1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling 11 // of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "misched" 16 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/PseudoSourceValue.h" 27 #include "llvm/CodeGen/RegisterPressure.h" 28 #include "llvm/CodeGen/ScheduleDFS.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/MC/MCInstrItineraries.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/Format.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetRegisterInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <queue> 40 41 using namespace llvm; 42 43 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 44 cl::ZeroOrMore, cl::init(false), 45 cl::desc("Enable use of AA during MI GAD construction")); 46 47 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 48 const MachineLoopInfo &mli, 49 const MachineDominatorTree &mdt, 50 bool IsPostRAFlag, 51 LiveIntervals *lis) 52 : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis), 53 IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) { 54 assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals"); 55 DbgValues.clear(); 56 assert(!(IsPostRA && MRI.getNumVirtRegs()) && 57 "Virtual registers must be removed prior to PostRA scheduling"); 58 59 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 60 SchedModel.init(*ST.getSchedModel(), &ST, TII); 61 } 62 63 /// getUnderlyingObjectFromInt - This is the function that does the work of 64 /// looking through basic ptrtoint+arithmetic+inttoptr sequences. 65 static const Value *getUnderlyingObjectFromInt(const Value *V) { 66 do { 67 if (const Operator *U = dyn_cast<Operator>(V)) { 68 // If we find a ptrtoint, we can transfer control back to the 69 // regular getUnderlyingObjectFromInt. 70 if (U->getOpcode() == Instruction::PtrToInt) 71 return U->getOperand(0); 72 // If we find an add of a constant, a multiplied value, or a phi, it's 73 // likely that the other operand will lead us to the base 74 // object. We don't have to worry about the case where the 75 // object address is somehow being computed by the multiply, 76 // because our callers only care when the result is an 77 // identifiable object. 78 if (U->getOpcode() != Instruction::Add || 79 (!isa<ConstantInt>(U->getOperand(1)) && 80 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 81 !isa<PHINode>(U->getOperand(1)))) 82 return V; 83 V = U->getOperand(0); 84 } else { 85 return V; 86 } 87 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 88 } while (1); 89 } 90 91 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects 92 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. 93 static void getUnderlyingObjects(const Value *V, 94 SmallVectorImpl<Value *> &Objects) { 95 SmallPtrSet<const Value*, 16> Visited; 96 SmallVector<const Value *, 4> Working(1, V); 97 do { 98 V = Working.pop_back_val(); 99 100 SmallVector<Value *, 4> Objs; 101 GetUnderlyingObjects(const_cast<Value *>(V), Objs); 102 103 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 104 I != IE; ++I) { 105 V = *I; 106 if (!Visited.insert(V)) 107 continue; 108 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 109 const Value *O = 110 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 111 if (O->getType()->isPointerTy()) { 112 Working.push_back(O); 113 continue; 114 } 115 } 116 Objects.push_back(const_cast<Value *>(V)); 117 } 118 } while (!Working.empty()); 119 } 120 121 typedef SmallVector<PointerIntPair<const Value *, 1, bool>, 4> 122 UnderlyingObjectsVector; 123 124 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference 125 /// information and it can be tracked to a normal reference to a known 126 /// object, return the Value for that object. 127 static void getUnderlyingObjectsForInstr(const MachineInstr *MI, 128 const MachineFrameInfo *MFI, 129 UnderlyingObjectsVector &Objects) { 130 if (!MI->hasOneMemOperand() || 131 !(*MI->memoperands_begin())->getValue() || 132 (*MI->memoperands_begin())->isVolatile()) 133 return; 134 135 const Value *V = (*MI->memoperands_begin())->getValue(); 136 if (!V) 137 return; 138 139 SmallVector<Value *, 4> Objs; 140 getUnderlyingObjects(V, Objs); 141 142 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 143 I != IE; ++I) { 144 bool MayAlias = true; 145 V = *I; 146 147 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { 148 // For now, ignore PseudoSourceValues which may alias LLVM IR values 149 // because the code that uses this function has no way to cope with 150 // such aliases. 151 152 if (PSV->isAliased(MFI)) { 153 Objects.clear(); 154 return; 155 } 156 157 MayAlias = PSV->mayAlias(MFI); 158 } else if (!isIdentifiedObject(V)) { 159 Objects.clear(); 160 return; 161 } 162 163 Objects.push_back(UnderlyingObjectsVector::value_type(V, MayAlias)); 164 } 165 } 166 167 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 168 BB = bb; 169 } 170 171 void ScheduleDAGInstrs::finishBlock() { 172 // Subclasses should no longer refer to the old block. 173 BB = 0; 174 } 175 176 /// Initialize the DAG and common scheduler state for the current scheduling 177 /// region. This does not actually create the DAG, only clears it. The 178 /// scheduling driver may call BuildSchedGraph multiple times per scheduling 179 /// region. 180 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 181 MachineBasicBlock::iterator begin, 182 MachineBasicBlock::iterator end, 183 unsigned regioninstrs) { 184 assert(bb == BB && "startBlock should set BB"); 185 RegionBegin = begin; 186 RegionEnd = end; 187 NumRegionInstrs = regioninstrs; 188 } 189 190 /// Close the current scheduling region. Don't clear any state in case the 191 /// driver wants to refer to the previous scheduling region. 192 void ScheduleDAGInstrs::exitRegion() { 193 // Nothing to do. 194 } 195 196 /// addSchedBarrierDeps - Add dependencies from instructions in the current 197 /// list of instructions being scheduled to scheduling barrier by adding 198 /// the exit SU to the register defs and use list. This is because we want to 199 /// make sure instructions which define registers that are either used by 200 /// the terminator or are live-out are properly scheduled. This is 201 /// especially important when the definition latency of the return value(s) 202 /// are too high to be hidden by the branch or when the liveout registers 203 /// used by instructions in the fallthrough block. 