1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling 11 // of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "misched" 16 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/PseudoSourceValue.h" 28 #include "llvm/CodeGen/RegisterPressure.h" 29 #include "llvm/CodeGen/ScheduleDFS.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/MC/MCInstrItineraries.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/Format.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetSubtargetInfo.h" 40 #include <queue> 41 42 using namespace llvm; 43 44 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 45 cl::ZeroOrMore, cl::init(false), 46 cl::desc("Enable use of AA during MI GAD construction")); 47 48 // FIXME: Enable the use of TBAA. There are two known issues preventing this: 49 // 1. Stack coloring does not update TBAA when merging allocas 50 // 2. CGP inserts ptrtoint/inttoptr pairs when sinking address computations. 51 // Because BasicAA does not handle inttoptr, we'll often miss basic type 52 // punning idioms that we need to catch so we don't miscompile real-world 53 // code. 54 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 55 cl::init(false), cl::desc("Enable use of TBAA during MI GAD construction")); 56 57 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 58 const MachineLoopInfo &mli, 59 const MachineDominatorTree &mdt, 60 bool IsPostRAFlag, 61 bool RemoveKillFlags, 62 LiveIntervals *lis) 63 : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis), 64 IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags), 65 CanHandleTerminators(false), FirstDbgValue(0) { 66 assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals"); 67 DbgValues.clear(); 68 assert(!(IsPostRA && MRI.getNumVirtRegs()) && 69 "Virtual registers must be removed prior to PostRA scheduling"); 70 71 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 72 SchedModel.init(*ST.getSchedModel(), &ST, TII); 73 } 74 75 /// getUnderlyingObjectFromInt - This is the function that does the work of 76 /// looking through basic ptrtoint+arithmetic+inttoptr sequences. 77 static const Value *getUnderlyingObjectFromInt(const Value *V) { 78 do { 79 if (const Operator *U = dyn_cast<Operator>(V)) { 80 // If we find a ptrtoint, we can transfer control back to the 81 // regular getUnderlyingObjectFromInt. 82 if (U->getOpcode() == Instruction::PtrToInt) 83 return U->getOperand(0); 84 // If we find an add of a constant, a multiplied value, or a phi, it's 85 // likely that the other operand will lead us to the base 86 // object. We don't have to worry about the case where the 87 // object address is somehow being computed by the multiply, 88 // because our callers only care when the result is an 89 // identifiable object. 90 if (U->getOpcode() != Instruction::Add || 91 (!isa<ConstantInt>(U->getOperand(1)) && 92 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 93 !isa<PHINode>(U->getOperand(1)))) 94 return V; 95 V = U->getOperand(0); 96 } else { 97 return V; 98 } 99 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 100 } while (1); 101 } 102 103 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects 104 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. 105 static void getUnderlyingObjects(const Value *V, 106 SmallVectorImpl<Value *> &Objects) { 107 SmallPtrSet<const Value*, 16> Visited; 108 SmallVector<const Value *, 4> Working(1, V); 109 do { 110 V = Working.pop_back_val(); 111 112 SmallVector<Value *, 4> Objs; 113 GetUnderlyingObjects(const_cast<Value *>(V), Objs); 114 115 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 116 I != IE; ++I) { 117 V = *I; 118 if (!Visited.insert(V)) 119 continue; 120 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 121 const Value *O = 122 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 123 if (O->getType()->isPointerTy()) { 124 Working.push_back(O); 125 continue; 126 } 127 } 128 Objects.push_back(const_cast<Value *>(V)); 129 } 130 } while (!Working.empty()); 131 } 132 133 typedef SmallVector<PointerIntPair<const Value *, 1, bool>, 4> 134 UnderlyingObjectsVector; 135 136 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference 137 /// information and it can be tracked to a normal reference to a known 138 /// object, return the Value for that object. 139 static void getUnderlyingObjectsForInstr(const MachineInstr *MI, 140 const MachineFrameInfo *MFI, 141 UnderlyingObjectsVector &Objects) { 142 if (!MI->hasOneMemOperand() || 143 !(*MI->memoperands_begin())->getValue() || 144 (*MI->memoperands_begin())->isVolatile()) 145 return; 146 147 const Value *V = (*MI->memoperands_begin())->getValue(); 148 if (!V) 149 return; 150 151 SmallVector<Value *, 4> Objs; 152 getUnderlyingObjects(V, Objs); 153 154 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 155 I != IE; ++I) { 156 bool MayAlias = true; 157 V = *I; 158 159 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { 160 // For now, ignore PseudoSourceValues which may alias LLVM IR values 161 // because the code that uses this function has no way to cope with 162 // such aliases. 163 164 if (PSV->isAliased(MFI)) { 165 Objects.clear(); 166 return; 167 } 168 169 MayAlias = PSV->mayAlias(MFI); 170 } else if (!isIdentifiedObject(V)) { 171 Objects.clear(); 172 return; 173 } 174 175 Objects.push_back(UnderlyingObjectsVector::value_type(V, MayAlias)); 176 } 177 } 178 179 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 180 BB = bb; 181 } 182 183 void ScheduleDAGInstrs::finishBlock() { 184 // Subclasses should no longer refer to the old block. 185 BB = 0; 186 } 187 188 /// Initialize the DAG and common scheduler state for the current scheduling 189 /// region. This does not actually create the DAG, only clears it. The 190 /// scheduling driver may call BuildSchedGraph multiple times per scheduling 191 /// region. 192 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 193 MachineBasicBlock::iterator begin, 194 MachineBasicBlock::iterator end, 195 unsigned regioninstrs) { 196 assert(bb == BB && "startBlock should set BB"); 197 RegionBegin = begin; 198 RegionEnd = end; 199 NumRegionInstrs = regioninstrs; 200 } 201 202 /// Close the current scheduling region. Don't clear any state in case the 203 /// driver wants to refer to the previous scheduling region. 204 void ScheduleDAGInstrs::exitRegion() { 205 // Nothing to do. 206 } 207 208 /// addSchedBarrierDeps - Add dependencies from instructions in the current 209 /// list of instructions being scheduled to scheduling barrier by adding 210 /// the exit SU to the register defs and use list. This is because we want to 211 /// make sure instructions which define registers that are either used by 212 /// the terminator or are live-out are properly scheduled. This is 213 /// especially important when the definition latency of the return value(s) 214 /// are too high to be hidden by the branch or when the liveout registers 215 /// used by instructions in the fallthrough block. 