1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file This implements the ScheduleDAGInstrs class, which implements 11 /// re-scheduling of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 16 #include "llvm/ADT/IntEqClasses.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/LiveIntervals.h" 25 #include "llvm/CodeGen/LivePhysRegs.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineInstrBundle.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/RegisterPressure.h" 36 #include "llvm/CodeGen/ScheduleDAG.h" 37 #include "llvm/CodeGen/ScheduleDFS.h" 38 #include "llvm/CodeGen/SlotIndexes.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/MC/LaneBitmask.h" 50 #include "llvm/MC/MCRegisterInfo.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/Format.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <iterator> 61 #include <string> 62 #include <utility> 63 #include <vector> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "machine-scheduler" 68 69 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 70 cl::ZeroOrMore, cl::init(false), 71 cl::desc("Enable use of AA during MI DAG construction")); 72 73 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 74 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 75 76 // Note: the two options below might be used in tuning compile time vs 77 // output quality. Setting HugeRegion so large that it will never be 78 // reached means best-effort, but may be slow. 79 80 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) 81 // together hold this many SUs, a reduction of maps will be done. 82 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, 83 cl::init(1000), cl::desc("The limit to use while constructing the DAG " 84 "prior to scheduling, at which point a trade-off " 85 "is made to avoid excessive compile time.")); 86 87 static cl::opt<unsigned> ReductionSize( 88 "dag-maps-reduction-size", cl::Hidden, 89 cl::desc("A huge scheduling region will have maps reduced by this many " 90 "nodes at a time. Defaults to HugeRegion / 2.")); 91 92 static unsigned getReductionSize() { 93 // Always reduce a huge region with half of the elements, except 94 // when user sets this number explicitly. 95 if (ReductionSize.getNumOccurrences() == 0) 96 return HugeRegion / 2; 97 return ReductionSize; 98 } 99 100 static void dumpSUList(ScheduleDAGInstrs::SUList &L) { 101 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 102 dbgs() << "{ "; 103 for (const SUnit *su : L) { 104 dbgs() << "SU(" << su->NodeNum << ")"; 105 if (su != L.back()) 106 dbgs() << ", "; 107 } 108 dbgs() << "}\n"; 109 #endif 110 } 111 112 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 113 const MachineLoopInfo *mli, 114 bool RemoveKillFlags) 115 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 116 RemoveKillFlags(RemoveKillFlags), 117 UnknownValue(UndefValue::get( 118 Type::getVoidTy(mf.getFunction().getContext()))) { 119 DbgValues.clear(); 120 121 const TargetSubtargetInfo &ST = mf.getSubtarget(); 122 SchedModel.init(&ST); 123 } 124 125 /// If this machine instr has memory reference information and it can be 126 /// tracked to a normal reference to a known object, return the Value 127 /// for that object. This function returns false the memory location is 128 /// unknown or may alias anything. 129 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI, 130 const MachineFrameInfo &MFI, 131 UnderlyingObjectsVector &Objects, 132 const DataLayout &DL) { 133 auto allMMOsOkay = [&]() { 134 for (const MachineMemOperand *MMO : MI->memoperands()) { 135 if (MMO->isVolatile()) 136 return false; 137 138 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 139 // Function that contain tail calls don't have unique PseudoSourceValue 140 // objects. Two PseudoSourceValues might refer to the same or 141 // overlapping locations. The client code calling this function assumes 142 // this is not the case. So return a conservative answer of no known 143 // object. 144 if (MFI.hasTailCall()) 145 return false; 146 147 // For now, ignore PseudoSourceValues which may alias LLVM IR values 148 // because the code that uses this function has no way to cope with 149 // such aliases. 150 if (PSV->isAliased(&MFI)) 151 return false; 152 153 bool MayAlias = PSV->mayAlias(&MFI); 154 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 155 } else if (const Value *V = MMO->getValue()) { 156 SmallVector<Value *, 4> Objs; 157 if (!getUnderlyingObjectsForCodeGen(V, Objs, DL)) 158 return false; 159 160 for (Value *V : Objs) { 161 assert(isIdentifiedObject(V)); 162 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 163 } 164 } else 165 return false; 166 } 167 return true; 168 }; 169 170 if (!allMMOsOkay()) { 171 Objects.clear(); 172 return false; 173 } 174 175 return true; 176 } 177 178 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 179 BB = bb; 180 } 181 182 void ScheduleDAGInstrs::finishBlock() { 183 // Subclasses should no longer refer to the old block. 184 BB = nullptr; 185 } 186 187 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 188 MachineBasicBlock::iterator begin, 189 MachineBasicBlock::iterator end, 190 unsigned regioninstrs) { 191 assert(bb == BB && "startBlock should set BB"); 192 RegionBegin = begin; 193 RegionEnd = end; 194 NumRegionInstrs = regioninstrs; 195 } 196 197 void ScheduleDAGInstrs::exitRegion() { 198 // Nothing to do. 199 } 200 201 void ScheduleDAGInstrs::addSchedBarrierDeps() { 202 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 203 ExitSU.setInstr(ExitMI); 204 // Add dependencies on the defs and uses of the instruction. 205 if (ExitMI) { 206 for (const MachineOperand &MO : ExitMI->operands()) { 207 if (!MO.isReg() || MO.isDef()) continue; 208 unsigned Reg = MO.getReg(); 209 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 210 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 211 } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) { 212 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO)); 213 } 214 } 215 } 216 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) { 217 // For others, e.g. fallthrough, conditional branch, assume the exit 218 // uses all the registers that are livein to the successor blocks. 