204 void ScheduleDAGInstrs::addSchedBarrierDeps() { 205 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0; 206 ExitSU.setInstr(ExitMI); 207 bool AllDepKnown = ExitMI && 208 (ExitMI->isCall() || ExitMI->isBarrier()); 209 if (ExitMI && AllDepKnown) { 210 // If it's a call or a barrier, add dependencies on the defs and uses of 211 // instruction. 212 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { 213 const MachineOperand &MO = ExitMI->getOperand(i); 214 if (!MO.isReg() || MO.isDef()) continue; 215 unsigned Reg = MO.getReg(); 216 if (Reg == 0) continue; 217 218 if (TRI->isPhysicalRegister(Reg)) 219 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 220 else { 221 assert(!IsPostRA && "Virtual register encountered after regalloc."); 222 if (MO.readsReg()) // ignore undef operands 223 addVRegUseDeps(&ExitSU, i); 224 } 225 } 226 } else { 227 // For others, e.g. fallthrough, conditional branch, assume the exit 228 // uses all the registers that are livein to the successor blocks. 229 assert(Uses.empty() && "Uses in set before adding deps?"); 230 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 231 SE = BB->succ_end(); SI != SE; ++SI) 232 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 233 E = (*SI)->livein_end(); I != E; ++I) { 234 unsigned Reg = *I; 235 if (!Uses.contains(Reg)) 236 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 237 } 238 } 239 } 240 241 /// MO is an operand of SU's instruction that defines a physical register. Add 242 /// data dependencies from SU to any uses of the physical register. 243 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 244 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 245 assert(MO.isDef() && "expect physreg def"); 246 247 // Ask the target if address-backscheduling is desirable, and if so how much. 248 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 249 250 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 251 Alias.isValid(); ++Alias) { 252 if (!Uses.contains(*Alias)) 253 continue; 254 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 255 SUnit *UseSU = I->SU; 256 if (UseSU == SU) 257 continue; 258 259 // Adjust the dependence latency using operand def/use information, 260 // then allow the target to perform its own adjustments. 261 int UseOp = I->OpIdx; 262 MachineInstr *RegUse = 0; 263 SDep Dep; 264 if (UseOp < 0) 265 Dep = SDep(SU, SDep::Artificial); 266 else { 267 // Set the hasPhysRegDefs only for physreg defs that have a use within 268 // the scheduling region. 269 SU->hasPhysRegDefs = true; 270 Dep = SDep(SU, SDep::Data, *Alias); 271 RegUse = UseSU->getInstr(); 272 } 273 Dep.setLatency( 274 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 275 UseOp)); 276 277 ST.adjustSchedDependency(SU, UseSU, Dep); 278 UseSU->addPred(Dep); 279 } 280 } 281 } 282 283 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from 284 /// this SUnit to following instructions in the same scheduling region that 285 /// depend the physical register referenced at OperIdx. 286 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 287 const MachineInstr *MI = SU->getInstr(); 288 const MachineOperand &MO = MI->getOperand(OperIdx); 289 290 // Optionally add output and anti dependencies. For anti 291 // dependencies we use a latency of 0 because for a multi-issue 292 // target we want to allow the defining instruction to issue 293 // in the same cycle as the using instruction. 294 // TODO: Using a latency of 1 here for output dependencies assumes 295 // there's no cost for reusing registers. 296 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 297 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 298 Alias.isValid(); ++Alias) { 299 if (!Defs.contains(*Alias)) 300 continue; 301 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 302 SUnit *DefSU = I->SU; 303 if (DefSU == &ExitSU) 304 continue; 305 if (DefSU != SU && 306 (Kind != SDep::Output || !MO.isDead() || 307 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 308 if (Kind == SDep::Anti) 309 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 310 else { 311 SDep Dep(SU, Kind, /*Reg=*/*Alias); 312 Dep.setLatency( 313 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 314 DefSU->addPred(Dep); 315 } 316 } 317 } 318 } 319 320 if (!MO.isDef()) { 321 SU->hasPhysRegUses = true; 322 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 323 // retrieve the existing SUnits list for this register's uses. 324 // Push this SUnit on the use list. 325 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); 326 } 327 else { 328 addPhysRegDataDeps(SU, OperIdx); 329 unsigned Reg = MO.getReg(); 330 331 // clear this register's use list 332 if (Uses.contains(Reg)) 333 Uses.eraseAll(Reg); 334 335 if (!MO.isDead()) { 336 Defs.eraseAll(Reg); 337 } else if (SU->isCall) { 338 // Calls will not be reordered because of chain dependencies (see 339 // below). Since call operands are dead, calls may continue to be added 340 // to the DefList making dependence checking quadratic in the size of 341 // the block. Instead, we leave only one call at the back of the 342 // DefList. 343 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 344 Reg2SUnitsMap::iterator B = P.first; 345 Reg2SUnitsMap::iterator I = P.second; 346 for (bool isBegin = I == B; !isBegin; /* empty */) { 347 isBegin = (--I) == B; 348 if (!I->SU->isCall) 349 break; 350 I = Defs.erase(I); 351 } 352 } 353 354 // Defs are pushed in the order they are visited and never reordered. 355 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 356 } 357 } 358 359 /// addVRegDefDeps - Add register output and data dependencies from this SUnit 360 /// to instructions that occur later in the same scheduling region if they read 361 /// from or write to the virtual register defined at OperIdx. 362 /// 363 /// TODO: Hoist loop induction variable increments. This has to be 364 /// reevaluated. Generally, IV scheduling should be done before coalescing. 