1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling 11 // of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/PseudoSourceValue.h" 28 #include "llvm/CodeGen/RegisterPressure.h" 29 #include "llvm/CodeGen/ScheduleDFS.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/Format.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetRegisterInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <queue> 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "misched" 44 45 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 46 cl::ZeroOrMore, cl::init(false), 47 cl::desc("Enable use of AA during MI DAG construction")); 48 49 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 50 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 51 52 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 53 const MachineLoopInfo *mli, 54 bool IsPostRAFlag, bool RemoveKillFlags, 55 LiveIntervals *lis) 56 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), LIS(lis), 57 IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags), 58 CanHandleTerminators(false), FirstDbgValue(nullptr) { 59 assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals"); 60 DbgValues.clear(); 61 assert(!(IsPostRA && MRI.getNumVirtRegs()) && 62 "Virtual registers must be removed prior to PostRA scheduling"); 63 64 const TargetSubtargetInfo &ST = mf.getSubtarget(); 65 SchedModel.init(ST.getSchedModel(), &ST, TII); 66 } 67 68 /// getUnderlyingObjectFromInt - This is the function that does the work of 69 /// looking through basic ptrtoint+arithmetic+inttoptr sequences. 70 static const Value *getUnderlyingObjectFromInt(const Value *V) { 71 do { 72 if (const Operator *U = dyn_cast<Operator>(V)) { 73 // If we find a ptrtoint, we can transfer control back to the 74 // regular getUnderlyingObjectFromInt. 75 if (U->getOpcode() == Instruction::PtrToInt) 76 return U->getOperand(0); 77 // If we find an add of a constant, a multiplied value, or a phi, it's 78 // likely that the other operand will lead us to the base 79 // object. We don't have to worry about the case where the 80 // object address is somehow being computed by the multiply, 81 // because our callers only care when the result is an 82 // identifiable object. 83 if (U->getOpcode() != Instruction::Add || 84 (!isa<ConstantInt>(U->getOperand(1)) && 85 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 86 !isa<PHINode>(U->getOperand(1)))) 87 return V; 88 V = U->getOperand(0); 89 } else { 90 return V; 91 } 92 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 93 } while (1); 94 } 95 96 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects 97 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. 98 static void getUnderlyingObjects(const Value *V, 99 SmallVectorImpl<Value *> &Objects, 100 const DataLayout &DL) { 101 SmallPtrSet<const Value *, 16> Visited; 102 SmallVector<const Value *, 4> Working(1, V); 103 do { 104 V = Working.pop_back_val(); 105 106 SmallVector<Value *, 4> Objs; 107 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 108 109 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 110 I != IE; ++I) { 111 V = *I; 112 if (!Visited.insert(V).second) 113 continue; 114 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 115 const Value *O = 116 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 117 if (O->getType()->isPointerTy()) { 118 Working.push_back(O); 119 continue; 120 } 121 } 122 Objects.push_back(const_cast<Value *>(V)); 123 } 124 } while (!Working.empty()); 125 } 126 127 typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType; 128 typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4> 129 UnderlyingObjectsVector; 130 131 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference 132 /// information and it can be tracked to a normal reference to a known 133 /// object, return the Value for that object. 134 static void getUnderlyingObjectsForInstr(const MachineInstr *MI, 135 const MachineFrameInfo *MFI, 136 UnderlyingObjectsVector &Objects, 137 const DataLayout &DL) { 138 if (!MI->hasOneMemOperand() || 139 (!(*MI->memoperands_begin())->getValue() && 140 !(*MI->memoperands_begin())->getPseudoValue()) || 141 (*MI->memoperands_begin())->isVolatile()) 142 return; 143 144 if (const PseudoSourceValue *PSV = 145 (*MI->memoperands_begin())->getPseudoValue()) { 146 // Function that contain tail calls don't have unique PseudoSourceValue 147 // objects. Two PseudoSourceValues might refer to the same or overlapping 148 // locations. The client code calling this function assumes this is not the 149 // case. So return a conservative answer of no known object. 150 if (MFI->hasTailCall()) 151 return; 152 153 // For now, ignore PseudoSourceValues which may alias LLVM IR values 154 // because the code that uses this function has no way to cope with 155 // such aliases. 156 if (!PSV->isAliased(MFI)) { 157 bool MayAlias = PSV->mayAlias(MFI); 158 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 159 } 160 return; 161 } 162 163 const Value *V = (*MI->memoperands_begin())->getValue(); 164 if (!V) 165 return; 166 167 SmallVector<Value *, 4> Objs; 168 getUnderlyingObjects(V, Objs, DL); 169 170 for (Value *V : Objs) { 171 if (!isIdentifiedObject(V)) { 172 Objects.clear(); 173 return; 174 } 175 176 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 177 } 178 } 179 180 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 181 BB = bb; 182 } 183 184 void ScheduleDAGInstrs::finishBlock() { 185 // Subclasses should no longer refer to the old block. 186 BB = nullptr; 187 } 188 189 /// Initialize the DAG and common scheduler state for the current scheduling 190 /// region. This does not actually create the DAG, only clears it. The 191 /// scheduling driver may call BuildSchedGraph multiple times per scheduling 192 /// region. 193 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 194 MachineBasicBlock::iterator begin, 195 MachineBasicBlock::iterator end, 196 unsigned regioninstrs) { 197 assert(bb == BB && "startBlock should set BB"); 198 RegionBegin = begin; 199 RegionEnd = end; 200 NumRegionInstrs = regioninstrs; 201 } 202 203 /// Close the current scheduling region. Don't clear any state in case the 204 /// driver wants to refer to the previous scheduling region. 205 void ScheduleDAGInstrs::exitRegion() { 206 // Nothing to do. 207 } 208 209 /// addSchedBarrierDeps - Add dependencies from instructions in the current 210 /// list of instructions being scheduled to scheduling barrier by adding 211 /// the exit SU to the register defs and use list. This is because we want to 212 /// make sure instructions which define registers that are either used by 213 /// the terminator or are live-out are properly scheduled. This is 214 /// especially important when the definition latency of the return value(s) 215 /// are too high to be hidden by the branch or when the liveout registers 216 /// used by instructions in the fallthrough block. 