216 void ScheduleDAGInstrs::addSchedBarrierDeps() { 217 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0; 218 ExitSU.setInstr(ExitMI); 219 bool AllDepKnown = ExitMI && 220 (ExitMI->isCall() || ExitMI->isBarrier()); 221 if (ExitMI && AllDepKnown) { 222 // If it's a call or a barrier, add dependencies on the defs and uses of 223 // instruction. 224 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { 225 const MachineOperand &MO = ExitMI->getOperand(i); 226 if (!MO.isReg() || MO.isDef()) continue; 227 unsigned Reg = MO.getReg(); 228 if (Reg == 0) continue; 229 230 if (TRI->isPhysicalRegister(Reg)) 231 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 232 else { 233 assert(!IsPostRA && "Virtual register encountered after regalloc."); 234 if (MO.readsReg()) // ignore undef operands 235 addVRegUseDeps(&ExitSU, i); 236 } 237 } 238 } else { 239 // For others, e.g. fallthrough, conditional branch, assume the exit 240 // uses all the registers that are livein to the successor blocks. 241 assert(Uses.empty() && "Uses in set before adding deps?"); 242 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 243 SE = BB->succ_end(); SI != SE; ++SI) 244 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 245 E = (*SI)->livein_end(); I != E; ++I) { 246 unsigned Reg = *I; 247 if (!Uses.contains(Reg)) 248 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 249 } 250 } 251 } 252 253 /// MO is an operand of SU's instruction that defines a physical register. Add 254 /// data dependencies from SU to any uses of the physical register. 255 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 256 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 257 assert(MO.isDef() && "expect physreg def"); 258 259 // Ask the target if address-backscheduling is desirable, and if so how much. 260 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 261 262 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 263 Alias.isValid(); ++Alias) { 264 if (!Uses.contains(*Alias)) 265 continue; 266 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 267 SUnit *UseSU = I->SU; 268 if (UseSU == SU) 269 continue; 270 271 // Adjust the dependence latency using operand def/use information, 272 // then allow the target to perform its own adjustments. 273 int UseOp = I->OpIdx; 274 MachineInstr *RegUse = 0; 275 SDep Dep; 276 if (UseOp < 0) 277 Dep = SDep(SU, SDep::Artificial); 278 else { 279 // Set the hasPhysRegDefs only for physreg defs that have a use within 280 // the scheduling region. 281 SU->hasPhysRegDefs = true; 282 Dep = SDep(SU, SDep::Data, *Alias); 283 RegUse = UseSU->getInstr(); 284 } 285 Dep.setLatency( 286 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 287 UseOp)); 288 289 ST.adjustSchedDependency(SU, UseSU, Dep); 290 UseSU->addPred(Dep); 291 } 292 } 293 } 294 295 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from 296 /// this SUnit to following instructions in the same scheduling region that 297 /// depend the physical register referenced at OperIdx. 298 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 299 MachineInstr *MI = SU->getInstr(); 300 MachineOperand &MO = MI->getOperand(OperIdx); 301 302 // Optionally add output and anti dependencies. For anti 303 // dependencies we use a latency of 0 because for a multi-issue 304 // target we want to allow the defining instruction to issue 305 // in the same cycle as the using instruction. 306 // TODO: Using a latency of 1 here for output dependencies assumes 307 // there's no cost for reusing registers. 308 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 309 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 310 Alias.isValid(); ++Alias) { 311 if (!Defs.contains(*Alias)) 312 continue; 313 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 314 SUnit *DefSU = I->SU; 315 if (DefSU == &ExitSU) 316 continue; 317 if (DefSU != SU && 318 (Kind != SDep::Output || !MO.isDead() || 319 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 320 if (Kind == SDep::Anti) 321 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 322 else { 323 SDep Dep(SU, Kind, /*Reg=*/*Alias); 324 Dep.setLatency( 325 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 326 DefSU->addPred(Dep); 327 } 328 } 329 } 330 } 331 332 if (!MO.isDef()) { 333 SU->hasPhysRegUses = true; 334 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 335 // retrieve the existing SUnits list for this register's uses. 336 // Push this SUnit on the use list. 337 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); 338 if (RemoveKillFlags) 339 MO.setIsKill(false); 340 } 341 else { 342 addPhysRegDataDeps(SU, OperIdx); 343 unsigned Reg = MO.getReg(); 344 345 // clear this register's use list 346 if (Uses.contains(Reg)) 347 Uses.eraseAll(Reg); 348 349 if (!MO.isDead()) { 350 Defs.eraseAll(Reg); 351 } else if (SU->isCall) { 352 // Calls will not be reordered because of chain dependencies (see 353 // below). Since call operands are dead, calls may continue to be added 354 // to the DefList making dependence checking quadratic in the size of 355 // the block. Instead, we leave only one call at the back of the 356 // DefList. 357 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 358 Reg2SUnitsMap::iterator B = P.first; 359 Reg2SUnitsMap::iterator I = P.second; 360 for (bool isBegin = I == B; !isBegin; /* empty */) { 361 isBegin = (--I) == B; 362 if (!I->SU->isCall) 363 break; 364 I = Defs.erase(I); 365 } 366 } 367 368 // Defs are pushed in the order they are visited and never reordered. 369 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 370 } 371 } 372 373 /// addVRegDefDeps - Add register output and data dependencies from this SUnit 374 /// to instructions that occur later in the same scheduling region if they read 375 /// from or write to the virtual register defined at OperIdx. 376 /// 377 /// TODO: Hoist loop induction variable increments. This has to be 378 /// reevaluated. Generally, IV scheduling should be done before coalescing. 379 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 380 const MachineInstr *MI = SU->getInstr(); 381 unsigned Reg = MI->getOperand(OperIdx).getReg(); 382 383 // Singly defined vregs do not have output/anti dependencies. 384 // The current operand is a def, so we have at least one. 385 // Check here if there are any others... 386 if (MRI.hasOneDef(Reg)) 387 return; 388 389 // Add output dependence to the next nearest def of this vreg. 390 // 391 // Unless this definition is dead, the output dependence should be 392 // transitively redundant with antidependencies from this definition's 393 // uses. We're conservative for now until we have a way to guarantee the uses 394 // are not eliminated sometime during scheduling. The output dependence edge 395 // is also useful if output latency exceeds def-use latency. 