219 for (const MachineBasicBlock *Succ : BB->successors()) { 220 for (const auto &LI : Succ->liveins()) { 221 if (!Uses.contains(LI.PhysReg)) 222 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 223 } 224 } 225 } 226 } 227 228 /// MO is an operand of SU's instruction that defines a physical register. Adds 229 /// data dependencies from SU to any uses of the physical register. 230 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 231 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 232 assert(MO.isDef() && "expect physreg def"); 233 234 // Ask the target if address-backscheduling is desirable, and if so how much. 235 const TargetSubtargetInfo &ST = MF.getSubtarget(); 236 237 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 238 Alias.isValid(); ++Alias) { 239 if (!Uses.contains(*Alias)) 240 continue; 241 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 242 SUnit *UseSU = I->SU; 243 if (UseSU == SU) 244 continue; 245 246 // Adjust the dependence latency using operand def/use information, 247 // then allow the target to perform its own adjustments. 248 int UseOp = I->OpIdx; 249 MachineInstr *RegUse = nullptr; 250 SDep Dep; 251 if (UseOp < 0) 252 Dep = SDep(SU, SDep::Artificial); 253 else { 254 // Set the hasPhysRegDefs only for physreg defs that have a use within 255 // the scheduling region. 256 SU->hasPhysRegDefs = true; 257 Dep = SDep(SU, SDep::Data, *Alias); 258 RegUse = UseSU->getInstr(); 259 } 260 Dep.setLatency( 261 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 262 UseOp)); 263 264 ST.adjustSchedDependency(SU, UseSU, Dep); 265 UseSU->addPred(Dep); 266 } 267 } 268 } 269 270 /// Adds register dependencies (data, anti, and output) from this SUnit 271 /// to following instructions in the same scheduling region that depend the 272 /// physical register referenced at OperIdx. 273 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 274 MachineInstr *MI = SU->getInstr(); 275 MachineOperand &MO = MI->getOperand(OperIdx); 276 unsigned Reg = MO.getReg(); 277 // We do not need to track any dependencies for constant registers. 278 if (MRI.isConstantPhysReg(Reg)) 279 return; 280 281 // Optionally add output and anti dependencies. For anti 282 // dependencies we use a latency of 0 because for a multi-issue 283 // target we want to allow the defining instruction to issue 284 // in the same cycle as the using instruction. 285 // TODO: Using a latency of 1 here for output dependencies assumes 286 // there's no cost for reusing registers. 287 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 288 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 289 if (!Defs.contains(*Alias)) 290 continue; 291 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 292 SUnit *DefSU = I->SU; 293 if (DefSU == &ExitSU) 294 continue; 295 if (DefSU != SU && 296 (Kind != SDep::Output || !MO.isDead() || 297 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 298 if (Kind == SDep::Anti) 299 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 300 else { 301 SDep Dep(SU, Kind, /*Reg=*/*Alias); 302 Dep.setLatency( 303 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 304 DefSU->addPred(Dep); 305 } 306 } 307 } 308 } 309 310 if (!MO.isDef()) { 311 SU->hasPhysRegUses = true; 312 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 313 // retrieve the existing SUnits list for this register's uses. 314 // Push this SUnit on the use list. 315 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg)); 316 if (RemoveKillFlags) 317 MO.setIsKill(false); 318 } else { 319 addPhysRegDataDeps(SU, OperIdx); 320 321 // Clear previous uses and defs of this register and its subergisters. 322 for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) { 323 if (Uses.contains(*SubReg)) 324 Uses.eraseAll(*SubReg); 325 if (!MO.isDead()) 326 Defs.eraseAll(*SubReg); 327 } 328 if (MO.isDead() && SU->isCall) { 329 // Calls will not be reordered because of chain dependencies (see 330 // below). Since call operands are dead, calls may continue to be added 331 // to the DefList making dependence checking quadratic in the size of 332 // the block. Instead, we leave only one call at the back of the 333 // DefList. 334 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 335 Reg2SUnitsMap::iterator B = P.first; 336 Reg2SUnitsMap::iterator I = P.second; 337 for (bool isBegin = I == B; !isBegin; /* empty */) { 338 isBegin = (--I) == B; 339 if (!I->SU->isCall) 340 break; 341 I = Defs.erase(I); 342 } 343 } 344 345 // Defs are pushed in the order they are visited and never reordered. 346 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 347 } 348 } 349 350 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 351 { 352 unsigned Reg = MO.getReg(); 353 // No point in tracking lanemasks if we don't have interesting subregisters. 354 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 355 if (!RC.HasDisjunctSubRegs) 356 return LaneBitmask::getAll(); 357 358 unsigned SubReg = MO.getSubReg(); 359 if (SubReg == 0) 360 return RC.getLaneMask(); 361 return TRI->getSubRegIndexLaneMask(SubReg); 362 } 363 364 /// Adds register output and data dependencies from this SUnit to instructions 365 /// that occur later in the same scheduling region if they read from or write to 366 /// the virtual register defined at OperIdx. 367 /// 368 /// TODO: Hoist loop induction variable increments. This has to be 369 /// reevaluated. Generally, IV scheduling should be done before coalescing. 370 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 371 MachineInstr *MI = SU->getInstr(); 372 MachineOperand &MO = MI->getOperand(OperIdx); 373 unsigned Reg = MO.getReg(); 374 375 LaneBitmask DefLaneMask; 376 LaneBitmask KillLaneMask; 377 if (TrackLaneMasks) { 378 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 379 DefLaneMask = getLaneMaskForMO(MO); 380 // If we have a <read-undef> flag, none of the lane values comes from an 381 // earlier instruction. 382 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask; 383 384 // Clear undef flag, we'll re-add it later once we know which subregister 385 // Def is first. 