217 void ScheduleDAGInstrs::addSchedBarrierDeps() { 218 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 219 ExitSU.setInstr(ExitMI); 220 bool AllDepKnown = ExitMI && 221 (ExitMI->isCall() || ExitMI->isBarrier()); 222 if (ExitMI && AllDepKnown) { 223 // If it's a call or a barrier, add dependencies on the defs and uses of 224 // instruction. 225 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { 226 const MachineOperand &MO = ExitMI->getOperand(i); 227 if (!MO.isReg() || MO.isDef()) continue; 228 unsigned Reg = MO.getReg(); 229 if (Reg == 0) continue; 230 231 if (TRI->isPhysicalRegister(Reg)) 232 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 233 else { 234 assert(!IsPostRA && "Virtual register encountered after regalloc."); 235 if (MO.readsReg()) // ignore undef operands 236 addVRegUseDeps(&ExitSU, i); 237 } 238 } 239 } else { 240 // For others, e.g. fallthrough, conditional branch, assume the exit 241 // uses all the registers that are livein to the successor blocks. 242 assert(Uses.empty() && "Uses in set before adding deps?"); 243 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 244 SE = BB->succ_end(); SI != SE; ++SI) 245 for (const auto &LI : (*SI)->liveins()) { 246 if (!Uses.contains(LI.PhysReg)) 247 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 248 } 249 } 250 } 251 252 /// MO is an operand of SU's instruction that defines a physical register. Add 253 /// data dependencies from SU to any uses of the physical register. 254 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 255 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 256 assert(MO.isDef() && "expect physreg def"); 257 258 // Ask the target if address-backscheduling is desirable, and if so how much. 259 const TargetSubtargetInfo &ST = MF.getSubtarget(); 260 261 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 262 Alias.isValid(); ++Alias) { 263 if (!Uses.contains(*Alias)) 264 continue; 265 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 266 SUnit *UseSU = I->SU; 267 if (UseSU == SU) 268 continue; 269 270 // Adjust the dependence latency using operand def/use information, 271 // then allow the target to perform its own adjustments. 272 int UseOp = I->OpIdx; 273 MachineInstr *RegUse = nullptr; 274 SDep Dep; 275 if (UseOp < 0) 276 Dep = SDep(SU, SDep::Artificial); 277 else { 278 // Set the hasPhysRegDefs only for physreg defs that have a use within 279 // the scheduling region. 280 SU->hasPhysRegDefs = true; 281 Dep = SDep(SU, SDep::Data, *Alias); 282 RegUse = UseSU->getInstr(); 283 } 284 Dep.setLatency( 285 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 286 UseOp)); 287 288 ST.adjustSchedDependency(SU, UseSU, Dep); 289 UseSU->addPred(Dep); 290 } 291 } 292 } 293 294 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from 295 /// this SUnit to following instructions in the same scheduling region that 296 /// depend the physical register referenced at OperIdx. 297 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 298 MachineInstr *MI = SU->getInstr(); 299 MachineOperand &MO = MI->getOperand(OperIdx); 300 301 // Optionally add output and anti dependencies. For anti 302 // dependencies we use a latency of 0 because for a multi-issue 303 // target we want to allow the defining instruction to issue 304 // in the same cycle as the using instruction. 305 // TODO: Using a latency of 1 here for output dependencies assumes 306 // there's no cost for reusing registers. 307 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 308 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 309 Alias.isValid(); ++Alias) { 310 if (!Defs.contains(*Alias)) 311 continue; 312 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 313 SUnit *DefSU = I->SU; 314 if (DefSU == &ExitSU) 315 continue; 316 if (DefSU != SU && 317 (Kind != SDep::Output || !MO.isDead() || 318 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 319 if (Kind == SDep::Anti) 320 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 321 else { 322 SDep Dep(SU, Kind, /*Reg=*/*Alias); 323 Dep.setLatency( 324 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 325 DefSU->addPred(Dep); 326 } 327 } 328 } 329 } 330 331 if (!MO.isDef()) { 332 SU->hasPhysRegUses = true; 333 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 334 // retrieve the existing SUnits list for this register's uses. 335 // Push this SUnit on the use list. 336 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); 337 if (RemoveKillFlags) 338 MO.setIsKill(false); 339 } 340 else { 341 addPhysRegDataDeps(SU, OperIdx); 342 unsigned Reg = MO.getReg(); 343 344 // clear this register's use list 345 if (Uses.contains(Reg)) 346 Uses.eraseAll(Reg); 347 348 if (!MO.isDead()) { 349 Defs.eraseAll(Reg); 350 } else if (SU->isCall) { 351 // Calls will not be reordered because of chain dependencies (see 352 // below). Since call operands are dead, calls may continue to be added 353 // to the DefList making dependence checking quadratic in the size of 354 // the block. Instead, we leave only one call at the back of the 355 // DefList. 356 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 357 Reg2SUnitsMap::iterator B = P.first; 358 Reg2SUnitsMap::iterator I = P.second; 359 for (bool isBegin = I == B; !isBegin; /* empty */) { 360 isBegin = (--I) == B; 361 if (!I->SU->isCall) 362 break; 363 I = Defs.erase(I); 364 } 365 } 366 367 // Defs are pushed in the order they are visited and never reordered. 368 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 369 } 370 } 371 372 /// addVRegDefDeps - Add register output and data dependencies from this SUnit 373 /// to instructions that occur later in the same scheduling region if they read 374 /// from or write to the virtual register defined at OperIdx. 375 /// 376 /// TODO: Hoist loop induction variable increments. This has to be 377 /// reevaluated. Generally, IV scheduling should be done before coalescing. 378 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 379 const MachineInstr *MI = SU->getInstr(); 380 unsigned Reg = MI->getOperand(OperIdx).getReg(); 381 382 // Singly defined vregs do not have output/anti dependencies. 383 // The current operand is a def, so we have at least one. 384 // Check here if there are any others... 385 if (MRI.hasOneDef(Reg)) 386 return; 387 388 // Add output dependence to the next nearest def of this vreg. 389 // 390 // Unless this definition is dead, the output dependence should be 391 // transitively redundant with antidependencies from this definition's 392 // uses. We're conservative for now until we have a way to guarantee the uses 393 // are not eliminated sometime during scheduling. The output dependence edge 394 // is also useful if output latency exceeds def-use latency. 