396 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 397 if (DefI == VRegDefs.end()) 398 VRegDefs.insert(VReg2SUnit(Reg, SU)); 399 else { 400 SUnit *DefSU = DefI->SU; 401 if (DefSU != SU && DefSU != &ExitSU) { 402 SDep Dep(SU, SDep::Output, Reg); 403 Dep.setLatency( 404 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 405 DefSU->addPred(Dep); 406 } 407 DefI->SU = SU; 408 } 409 } 410 411 /// addVRegUseDeps - Add a register data dependency if the instruction that 412 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a 413 /// register antidependency from this SUnit to instructions that occur later in 414 /// the same scheduling region if they write the virtual register. 415 /// 416 /// TODO: Handle ExitSU "uses" properly. 417 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 418 MachineInstr *MI = SU->getInstr(); 419 unsigned Reg = MI->getOperand(OperIdx).getReg(); 420 421 // Record this local VReg use. 422 VReg2UseMap::iterator UI = VRegUses.find(Reg); 423 for (; UI != VRegUses.end(); ++UI) { 424 if (UI->SU == SU) 425 break; 426 } 427 if (UI == VRegUses.end()) 428 VRegUses.insert(VReg2SUnit(Reg, SU)); 429 430 // Lookup this operand's reaching definition. 431 assert(LIS && "vreg dependencies requires LiveIntervals"); 432 LiveQueryResult LRQ 433 = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI)); 434 VNInfo *VNI = LRQ.valueIn(); 435 436 // VNI will be valid because MachineOperand::readsReg() is checked by caller. 437 assert(VNI && "No value to read by operand"); 438 MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); 439 // Phis and other noninstructions (after coalescing) have a NULL Def. 440 if (Def) { 441 SUnit *DefSU = getSUnit(Def); 442 if (DefSU) { 443 // The reaching Def lives within this scheduling region. 444 // Create a data dependence. 445 SDep dep(DefSU, SDep::Data, Reg); 446 // Adjust the dependence latency using operand def/use information, then 447 // allow the target to perform its own adjustments. 448 int DefOp = Def->findRegisterDefOperandIdx(Reg); 449 dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx)); 450 451 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 452 ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep)); 453 SU->addPred(dep); 454 } 455 } 456 457 // Add antidependence to the following def of the vreg it uses. 458 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 459 if (DefI != VRegDefs.end() && DefI->SU != SU) 460 DefI->SU->addPred(SDep(SU, SDep::Anti, Reg)); 461 } 462 463 /// Return true if MI is an instruction we are unable to reason about 464 /// (like a call or something with unmodeled side effects). 465 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 466 if (MI->isCall() || MI->hasUnmodeledSideEffects() || 467 (MI->hasOrderedMemoryRef() && 468 (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) 469 return true; 470 return false; 471 } 472 473 // This MI might have either incomplete info, or known to be unsafe 474 // to deal with (i.e. volatile object). 475 static inline bool isUnsafeMemoryObject(MachineInstr *MI, 476 const MachineFrameInfo *MFI) { 477 if (!MI || MI->memoperands_empty()) 478 return true; 479 // We purposefully do no check for hasOneMemOperand() here 480 // in hope to trigger an assert downstream in order to 481 // finish implementation. 482 if ((*MI->memoperands_begin())->isVolatile() || 483 MI->hasUnmodeledSideEffects()) 484 return true; 485 const Value *V = (*MI->memoperands_begin())->getValue(); 486 if (!V) 487 return true; 488 489 SmallVector<Value *, 4> Objs; 490 getUnderlyingObjects(V, Objs); 491 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), 492 IE = Objs.end(); I != IE; ++I) { 493 V = *I; 494 495 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { 496 // Similarly to getUnderlyingObjectForInstr: 497 // For now, ignore PseudoSourceValues which may alias LLVM IR values 498 // because the code that uses this function has no way to cope with 499 // such aliases. 500 if (PSV->isAliased(MFI)) 501 return true; 502 } 503 504 // Does this pointer refer to a distinct and identifiable object? 505 if (!isIdentifiedObject(V)) 506 return true; 507 } 508 509 return false; 510 } 511 512 /// This returns true if the two MIs need a chain edge betwee them. 513 /// If these are not even memory operations, we still may need 514 /// chain deps between them. The question really is - could 515 /// these two MIs be reordered during scheduling from memory dependency 516 /// point of view. 517 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 518 MachineInstr *MIa, 519 MachineInstr *MIb) { 520 // Cover a trivial case - no edge is need to itself. 521 if (MIa == MIb) 522 return false; 523 524 // FIXME: Need to handle multiple memory operands to support all targets. 525 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 526 return true; 527 528 if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI)) 529 return true; 530 531 // If we are dealing with two "normal" loads, we do not need an edge 532 // between them - they could be reordered. 533 if (!MIa->mayStore() && !MIb->mayStore()) 534 return false; 535 536 // To this point analysis is generic. From here on we do need AA. 537 if (!AA) 538 return true; 539 540 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 541 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 542 543 // The following interface to AA is fashioned after DAGCombiner::isAlias 544 // and operates with MachineMemOperand offset with some important 545 // assumptions: 546 // - LLVM fundamentally assumes flat address spaces. 547 // - MachineOperand offset can *only* result from legalization and 548 // cannot affect queries other than the trivial case of overlap 549 // checking. 550 // - These offsets never wrap and never step outside 551 // of allocated objects. 552 // - There should never be any negative offsets here. 553 // 554 // FIXME: Modify API to hide this math from "user" 555 // FIXME: Even before we go to AA we can reason locally about some 556 // memory objects. It can save compile time, and possibly catch some 557 // corner cases not currently covered. 558 559 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 560 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 561 562 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 563 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 564 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 565 566 AliasAnalysis::AliasResult AAResult = AA->alias( 567 AliasAnalysis::Location(MMOa->getValue(), Overlapa, 568 UseTBAA ? MMOa->getTBAAInfo() : 0), 569 AliasAnalysis::Location(MMOb->getValue(), Overlapb, 570 UseTBAA ? MMOb->getTBAAInfo() : 0)); 571 572 return (AAResult != AliasAnalysis::NoAlias); 573 } 574 575 /// This recursive function iterates over chain deps of SUb looking for 576 /// "latest" node that needs a chain edge to SUa. 577 static unsigned 578 iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI, 579 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth, 580 SmallPtrSet<const SUnit*, 16> &Visited) { 581 if (!SUa || !SUb || SUb == ExitSU) 582 return *Depth; 583 584 // Remember visited nodes. 