365 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 366 const MachineInstr *MI = SU->getInstr(); 367 unsigned Reg = MI->getOperand(OperIdx).getReg(); 368 369 // Singly defined vregs do not have output/anti dependencies. 370 // The current operand is a def, so we have at least one. 371 // Check here if there are any others... 372 if (MRI.hasOneDef(Reg)) 373 return; 374 375 // Add output dependence to the next nearest def of this vreg. 376 // 377 // Unless this definition is dead, the output dependence should be 378 // transitively redundant with antidependencies from this definition's 379 // uses. We're conservative for now until we have a way to guarantee the uses 380 // are not eliminated sometime during scheduling. The output dependence edge 381 // is also useful if output latency exceeds def-use latency. 382 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 383 if (DefI == VRegDefs.end()) 384 VRegDefs.insert(VReg2SUnit(Reg, SU)); 385 else { 386 SUnit *DefSU = DefI->SU; 387 if (DefSU != SU && DefSU != &ExitSU) { 388 SDep Dep(SU, SDep::Output, Reg); 389 Dep.setLatency( 390 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 391 DefSU->addPred(Dep); 392 } 393 DefI->SU = SU; 394 } 395 } 396 397 /// addVRegUseDeps - Add a register data dependency if the instruction that 398 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a 399 /// register antidependency from this SUnit to instructions that occur later in 400 /// the same scheduling region if they write the virtual register. 401 /// 402 /// TODO: Handle ExitSU "uses" properly. 403 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 404 MachineInstr *MI = SU->getInstr(); 405 unsigned Reg = MI->getOperand(OperIdx).getReg(); 406 407 // Record this local VReg use. 408 VReg2UseMap::iterator UI = VRegUses.find(Reg); 409 for (; UI != VRegUses.end(); ++UI) { 410 if (UI->SU == SU) 411 break; 412 } 413 if (UI == VRegUses.end()) 414 VRegUses.insert(VReg2SUnit(Reg, SU)); 415 416 // Lookup this operand's reaching definition. 417 assert(LIS && "vreg dependencies requires LiveIntervals"); 418 LiveQueryResult LRQ 419 = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI)); 420 VNInfo *VNI = LRQ.valueIn(); 421 422 // VNI will be valid because MachineOperand::readsReg() is checked by caller. 423 assert(VNI && "No value to read by operand"); 424 MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); 425 // Phis and other noninstructions (after coalescing) have a NULL Def. 426 if (Def) { 427 SUnit *DefSU = getSUnit(Def); 428 if (DefSU) { 429 // The reaching Def lives within this scheduling region. 430 // Create a data dependence. 431 SDep dep(DefSU, SDep::Data, Reg); 432 // Adjust the dependence latency using operand def/use information, then 433 // allow the target to perform its own adjustments. 434 int DefOp = Def->findRegisterDefOperandIdx(Reg); 435 dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx)); 436 437 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 438 ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep)); 439 SU->addPred(dep); 440 } 441 } 442 443 // Add antidependence to the following def of the vreg it uses. 444 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 445 if (DefI != VRegDefs.end() && DefI->SU != SU) 446 DefI->SU->addPred(SDep(SU, SDep::Anti, Reg)); 447 } 448 449 /// Return true if MI is an instruction we are unable to reason about 450 /// (like a call or something with unmodeled side effects). 451 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 452 if (MI->isCall() || MI->hasUnmodeledSideEffects() || 453 (MI->hasOrderedMemoryRef() && 454 (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) 455 return true; 456 return false; 457 } 458 459 // This MI might have either incomplete info, or known to be unsafe 460 // to deal with (i.e. volatile object). 461 static inline bool isUnsafeMemoryObject(MachineInstr *MI, 462 const MachineFrameInfo *MFI) { 463 if (!MI || MI->memoperands_empty()) 464 return true; 465 // We purposefully do no check for hasOneMemOperand() here 466 // in hope to trigger an assert downstream in order to 467 // finish implementation. 468 if ((*MI->memoperands_begin())->isVolatile() || 469 MI->hasUnmodeledSideEffects()) 470 return true; 471 const Value *V = (*MI->memoperands_begin())->getValue(); 472 if (!V) 473 return true; 474 475 SmallVector<Value *, 4> Objs; 476 getUnderlyingObjects(V, Objs); 477 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), 478 IE = Objs.end(); I != IE; ++I) { 479 V = *I; 480 481 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { 482 // Similarly to getUnderlyingObjectForInstr: 483 // For now, ignore PseudoSourceValues which may alias LLVM IR values 484 // because the code that uses this function has no way to cope with 485 // such aliases. 486 if (PSV->isAliased(MFI)) 487 return true; 488 } 489 490 // Does this pointer refer to a distinct and identifiable object? 491 if (!isIdentifiedObject(V)) 492 return true; 493 } 494 495 return false; 496 } 497 498 /// This returns true if the two MIs need a chain edge betwee them. 499 /// If these are not even memory operations, we still may need 500 /// chain deps between them. The question really is - could 501 /// these two MIs be reordered during scheduling from memory dependency 502 /// point of view. 503 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 504 MachineInstr *MIa, 505 MachineInstr *MIb) { 506 // Cover a trivial case - no edge is need to itself. 507 if (MIa == MIb) 508 return false; 509 510 if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI)) 511 return true; 512 513 // If we are dealing with two "normal" loads, we do not need an edge 514 // between them - they could be reordered. 515 if (!MIa->mayStore() && !MIb->mayStore()) 516 return false; 517 518 // To this point analysis is generic. From here on we do need AA. 519 if (!AA) 520 return true; 521 522 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 523 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 524 525 // FIXME: Need to handle multiple memory operands to support all targets. 