395 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 396 if (DefI == VRegDefs.end()) 397 VRegDefs.insert(VReg2SUnit(Reg, SU)); 398 else { 399 SUnit *DefSU = DefI->SU; 400 if (DefSU != SU && DefSU != &ExitSU) { 401 SDep Dep(SU, SDep::Output, Reg); 402 Dep.setLatency( 403 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 404 DefSU->addPred(Dep); 405 } 406 DefI->SU = SU; 407 } 408 } 409 410 /// addVRegUseDeps - Add a register data dependency if the instruction that 411 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a 412 /// register antidependency from this SUnit to instructions that occur later in 413 /// the same scheduling region if they write the virtual register. 414 /// 415 /// TODO: Handle ExitSU "uses" properly. 416 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 417 MachineInstr *MI = SU->getInstr(); 418 unsigned Reg = MI->getOperand(OperIdx).getReg(); 419 420 // Record this local VReg use. 421 VReg2UseMap::iterator UI = VRegUses.find(Reg); 422 for (; UI != VRegUses.end(); ++UI) { 423 if (UI->SU == SU) 424 break; 425 } 426 if (UI == VRegUses.end()) 427 VRegUses.insert(VReg2SUnit(Reg, SU)); 428 429 // Lookup this operand's reaching definition. 430 assert(LIS && "vreg dependencies requires LiveIntervals"); 431 LiveQueryResult LRQ 432 = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI)); 433 VNInfo *VNI = LRQ.valueIn(); 434 435 // VNI will be valid because MachineOperand::readsReg() is checked by caller. 436 assert(VNI && "No value to read by operand"); 437 MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); 438 // Phis and other noninstructions (after coalescing) have a NULL Def. 439 if (Def) { 440 SUnit *DefSU = getSUnit(Def); 441 if (DefSU) { 442 // The reaching Def lives within this scheduling region. 443 // Create a data dependence. 444 SDep dep(DefSU, SDep::Data, Reg); 445 // Adjust the dependence latency using operand def/use information, then 446 // allow the target to perform its own adjustments. 447 int DefOp = Def->findRegisterDefOperandIdx(Reg); 448 dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx)); 449 450 const TargetSubtargetInfo &ST = MF.getSubtarget(); 451 ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep)); 452 SU->addPred(dep); 453 } 454 } 455 456 // Add antidependence to the following def of the vreg it uses. 457 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 458 if (DefI != VRegDefs.end() && DefI->SU != SU) 459 DefI->SU->addPred(SDep(SU, SDep::Anti, Reg)); 460 } 461 462 /// Return true if MI is an instruction we are unable to reason about 463 /// (like a call or something with unmodeled side effects). 464 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 465 if (MI->isCall() || MI->hasUnmodeledSideEffects() || 466 (MI->hasOrderedMemoryRef() && 467 (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) 468 return true; 469 return false; 470 } 471 472 // This MI might have either incomplete info, or known to be unsafe 473 // to deal with (i.e. volatile object). 474 static inline bool isUnsafeMemoryObject(MachineInstr *MI, 475 const MachineFrameInfo *MFI, 476 const DataLayout &DL) { 477 if (!MI || MI->memoperands_empty()) 478 return true; 479 // We purposefully do no check for hasOneMemOperand() here 480 // in hope to trigger an assert downstream in order to 481 // finish implementation. 482 if ((*MI->memoperands_begin())->isVolatile() || 483 MI->hasUnmodeledSideEffects()) 484 return true; 485 486 if ((*MI->memoperands_begin())->getPseudoValue()) { 487 // Similarly to getUnderlyingObjectForInstr: 488 // For now, ignore PseudoSourceValues which may alias LLVM IR values 489 // because the code that uses this function has no way to cope with 490 // such aliases. 491 return true; 492 } 493 494 const Value *V = (*MI->memoperands_begin())->getValue(); 495 if (!V) 496 return true; 497 498 SmallVector<Value *, 4> Objs; 499 getUnderlyingObjects(V, Objs, DL); 500 for (Value *V : Objs) { 501 // Does this pointer refer to a distinct and identifiable object? 502 if (!isIdentifiedObject(V)) 503 return true; 504 } 505 506 return false; 507 } 508 509 /// This returns true if the two MIs need a chain edge between them. 510 /// If these are not even memory operations, we still may need 511 /// chain deps between them. The question really is - could 512 /// these two MIs be reordered during scheduling from memory dependency 513 /// point of view. 514 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 515 const DataLayout &DL, MachineInstr *MIa, 516 MachineInstr *MIb) { 517 const MachineFunction *MF = MIa->getParent()->getParent(); 518 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 519 520 // Cover a trivial case - no edge is need to itself. 521 if (MIa == MIb) 522 return false; 523 524 // Let the target decide if memory accesses cannot possibly overlap. 525 if ((MIa->mayLoad() || MIa->mayStore()) && 526 (MIb->mayLoad() || MIb->mayStore())) 527 if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA)) 528 return false; 529 530 // FIXME: Need to handle multiple memory operands to support all targets. 531 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 532 return true; 533 534 if (isUnsafeMemoryObject(MIa, MFI, DL) || isUnsafeMemoryObject(MIb, MFI, DL)) 535 return true; 536 537 // If we are dealing with two "normal" loads, we do not need an edge 538 // between them - they could be reordered. 539 if (!MIa->mayStore() && !MIb->mayStore()) 540 return false; 541 542 // To this point analysis is generic. From here on we do need AA. 543 if (!AA) 544 return true; 545 546 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 547 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 548 549 if (!MMOa->getValue() || !MMOb->getValue()) 550 return true; 551 552 // The following interface to AA is fashioned after DAGCombiner::isAlias 553 // and operates with MachineMemOperand offset with some important 554 // assumptions: 555 // - LLVM fundamentally assumes flat address spaces. 556 // - MachineOperand offset can *only* result from legalization and 557 // cannot affect queries other than the trivial case of overlap 558 // checking. 559 // - These offsets never wrap and never step outside 560 // of allocated objects. 561 // - There should never be any negative offsets here. 562 // 563 // FIXME: Modify API to hide this math from "user" 564 // FIXME: Even before we go to AA we can reason locally about some 565 // memory objects. It can save compile time, and possibly catch some 566 // corner cases not currently covered. 