585 if (!Visited.insert(SUb)) 586 return *Depth; 587 // If there is _some_ dependency already in place, do not 588 // descend any further. 589 // TODO: Need to make sure that if that dependency got eliminated or ignored 590 // for any reason in the future, we would not violate DAG topology. 591 // Currently it does not happen, but makes an implicit assumption about 592 // future implementation. 593 // 594 // Independently, if we encounter node that is some sort of global 595 // object (like a call) we already have full set of dependencies to it 596 // and we can stop descending. 597 if (SUa->isSucc(SUb) || 598 isGlobalMemoryObject(AA, SUb->getInstr())) 599 return *Depth; 600 601 // If we do need an edge, or we have exceeded depth budget, 602 // add that edge to the predecessors chain of SUb, 603 // and stop descending. 604 if (*Depth > 200 || 605 MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 606 SUb->addPred(SDep(SUa, SDep::MayAliasMem)); 607 return *Depth; 608 } 609 // Track current depth. 610 (*Depth)++; 611 // Iterate over chain dependencies only. 612 for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end(); 613 I != E; ++I) 614 if (I->isCtrl()) 615 iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited); 616 return *Depth; 617 } 618 619 /// This function assumes that "downward" from SU there exist 620 /// tail/leaf of already constructed DAG. It iterates downward and 621 /// checks whether SU can be aliasing any node dominated 622 /// by it. 623 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI, 624 SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList, 625 unsigned LatencyToLoad) { 626 if (!SU) 627 return; 628 629 SmallPtrSet<const SUnit*, 16> Visited; 630 unsigned Depth = 0; 631 632 for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end(); 633 I != IE; ++I) { 634 if (SU == *I) 635 continue; 636 if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) { 637 SDep Dep(SU, SDep::MayAliasMem); 638 Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0); 639 (*I)->addPred(Dep); 640 } 641 // Now go through all the chain successors and iterate from them. 642 // Keep track of visited nodes. 643 for (SUnit::const_succ_iterator J = (*I)->Succs.begin(), 644 JE = (*I)->Succs.end(); J != JE; ++J) 645 if (J->isCtrl()) 646 iterateChainSucc (AA, MFI, SU, J->getSUnit(), 647 ExitSU, &Depth, Visited); 648 } 649 } 650 651 /// Check whether two objects need a chain edge, if so, add it 652 /// otherwise remember the rejected SU. 653 static inline 654 void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI, 655 SUnit *SUa, SUnit *SUb, 656 std::set<SUnit *> &RejectList, 657 unsigned TrueMemOrderLatency = 0, 658 bool isNormalMemory = false) { 659 // If this is a false dependency, 660 // do not add the edge, but rememeber the rejected node. 661 if (!AA || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 662 SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier); 663 Dep.setLatency(TrueMemOrderLatency); 664 SUb->addPred(Dep); 665 } 666 else { 667 // Duplicate entries should be ignored. 668 RejectList.insert(SUb); 669 DEBUG(dbgs() << "\tReject chain dep between SU(" 670 << SUa->NodeNum << ") and SU(" 671 << SUb->NodeNum << ")\n"); 672 } 673 } 674 675 /// Create an SUnit for each real instruction, numbered in top-down toplological 676 /// order. The instruction order A < B, implies that no edge exists from B to A. 677 /// 678 /// Map each real instruction to its SUnit. 679 /// 680 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 681 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 682 /// instead of pointers. 683 /// 684 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 685 /// the original instruction list. 686 void ScheduleDAGInstrs::initSUnits() { 687 // We'll be allocating one SUnit for each real instruction in the region, 688 // which is contained within a basic block. 689 SUnits.reserve(NumRegionInstrs); 690 691 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { 692 MachineInstr *MI = I; 693 if (MI->isDebugValue()) 694 continue; 695 696 SUnit *SU = newSUnit(MI); 697 MISUnitMap[MI] = SU; 698 699 SU->isCall = MI->isCall(); 700 SU->isCommutable = MI->isCommutable(); 701 702 // Assign the Latency field of SU using target-provided information. 703 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 704 705 // If this SUnit uses an unbuffered resource, mark it as such. 706 // These resources are used for in-order execution pipelines within an 707 // out-of-order core and are identified by BufferSize=1. BufferSize=0 is 708 // used for dispatch/issue groups and is not considered here. 709 if (SchedModel.hasInstrSchedModel()) { 710 const MCSchedClassDesc *SC = getSchedClass(SU); 711 for (TargetSchedModel::ProcResIter 712 PI = SchedModel.getWriteProcResBegin(SC), 713 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 714 switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) { 715 case 0: 716 SU->hasReservedResource = true; 717 break; 718 case 1: 719 SU->isUnbuffered = true; 720 break; 721 default: 722 break; 723 } 724 } 725 } 726 } 727 } 728 729 /// If RegPressure is non-null, compute register pressure as a side effect. The 730 /// DAG builder is an efficient place to do it because it already visits 731 /// operands. 732 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 733 RegPressureTracker *RPTracker, 734 PressureDiffs *PDiffs) { 735 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 736 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 737 : ST.useAA(); 738 AliasAnalysis *AAForDep = UseAA ? AA : 0; 739 740 MISUnitMap.clear(); 741 ScheduleDAG::clearDAG(); 742 743 // Create an SUnit for each real instruction. 744 initSUnits(); 745 746 if (PDiffs) 747 PDiffs->init(SUnits.size()); 748 749 // We build scheduling units by walking a block's instruction list from bottom 750 // to top. 751 752 // Remember where a generic side-effecting instruction is as we procede. 753 SUnit *BarrierChain = 0, *AliasChain = 0; 754 755 // Memory references to specific known memory locations are tracked 756 // so that they can be given more precise dependencies. We track 757 // separately the known memory locations that may alias and those 758 // that are known not to alias 759 MapVector<const Value *, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs; 760 MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; 761 std::set<SUnit*> RejectMemNodes; 762 763 // Remove any stale debug info; sometimes BuildSchedGraph is called again 764 // without emitting the info from the previous call. 765 DbgValues.clear(); 766 FirstDbgValue = NULL; 767 768 assert(Defs.empty() && Uses.empty() && 769 "Only BuildGraph should update Defs/Uses"); 770 Defs.setUniverse(TRI->getNumRegs()); 771 Uses.setUniverse(TRI->getNumRegs()); 772 773 assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); 774 VRegUses.clear(); 775 VRegDefs.setUniverse(MRI.getNumVirtRegs()); 776 VRegUses.setUniverse(MRI.getNumVirtRegs()); 777 778 // Model data dependencies between instructions being scheduled and the 779 // ExitSU. 