526 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 527 llvm_unreachable("Multiple memory operands."); 528 529 // The following interface to AA is fashioned after DAGCombiner::isAlias 530 // and operates with MachineMemOperand offset with some important 531 // assumptions: 532 // - LLVM fundamentally assumes flat address spaces. 533 // - MachineOperand offset can *only* result from legalization and 534 // cannot affect queries other than the trivial case of overlap 535 // checking. 536 // - These offsets never wrap and never step outside 537 // of allocated objects. 538 // - There should never be any negative offsets here. 539 // 540 // FIXME: Modify API to hide this math from "user" 541 // FIXME: Even before we go to AA we can reason locally about some 542 // memory objects. It can save compile time, and possibly catch some 543 // corner cases not currently covered. 544 545 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 546 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 547 548 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 549 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 550 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 551 552 AliasAnalysis::AliasResult AAResult = AA->alias( 553 AliasAnalysis::Location(MMOa->getValue(), Overlapa, 554 MMOa->getTBAAInfo()), 555 AliasAnalysis::Location(MMOb->getValue(), Overlapb, 556 MMOb->getTBAAInfo())); 557 558 return (AAResult != AliasAnalysis::NoAlias); 559 } 560 561 /// This recursive function iterates over chain deps of SUb looking for 562 /// "latest" node that needs a chain edge to SUa. 563 static unsigned 564 iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI, 565 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth, 566 SmallPtrSet<const SUnit*, 16> &Visited) { 567 if (!SUa || !SUb || SUb == ExitSU) 568 return *Depth; 569 570 // Remember visited nodes. 571 if (!Visited.insert(SUb)) 572 return *Depth; 573 // If there is _some_ dependency already in place, do not 574 // descend any further. 575 // TODO: Need to make sure that if that dependency got eliminated or ignored 576 // for any reason in the future, we would not violate DAG topology. 577 // Currently it does not happen, but makes an implicit assumption about 578 // future implementation. 579 // 580 // Independently, if we encounter node that is some sort of global 581 // object (like a call) we already have full set of dependencies to it 582 // and we can stop descending. 583 if (SUa->isSucc(SUb) || 584 isGlobalMemoryObject(AA, SUb->getInstr())) 585 return *Depth; 586 587 // If we do need an edge, or we have exceeded depth budget, 588 // add that edge to the predecessors chain of SUb, 589 // and stop descending. 590 if (*Depth > 200 || 591 MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 592 SUb->addPred(SDep(SUa, SDep::MayAliasMem)); 593 return *Depth; 594 } 595 // Track current depth. 596 (*Depth)++; 597 // Iterate over chain dependencies only. 598 for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end(); 599 I != E; ++I) 600 if (I->isCtrl()) 601 iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited); 602 return *Depth; 603 } 604 605 /// This function assumes that "downward" from SU there exist 606 /// tail/leaf of already constructed DAG. It iterates downward and 607 /// checks whether SU can be aliasing any node dominated 608 /// by it. 609 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI, 610 SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList, 611 unsigned LatencyToLoad) { 612 if (!SU) 613 return; 614 615 SmallPtrSet<const SUnit*, 16> Visited; 616 unsigned Depth = 0; 617 618 for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end(); 619 I != IE; ++I) { 620 if (SU == *I) 621 continue; 622 if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) { 623 SDep Dep(SU, SDep::MayAliasMem); 624 Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0); 625 (*I)->addPred(Dep); 626 } 627 // Now go through all the chain successors and iterate from them. 628 // Keep track of visited nodes. 629 for (SUnit::const_succ_iterator J = (*I)->Succs.begin(), 630 JE = (*I)->Succs.end(); J != JE; ++J) 631 if (J->isCtrl()) 632 iterateChainSucc (AA, MFI, SU, J->getSUnit(), 633 ExitSU, &Depth, Visited); 634 } 635 } 636 637 /// Check whether two objects need a chain edge, if so, add it 638 /// otherwise remember the rejected SU. 639 static inline 640 void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI, 641 SUnit *SUa, SUnit *SUb, 642 std::set<SUnit *> &RejectList, 643 unsigned TrueMemOrderLatency = 0, 644 bool isNormalMemory = false) { 645 // If this is a false dependency, 646 // do not add the edge, but rememeber the rejected node. 647 if (!AA || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 648 SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier); 649 Dep.setLatency(TrueMemOrderLatency); 650 SUb->addPred(Dep); 651 } 652 else { 653 // Duplicate entries should be ignored. 654 RejectList.insert(SUb); 655 DEBUG(dbgs() << "\tReject chain dep between SU(" 656 << SUa->NodeNum << ") and SU(" 657 << SUb->NodeNum << ")\n"); 658 } 659 } 660 661 /// Create an SUnit for each real instruction, numbered in top-down toplological 662 /// order. The instruction order A < B, implies that no edge exists from B to A. 663 /// 664 /// Map each real instruction to its SUnit. 665 /// 666 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 667 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 668 /// instead of pointers. 669 /// 670 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 671 /// the original instruction list. 672 void ScheduleDAGInstrs::initSUnits() { 673 // We'll be allocating one SUnit for each real instruction in the region, 674 // which is contained within a basic block. 675 SUnits.reserve(NumRegionInstrs); 676 677 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { 678 MachineInstr *MI = I; 679 if (MI->isDebugValue()) 680 continue; 681 682 SUnit *SU = newSUnit(MI); 683 MISUnitMap[MI] = SU; 684 685 SU->isCall = MI->isCall(); 686 SU->isCommutable = MI->isCommutable(); 687 688 // Assign the Latency field of SU using target-provided information. 