567 568 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 569 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 570 571 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 572 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 573 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 574 575 AliasResult AAResult = 576 AA->alias(MemoryLocation(MMOa->getValue(), Overlapa, 577 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 578 MemoryLocation(MMOb->getValue(), Overlapb, 579 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 580 581 return (AAResult != NoAlias); 582 } 583 584 /// This recursive function iterates over chain deps of SUb looking for 585 /// "latest" node that needs a chain edge to SUa. 586 static unsigned iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI, 587 const DataLayout &DL, SUnit *SUa, SUnit *SUb, 588 SUnit *ExitSU, unsigned *Depth, 589 SmallPtrSetImpl<const SUnit *> &Visited) { 590 if (!SUa || !SUb || SUb == ExitSU) 591 return *Depth; 592 593 // Remember visited nodes. 594 if (!Visited.insert(SUb).second) 595 return *Depth; 596 // If there is _some_ dependency already in place, do not 597 // descend any further. 598 // TODO: Need to make sure that if that dependency got eliminated or ignored 599 // for any reason in the future, we would not violate DAG topology. 600 // Currently it does not happen, but makes an implicit assumption about 601 // future implementation. 602 // 603 // Independently, if we encounter node that is some sort of global 604 // object (like a call) we already have full set of dependencies to it 605 // and we can stop descending. 606 if (SUa->isSucc(SUb) || 607 isGlobalMemoryObject(AA, SUb->getInstr())) 608 return *Depth; 609 610 // If we do need an edge, or we have exceeded depth budget, 611 // add that edge to the predecessors chain of SUb, 612 // and stop descending. 613 if (*Depth > 200 || 614 MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) { 615 SUb->addPred(SDep(SUa, SDep::MayAliasMem)); 616 return *Depth; 617 } 618 // Track current depth. 619 (*Depth)++; 620 // Iterate over memory dependencies only. 621 for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end(); 622 I != E; ++I) 623 if (I->isNormalMemoryOrBarrier()) 624 iterateChainSucc(AA, MFI, DL, SUa, I->getSUnit(), ExitSU, Depth, Visited); 625 return *Depth; 626 } 627 628 /// This function assumes that "downward" from SU there exist 629 /// tail/leaf of already constructed DAG. It iterates downward and 630 /// checks whether SU can be aliasing any node dominated 631 /// by it. 632 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI, 633 const DataLayout &DL, SUnit *SU, SUnit *ExitSU, 634 std::set<SUnit *> &CheckList, 635 unsigned LatencyToLoad) { 636 if (!SU) 637 return; 638 639 SmallPtrSet<const SUnit*, 16> Visited; 640 unsigned Depth = 0; 641 642 for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end(); 643 I != IE; ++I) { 644 if (SU == *I) 645 continue; 646 if (MIsNeedChainEdge(AA, MFI, DL, SU->getInstr(), (*I)->getInstr())) { 647 SDep Dep(SU, SDep::MayAliasMem); 648 Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0); 649 (*I)->addPred(Dep); 650 } 651 652 // Iterate recursively over all previously added memory chain 653 // successors. Keep track of visited nodes. 654 for (SUnit::const_succ_iterator J = (*I)->Succs.begin(), 655 JE = (*I)->Succs.end(); J != JE; ++J) 656 if (J->isNormalMemoryOrBarrier()) 657 iterateChainSucc(AA, MFI, DL, SU, J->getSUnit(), ExitSU, &Depth, 658 Visited); 659 } 660 } 661 662 /// Check whether two objects need a chain edge, if so, add it 663 /// otherwise remember the rejected SU. 664 static inline void addChainDependency(AliasAnalysis *AA, 665 const MachineFrameInfo *MFI, 666 const DataLayout &DL, SUnit *SUa, 667 SUnit *SUb, std::set<SUnit *> &RejectList, 668 unsigned TrueMemOrderLatency = 0, 669 bool isNormalMemory = false) { 670 // If this is a false dependency, 671 // do not add the edge, but remember the rejected node. 672 if (MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) { 673 SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier); 674 Dep.setLatency(TrueMemOrderLatency); 675 SUb->addPred(Dep); 676 } 677 else { 678 // Duplicate entries should be ignored. 679 RejectList.insert(SUb); 680 DEBUG(dbgs() << "\tReject chain dep between SU(" 681 << SUa->NodeNum << ") and SU(" 682 << SUb->NodeNum << ")\n"); 683 } 684 } 685 686 /// Create an SUnit for each real instruction, numbered in top-down topological 687 /// order. The instruction order A < B, implies that no edge exists from B to A. 688 /// 689 /// Map each real instruction to its SUnit. 690 /// 691 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 692 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 693 /// instead of pointers. 694 /// 695 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 696 /// the original instruction list. 697 void ScheduleDAGInstrs::initSUnits() { 698 // We'll be allocating one SUnit for each real instruction in the region, 699 // which is contained within a basic block. 700 SUnits.reserve(NumRegionInstrs); 701 702 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { 703 MachineInstr *MI = I; 704 if (MI->isDebugValue()) 705 continue; 706 707 SUnit *SU = newSUnit(MI); 708 MISUnitMap[MI] = SU; 709 710 SU->isCall = MI->isCall(); 711 SU->isCommutable = MI->isCommutable(); 712 713 // Assign the Latency field of SU using target-provided information. 714 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 715 716 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 717 // 718 // Reserved resources block an instruction from issuing and stall the 719 // entire pipeline. These are identified by BufferSize=0. 720 // 721 // Unbuffered resources prevent execution of subsequent instructions that 722 // require the same resources. This is used for in-order execution pipelines 723 // within an out-of-order core. These are identified by BufferSize=1. 724 if (SchedModel.hasInstrSchedModel()) { 725 const MCSchedClassDesc *SC = getSchedClass(SU); 726 for (TargetSchedModel::ProcResIter 727 PI = SchedModel.getWriteProcResBegin(SC), 728 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 729 switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) { 730 case 0: 731 SU->hasReservedResource = true; 732 break; 733 case 1: 734 SU->isUnbuffered = true; 735 break; 736 default: 737 break; 738 } 739 } 740 } 741 } 742 } 743 744 /// If RegPressure is non-null, compute register pressure as a side effect. The 745 /// DAG builder is an efficient place to do it because it already visits 746 /// operands. 747 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 748 RegPressureTracker *RPTracker, 749 PressureDiffs *PDiffs) { 750 const TargetSubtargetInfo &ST = MF.getSubtarget(); 751 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 752 : ST.useAA(); 753 AliasAnalysis *AAForDep = UseAA ? AA : nullptr; 754 755 MISUnitMap.clear(); 756 ScheduleDAG::clearDAG(); 757 758 // Create an SUnit for each real instruction. 