780 addSchedBarrierDeps(); 781 782 // Walk the list of instructions, from bottom moving up. 783 MachineInstr *DbgMI = NULL; 784 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 785 MII != MIE; --MII) { 786 MachineInstr *MI = prior(MII); 787 if (MI && DbgMI) { 788 DbgValues.push_back(std::make_pair(DbgMI, MI)); 789 DbgMI = NULL; 790 } 791 792 if (MI->isDebugValue()) { 793 DbgMI = MI; 794 continue; 795 } 796 SUnit *SU = MISUnitMap[MI]; 797 assert(SU && "No SUnit mapped to this MI"); 798 799 if (RPTracker) { 800 PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : 0; 801 RPTracker->recede(/*LiveUses=*/0, PDiff); 802 assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI"); 803 } 804 805 assert((CanHandleTerminators || (!MI->isTerminator() && !MI->isLabel())) && 806 "Cannot schedule terminators or labels!"); 807 808 // Add register-based dependencies (data, anti, and output). 809 bool HasVRegDef = false; 810 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { 811 const MachineOperand &MO = MI->getOperand(j); 812 if (!MO.isReg()) continue; 813 unsigned Reg = MO.getReg(); 814 if (Reg == 0) continue; 815 816 if (TRI->isPhysicalRegister(Reg)) 817 addPhysRegDeps(SU, j); 818 else { 819 assert(!IsPostRA && "Virtual register encountered!"); 820 if (MO.isDef()) { 821 HasVRegDef = true; 822 addVRegDefDeps(SU, j); 823 } 824 else if (MO.readsReg()) // ignore undef operands 825 addVRegUseDeps(SU, j); 826 } 827 } 828 // If we haven't seen any uses in this scheduling region, create a 829 // dependence edge to ExitSU to model the live-out latency. This is required 830 // for vreg defs with no in-region use, and prefetches with no vreg def. 831 // 832 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 833 // check currently relies on being called before adding chain deps. 834 if (SU->NumSuccs == 0 && SU->Latency > 1 835 && (HasVRegDef || MI->mayLoad())) { 836 SDep Dep(SU, SDep::Artificial); 837 Dep.setLatency(SU->Latency - 1); 838 ExitSU.addPred(Dep); 839 } 840 841 // Add chain dependencies. 842 // Chain dependencies used to enforce memory order should have 843 // latency of 0 (except for true dependency of Store followed by 844 // aliased Load... we estimate that with a single cycle of latency 845 // assuming the hardware will bypass) 846 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable 847 // after stack slots are lowered to actual addresses. 848 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and 849 // produce more precise dependence information. 850 unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0; 851 if (isGlobalMemoryObject(AA, MI)) { 852 // Be conservative with these and add dependencies on all memory 853 // references, even those that are known to not alias. 854 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I = 855 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { 856 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 857 I->second[i]->addPred(SDep(SU, SDep::Barrier)); 858 } 859 } 860 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I = 861 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { 862 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 863 SDep Dep(SU, SDep::Barrier); 864 Dep.setLatency(TrueMemOrderLatency); 865 I->second[i]->addPred(Dep); 866 } 867 } 868 // Add SU to the barrier chain. 869 if (BarrierChain) 870 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 871 BarrierChain = SU; 872 // This is a barrier event that acts as a pivotal node in the DAG, 873 // so it is safe to clear list of exposed nodes. 874 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 875 TrueMemOrderLatency); 876 RejectMemNodes.clear(); 877 NonAliasMemDefs.clear(); 878 NonAliasMemUses.clear(); 879 880 // fall-through 881 new_alias_chain: 882 // Chain all possibly aliasing memory references though SU. 883 if (AliasChain) { 884 unsigned ChainLatency = 0; 885 if (AliasChain->getInstr()->mayLoad()) 886 ChainLatency = TrueMemOrderLatency; 887 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes, 888 ChainLatency); 889 } 890 AliasChain = SU; 891 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 892 addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes, 893 TrueMemOrderLatency); 894 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I = 895 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) { 896 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 897 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes); 898 } 899 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I = 900 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { 901 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 902 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes, 903 TrueMemOrderLatency); 904 } 905 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 906 TrueMemOrderLatency); 907 PendingLoads.clear(); 908 AliasMemDefs.clear(); 909 AliasMemUses.clear(); 910 } else if (MI->mayStore()) { 911 UnderlyingObjectsVector Objs; 912 getUnderlyingObjectsForInstr(MI, MFI, Objs); 913 914 if (Objs.empty()) { 915 // Treat all other stores conservatively. 916 goto new_alias_chain; 917 } 918 919 bool MayAlias = false; 920 for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end(); 921 K != KE; ++K) { 922 const Value *V = K->getPointer(); 923 bool ThisMayAlias = K->getInt(); 924 if (ThisMayAlias) 925 MayAlias = true; 926 927 // A store to a specific PseudoSourceValue. Add precise dependencies. 928 // Record the def in MemDefs, first adding a dep if there is 929 // an existing def. 930 MapVector<const Value *, std::vector<SUnit *> >::iterator I = 931 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 932 MapVector<const Value *, std::vector<SUnit *> >::iterator IE = 933 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 934 if (I != IE) { 935 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 936 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes, 937 0, true); 938 939 // If we're not using AA, then we only need one store per object. 