689 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 690 691 // If this SUnit uses an unbuffered resource, mark it as such. 692 // These resources are used for in-order execution pipelines within an 693 // out-of-order core and are identified by BufferSize=1. BufferSize=0 is 694 // used for dispatch/issue groups and is not considered here. 695 if (SchedModel.hasInstrSchedModel()) { 696 const MCSchedClassDesc *SC = getSchedClass(SU); 697 for (TargetSchedModel::ProcResIter 698 PI = SchedModel.getWriteProcResBegin(SC), 699 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 700 switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) { 701 case 0: 702 SU->hasReservedResource = true; 703 break; 704 case 1: 705 SU->isUnbuffered = true; 706 break; 707 default: 708 break; 709 } 710 } 711 } 712 } 713 } 714 715 /// If RegPressure is non-null, compute register pressure as a side effect. The 716 /// DAG builder is an efficient place to do it because it already visits 717 /// operands. 718 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 719 RegPressureTracker *RPTracker, 720 PressureDiffs *PDiffs) { 721 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 722 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 723 : ST.useAA(); 724 AliasAnalysis *AAForDep = UseAA ? AA : 0; 725 726 MISUnitMap.clear(); 727 ScheduleDAG::clearDAG(); 728 729 // Create an SUnit for each real instruction. 730 initSUnits(); 731 732 if (PDiffs) 733 PDiffs->init(SUnits.size()); 734 735 // We build scheduling units by walking a block's instruction list from bottom 736 // to top. 737 738 // Remember where a generic side-effecting instruction is as we procede. 739 SUnit *BarrierChain = 0, *AliasChain = 0; 740 741 // Memory references to specific known memory locations are tracked 742 // so that they can be given more precise dependencies. We track 743 // separately the known memory locations that may alias and those 744 // that are known not to alias 745 MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs; 746 MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; 747 std::set<SUnit*> RejectMemNodes; 748 749 // Remove any stale debug info; sometimes BuildSchedGraph is called again 750 // without emitting the info from the previous call. 751 DbgValues.clear(); 752 FirstDbgValue = NULL; 753 754 assert(Defs.empty() && Uses.empty() && 755 "Only BuildGraph should update Defs/Uses"); 756 Defs.setUniverse(TRI->getNumRegs()); 757 Uses.setUniverse(TRI->getNumRegs()); 758 759 assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); 760 VRegUses.clear(); 761 VRegDefs.setUniverse(MRI.getNumVirtRegs()); 762 VRegUses.setUniverse(MRI.getNumVirtRegs()); 763 764 // Model data dependencies between instructions being scheduled and the 765 // ExitSU. 766 addSchedBarrierDeps(); 767 768 // Walk the list of instructions, from bottom moving up. 769 MachineInstr *DbgMI = NULL; 770 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 771 MII != MIE; --MII) { 772 MachineInstr *MI = prior(MII); 773 if (MI && DbgMI) { 774 DbgValues.push_back(std::make_pair(DbgMI, MI)); 775 DbgMI = NULL; 776 } 777 778 if (MI->isDebugValue()) { 779 DbgMI = MI; 780 continue; 781 } 782 SUnit *SU = MISUnitMap[MI]; 783 assert(SU && "No SUnit mapped to this MI"); 784 785 if (RPTracker) { 786 PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : 0; 787 RPTracker->recede(/*LiveUses=*/0, PDiff); 788 assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI"); 789 } 790 791 assert((CanHandleTerminators || (!MI->isTerminator() && !MI->isLabel())) && 792 "Cannot schedule terminators or labels!"); 793 794 // Add register-based dependencies (data, anti, and output). 795 bool HasVRegDef = false; 796 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { 797 const MachineOperand &MO = MI->getOperand(j); 798 if (!MO.isReg()) continue; 799 unsigned Reg = MO.getReg(); 800 if (Reg == 0) continue; 801 802 if (TRI->isPhysicalRegister(Reg)) 803 addPhysRegDeps(SU, j); 804 else { 805 assert(!IsPostRA && "Virtual register encountered!"); 806 if (MO.isDef()) { 807 HasVRegDef = true; 808 addVRegDefDeps(SU, j); 809 } 810 else if (MO.readsReg()) // ignore undef operands 811 addVRegUseDeps(SU, j); 812 } 813 } 814 // If we haven't seen any uses in this scheduling region, create a 815 // dependence edge to ExitSU to model the live-out latency. This is required 816 // for vreg defs with no in-region use, and prefetches with no vreg def. 817 // 818 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 819 // check currently relies on being called before adding chain deps. 820 if (SU->NumSuccs == 0 && SU->Latency > 1 821 && (HasVRegDef || MI->mayLoad())) { 822 SDep Dep(SU, SDep::Artificial); 823 Dep.setLatency(SU->Latency - 1); 824 ExitSU.addPred(Dep); 825 } 826 827 // Add chain dependencies. 828 // Chain dependencies used to enforce memory order should have 829 // latency of 0 (except for true dependency of Store followed by 830 // aliased Load... we estimate that with a single cycle of latency 831 // assuming the hardware will bypass) 832 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable 833 // after stack slots are lowered to actual addresses. 834 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and 835 // produce more precise dependence information. 836 unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0; 837 if (isGlobalMemoryObject(AA, MI)) { 838 // Be conservative with these and add dependencies on all memory 839 // references, even those that are known to not alias. 840 for (MapVector<const Value *, SUnit *>::iterator I = 841 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { 842 I->second->addPred(SDep(SU, SDep::Barrier)); 843 } 844 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I = 845 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { 846 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 847 SDep Dep(SU, SDep::Barrier); 848 Dep.setLatency(TrueMemOrderLatency); 849 I->second[i]->addPred(Dep); 850 } 851 } 852 // Add SU to the barrier chain. 853 if (BarrierChain) 854 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 855 BarrierChain = SU; 856 // This is a barrier event that acts as a pivotal node in the DAG, 857 // so it is safe to clear list of exposed nodes. 