759 initSUnits(); 760 761 if (PDiffs) 762 PDiffs->init(SUnits.size()); 763 764 // We build scheduling units by walking a block's instruction list from bottom 765 // to top. 766 767 // Remember where a generic side-effecting instruction is as we proceed. 768 SUnit *BarrierChain = nullptr, *AliasChain = nullptr; 769 770 // Memory references to specific known memory locations are tracked 771 // so that they can be given more precise dependencies. We track 772 // separately the known memory locations that may alias and those 773 // that are known not to alias 774 MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs; 775 MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; 776 std::set<SUnit*> RejectMemNodes; 777 778 // Remove any stale debug info; sometimes BuildSchedGraph is called again 779 // without emitting the info from the previous call. 780 DbgValues.clear(); 781 FirstDbgValue = nullptr; 782 783 assert(Defs.empty() && Uses.empty() && 784 "Only BuildGraph should update Defs/Uses"); 785 Defs.setUniverse(TRI->getNumRegs()); 786 Uses.setUniverse(TRI->getNumRegs()); 787 788 assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); 789 VRegUses.clear(); 790 VRegDefs.setUniverse(MRI.getNumVirtRegs()); 791 VRegUses.setUniverse(MRI.getNumVirtRegs()); 792 793 // Model data dependencies between instructions being scheduled and the 794 // ExitSU. 795 addSchedBarrierDeps(); 796 797 // Walk the list of instructions, from bottom moving up. 798 MachineInstr *DbgMI = nullptr; 799 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 800 MII != MIE; --MII) { 801 MachineInstr *MI = std::prev(MII); 802 if (MI && DbgMI) { 803 DbgValues.push_back(std::make_pair(DbgMI, MI)); 804 DbgMI = nullptr; 805 } 806 807 if (MI->isDebugValue()) { 808 DbgMI = MI; 809 continue; 810 } 811 SUnit *SU = MISUnitMap[MI]; 812 assert(SU && "No SUnit mapped to this MI"); 813 814 if (RPTracker) { 815 PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : nullptr; 816 RPTracker->recede(/*LiveUses=*/nullptr, PDiff); 817 assert(RPTracker->getPos() == std::prev(MII) && 818 "RPTracker can't find MI"); 819 } 820 821 assert( 822 (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) && 823 "Cannot schedule terminators or labels!"); 824 825 // Add register-based dependencies (data, anti, and output). 826 bool HasVRegDef = false; 827 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { 828 const MachineOperand &MO = MI->getOperand(j); 829 if (!MO.isReg()) continue; 830 unsigned Reg = MO.getReg(); 831 if (Reg == 0) continue; 832 833 if (TRI->isPhysicalRegister(Reg)) 834 addPhysRegDeps(SU, j); 835 else { 836 assert(!IsPostRA && "Virtual register encountered!"); 837 if (MO.isDef()) { 838 HasVRegDef = true; 839 addVRegDefDeps(SU, j); 840 } 841 else if (MO.readsReg()) // ignore undef operands 842 addVRegUseDeps(SU, j); 843 } 844 } 845 // If we haven't seen any uses in this scheduling region, create a 846 // dependence edge to ExitSU to model the live-out latency. This is required 847 // for vreg defs with no in-region use, and prefetches with no vreg def. 848 // 849 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 850 // check currently relies on being called before adding chain deps. 851 if (SU->NumSuccs == 0 && SU->Latency > 1 852 && (HasVRegDef || MI->mayLoad())) { 853 SDep Dep(SU, SDep::Artificial); 854 Dep.setLatency(SU->Latency - 1); 855 ExitSU.addPred(Dep); 856 } 857 858 // Add chain dependencies. 859 // Chain dependencies used to enforce memory order should have 860 // latency of 0 (except for true dependency of Store followed by 861 // aliased Load... we estimate that with a single cycle of latency 862 // assuming the hardware will bypass) 863 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable 864 // after stack slots are lowered to actual addresses. 865 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and 866 // produce more precise dependence information. 867 unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0; 868 if (isGlobalMemoryObject(AA, MI)) { 869 // Be conservative with these and add dependencies on all memory 870 // references, even those that are known to not alias. 871 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 872 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { 873 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 874 I->second[i]->addPred(SDep(SU, SDep::Barrier)); 875 } 876 } 877 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 878 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { 879 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 880 SDep Dep(SU, SDep::Barrier); 881 Dep.setLatency(TrueMemOrderLatency); 882 I->second[i]->addPred(Dep); 883 } 884 } 885 // Add SU to the barrier chain. 886 if (BarrierChain) 887 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 888 BarrierChain = SU; 889 // This is a barrier event that acts as a pivotal node in the DAG, 890 // so it is safe to clear list of exposed nodes. 891 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes, 892 TrueMemOrderLatency); 893 RejectMemNodes.clear(); 894 NonAliasMemDefs.clear(); 895 NonAliasMemUses.clear(); 896 897 // fall-through 898 new_alias_chain: 899 // Chain all possibly aliasing memory references through SU. 900 if (AliasChain) { 901 unsigned ChainLatency = 0; 902 if (AliasChain->getInstr()->mayLoad()) 903 ChainLatency = TrueMemOrderLatency; 904 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain, 905 RejectMemNodes, ChainLatency); 906 } 907 AliasChain = SU; 908 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 909 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 910 PendingLoads[k], RejectMemNodes, 911 TrueMemOrderLatency); 912 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 913 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) { 914 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 915 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 916 I->second[i], RejectMemNodes); 917 } 918 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 919 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { 920 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 921 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 922 I->second[i], RejectMemNodes, TrueMemOrderLatency); 923 } 924 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes, 925 TrueMemOrderLatency); 926 PendingLoads.clear(); 927 AliasMemDefs.clear(); 928 AliasMemUses.clear(); 929 } else if (MI->mayStore()) { 930 // Add dependence on barrier chain, if needed. 931 // There is no point to check aliasing on barrier event. Even if 932 // SU and barrier _could_ be reordered, they should not. In addition, 933 // we have lost all RejectMemNodes below barrier. 