1476   }
1477 
1478   /// Called once for each tree edge after calling visitPostOrderNode on the
1479   /// predecessor. Increment the parent node's instruction count and
1480   /// preemptively join this subtree to its parent's if it is small enough.
1481   void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1482     R.DFSNodeData[Succ->NodeNum].InstrCount
1483       += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1484     joinPredSubtree(PredDep, Succ);
1485   }
1486 
1487   /// Add a connection for cross edges.
1488   void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1489     ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1490   }
1491 
1492   /// Set each node's subtree ID to the representative ID and record connections
1493   /// between trees.
1494   void finalize() {
1495     SubtreeClasses.compress();
1496     R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1497     assert(SubtreeClasses.getNumClasses() == RootSet.size()
1498            && "number of roots should match trees");
1499     for (SparseSet<RootData>::const_iterator
1500            RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
1501       unsigned TreeID = SubtreeClasses[RI->NodeID];
1502       if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1503         R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
1504       R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
1505       // Note that SubInstrCount may be greater than InstrCount if we joined
1506       // subtrees across a cross edge. InstrCount will be attributed to the
1507       // original parent, while SubInstrCount will be attributed to the joined
1508       // parent.
1509     }
1510     R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1511     R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1512     DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1513     for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1514       R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1515       DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1516             << R.DFSNodeData[Idx].SubtreeID << '\n');
1517     }
1518     for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
1519            I = ConnectionPairs.begin(), E = ConnectionPairs.end();
1520          I != E; ++I) {
1521       unsigned PredTree = SubtreeClasses[I->first->NodeNum];
1522       unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
1523       if (PredTree == SuccTree)
1524         continue;
1525       unsigned Depth = I->first->getDepth();
1526       addConnection(PredTree, SuccTree, Depth);
1527       addConnection(SuccTree, PredTree, Depth);
1528     }
1529   }
1530 
1531 protected:
1532   /// Join the predecessor subtree with the successor that is its DFS
1533   /// parent. Apply some heuristics before joining.
1534   bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1535                        bool CheckLimit = true) {
1536     assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1537 
1538     // Check if the predecessor is already joined.
1539     const SUnit *PredSU = PredDep.getSUnit();
1540     unsigned PredNum = PredSU->NodeNum;
1541     if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1542       return false;
1543 
1544     // Four is the magic number of successors before a node is considered a
1545     // pinch point.
1546     unsigned NumDataSucs = 0;
1547     for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
1548            SE = PredSU->Succs.end(); SI != SE; ++SI) {
1549       if (SI->getKind() == SDep::Data) {
1550         if (++NumDataSucs >= 4)
1551           return false;
1552       }
1553     }
1554     if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1555       return false;
1556     R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1557     SubtreeClasses.join(Succ->NodeNum, PredNum);
1558     return true;
1559   }
1560 
1561   /// Called by finalize() to record a connection between trees.
1562   void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1563     if (!Depth)
1564       return;
1565 
1566     do {
1567       SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1568         R.SubtreeConnections[FromTree];
1569       for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
1570              I = Connections.begin(), E = Connections.end(); I != E; ++I) {
1571         if (I->TreeID == ToTree) {
1572           I->Level = std::max(I->Level, Depth);
1573           return;
1574         }
1575       }
1576       Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1577       FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1578     } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1579   }
1580 };
1581 } // namespace llvm
1582 
1583 namespace {
1584 /// \brief Manage the stack used by a reverse depth-first search over the DAG.
1585 class SchedDAGReverseDFS {
1586   std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1587 public:
1588   bool isComplete() const { return DFSStack.empty(); }
1589 
1590   void follow(const SUnit *SU) {
1591     DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1592   }
1593   void advance() { ++DFSStack.back().second; }
1594 
1595   const SDep *backtrack() {
1596     DFSStack.pop_back();
1597     return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1598   }
1599 
1600   const SUnit *getCurr() const { return DFSStack.back().first; }
1601 
1602   SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1603 
1604   SUnit::const_pred_iterator getPredEnd() const {
1605     return getCurr()->Preds.end();
1606   }
1607 };
1608 } // anonymous
1609 
1610 static bool hasDataSucc(const SUnit *SU) {
1611   for (SUnit::const_succ_iterator
1612          SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
1613     if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
1614       return true;
1615   }
1616   return false;
1617 }
1618 
1619 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1620 /// search from this root.
1621 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1622   if (!IsBottomUp)
1623     llvm_unreachable("Top-down ILP metric is unimplemnted");
1624 
1625   SchedDFSImpl Impl(*this);
1626   for (ArrayRef<SUnit>::const_iterator
1627          SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
1628     const SUnit *SU = &*SI;
1629     if (Impl.isVisited(SU) || hasDataSucc(SU))
1630       continue;
1631 
1632     SchedDAGReverseDFS DFS;
1633     Impl.visitPreorder(SU);
1634     DFS.follow(SU);
1635     for (;;) {
1636       // Traverse the leftmost path as far as possible.
1637       while (DFS.getPred() != DFS.getPredEnd()) {
1638         const SDep &PredDep = *DFS.getPred();
1639         DFS.advance();
1640         // Ignore non-data edges.
1641         if (PredDep.getKind() != SDep::Data
1642             || PredDep.getSUnit()->isBoundaryNode()) {
1643           continue;
1644         }
1645         // An already visited edge is a cross edge, assuming an acyclic DAG.
1646         if (Impl.isVisited(PredDep.getSUnit())) {
1647           Impl.visitCrossEdge(PredDep, DFS.getCurr());
1648           continue;
1649         }
1650         Impl.visitPreorder(PredDep.getSUnit());
1651         DFS.follow(PredDep.getSUnit());
1652       }
1653       // Visit the top of the stack in postorder and backtrack.
1654       const SUnit *Child = DFS.getCurr();
1655       const SDep *PredDep = DFS.backtrack();
1656       Impl.visitPostorderNode(Child);
1657       if (PredDep)
1658         Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1659       if (DFS.isComplete())
1660         break;
1661     }
1662   }
1663   Impl.finalize();
1664 }
1665 
1666 /// The root of the given SubtreeID was just scheduled. For all subtrees
1667 /// connected to this tree, record the depth of the connection so that the
1668 /// nearest connected subtrees can be prioritized.
1669 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1670   for (SmallVectorImpl<Connection>::const_iterator
1671          I = SubtreeConnections[SubtreeID].begin(),
1672          E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
1673     SubtreeConnectLevels[I->TreeID] =
1674       std::max(SubtreeConnectLevels[I->TreeID], I->Level);
1675     DEBUG(dbgs() << "  Tree: " << I->TreeID
1676           << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
1677   }
1678 }
1679 
1680 LLVM_DUMP_METHOD
1681 void ILPValue::print(raw_ostream &OS) const {
1682   OS << InstrCount << " / " << Length << " = ";
1683   if (!Length)
1684     OS << "BADILP";
1685   else
1686     OS << format("%g", ((double)InstrCount / Length));
1687 }
1688 
1689 LLVM_DUMP_METHOD
1690 void ILPValue::dump() const {
1691   dbgs() << *this << '\n';
1692 }
1693 
1694 namespace llvm {
1695 
1696 LLVM_DUMP_METHOD
1697 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1698   Val.print(OS);
1699   return OS;
1700 }
1701 
1702 } // namespace llvm
1703