858 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 859 TrueMemOrderLatency); 860 RejectMemNodes.clear(); 861 NonAliasMemDefs.clear(); 862 NonAliasMemUses.clear(); 863 864 // fall-through 865 new_alias_chain: 866 // Chain all possibly aliasing memory references though SU. 867 if (AliasChain) { 868 unsigned ChainLatency = 0; 869 if (AliasChain->getInstr()->mayLoad()) 870 ChainLatency = TrueMemOrderLatency; 871 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes, 872 ChainLatency); 873 } 874 AliasChain = SU; 875 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 876 addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes, 877 TrueMemOrderLatency); 878 for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(), 879 E = AliasMemDefs.end(); I != E; ++I) 880 addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes); 881 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I = 882 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { 883 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 884 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes, 885 TrueMemOrderLatency); 886 } 887 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 888 TrueMemOrderLatency); 889 PendingLoads.clear(); 890 AliasMemDefs.clear(); 891 AliasMemUses.clear(); 892 } else if (MI->mayStore()) { 893 UnderlyingObjectsVector Objs; 894 getUnderlyingObjectsForInstr(MI, MFI, Objs); 895 896 if (Objs.empty()) { 897 // Treat all other stores conservatively. 898 goto new_alias_chain; 899 } 900 901 bool MayAlias = false; 902 for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end(); 903 K != KE; ++K) { 904 const Value *V = K->getPointer(); 905 bool ThisMayAlias = K->getInt(); 906 if (ThisMayAlias) 907 MayAlias = true; 908 909 // A store to a specific PseudoSourceValue. Add precise dependencies. 910 // Record the def in MemDefs, first adding a dep if there is 911 // an existing def. 912 MapVector<const Value *, SUnit *>::iterator I = 913 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 914 MapVector<const Value *, SUnit *>::iterator IE = 915 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 916 if (I != IE) { 917 addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes, 918 0, true); 919 I->second = SU; 920 } else { 921 if (ThisMayAlias) 922 AliasMemDefs[V] = SU; 923 else 924 NonAliasMemDefs[V] = SU; 925 } 926 // Handle the uses in MemUses, if there are any. 927 MapVector<const Value *, std::vector<SUnit *> >::iterator J = 928 ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); 929 MapVector<const Value *, std::vector<SUnit *> >::iterator JE = 930 ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); 931 if (J != JE) { 932 for (unsigned i = 0, e = J->second.size(); i != e; ++i) 933 addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes, 934 TrueMemOrderLatency, true); 935 J->second.clear(); 936 } 937 } 938 if (MayAlias) { 939 // Add dependencies from all the PendingLoads, i.e. loads 940 // with no underlying object. 941 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 942 addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes, 943 TrueMemOrderLatency); 944 // Add dependence on alias chain, if needed. 945 if (AliasChain) 946 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes); 947 // But we also should check dependent instructions for the 948 // SU in question. 949 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 950 TrueMemOrderLatency); 951 } 952 // Add dependence on barrier chain, if needed. 953 // There is no point to check aliasing on barrier event. Even if 954 // SU and barrier _could_ be reordered, they should not. In addition, 955 // we have lost all RejectMemNodes below barrier. 956 if (BarrierChain) 957 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 958 959 if (!ExitSU.isPred(SU)) 960 // Push store's up a bit to avoid them getting in between cmp 961 // and branches. 962 ExitSU.addPred(SDep(SU, SDep::Artificial)); 963 } else if (MI->mayLoad()) { 964 bool MayAlias = true; 965 if (MI->isInvariantLoad(AA)) { 966 // Invariant load, no chain dependencies needed! 967 } else { 968 UnderlyingObjectsVector Objs; 969 getUnderlyingObjectsForInstr(MI, MFI, Objs); 970 971 if (Objs.empty()) { 972 // A load with no underlying object. Depend on all 973 // potentially aliasing stores. 974 for (MapVector<const Value *, SUnit *>::iterator I = 975 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) 976 addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes); 977 978 PendingLoads.push_back(SU); 979 MayAlias = true; 980 } else { 981 MayAlias = false; 982 } 983 984 for (UnderlyingObjectsVector::iterator 985 J = Objs.begin(), JE = Objs.end(); J != JE; ++J) { 986 const Value *V = J->getPointer(); 987 bool ThisMayAlias = J->getInt(); 988 989 if (ThisMayAlias) 990 MayAlias = true; 991 992 // A load from a specific PseudoSourceValue. Add precise dependencies. 993 MapVector<const Value *, SUnit *>::iterator I = 994 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 995 MapVector<const Value *, SUnit *>::iterator IE = 996 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 997 if (I != IE) 998 addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes, 999 0, true); 1000 if (ThisMayAlias) 1001 AliasMemUses[V].push_back(SU); 1002 else 1003 NonAliasMemUses[V].push_back(SU); 1004 } 1005 if (MayAlias) 1006 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0); 1007 // Add dependencies on alias and barrier chains, if needed. 1008 if (MayAlias && AliasChain) 1009 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes); 1010 if (BarrierChain) 1011 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 1012 } 1013 } 1014 } 1015 if (DbgMI) 1016 FirstDbgValue = DbgMI; 1017 1018 Defs.clear(); 1019 Uses.clear(); 1020 VRegDefs.clear(); 1021 PendingLoads.clear(); 1022 } 1023 1024 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1025 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1026 SU->getInstr()->dump(); 1027 #endif 1028 } 1029 1030 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1031 std::string s; 1032 raw_string_ostream oss(s); 1033 if (SU == &EntrySU) 1034 oss << "<entry>"; 1035 else if (SU == &ExitSU) 1036 oss << "<exit>"; 1037 else 1038 SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true); 1039 return oss.str(); 1040 } 1041 1042 /// Return the basic block label. It is not necessarilly unique because a block 1043 /// contains multiple scheduling regions. But it is fine for visualization. 