934 if (BarrierChain) 935 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 936 937 UnderlyingObjectsVector Objs; 938 getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout()); 939 940 if (Objs.empty()) { 941 // Treat all other stores conservatively. 942 goto new_alias_chain; 943 } 944 945 bool MayAlias = false; 946 for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end(); 947 K != KE; ++K) { 948 ValueType V = K->getPointer(); 949 bool ThisMayAlias = K->getInt(); 950 if (ThisMayAlias) 951 MayAlias = true; 952 953 // A store to a specific PseudoSourceValue. Add precise dependencies. 954 // Record the def in MemDefs, first adding a dep if there is 955 // an existing def. 956 MapVector<ValueType, std::vector<SUnit *> >::iterator I = 957 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 958 MapVector<ValueType, std::vector<SUnit *> >::iterator IE = 959 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 960 if (I != IE) { 961 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 962 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 963 I->second[i], RejectMemNodes, 0, true); 964 965 // If we're not using AA, then we only need one store per object. 966 if (!AAForDep) 967 I->second.clear(); 968 I->second.push_back(SU); 969 } else { 970 if (ThisMayAlias) { 971 if (!AAForDep) 972 AliasMemDefs[V].clear(); 973 AliasMemDefs[V].push_back(SU); 974 } else { 975 if (!AAForDep) 976 NonAliasMemDefs[V].clear(); 977 NonAliasMemDefs[V].push_back(SU); 978 } 979 } 980 // Handle the uses in MemUses, if there are any. 981 MapVector<ValueType, std::vector<SUnit *> >::iterator J = 982 ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); 983 MapVector<ValueType, std::vector<SUnit *> >::iterator JE = 984 ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); 985 if (J != JE) { 986 for (unsigned i = 0, e = J->second.size(); i != e; ++i) 987 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 988 J->second[i], RejectMemNodes, 989 TrueMemOrderLatency, true); 990 J->second.clear(); 991 } 992 } 993 if (MayAlias) { 994 // Add dependencies from all the PendingLoads, i.e. loads 995 // with no underlying object. 996 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 997 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 998 PendingLoads[k], RejectMemNodes, 999 TrueMemOrderLatency); 1000 // Add dependence on alias chain, if needed. 1001 if (AliasChain) 1002 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain, 1003 RejectMemNodes); 1004 } 1005 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes, 1006 TrueMemOrderLatency); 1007 } else if (MI->mayLoad()) { 1008 bool MayAlias = true; 1009 if (MI->isInvariantLoad(AA)) { 1010 // Invariant load, no chain dependencies needed! 1011 } else { 1012 UnderlyingObjectsVector Objs; 1013 getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout()); 1014 1015 if (Objs.empty()) { 1016 // A load with no underlying object. Depend on all 1017 // potentially aliasing stores. 1018 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 1019 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) 1020 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1021 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 1022 I->second[i], RejectMemNodes); 1023 1024 PendingLoads.push_back(SU); 1025 MayAlias = true; 1026 } else { 1027 MayAlias = false; 1028 } 1029 1030 for (UnderlyingObjectsVector::iterator 1031 J = Objs.begin(), JE = Objs.end(); J != JE; ++J) { 1032 ValueType V = J->getPointer(); 1033 bool ThisMayAlias = J->getInt(); 1034 1035 if (ThisMayAlias) 1036 MayAlias = true; 1037 1038 // A load from a specific PseudoSourceValue. Add precise dependencies. 1039 MapVector<ValueType, std::vector<SUnit *> >::iterator I = 1040 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 1041 MapVector<ValueType, std::vector<SUnit *> >::iterator IE = 1042 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 1043 if (I != IE) 1044 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1045 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 1046 I->second[i], RejectMemNodes, 0, true); 1047 if (ThisMayAlias) 1048 AliasMemUses[V].push_back(SU); 1049 else 1050 NonAliasMemUses[V].push_back(SU); 1051 } 1052 if (MayAlias) 1053 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, 1054 RejectMemNodes, /*Latency=*/0); 1055 // Add dependencies on alias and barrier chains, if needed. 1056 if (MayAlias && AliasChain) 1057 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain, 1058 RejectMemNodes); 1059 if (BarrierChain) 1060 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 1061 } 1062 } 1063 } 1064 if (DbgMI) 1065 FirstDbgValue = DbgMI; 1066 1067 Defs.clear(); 1068 Uses.clear(); 1069 VRegDefs.clear(); 1070 PendingLoads.clear(); 1071 } 1072 1073 /// \brief Initialize register live-range state for updating kills. 1074 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { 1075 // Start with no live registers. 1076 LiveRegs.reset(); 1077 1078 // Examine the live-in regs of all successors. 1079 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 1080 SE = BB->succ_end(); SI != SE; ++SI) { 1081 for (const auto &LI : (*SI)->liveins()) { 1082 // Repeat, for reg and all subregs. 1083 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 1084 SubRegs.isValid(); ++SubRegs) 1085 LiveRegs.set(*SubRegs); 1086 } 1087 } 1088 } 1089 1090 /// \brief If we change a kill flag on the bundle instruction implicit register 1091 /// operands, then we also need to propagate that to any instructions inside 1092 /// the bundle which had the same kill state. 1093 static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg, 1094 bool NewKillState) { 1095 if (MI->getOpcode() != TargetOpcode::BUNDLE) 1096 return; 1097 1098 // Walk backwards from the last instruction in the bundle to the first. 1099 // Once we set a kill flag on an instruction, we bail out, as otherwise we 1100 // might set it on too many operands. We will clear as many flags as we 1101 // can though. 1102 MachineBasicBlock::instr_iterator Begin = MI; 1103 MachineBasicBlock::instr_iterator End = getBundleEnd(MI); 1104 while (Begin != End) { 1105 for (MachineOperand &MO : (--End)->operands()) { 1106 if (!MO.isReg() || MO.isDef() || Reg != MO.getReg()) 1107 continue; 1108 1109 // DEBUG_VALUE nodes do not contribute to code generation and should 1110 // always be ignored. Failure to do so may result in trying to modify 1111 // KILL flags on DEBUG_VALUE nodes, which is distressing. 1112 if (MO.isDebug()) 1113 continue; 1114 1115 // If the register has the internal flag then it could be killing an 1116 // internal def of the register. In this case, just skip. We only want 1117 // to toggle the flag on operands visible outside the bundle. 