386 MO.setIsUndef(false); 387 } else { 388 DefLaneMask = LaneBitmask::getAll(); 389 KillLaneMask = LaneBitmask::getAll(); 390 } 391 392 if (MO.isDead()) { 393 assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() && 394 "Dead defs should have no uses"); 395 } else { 396 // Add data dependence to all uses we found so far. 397 const TargetSubtargetInfo &ST = MF.getSubtarget(); 398 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 399 E = CurrentVRegUses.end(); I != E; /*empty*/) { 400 LaneBitmask LaneMask = I->LaneMask; 401 // Ignore uses of other lanes. 402 if ((LaneMask & KillLaneMask).none()) { 403 ++I; 404 continue; 405 } 406 407 if ((LaneMask & DefLaneMask).any()) { 408 SUnit *UseSU = I->SU; 409 MachineInstr *Use = UseSU->getInstr(); 410 SDep Dep(SU, SDep::Data, Reg); 411 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 412 I->OperandIndex)); 413 ST.adjustSchedDependency(SU, UseSU, Dep); 414 UseSU->addPred(Dep); 415 } 416 417 LaneMask &= ~KillLaneMask; 418 // If we found a Def for all lanes of this use, remove it from the list. 419 if (LaneMask.any()) { 420 I->LaneMask = LaneMask; 421 ++I; 422 } else 423 I = CurrentVRegUses.erase(I); 424 } 425 } 426 427 // Shortcut: Singly defined vregs do not have output/anti dependencies. 428 if (MRI.hasOneDef(Reg)) 429 return; 430 431 // Add output dependence to the next nearest defs of this vreg. 432 // 433 // Unless this definition is dead, the output dependence should be 434 // transitively redundant with antidependencies from this definition's 435 // uses. We're conservative for now until we have a way to guarantee the uses 436 // are not eliminated sometime during scheduling. The output dependence edge 437 // is also useful if output latency exceeds def-use latency. 438 LaneBitmask LaneMask = DefLaneMask; 439 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 440 CurrentVRegDefs.end())) { 441 // Ignore defs for other lanes. 442 if ((V2SU.LaneMask & LaneMask).none()) 443 continue; 444 // Add an output dependence. 445 SUnit *DefSU = V2SU.SU; 446 // Ignore additional defs of the same lanes in one instruction. This can 447 // happen because lanemasks are shared for targets with too many 448 // subregisters. We also use some representration tricks/hacks where we 449 // add super-register defs/uses, to imply that although we only access parts 450 // of the reg we care about the full one. 451 if (DefSU == SU) 452 continue; 453 SDep Dep(SU, SDep::Output, Reg); 454 Dep.setLatency( 455 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 456 DefSU->addPred(Dep); 457 458 // Update current definition. This can get tricky if the def was about a 459 // bigger lanemask before. We then have to shrink it and create a new 460 // VReg2SUnit for the non-overlapping part. 461 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 462 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 463 V2SU.SU = SU; 464 V2SU.LaneMask = OverlapMask; 465 if (NonOverlapMask.any()) 466 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); 467 } 468 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 469 if (LaneMask.any()) 470 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 471 } 472 473 /// Adds a register data dependency if the instruction that defines the 474 /// virtual register used at OperIdx is mapped to an SUnit. Add a register 475 /// antidependency from this SUnit to instructions that occur later in the same 476 /// scheduling region if they write the virtual register. 477 /// 478 /// TODO: Handle ExitSU "uses" properly. 479 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 480 const MachineInstr *MI = SU->getInstr(); 481 const MachineOperand &MO = MI->getOperand(OperIdx); 482 unsigned Reg = MO.getReg(); 483 484 // Remember the use. Data dependencies will be added when we find the def. 485 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) 486 : LaneBitmask::getAll(); 487 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 488 489 // Add antidependences to the following defs of the vreg. 490 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 491 CurrentVRegDefs.end())) { 492 // Ignore defs for unrelated lanes. 493 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 494 if ((PrevDefLaneMask & LaneMask).none()) 495 continue; 496 if (V2SU.SU == SU) 497 continue; 498 499 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 500 } 501 } 502 503 /// Returns true if MI is an instruction we are unable to reason about 504 /// (like a call or something with unmodeled side effects). 505 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 506 return MI->isCall() || MI->hasUnmodeledSideEffects() || 507 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA)); 508 } 509 510 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, 511 unsigned Latency) { 512 if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) { 513 SDep Dep(SUa, SDep::MayAliasMem); 514 Dep.setLatency(Latency); 515 SUb->addPred(Dep); 516 } 517 } 518 519 /// Creates an SUnit for each real instruction, numbered in top-down 520 /// topological order. The instruction order A < B, implies that no edge exists 521 /// from B to A. 522 /// 523 /// Map each real instruction to its SUnit. 524 /// 525 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 526 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 527 /// instead of pointers. 528 /// 529 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 530 /// the original instruction list. 531 void ScheduleDAGInstrs::initSUnits() { 532 // We'll be allocating one SUnit for each real instruction in the region, 533 // which is contained within a basic block. 534 SUnits.reserve(NumRegionInstrs); 535 536 for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) { 537 if (MI.isDebugInstr()) 538 continue; 539 540 SUnit *SU = newSUnit(&MI); 541 MISUnitMap[&MI] = SU; 542 543 SU->isCall = MI.isCall(); 544 SU->isCommutable = MI.isCommutable(); 545 546 // Assign the Latency field of SU using target-provided information. 