1044 std::string ScheduleDAGInstrs::getDAGName() const { 1045 return "dag." + BB->getFullName(); 1046 } 1047 1048 //===----------------------------------------------------------------------===// 1049 // SchedDFSResult Implementation 1050 //===----------------------------------------------------------------------===// 1051 1052 namespace llvm { 1053 /// \brief Internal state used to compute SchedDFSResult. 1054 class SchedDFSImpl { 1055 SchedDFSResult &R; 1056 1057 /// Join DAG nodes into equivalence classes by their subtree. 1058 IntEqClasses SubtreeClasses; 1059 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1060 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 1061 1062 struct RootData { 1063 unsigned NodeID; 1064 unsigned ParentNodeID; // Parent node (member of the parent subtree). 1065 unsigned SubInstrCount; // Instr count in this tree only, not children. 1066 1067 RootData(unsigned id): NodeID(id), 1068 ParentNodeID(SchedDFSResult::InvalidSubtreeID), 1069 SubInstrCount(0) {} 1070 1071 unsigned getSparseSetIndex() const { return NodeID; } 1072 }; 1073 1074 SparseSet<RootData> RootSet; 1075 1076 public: 1077 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1078 RootSet.setUniverse(R.DFSNodeData.size()); 1079 } 1080 1081 /// Return true if this node been visited by the DFS traversal. 1082 /// 1083 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1084 /// ID. Later, SubtreeID is updated but remains valid. 1085 bool isVisited(const SUnit *SU) const { 1086 return R.DFSNodeData[SU->NodeNum].SubtreeID 1087 != SchedDFSResult::InvalidSubtreeID; 1088 } 1089 1090 /// Initialize this node's instruction count. We don't need to flag the node 1091 /// visited until visitPostorder because the DAG cannot have cycles. 1092 void visitPreorder(const SUnit *SU) { 1093 R.DFSNodeData[SU->NodeNum].InstrCount = 1094 SU->getInstr()->isTransient() ? 0 : 1; 1095 } 1096 1097 /// Called once for each node after all predecessors are visited. Revisit this 1098 /// node's predecessors and potentially join them now that we know the ILP of 1099 /// the other predecessors. 1100 void visitPostorderNode(const SUnit *SU) { 1101 // Mark this node as the root of a subtree. It may be joined with its 1102 // successors later. 1103 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1104 RootData RData(SU->NodeNum); 1105 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1106 1107 // If any predecessors are still in their own subtree, they either cannot be 1108 // joined or are large enough to remain separate. If this parent node's 1109 // total instruction count is not greater than a child subtree by at least 1110 // the subtree limit, then try to join it now since splitting subtrees is 1111 // only useful if multiple high-pressure paths are possible. 1112 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1113 for (SUnit::const_pred_iterator 1114 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1115 if (PI->getKind() != SDep::Data) 1116 continue; 1117 unsigned PredNum = PI->getSUnit()->NodeNum; 1118 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1119 joinPredSubtree(*PI, SU, /*CheckLimit=*/false); 1120 1121 // Either link or merge the TreeData entry from the child to the parent. 1122 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1123 // If the predecessor's parent is invalid, this is a tree edge and the 1124 // current node is the parent. 1125 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1126 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1127 } 1128 else if (RootSet.count(PredNum)) { 1129 // The predecessor is not a root, but is still in the root set. This 1130 // must be the new parent that it was just joined to. Note that 1131 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1132 // set to the original parent. 1133 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1134 RootSet.erase(PredNum); 1135 } 1136 } 1137 RootSet[SU->NodeNum] = RData; 1138 } 1139 1140 /// Called once for each tree edge after calling visitPostOrderNode on the 1141 /// predecessor. Increment the parent node's instruction count and 1142 /// preemptively join this subtree to its parent's if it is small enough. 1143 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1144 R.DFSNodeData[Succ->NodeNum].InstrCount 1145 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1146 joinPredSubtree(PredDep, Succ); 1147 } 1148 1149 /// Add a connection for cross edges. 1150 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1151 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1152 } 1153 1154 /// Set each node's subtree ID to the representative ID and record connections 1155 /// between trees. 1156 void finalize() { 1157 SubtreeClasses.compress(); 1158 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1159 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1160 && "number of roots should match trees"); 1161 for (SparseSet<RootData>::const_iterator 1162 RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) { 1163 unsigned TreeID = SubtreeClasses[RI->NodeID]; 1164 if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1165 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID]; 1166 R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount; 1167 // Note that SubInstrCount may be greater than InstrCount if we joined 1168 // subtrees across a cross edge. InstrCount will be attributed to the 1169 // original parent, while SubInstrCount will be attributed to the joined 1170 // parent. 