1118 if (MO.isInternalRead()) 1119 continue; 1120 1121 if (MO.isKill() == NewKillState) 1122 continue; 1123 MO.setIsKill(NewKillState); 1124 if (NewKillState) 1125 return; 1126 } 1127 } 1128 } 1129 1130 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) { 1131 // Setting kill flag... 1132 if (!MO.isKill()) { 1133 MO.setIsKill(true); 1134 toggleBundleKillFlag(MI, MO.getReg(), true); 1135 return false; 1136 } 1137 1138 // If MO itself is live, clear the kill flag... 1139 if (LiveRegs.test(MO.getReg())) { 1140 MO.setIsKill(false); 1141 toggleBundleKillFlag(MI, MO.getReg(), false); 1142 return false; 1143 } 1144 1145 // If any subreg of MO is live, then create an imp-def for that 1146 // subreg and keep MO marked as killed. 1147 MO.setIsKill(false); 1148 toggleBundleKillFlag(MI, MO.getReg(), false); 1149 bool AllDead = true; 1150 const unsigned SuperReg = MO.getReg(); 1151 MachineInstrBuilder MIB(MF, MI); 1152 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { 1153 if (LiveRegs.test(*SubRegs)) { 1154 MIB.addReg(*SubRegs, RegState::ImplicitDefine); 1155 AllDead = false; 1156 } 1157 } 1158 1159 if(AllDead) { 1160 MO.setIsKill(true); 1161 toggleBundleKillFlag(MI, MO.getReg(), true); 1162 } 1163 return false; 1164 } 1165 1166 // FIXME: Reuse the LivePhysRegs utility for this. 1167 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { 1168 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); 1169 1170 LiveRegs.resize(TRI->getNumRegs()); 1171 BitVector killedRegs(TRI->getNumRegs()); 1172 1173 startBlockForKills(MBB); 1174 1175 // Examine block from end to start... 1176 unsigned Count = MBB->size(); 1177 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); 1178 I != E; --Count) { 1179 MachineInstr *MI = --I; 1180 if (MI->isDebugValue()) 1181 continue; 1182 1183 // Update liveness. Registers that are defed but not used in this 1184 // instruction are now dead. Mark register and all subregs as they 1185 // are completely defined. 1186 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1187 MachineOperand &MO = MI->getOperand(i); 1188 if (MO.isRegMask()) 1189 LiveRegs.clearBitsNotInMask(MO.getRegMask()); 1190 if (!MO.isReg()) continue; 1191 unsigned Reg = MO.getReg(); 1192 if (Reg == 0) continue; 1193 if (!MO.isDef()) continue; 1194 // Ignore two-addr defs. 1195 if (MI->isRegTiedToUseOperand(i)) continue; 1196 1197 // Repeat for reg and all subregs. 1198 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1199 SubRegs.isValid(); ++SubRegs) 1200 LiveRegs.reset(*SubRegs); 1201 } 1202 1203 // Examine all used registers and set/clear kill flag. When a 1204 // register is used multiple times we only set the kill flag on 1205 // the first use. Don't set kill flags on undef operands. 1206 killedRegs.reset(); 1207 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1208 MachineOperand &MO = MI->getOperand(i); 1209 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1210 unsigned Reg = MO.getReg(); 1211 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1212 1213 bool kill = false; 1214 if (!killedRegs.test(Reg)) { 1215 kill = true; 1216 // A register is not killed if any subregs are live... 1217 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 1218 if (LiveRegs.test(*SubRegs)) { 1219 kill = false; 1220 break; 1221 } 1222 } 1223 1224 // If subreg is not live, then register is killed if it became 1225 // live in this instruction 1226 if (kill) 1227 kill = !LiveRegs.test(Reg); 1228 } 1229 1230 if (MO.isKill() != kill) { 1231 DEBUG(dbgs() << "Fixing " << MO << " in "); 1232 // Warning: toggleKillFlag may invalidate MO. 1233 toggleKillFlag(MI, MO); 1234 DEBUG(MI->dump()); 1235 DEBUG(if (MI->getOpcode() == TargetOpcode::BUNDLE) { 1236 MachineBasicBlock::instr_iterator Begin = MI; 1237 MachineBasicBlock::instr_iterator End = getBundleEnd(MI); 1238 while (++Begin != End) 1239 DEBUG(Begin->dump()); 1240 }); 1241 } 1242 1243 killedRegs.set(Reg); 1244 } 1245 1246 // Mark any used register (that is not using undef) and subregs as 1247 // now live... 1248 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1249 MachineOperand &MO = MI->getOperand(i); 1250 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1251 unsigned Reg = MO.getReg(); 1252 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1253 1254 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1255 SubRegs.isValid(); ++SubRegs) 1256 LiveRegs.set(*SubRegs); 1257 } 1258 } 1259 } 1260 1261 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1262 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1263 SU->getInstr()->dump(); 1264 #endif 1265 } 1266 1267 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1268 std::string s; 1269 raw_string_ostream oss(s); 1270 if (SU == &EntrySU) 1271 oss << "<entry>"; 1272 else if (SU == &ExitSU) 1273 oss << "<exit>"; 1274 else 1275 SU->getInstr()->print(oss, /*SkipOpers=*/true); 1276 return oss.str(); 1277 } 1278 1279 /// Return the basic block label. It is not necessarilly unique because a block 1280 /// contains multiple scheduling regions. But it is fine for visualization. 1281 std::string ScheduleDAGInstrs::getDAGName() const { 1282 return "dag." + BB->getFullName(); 1283 } 1284 1285 //===----------------------------------------------------------------------===// 1286 // SchedDFSResult Implementation 1287 //===----------------------------------------------------------------------===// 1288 1289 namespace llvm { 1290 /// \brief Internal state used to compute SchedDFSResult. 1291 class SchedDFSImpl { 1292 SchedDFSResult &R; 1293 1294 /// Join DAG nodes into equivalence classes by their subtree. 1295 IntEqClasses SubtreeClasses; 1296 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1297 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 1298 1299 struct RootData { 1300 unsigned NodeID; 1301 unsigned ParentNodeID; // Parent node (member of the parent subtree). 1302 unsigned SubInstrCount; // Instr count in this tree only, not children. 1303 1304 RootData(unsigned id): NodeID(id), 1305 ParentNodeID(SchedDFSResult::InvalidSubtreeID), 1306 SubInstrCount(0) {} 1307 1308 unsigned getSparseSetIndex() const { return NodeID; } 1309 }; 1310 1311 SparseSet<RootData> RootSet; 1312 1313 public: 1314 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1315 RootSet.setUniverse(R.DFSNodeData.size()); 1316 } 1317 1318 /// Return true if this node been visited by the DFS traversal. 1319 /// 1320 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1321 /// ID. Later, SubtreeID is updated but remains valid. 1322 bool isVisited(const SUnit *SU) const { 1323 return R.DFSNodeData[SU->NodeNum].SubtreeID 1324 != SchedDFSResult::InvalidSubtreeID; 1325 } 1326 1327 /// Initialize this node's instruction count. We don't need to flag the node 1328 /// visited until visitPostorder because the DAG cannot have cycles. 