940 if (!AAForDep) 941 I->second.clear(); 942 I->second.push_back(SU); 943 } else { 944 if (ThisMayAlias) { 945 if (!AAForDep) 946 AliasMemDefs[V].clear(); 947 AliasMemDefs[V].push_back(SU); 948 } else { 949 if (!AAForDep) 950 NonAliasMemDefs[V].clear(); 951 NonAliasMemDefs[V].push_back(SU); 952 } 953 } 954 // Handle the uses in MemUses, if there are any. 955 MapVector<const Value *, std::vector<SUnit *> >::iterator J = 956 ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); 957 MapVector<const Value *, std::vector<SUnit *> >::iterator JE = 958 ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); 959 if (J != JE) { 960 for (unsigned i = 0, e = J->second.size(); i != e; ++i) 961 addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes, 962 TrueMemOrderLatency, true); 963 J->second.clear(); 964 } 965 } 966 if (MayAlias) { 967 // Add dependencies from all the PendingLoads, i.e. loads 968 // with no underlying object. 969 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 970 addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes, 971 TrueMemOrderLatency); 972 // Add dependence on alias chain, if needed. 973 if (AliasChain) 974 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes); 975 // But we also should check dependent instructions for the 976 // SU in question. 977 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 978 TrueMemOrderLatency); 979 } 980 // Add dependence on barrier chain, if needed. 981 // There is no point to check aliasing on barrier event. Even if 982 // SU and barrier _could_ be reordered, they should not. In addition, 983 // we have lost all RejectMemNodes below barrier. 984 if (BarrierChain) 985 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 986 987 if (!ExitSU.isPred(SU)) 988 // Push store's up a bit to avoid them getting in between cmp 989 // and branches. 990 ExitSU.addPred(SDep(SU, SDep::Artificial)); 991 } else if (MI->mayLoad()) { 992 bool MayAlias = true; 993 if (MI->isInvariantLoad(AA)) { 994 // Invariant load, no chain dependencies needed! 995 } else { 996 UnderlyingObjectsVector Objs; 997 getUnderlyingObjectsForInstr(MI, MFI, Objs); 998 999 if (Objs.empty()) { 1000 // A load with no underlying object. Depend on all 1001 // potentially aliasing stores. 1002 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I = 1003 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) 1004 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1005 addChainDependency(AAForDep, MFI, SU, I->second[i], 1006 RejectMemNodes); 1007 1008 PendingLoads.push_back(SU); 1009 MayAlias = true; 1010 } else { 1011 MayAlias = false; 1012 } 1013 1014 for (UnderlyingObjectsVector::iterator 1015 J = Objs.begin(), JE = Objs.end(); J != JE; ++J) { 1016 const Value *V = J->getPointer(); 1017 bool ThisMayAlias = J->getInt(); 1018 1019 if (ThisMayAlias) 1020 MayAlias = true; 1021 1022 // A load from a specific PseudoSourceValue. Add precise dependencies. 1023 MapVector<const Value *, std::vector<SUnit *> >::iterator I = 1024 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 1025 MapVector<const Value *, std::vector<SUnit *> >::iterator IE = 1026 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 1027 if (I != IE) 1028 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1029 addChainDependency(AAForDep, MFI, SU, I->second[i], 1030 RejectMemNodes, 0, true); 1031 if (ThisMayAlias) 1032 AliasMemUses[V].push_back(SU); 1033 else 1034 NonAliasMemUses[V].push_back(SU); 1035 } 1036 if (MayAlias) 1037 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0); 1038 // Add dependencies on alias and barrier chains, if needed. 1039 if (MayAlias && AliasChain) 1040 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes); 1041 if (BarrierChain) 1042 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 1043 } 1044 } 1045 } 1046 if (DbgMI) 1047 FirstDbgValue = DbgMI; 1048 1049 Defs.clear(); 1050 Uses.clear(); 1051 VRegDefs.clear(); 1052 PendingLoads.clear(); 1053 } 1054 1055 /// \brief Initialize register live-range state for updating kills. 1056 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { 1057 // Start with no live registers. 1058 LiveRegs.reset(); 1059 1060 // Examine the live-in regs of all successors. 1061 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 1062 SE = BB->succ_end(); SI != SE; ++SI) { 1063 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 1064 E = (*SI)->livein_end(); I != E; ++I) { 1065 unsigned Reg = *I; 1066 // Repeat, for reg and all subregs. 1067 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1068 SubRegs.isValid(); ++SubRegs) 1069 LiveRegs.set(*SubRegs); 1070 } 1071 } 1072 } 1073 1074 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) { 1075 // Setting kill flag... 1076 if (!MO.isKill()) { 1077 MO.setIsKill(true); 1078 return false; 1079 } 1080 1081 // If MO itself is live, clear the kill flag... 1082 if (LiveRegs.test(MO.getReg())) { 1083 MO.setIsKill(false); 1084 return false; 1085 } 1086 1087 // If any subreg of MO is live, then create an imp-def for that 1088 // subreg and keep MO marked as killed. 1089 MO.setIsKill(false); 1090 bool AllDead = true; 1091 const unsigned SuperReg = MO.getReg(); 1092 MachineInstrBuilder MIB(MF, MI); 1093 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { 1094 if (LiveRegs.test(*SubRegs)) { 1095 MIB.addReg(*SubRegs, RegState::ImplicitDefine); 1096 AllDead = false; 1097 } 1098 } 1099 1100 if(AllDead) 1101 MO.setIsKill(true); 1102 return false; 1103 } 1104 1105 // FIXME: Reuse the LivePhysRegs utility for this. 1106 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { 1107 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); 1108 1109 LiveRegs.resize(TRI->getNumRegs()); 1110 BitVector killedRegs(TRI->getNumRegs()); 1111 1112 startBlockForKills(MBB); 1113 1114 // Examine block from end to start... 1115 unsigned Count = MBB->size(); 1116 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); 1117 I != E; --Count) { 1118 MachineInstr *MI = --I; 1119 if (MI->isDebugValue()) 1120 continue; 1121 1122 // Update liveness. Registers that are defed but not used in this 1123 // instruction are now dead. Mark register and all subregs as they 1124 // are completely defined. 1125 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1126 MachineOperand &MO = MI->getOperand(i); 1127 if (MO.isRegMask()) 1128 LiveRegs.clearBitsNotInMask(MO.getRegMask()); 1129 if (!MO.isReg()) continue; 1130 unsigned Reg = MO.getReg(); 1131 if (Reg == 0) continue; 1132 if (!MO.isDef()) continue; 1133 // Ignore two-addr defs. 1134 if (MI->isRegTiedToUseOperand(i)) continue; 1135 1136 // Repeat for reg and all subregs. 1137 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1138 SubRegs.isValid(); ++SubRegs) 1139 LiveRegs.reset(*SubRegs); 1140 } 1141 1142 // Examine all used registers and set/clear kill flag. When a 1143 // register is used multiple times we only set the kill flag on 1144 // the first use. Don't set kill flags on undef operands. 