547 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 548 549 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 550 // 551 // Reserved resources block an instruction from issuing and stall the 552 // entire pipeline. These are identified by BufferSize=0. 553 // 554 // Unbuffered resources prevent execution of subsequent instructions that 555 // require the same resources. This is used for in-order execution pipelines 556 // within an out-of-order core. These are identified by BufferSize=1. 557 if (SchedModel.hasInstrSchedModel()) { 558 const MCSchedClassDesc *SC = getSchedClass(SU); 559 for (const MCWriteProcResEntry &PRE : 560 make_range(SchedModel.getWriteProcResBegin(SC), 561 SchedModel.getWriteProcResEnd(SC))) { 562 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) { 563 case 0: 564 SU->hasReservedResource = true; 565 break; 566 case 1: 567 SU->isUnbuffered = true; 568 break; 569 default: 570 break; 571 } 572 } 573 } 574 } 575 } 576 577 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { 578 /// Current total number of SUs in map. 579 unsigned NumNodes = 0; 580 581 /// 1 for loads, 0 for stores. (see comment in SUList) 582 unsigned TrueMemOrderLatency; 583 584 public: 585 Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {} 586 587 /// To keep NumNodes up to date, insert() is used instead of 588 /// this operator w/ push_back(). 589 ValueType &operator[](const SUList &Key) { 590 llvm_unreachable("Don't use. Use insert() instead."); }; 591 592 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling 593 /// reduce(). 594 void inline insert(SUnit *SU, ValueType V) { 595 MapVector::operator[](V).push_back(SU); 596 NumNodes++; 597 } 598 599 /// Clears the list of SUs mapped to V. 600 void inline clearList(ValueType V) { 601 iterator Itr = find(V); 602 if (Itr != end()) { 603 assert(NumNodes >= Itr->second.size()); 604 NumNodes -= Itr->second.size(); 605 606 Itr->second.clear(); 607 } 608 } 609 610 /// Clears map from all contents. 611 void clear() { 612 MapVector<ValueType, SUList>::clear(); 613 NumNodes = 0; 614 } 615 616 unsigned inline size() const { return NumNodes; } 617 618 /// Counts the number of SUs in this map after a reduction. 619 void reComputeSize() { 620 NumNodes = 0; 621 for (auto &I : *this) 622 NumNodes += I.second.size(); 623 } 624 625 unsigned inline getTrueMemOrderLatency() const { 626 return TrueMemOrderLatency; 627 } 628 629 void dump(); 630 }; 631 632 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 633 Value2SUsMap &Val2SUsMap) { 634 for (auto &I : Val2SUsMap) 635 addChainDependencies(SU, I.second, 636 Val2SUsMap.getTrueMemOrderLatency()); 637 } 638 639 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 640 Value2SUsMap &Val2SUsMap, 641 ValueType V) { 642 Value2SUsMap::iterator Itr = Val2SUsMap.find(V); 643 if (Itr != Val2SUsMap.end()) 644 addChainDependencies(SU, Itr->second, 645 Val2SUsMap.getTrueMemOrderLatency()); 646 } 647 648 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { 649 assert(BarrierChain != nullptr); 650 651 for (auto &I : map) { 652 SUList &sus = I.second; 653 for (auto *SU : sus) 654 SU->addPredBarrier(BarrierChain); 655 } 656 map.clear(); 657 } 658 659 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { 660 assert(BarrierChain != nullptr); 661 662 // Go through all lists of SUs. 663 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { 664 Value2SUsMap::iterator CurrItr = I++; 665 SUList &sus = CurrItr->second; 666 SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); 667 for (; SUItr != SUEE; ++SUItr) { 668 // Stop on BarrierChain or any instruction above it. 669 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) 670 break; 671 672 (*SUItr)->addPredBarrier(BarrierChain); 673 } 674 675 // Remove also the BarrierChain from list if present. 676 if (SUItr != SUEE && *SUItr == BarrierChain) 677 SUItr++; 678 679 // Remove all SUs that are now successors of BarrierChain. 680 if (SUItr != sus.begin()) 681 sus.erase(sus.begin(), SUItr); 682 } 683 684 // Remove all entries with empty su lists. 685 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { 686 return (mapEntry.second.empty()); }); 687 688 // Recompute the size of the map (NumNodes). 689 map.reComputeSize(); 690 } 691 692 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 693 RegPressureTracker *RPTracker, 694 PressureDiffs *PDiffs, 695 LiveIntervals *LIS, 696 bool TrackLaneMasks) { 697 const TargetSubtargetInfo &ST = MF.getSubtarget(); 698 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 699 : ST.useAA(); 700 AAForDep = UseAA ? AA : nullptr; 701 702 BarrierChain = nullptr; 703 704 this->TrackLaneMasks = TrackLaneMasks; 705 MISUnitMap.clear(); 706 ScheduleDAG::clearDAG(); 707 708 // Create an SUnit for each real instruction. 709 initSUnits(); 710 711 if (PDiffs) 712 PDiffs->init(SUnits.size()); 713 714 // We build scheduling units by walking a block's instruction list 715 // from bottom to top. 716 717 // Each MIs' memory operand(s) is analyzed to a list of underlying 718 // objects. The SU is then inserted in the SUList(s) mapped from the 719 // Value(s). Each Value thus gets mapped to lists of SUs depending 720 // on it, stores and loads kept separately. Two SUs are trivially 721 // non-aliasing if they both depend on only identified Values and do 722 // not share any common Value. 723 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); 724 725 // Certain memory accesses are known to not alias any SU in Stores 726 // or Loads, and have therefore their own 'NonAlias' 727 // domain. E.g. spill / reload instructions never alias LLVM I/R 728 // Values. It would be nice to assume that this type of memory 729 // accesses always have a proper memory operand modelling, and are 730 // therefore never unanalyzable, but this is conservatively not 731 // done. 732 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); 733 734 // Remove any stale debug info; sometimes BuildSchedGraph is called again 735 // without emitting the info from the previous call. 736 DbgValues.clear(); 737 FirstDbgValue = nullptr; 738 739 assert(Defs.empty() && Uses.empty() && 740 "Only BuildGraph should update Defs/Uses"); 741 Defs.setUniverse(TRI->getNumRegs()); 742 Uses.setUniverse(TRI->getNumRegs()); 743 744 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 745 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 746 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 747 CurrentVRegDefs.setUniverse(NumVirtRegs); 748 CurrentVRegUses.setUniverse(NumVirtRegs); 749 750 // Model data dependencies between instructions being scheduled and the 751 // ExitSU. 