1171 } 1172 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1173 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1174 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1175 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1176 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1177 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1178 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1179 } 1180 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator 1181 I = ConnectionPairs.begin(), E = ConnectionPairs.end(); 1182 I != E; ++I) { 1183 unsigned PredTree = SubtreeClasses[I->first->NodeNum]; 1184 unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; 1185 if (PredTree == SuccTree) 1186 continue; 1187 unsigned Depth = I->first->getDepth(); 1188 addConnection(PredTree, SuccTree, Depth); 1189 addConnection(SuccTree, PredTree, Depth); 1190 } 1191 } 1192 1193 protected: 1194 /// Join the predecessor subtree with the successor that is its DFS 1195 /// parent. Apply some heuristics before joining. 1196 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1197 bool CheckLimit = true) { 1198 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1199 1200 // Check if the predecessor is already joined. 1201 const SUnit *PredSU = PredDep.getSUnit(); 1202 unsigned PredNum = PredSU->NodeNum; 1203 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1204 return false; 1205 1206 // Four is the magic number of successors before a node is considered a 1207 // pinch point. 1208 unsigned NumDataSucs = 0; 1209 for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(), 1210 SE = PredSU->Succs.end(); SI != SE; ++SI) { 1211 if (SI->getKind() == SDep::Data) { 1212 if (++NumDataSucs >= 4) 1213 return false; 1214 } 1215 } 1216 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1217 return false; 1218 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1219 SubtreeClasses.join(Succ->NodeNum, PredNum); 1220 return true; 1221 } 1222 1223 /// Called by finalize() to record a connection between trees. 1224 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1225 if (!Depth) 1226 return; 1227 1228 do { 1229 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1230 R.SubtreeConnections[FromTree]; 1231 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator 1232 I = Connections.begin(), E = Connections.end(); I != E; ++I) { 1233 if (I->TreeID == ToTree) { 1234 I->Level = std::max(I->Level, Depth); 1235 return; 1236 } 1237 } 1238 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1239 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1240 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1241 } 1242 }; 1243 } // namespace llvm 1244 1245 namespace { 1246 /// \brief Manage the stack used by a reverse depth-first search over the DAG. 1247 class SchedDAGReverseDFS { 1248 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 1249 public: 1250 bool isComplete() const { return DFSStack.empty(); } 1251 1252 void follow(const SUnit *SU) { 1253 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1254 } 1255 void advance() { ++DFSStack.back().second; } 1256 1257 const SDep *backtrack() { 1258 DFSStack.pop_back(); 1259 return DFSStack.empty() ? 0 : llvm::prior(DFSStack.back().second); 1260 } 1261 1262 const SUnit *getCurr() const { return DFSStack.back().first; } 1263 1264 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1265 1266 SUnit::const_pred_iterator getPredEnd() const { 1267 return getCurr()->Preds.end(); 1268 } 1269 }; 1270 } // anonymous 1271 1272 static bool hasDataSucc(const SUnit *SU) { 1273 for (SUnit::const_succ_iterator 1274 SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) { 1275 if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode()) 1276 return true; 1277 } 1278 return false; 1279 } 1280 1281 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first 1282 /// search from this root. 1283 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1284 if (!IsBottomUp) 1285 llvm_unreachable("Top-down ILP metric is unimplemnted"); 1286 1287 SchedDFSImpl Impl(*this); 1288 for (ArrayRef<SUnit>::const_iterator 1289 SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) { 1290 const SUnit *SU = &*SI; 1291 if (Impl.isVisited(SU) || hasDataSucc(SU)) 1292 continue; 1293 1294 SchedDAGReverseDFS DFS; 1295 Impl.visitPreorder(SU); 1296 DFS.follow(SU); 1297 for (;;) { 1298 // Traverse the leftmost path as far as possible. 1299 while (DFS.getPred() != DFS.getPredEnd()) { 1300 const SDep &PredDep = *DFS.getPred(); 1301 DFS.advance(); 1302 // Ignore non-data edges. 1303 if (PredDep.getKind() != SDep::Data 1304 || PredDep.getSUnit()->isBoundaryNode()) { 1305 continue; 1306 } 1307 // An already visited edge is a cross edge, assuming an acyclic DAG. 1308 if (Impl.isVisited(PredDep.getSUnit())) { 1309 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1310 continue; 1311 } 1312 Impl.visitPreorder(PredDep.getSUnit()); 1313 DFS.follow(PredDep.getSUnit()); 1314 } 1315 // Visit the top of the stack in postorder and backtrack. 1316 const SUnit *Child = DFS.getCurr(); 1317 const SDep *PredDep = DFS.backtrack(); 1318 Impl.visitPostorderNode(Child); 1319 if (PredDep) 1320 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1321 if (DFS.isComplete()) 1322 break; 1323 } 1324 } 1325 Impl.finalize(); 1326 } 1327 1328 /// The root of the given SubtreeID was just scheduled. For all subtrees 1329 /// connected to this tree, record the depth of the connection so that the 1330 /// nearest connected subtrees can be prioritized. 1331 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1332 for (SmallVectorImpl<Connection>::const_iterator 1333 I = SubtreeConnections[SubtreeID].begin(), 1334 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { 1335 SubtreeConnectLevels[I->TreeID] = 1336 std::max(SubtreeConnectLevels[I->TreeID], I->Level); 1337 DEBUG(dbgs() << " Tree: " << I->TreeID 1338 << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); 1339 } 1340 } 1341 1342 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1343 void ILPValue::print(raw_ostream &OS) const { 1344 OS << InstrCount << " / " << Length << " = "; 1345 if (!Length) 1346 OS << "BADILP"; 1347 else 1348 OS << format("%g", ((double)InstrCount / Length)); 1349 } 1350 1351 void ILPValue::dump() const { 1352 dbgs() << *this << '\n'; 1353 } 1354 1355 namespace llvm { 1356 1357 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1358 Val.print(OS); 1359 return OS; 1360 } 1361 1362 } // namespace llvm 1363 #endif // !NDEBUG || LLVM_ENABLE_DUMP 1364