1145 killedRegs.reset(); 1146 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1147 MachineOperand &MO = MI->getOperand(i); 1148 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1149 unsigned Reg = MO.getReg(); 1150 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1151 1152 bool kill = false; 1153 if (!killedRegs.test(Reg)) { 1154 kill = true; 1155 // A register is not killed if any subregs are live... 1156 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 1157 if (LiveRegs.test(*SubRegs)) { 1158 kill = false; 1159 break; 1160 } 1161 } 1162 1163 // If subreg is not live, then register is killed if it became 1164 // live in this instruction 1165 if (kill) 1166 kill = !LiveRegs.test(Reg); 1167 } 1168 1169 if (MO.isKill() != kill) { 1170 DEBUG(dbgs() << "Fixing " << MO << " in "); 1171 // Warning: toggleKillFlag may invalidate MO. 1172 toggleKillFlag(MI, MO); 1173 DEBUG(MI->dump()); 1174 } 1175 1176 killedRegs.set(Reg); 1177 } 1178 1179 // Mark any used register (that is not using undef) and subregs as 1180 // now live... 1181 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1182 MachineOperand &MO = MI->getOperand(i); 1183 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1184 unsigned Reg = MO.getReg(); 1185 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1186 1187 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1188 SubRegs.isValid(); ++SubRegs) 1189 LiveRegs.set(*SubRegs); 1190 } 1191 } 1192 } 1193 1194 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1195 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1196 SU->getInstr()->dump(); 1197 #endif 1198 } 1199 1200 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1201 std::string s; 1202 raw_string_ostream oss(s); 1203 if (SU == &EntrySU) 1204 oss << "<entry>"; 1205 else if (SU == &ExitSU) 1206 oss << "<exit>"; 1207 else 1208 SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true); 1209 return oss.str(); 1210 } 1211 1212 /// Return the basic block label. It is not necessarilly unique because a block 1213 /// contains multiple scheduling regions. But it is fine for visualization. 1214 std::string ScheduleDAGInstrs::getDAGName() const { 1215 return "dag." + BB->getFullName(); 1216 } 1217 1218 //===----------------------------------------------------------------------===// 1219 // SchedDFSResult Implementation 1220 //===----------------------------------------------------------------------===// 1221 1222 namespace llvm { 1223 /// \brief Internal state used to compute SchedDFSResult. 1224 class SchedDFSImpl { 1225 SchedDFSResult &R; 1226 1227 /// Join DAG nodes into equivalence classes by their subtree. 1228 IntEqClasses SubtreeClasses; 1229 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1230 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 1231 1232 struct RootData { 1233 unsigned NodeID; 1234 unsigned ParentNodeID; // Parent node (member of the parent subtree). 1235 unsigned SubInstrCount; // Instr count in this tree only, not children. 1236 1237 RootData(unsigned id): NodeID(id), 1238 ParentNodeID(SchedDFSResult::InvalidSubtreeID), 1239 SubInstrCount(0) {} 1240 1241 unsigned getSparseSetIndex() const { return NodeID; } 1242 }; 1243 1244 SparseSet<RootData> RootSet; 1245 1246 public: 1247 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1248 RootSet.setUniverse(R.DFSNodeData.size()); 1249 } 1250 1251 /// Return true if this node been visited by the DFS traversal. 1252 /// 1253 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1254 /// ID. Later, SubtreeID is updated but remains valid. 1255 bool isVisited(const SUnit *SU) const { 1256 return R.DFSNodeData[SU->NodeNum].SubtreeID 1257 != SchedDFSResult::InvalidSubtreeID; 1258 } 1259 1260 /// Initialize this node's instruction count. We don't need to flag the node 1261 /// visited until visitPostorder because the DAG cannot have cycles. 1262 void visitPreorder(const SUnit *SU) { 1263 R.DFSNodeData[SU->NodeNum].InstrCount = 1264 SU->getInstr()->isTransient() ? 0 : 1; 1265 } 1266 1267 /// Called once for each node after all predecessors are visited. Revisit this 1268 /// node's predecessors and potentially join them now that we know the ILP of 1269 /// the other predecessors. 1270 void visitPostorderNode(const SUnit *SU) { 1271 // Mark this node as the root of a subtree. It may be joined with its 1272 // successors later. 1273 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1274 RootData RData(SU->NodeNum); 1275 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1276 1277 // If any predecessors are still in their own subtree, they either cannot be 1278 // joined or are large enough to remain separate. If this parent node's 1279 // total instruction count is not greater than a child subtree by at least 1280 // the subtree limit, then try to join it now since splitting subtrees is 1281 // only useful if multiple high-pressure paths are possible. 1282 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1283 for (SUnit::const_pred_iterator 1284 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1285 if (PI->getKind() != SDep::Data) 1286 continue; 1287 unsigned PredNum = PI->getSUnit()->NodeNum; 1288 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1289 joinPredSubtree(*PI, SU, /*CheckLimit=*/false); 1290 1291 // Either link or merge the TreeData entry from the child to the parent. 1292 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1293 // If the predecessor's parent is invalid, this is a tree edge and the 1294 // current node is the parent. 1295 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1296 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1297 } 1298 else if (RootSet.count(PredNum)) { 1299 // The predecessor is not a root, but is still in the root set. This 1300 // must be the new parent that it was just joined to. Note that 1301 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1302 // set to the original parent. 1303 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1304 RootSet.erase(PredNum); 1305 } 1306 } 1307 RootSet[SU->NodeNum] = RData; 1308 } 1309 1310 /// Called once for each tree edge after calling visitPostOrderNode on the 1311 /// predecessor. Increment the parent node's instruction count and 1312 /// preemptively join this subtree to its parent's if it is small enough. 1313 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1314 R.DFSNodeData[Succ->NodeNum].InstrCount 1315 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1316 joinPredSubtree(PredDep, Succ); 1317 } 1318 1319 /// Add a connection for cross edges. 1320 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1321 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1322 } 1323 1324 /// Set each node's subtree ID to the representative ID and record connections 1325 /// between trees. 1326 void finalize() { 1327 SubtreeClasses.compress(); 1328 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1329 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1330 && "number of roots should match trees"); 1331 for (SparseSet<RootData>::const_iterator 1332 RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) { 1333 unsigned TreeID = SubtreeClasses[RI->NodeID]; 1334 if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1335 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID]; 1336 R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount; 1337 // Note that SubInstrCount may be greater than InstrCount if we joined 1338 // subtrees across a cross edge. InstrCount will be attributed to the 1339 // original parent, while SubInstrCount will be attributed to the joined 1340 // parent. 