752 addSchedBarrierDeps(); 753 754 // Walk the list of instructions, from bottom moving up. 755 MachineInstr *DbgMI = nullptr; 756 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 757 MII != MIE; --MII) { 758 MachineInstr &MI = *std::prev(MII); 759 if (DbgMI) { 760 DbgValues.push_back(std::make_pair(DbgMI, &MI)); 761 DbgMI = nullptr; 762 } 763 764 if (MI.isDebugValue()) { 765 DbgMI = &MI; 766 continue; 767 } 768 if (MI.isDebugLabel()) 769 continue; 770 771 SUnit *SU = MISUnitMap[&MI]; 772 assert(SU && "No SUnit mapped to this MI"); 773 774 if (RPTracker) { 775 RegisterOperands RegOpers; 776 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); 777 if (TrackLaneMasks) { 778 SlotIndex SlotIdx = LIS->getInstructionIndex(MI); 779 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 780 } 781 if (PDiffs != nullptr) 782 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 783 784 if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI) 785 RPTracker->recedeSkipDebugValues(); 786 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); 787 RPTracker->recede(RegOpers); 788 } 789 790 assert( 791 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && 792 "Cannot schedule terminators or labels!"); 793 794 // Add register-based dependencies (data, anti, and output). 795 // For some instructions (calls, returns, inline-asm, etc.) there can 796 // be explicit uses and implicit defs, in which case the use will appear 797 // on the operand list before the def. Do two passes over the operand 798 // list to make sure that defs are processed before any uses. 799 bool HasVRegDef = false; 800 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 801 const MachineOperand &MO = MI.getOperand(j); 802 if (!MO.isReg() || !MO.isDef()) 803 continue; 804 unsigned Reg = MO.getReg(); 805 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 806 addPhysRegDeps(SU, j); 807 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 808 HasVRegDef = true; 809 addVRegDefDeps(SU, j); 810 } 811 } 812 // Now process all uses. 813 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 814 const MachineOperand &MO = MI.getOperand(j); 815 // Only look at use operands. 816 // We do not need to check for MO.readsReg() here because subsequent 817 // subregister defs will get output dependence edges and need no 818 // additional use dependencies. 819 if (!MO.isReg() || !MO.isUse()) 820 continue; 821 unsigned Reg = MO.getReg(); 822 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 823 addPhysRegDeps(SU, j); 824 } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) { 825 addVRegUseDeps(SU, j); 826 } 827 } 828 829 // If we haven't seen any uses in this scheduling region, create a 830 // dependence edge to ExitSU to model the live-out latency. This is required 831 // for vreg defs with no in-region use, and prefetches with no vreg def. 832 // 833 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 834 // check currently relies on being called before adding chain deps. 835 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { 836 SDep Dep(SU, SDep::Artificial); 837 Dep.setLatency(SU->Latency - 1); 838 ExitSU.addPred(Dep); 839 } 840 841 // Add memory dependencies (Note: isStoreToStackSlot and 842 // isLoadFromStackSLot are not usable after stack slots are lowered to 843 // actual addresses). 844 845 // This is a barrier event that acts as a pivotal node in the DAG. 846 if (isGlobalMemoryObject(AA, &MI)) { 847 848 // Become the barrier chain. 849 if (BarrierChain) 850 BarrierChain->addPredBarrier(SU); 851 BarrierChain = SU; 852 853 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" 854 << BarrierChain->NodeNum << ").\n";); 855 856 // Add dependencies against everything below it and clear maps. 857 addBarrierChain(Stores); 858 addBarrierChain(Loads); 859 addBarrierChain(NonAliasStores); 860 addBarrierChain(NonAliasLoads); 861 862 continue; 863 } 864 865 // If it's not a store or a variant load, we're done. 866 if (!MI.mayStore() && 867 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))) 868 continue; 869 870 // Always add dependecy edge to BarrierChain if present. 871 if (BarrierChain) 872 BarrierChain->addPredBarrier(SU); 873 874 // Find the underlying objects for MI. The Objs vector is either 875 // empty, or filled with the Values of memory locations which this 876 // SU depends on. 877 UnderlyingObjectsVector Objs; 878 bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs, 879 MF.getDataLayout()); 880 881 if (MI.mayStore()) { 882 if (!ObjsFound) { 883 // An unknown store depends on all stores and loads. 884 addChainDependencies(SU, Stores); 885 addChainDependencies(SU, NonAliasStores); 886 addChainDependencies(SU, Loads); 887 addChainDependencies(SU, NonAliasLoads); 888 889 // Map this store to 'UnknownValue'. 890 Stores.insert(SU, UnknownValue); 891 } else { 892 // Add precise dependencies against all previously seen memory 893 // accesses mapped to the same Value(s). 894 for (const UnderlyingObject &UnderlObj : Objs) { 895 ValueType V = UnderlObj.getValue(); 896 bool ThisMayAlias = UnderlObj.mayAlias(); 897 898 // Add dependencies to previous stores and loads mapped to V. 899 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 900 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); 901 } 902 // Update the store map after all chains have been added to avoid adding 903 // self-loop edge if multiple underlying objects are present. 904 for (const UnderlyingObject &UnderlObj : Objs) { 905 ValueType V = UnderlObj.getValue(); 906 bool ThisMayAlias = UnderlObj.mayAlias(); 907 908 // Map this store to V. 909 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); 910 } 911 // The store may have dependencies to unanalyzable loads and 912 // stores. 