1341 } 1342 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1343 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1344 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1345 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1346 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1347 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1348 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1349 } 1350 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator 1351 I = ConnectionPairs.begin(), E = ConnectionPairs.end(); 1352 I != E; ++I) { 1353 unsigned PredTree = SubtreeClasses[I->first->NodeNum]; 1354 unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; 1355 if (PredTree == SuccTree) 1356 continue; 1357 unsigned Depth = I->first->getDepth(); 1358 addConnection(PredTree, SuccTree, Depth); 1359 addConnection(SuccTree, PredTree, Depth); 1360 } 1361 } 1362 1363 protected: 1364 /// Join the predecessor subtree with the successor that is its DFS 1365 /// parent. Apply some heuristics before joining. 1366 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1367 bool CheckLimit = true) { 1368 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1369 1370 // Check if the predecessor is already joined. 1371 const SUnit *PredSU = PredDep.getSUnit(); 1372 unsigned PredNum = PredSU->NodeNum; 1373 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1374 return false; 1375 1376 // Four is the magic number of successors before a node is considered a 1377 // pinch point. 1378 unsigned NumDataSucs = 0; 1379 for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(), 1380 SE = PredSU->Succs.end(); SI != SE; ++SI) { 1381 if (SI->getKind() == SDep::Data) { 1382 if (++NumDataSucs >= 4) 1383 return false; 1384 } 1385 } 1386 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1387 return false; 1388 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1389 SubtreeClasses.join(Succ->NodeNum, PredNum); 1390 return true; 1391 } 1392 1393 /// Called by finalize() to record a connection between trees. 1394 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1395 if (!Depth) 1396 return; 1397 1398 do { 1399 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1400 R.SubtreeConnections[FromTree]; 1401 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator 1402 I = Connections.begin(), E = Connections.end(); I != E; ++I) { 1403 if (I->TreeID == ToTree) { 1404 I->Level = std::max(I->Level, Depth); 1405 return; 1406 } 1407 } 1408 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1409 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1410 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1411 } 1412 }; 1413 } // namespace llvm 1414 1415 namespace { 1416 /// \brief Manage the stack used by a reverse depth-first search over the DAG. 1417 class SchedDAGReverseDFS { 1418 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 1419 public: 1420 bool isComplete() const { return DFSStack.empty(); } 1421 1422 void follow(const SUnit *SU) { 1423 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1424 } 1425 void advance() { ++DFSStack.back().second; } 1426 1427 const SDep *backtrack() { 1428 DFSStack.pop_back(); 1429 return DFSStack.empty() ? 0 : llvm::prior(DFSStack.back().second); 1430 } 1431 1432 const SUnit *getCurr() const { return DFSStack.back().first; } 1433 1434 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1435 1436 SUnit::const_pred_iterator getPredEnd() const { 1437 return getCurr()->Preds.end(); 1438 } 1439 }; 1440 } // anonymous 1441 1442 static bool hasDataSucc(const SUnit *SU) { 1443 for (SUnit::const_succ_iterator 1444 SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) { 1445 if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode()) 1446 return true; 1447 } 1448 return false; 1449 } 1450 1451 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first 1452 /// search from this root. 1453 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1454 if (!IsBottomUp) 1455 llvm_unreachable("Top-down ILP metric is unimplemnted"); 1456 1457 SchedDFSImpl Impl(*this); 1458 for (ArrayRef<SUnit>::const_iterator 1459 SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) { 1460 const SUnit *SU = &*SI; 1461 if (Impl.isVisited(SU) || hasDataSucc(SU)) 1462 continue; 1463 1464 SchedDAGReverseDFS DFS; 1465 Impl.visitPreorder(SU); 1466 DFS.follow(SU); 1467 for (;;) { 1468 // Traverse the leftmost path as far as possible. 1469 while (DFS.getPred() != DFS.getPredEnd()) { 1470 const SDep &PredDep = *DFS.getPred(); 1471 DFS.advance(); 1472 // Ignore non-data edges. 1473 if (PredDep.getKind() != SDep::Data 1474 || PredDep.getSUnit()->isBoundaryNode()) { 1475 continue; 1476 } 1477 // An already visited edge is a cross edge, assuming an acyclic DAG. 1478 if (Impl.isVisited(PredDep.getSUnit())) { 1479 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1480 continue; 1481 } 1482 Impl.visitPreorder(PredDep.getSUnit()); 1483 DFS.follow(PredDep.getSUnit()); 1484 } 1485 // Visit the top of the stack in postorder and backtrack. 1486 const SUnit *Child = DFS.getCurr(); 1487 const SDep *PredDep = DFS.backtrack(); 1488 Impl.visitPostorderNode(Child); 1489 if (PredDep) 1490 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1491 if (DFS.isComplete()) 1492 break; 1493 } 1494 } 1495 Impl.finalize(); 1496 } 1497 1498 /// The root of the given SubtreeID was just scheduled. For all subtrees 1499 /// connected to this tree, record the depth of the connection so that the 1500 /// nearest connected subtrees can be prioritized. 1501 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1502 for (SmallVectorImpl<Connection>::const_iterator 1503 I = SubtreeConnections[SubtreeID].begin(), 1504 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { 1505 SubtreeConnectLevels[I->TreeID] = 1506 std::max(SubtreeConnectLevels[I->TreeID], I->Level); 1507 DEBUG(dbgs() << " Tree: " << I->TreeID 1508 << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); 1509 } 1510 } 1511 1512 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1513 void ILPValue::print(raw_ostream &OS) const { 1514 OS << InstrCount << " / " << Length << " = "; 1515 if (!Length) 1516 OS << "BADILP"; 1517 else 1518 OS << format("%g", ((double)InstrCount / Length)); 1519 } 1520 1521 void ILPValue::dump() const { 1522 dbgs() << *this << '\n'; 1523 } 1524 1525 namespace llvm { 1526 1527 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1528 Val.print(OS); 1529 return OS; 1530 } 1531 1532 } // namespace llvm 1533 #endif // !NDEBUG || LLVM_ENABLE_DUMP 1534