913 addChainDependencies(SU, Loads, UnknownValue); 914 addChainDependencies(SU, Stores, UnknownValue); 915 } 916 } else { // SU is a load. 917 if (!ObjsFound) { 918 // An unknown load depends on all stores. 919 addChainDependencies(SU, Stores); 920 addChainDependencies(SU, NonAliasStores); 921 922 Loads.insert(SU, UnknownValue); 923 } else { 924 for (const UnderlyingObject &UnderlObj : Objs) { 925 ValueType V = UnderlObj.getValue(); 926 bool ThisMayAlias = UnderlObj.mayAlias(); 927 928 // Add precise dependencies against all previously seen stores 929 // mapping to the same Value(s). 930 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 931 932 // Map this load to V. 933 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); 934 } 935 // The load may have dependencies to unanalyzable stores. 936 addChainDependencies(SU, Stores, UnknownValue); 937 } 938 } 939 940 // Reduce maps if they grow huge. 941 if (Stores.size() + Loads.size() >= HugeRegion) { 942 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); 943 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); 944 } 945 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { 946 LLVM_DEBUG( 947 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); 948 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); 949 } 950 } 951 952 if (DbgMI) 953 FirstDbgValue = DbgMI; 954 955 Defs.clear(); 956 Uses.clear(); 957 CurrentVRegDefs.clear(); 958 CurrentVRegUses.clear(); 959 } 960 961 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { 962 PSV->printCustom(OS); 963 return OS; 964 } 965 966 void ScheduleDAGInstrs::Value2SUsMap::dump() { 967 for (auto &Itr : *this) { 968 if (Itr.first.is<const Value*>()) { 969 const Value *V = Itr.first.get<const Value*>(); 970 if (isa<UndefValue>(V)) 971 dbgs() << "Unknown"; 972 else 973 V->printAsOperand(dbgs()); 974 } 975 else if (Itr.first.is<const PseudoSourceValue*>()) 976 dbgs() << Itr.first.get<const PseudoSourceValue*>(); 977 else 978 llvm_unreachable("Unknown Value type."); 979 980 dbgs() << " : "; 981 dumpSUList(Itr.second); 982 } 983 } 984 985 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, 986 Value2SUsMap &loads, unsigned N) { 987 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump(); 988 dbgs() << "Loading SUnits:\n"; loads.dump()); 989 990 // Insert all SU's NodeNums into a vector and sort it. 991 std::vector<unsigned> NodeNums; 992 NodeNums.reserve(stores.size() + loads.size()); 993 for (auto &I : stores) 994 for (auto *SU : I.second) 995 NodeNums.push_back(SU->NodeNum); 996 for (auto &I : loads) 997 for (auto *SU : I.second) 998 NodeNums.push_back(SU->NodeNum); 999 llvm::sort(NodeNums.begin(), NodeNums.end()); 1000 1001 // The N last elements in NodeNums will be removed, and the SU with 1002 // the lowest NodeNum of them will become the new BarrierChain to 1003 // let the not yet seen SUs have a dependency to the removed SUs. 1004 assert(N <= NodeNums.size()); 1005 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; 1006 if (BarrierChain) { 1007 // The aliasing and non-aliasing maps reduce independently of each 1008 // other, but share a common BarrierChain. Check if the 1009 // newBarrierChain is above the former one. If it is not, it may 1010 // introduce a loop to use newBarrierChain, so keep the old one. 1011 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { 1012 BarrierChain->addPredBarrier(newBarrierChain); 1013 BarrierChain = newBarrierChain; 1014 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU(" 1015 << BarrierChain->NodeNum << ").\n";); 1016 } 1017 else 1018 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU(" 1019 << BarrierChain->NodeNum << ").\n";); 1020 } 1021 else 1022 BarrierChain = newBarrierChain; 1023 1024 insertBarrierChain(stores); 1025 insertBarrierChain(loads); 1026 1027 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump(); 1028 dbgs() << "Loading SUnits:\n"; loads.dump()); 1029 } 1030 1031 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs, 1032 MachineInstr &MI, bool addToLiveRegs) { 1033 for (MachineOperand &MO : MI.operands()) { 1034 if (!MO.isReg() || !MO.readsReg()) 1035 continue; 1036 unsigned Reg = MO.getReg(); 1037 if (!Reg) 1038 continue; 1039 1040 // Things that are available after the instruction are killed by it. 1041 bool IsKill = LiveRegs.available(MRI, Reg); 1042 MO.setIsKill(IsKill); 1043 if (addToLiveRegs) 1044 LiveRegs.addReg(Reg); 1045 } 1046 } 1047 1048 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) { 1049 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n'); 1050 1051 LiveRegs.init(*TRI); 1052 LiveRegs.addLiveOuts(MBB); 1053 1054 // Examine block from end to start... 1055 for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) { 1056 if (MI.isDebugInstr()) 1057 continue; 1058 1059 // Update liveness. Registers that are defed but not used in this 1060 // instruction are now dead. Mark register and all subregs as they 1061 // are completely defined. 1062 for (ConstMIBundleOperands O(MI); O.isValid(); ++O) { 1063 const MachineOperand &MO = *O; 1064 if (MO.isReg()) { 1065 if (!MO.isDef()) 1066 continue; 1067 unsigned Reg = MO.getReg(); 1068 if (!Reg) 1069 continue; 1070 LiveRegs.removeReg(Reg); 1071 } else if (MO.isRegMask()) { 1072 LiveRegs.removeRegsInMask(MO); 1073 } 1074 } 1075 1076 // If there is a bundle header fix it up first. 1077 if (!MI.isBundled()) { 1078 toggleKills(MRI, LiveRegs, MI, true); 1079 } else { 1080 MachineBasicBlock::instr_iterator First = MI.getIterator(); 1081 if (MI.isBundle()) { 1082 toggleKills(MRI, LiveRegs, MI, false); 1083 ++First; 1084 } 1085 // Some targets make the (questionable) assumtion that the instructions 1086 // inside the bundle are ordered and consequently only the last use of 1087 // a register inside the bundle can kill it. 1088 MachineBasicBlock::instr_iterator I = std::next(First); 1089 while (I->isBundledWithSucc()) 1090 ++I; 1091 do { 1092 if (!I->isDebugInstr()) 1093 toggleKills(MRI, LiveRegs, *I, true); 1094 --I; 1095 } while(I != First); 1096 } 1097 } 1098 } 1099 1100 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1101 // Cannot completely remove virtual function even in release mode. 1102 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1103 SU->getInstr()->dump(); 1104 #endif 1105 } 1106 1107 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1108 std::string s; 1109 raw_string_ostream oss(s); 1110 if (SU == &EntrySU) 1111 oss << "<entry>"; 1112 else if (SU == &ExitSU) 1113 oss << "<exit>"; 1114 else 1115 SU->getInstr()->print(oss, /*SkipOpers=*/true); 1116 return oss.str(); 1117 } 1118 1119 /// Return the basic block label. It is not necessarilly unique because a block 1120 /// contains multiple scheduling regions. But it is fine for visualization. 1121 std::string ScheduleDAGInstrs::getDAGName() const { 1122 return "dag." + BB->getFullName(); 1123 } 1124 1125 //===----------------------------------------------------------------------===// 1126 // SchedDFSResult Implementation 1127 //===----------------------------------------------------------------------===// 1128 1129 namespace llvm { 1130 1131 /// Internal state used to compute SchedDFSResult. 1132 class SchedDFSImpl { 1133 SchedDFSResult &R; 1134 1135 /// Join DAG nodes into equivalence classes by their subtree. 1136 IntEqClasses SubtreeClasses; 1137 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1138 std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs; 1139 1140 struct RootData { 1141 unsigned NodeID; 1142 unsigned ParentNodeID; ///< Parent node (member of the parent subtree). 1143 unsigned SubInstrCount = 0; ///< Instr count in this tree only, not 1144 /// children. 1145 1146 RootData(unsigned id): NodeID(id), 1147 ParentNodeID(SchedDFSResult::InvalidSubtreeID) {} 1148 1149 unsigned getSparseSetIndex() const { return NodeID; } 1150 }; 1151 1152 SparseSet<RootData> RootSet; 1153 1154 public: 1155 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1156 RootSet.setUniverse(R.DFSNodeData.size()); 1157 } 1158 1159 /// Returns true if this node been visited by the DFS traversal. 1160 /// 1161 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1162 /// ID. Later, SubtreeID is updated but remains valid. 1163 bool isVisited(const SUnit *SU) const { 1164 return R.DFSNodeData[SU->NodeNum].SubtreeID 1165 != SchedDFSResult::InvalidSubtreeID; 1166 } 1167 1168 /// Initializes this node's instruction count. We don't need to flag the node 1169 /// visited until visitPostorder because the DAG cannot have cycles. 1170 void visitPreorder(const SUnit *SU) { 1171 R.DFSNodeData[SU->NodeNum].InstrCount = 1172 SU->getInstr()->isTransient() ? 0 : 1; 1173 } 1174 1175 /// Called once for each node after all predecessors are visited. Revisit this 1176 /// node's predecessors and potentially join them now that we know the ILP of 1177 /// the other predecessors. 1178 void visitPostorderNode(const SUnit *SU) { 1179 // Mark this node as the root of a subtree. It may be joined with its 1180 // successors later. 1181 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1182 RootData RData(SU->NodeNum); 1183 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1184 1185 // If any predecessors are still in their own subtree, they either cannot be 1186 // joined or are large enough to remain separate. If this parent node's 1187 // total instruction count is not greater than a child subtree by at least 1188 // the subtree limit, then try to join it now since splitting subtrees is 1189 // only useful if multiple high-pressure paths are possible. 1190 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1191 for (const SDep &PredDep : SU->Preds) { 1192 if (PredDep.getKind() != SDep::Data) 1193 continue; 1194 unsigned PredNum = PredDep.getSUnit()->NodeNum; 1195 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1196 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false); 1197 1198 // Either link or merge the TreeData entry from the child to the parent. 1199 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1200 // If the predecessor's parent is invalid, this is a tree edge and the 1201 // current node is the parent. 1202 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1203 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1204 } 1205 else if (RootSet.count(PredNum)) { 1206 // The predecessor is not a root, but is still in the root set. This 1207 // must be the new parent that it was just joined to. Note that 1208 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1209 // set to the original parent. 1210 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1211 RootSet.erase(PredNum); 1212 } 1213 } 1214 RootSet[SU->NodeNum] = RData; 1215 } 1216 1217 /// Called once for each tree edge after calling visitPostOrderNode on 1218 /// the predecessor. Increment the parent node's instruction count and 1219 /// preemptively join this subtree to its parent's if it is small enough. 1220 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1221 R.DFSNodeData[Succ->NodeNum].InstrCount 1222 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1223 joinPredSubtree(PredDep, Succ); 1224 } 1225 1226 /// Adds a connection for cross edges. 1227 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1228 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1229 } 1230 1231 /// Sets each node's subtree ID to the representative ID and record 1232 /// connections between trees. 1233 void finalize() { 1234 SubtreeClasses.compress(); 1235 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1236 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1237 && "number of roots should match trees"); 1238 for (const RootData &Root : RootSet) { 1239 unsigned TreeID = SubtreeClasses[Root.NodeID]; 1240 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1241 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; 1242 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; 1243 // Note that SubInstrCount may be greater than InstrCount if we joined 1244 // subtrees across a cross edge. InstrCount will be attributed to the 1245 // original parent, while SubInstrCount will be attributed to the joined 1246 // parent. 1247 } 1248 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1249 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1250 LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1251 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1252 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1253 LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1254 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1255 } 1256 for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) { 1257 unsigned PredTree = SubtreeClasses[P.first->NodeNum]; 1258 unsigned SuccTree = SubtreeClasses[P.second->NodeNum]; 1259 if (PredTree == SuccTree) 1260 continue; 1261 unsigned Depth = P.first->getDepth(); 1262 addConnection(PredTree, SuccTree, Depth); 1263 addConnection(SuccTree, PredTree, Depth); 1264 } 1265 } 1266 1267 protected: 1268 /// Joins the predecessor subtree with the successor that is its DFS parent. 1269 /// Applies some heuristics before joining. 1270 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1271 bool CheckLimit = true) { 1272 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1273 1274 // Check if the predecessor is already joined. 1275 const SUnit *PredSU = PredDep.getSUnit(); 1276 unsigned PredNum = PredSU->NodeNum; 1277 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1278 return false; 1279 1280 // Four is the magic number of successors before a node is considered a 1281 // pinch point. 1282 unsigned NumDataSucs = 0; 1283 for (const SDep &SuccDep : PredSU->Succs) { 1284 if (SuccDep.getKind() == SDep::Data) { 1285 if (++NumDataSucs >= 4) 1286 return false; 1287 } 1288 } 1289 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1290 return false; 1291 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1292 SubtreeClasses.join(Succ->NodeNum, PredNum); 1293 return true; 1294 } 1295 1296 /// Called by finalize() to record a connection between trees. 1297 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1298 if (!Depth) 1299 return; 1300 1301 do { 1302 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1303 R.SubtreeConnections[FromTree]; 1304 for (SchedDFSResult::Connection &C : Connections) { 1305 if (C.TreeID == ToTree) { 1306 C.Level = std::max(C.Level, Depth); 1307 return; 1308 } 1309 } 1310 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1311 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1312 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1313 } 1314 }; 1315 1316 } // end namespace llvm 1317 1318 namespace { 1319 1320 /// Manage the stack used by a reverse depth-first search over the DAG. 1321 class SchedDAGReverseDFS { 1322 std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack; 1323 1324 public: 1325 bool isComplete() const { return DFSStack.empty(); } 1326 1327 void follow(const SUnit *SU) { 1328 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1329 } 1330 void advance() { ++DFSStack.back().second; } 1331 1332 const SDep *backtrack() { 1333 DFSStack.pop_back(); 1334 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1335 } 1336 1337 const SUnit *getCurr() const { return DFSStack.back().first; } 1338 1339 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1340 1341 SUnit::const_pred_iterator getPredEnd() const { 1342 return getCurr()->Preds.end(); 1343 } 1344 }; 1345 1346 } // end anonymous namespace 1347 1348 static bool hasDataSucc(const SUnit *SU) { 1349 for (const SDep &SuccDep : SU->Succs) { 1350 if (SuccDep.getKind() == SDep::Data && 1351 !SuccDep.getSUnit()->isBoundaryNode()) 1352 return true; 1353 } 1354 return false; 1355 } 1356 1357 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first 1358 /// search from this root. 1359 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1360 if (!IsBottomUp) 1361 llvm_unreachable("Top-down ILP metric is unimplemented"); 1362 1363 SchedDFSImpl Impl(*this); 1364 for (const SUnit &SU : SUnits) { 1365 if (Impl.isVisited(&SU) || hasDataSucc(&SU)) 1366 continue; 1367 1368 SchedDAGReverseDFS DFS; 1369 Impl.visitPreorder(&SU); 1370 DFS.follow(&SU); 1371 while (true) { 1372 // Traverse the leftmost path as far as possible. 1373 while (DFS.getPred() != DFS.getPredEnd()) { 1374 const SDep &PredDep = *DFS.getPred(); 1375 DFS.advance(); 1376 // Ignore non-data edges. 1377 if (PredDep.getKind() != SDep::Data 1378 || PredDep.getSUnit()->isBoundaryNode()) { 1379 continue; 1380 } 1381 // An already visited edge is a cross edge, assuming an acyclic DAG. 1382 if (Impl.isVisited(PredDep.getSUnit())) { 1383 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1384 continue; 1385 } 1386 Impl.visitPreorder(PredDep.getSUnit()); 1387 DFS.follow(PredDep.getSUnit()); 1388 } 1389 // Visit the top of the stack in postorder and backtrack. 1390 const SUnit *Child = DFS.getCurr(); 1391 const SDep *PredDep = DFS.backtrack(); 1392 Impl.visitPostorderNode(Child); 1393 if (PredDep) 1394 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1395 if (DFS.isComplete()) 1396 break; 1397 } 1398 } 1399 Impl.finalize(); 1400 } 1401 1402 /// The root of the given SubtreeID was just scheduled. For all subtrees 1403 /// connected to this tree, record the depth of the connection so that the 1404 /// nearest connected subtrees can be prioritized. 1405 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1406 for (const Connection &C : SubtreeConnections[SubtreeID]) { 1407 SubtreeConnectLevels[C.TreeID] = 1408 std::max(SubtreeConnectLevels[C.TreeID], C.Level); 1409 LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @" 1410 << SubtreeConnectLevels[C.TreeID] << '\n'); 1411 } 1412 } 1413 1414 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1415 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const { 1416 OS << InstrCount << " / " << Length << " = "; 1417 if (!Length) 1418 OS << "BADILP"; 1419 else 1420 OS << format("%g", ((double)InstrCount / Length)); 1421 } 1422 1423 LLVM_DUMP_METHOD void ILPValue::dump() const { 1424 dbgs() << *this << '\n'; 1425 } 1426 1427 namespace llvm { 1428 1429 LLVM_DUMP_METHOD 1430 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1431 Val.print(OS); 1432 return OS; 1433 } 1434 1435 } // end namespace llvm 1436 1437 #endif 1438