1329 void visitPreorder(const SUnit *SU) { 1330 R.DFSNodeData[SU->NodeNum].InstrCount = 1331 SU->getInstr()->isTransient() ? 0 : 1; 1332 } 1333 1334 /// Called once for each node after all predecessors are visited. Revisit this 1335 /// node's predecessors and potentially join them now that we know the ILP of 1336 /// the other predecessors. 1337 void visitPostorderNode(const SUnit *SU) { 1338 // Mark this node as the root of a subtree. It may be joined with its 1339 // successors later. 1340 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1341 RootData RData(SU->NodeNum); 1342 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1343 1344 // If any predecessors are still in their own subtree, they either cannot be 1345 // joined or are large enough to remain separate. If this parent node's 1346 // total instruction count is not greater than a child subtree by at least 1347 // the subtree limit, then try to join it now since splitting subtrees is 1348 // only useful if multiple high-pressure paths are possible. 1349 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1350 for (SUnit::const_pred_iterator 1351 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1352 if (PI->getKind() != SDep::Data) 1353 continue; 1354 unsigned PredNum = PI->getSUnit()->NodeNum; 1355 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1356 joinPredSubtree(*PI, SU, /*CheckLimit=*/false); 1357 1358 // Either link or merge the TreeData entry from the child to the parent. 1359 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1360 // If the predecessor's parent is invalid, this is a tree edge and the 1361 // current node is the parent. 1362 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1363 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1364 } 1365 else if (RootSet.count(PredNum)) { 1366 // The predecessor is not a root, but is still in the root set. This 1367 // must be the new parent that it was just joined to. Note that 1368 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1369 // set to the original parent. 1370 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1371 RootSet.erase(PredNum); 1372 } 1373 } 1374 RootSet[SU->NodeNum] = RData; 1375 } 1376 1377 /// Called once for each tree edge after calling visitPostOrderNode on the 1378 /// predecessor. Increment the parent node's instruction count and 1379 /// preemptively join this subtree to its parent's if it is small enough. 1380 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1381 R.DFSNodeData[Succ->NodeNum].InstrCount 1382 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1383 joinPredSubtree(PredDep, Succ); 1384 } 1385 1386 /// Add a connection for cross edges. 1387 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1388 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1389 } 1390 1391 /// Set each node's subtree ID to the representative ID and record connections 1392 /// between trees. 1393 void finalize() { 1394 SubtreeClasses.compress(); 1395 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1396 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1397 && "number of roots should match trees"); 1398 for (SparseSet<RootData>::const_iterator 1399 RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) { 1400 unsigned TreeID = SubtreeClasses[RI->NodeID]; 1401 if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1402 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID]; 1403 R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount; 1404 // Note that SubInstrCount may be greater than InstrCount if we joined 1405 // subtrees across a cross edge. InstrCount will be attributed to the 1406 // original parent, while SubInstrCount will be attributed to the joined 1407 // parent. 1408 } 1409 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1410 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1411 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1412 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1413 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1414 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1415 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1416 } 1417 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator 1418 I = ConnectionPairs.begin(), E = ConnectionPairs.end(); 1419 I != E; ++I) { 1420 unsigned PredTree = SubtreeClasses[I->first->NodeNum]; 1421 unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; 1422 if (PredTree == SuccTree) 1423 continue; 1424 unsigned Depth = I->first->getDepth(); 1425 addConnection(PredTree, SuccTree, Depth); 1426 addConnection(SuccTree, PredTree, Depth); 1427 } 1428 } 1429 1430 protected: 1431 /// Join the predecessor subtree with the successor that is its DFS 1432 /// parent. Apply some heuristics before joining. 1433 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1434 bool CheckLimit = true) { 1435 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1436 1437 // Check if the predecessor is already joined. 1438 const SUnit *PredSU = PredDep.getSUnit(); 1439 unsigned PredNum = PredSU->NodeNum; 1440 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1441 return false; 1442 1443 // Four is the magic number of successors before a node is considered a 1444 // pinch point. 1445 unsigned NumDataSucs = 0; 1446 for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(), 1447 SE = PredSU->Succs.end(); SI != SE; ++SI) { 1448 if (SI->getKind() == SDep::Data) { 1449 if (++NumDataSucs >= 4) 1450 return false; 1451 } 1452 } 1453 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1454 return false; 1455 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1456 SubtreeClasses.join(Succ->NodeNum, PredNum); 1457 return true; 1458 } 1459 1460 /// Called by finalize() to record a connection between trees. 1461 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1462 if (!Depth) 1463 return; 1464 1465 do { 1466 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1467 R.SubtreeConnections[FromTree]; 1468 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator 1469 I = Connections.begin(), E = Connections.end(); I != E; ++I) { 1470 if (I->TreeID == ToTree) { 1471 I->Level = std::max(I->Level, Depth); 1472 return; 1473 } 1474 } 1475 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1476 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1477 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1478 } 1479 }; 1480 } // namespace llvm 1481 1482 namespace { 1483 /// \brief Manage the stack used by a reverse depth-first search over the DAG. 1484 class SchedDAGReverseDFS { 1485 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 1486 public: 1487 bool isComplete() const { return DFSStack.empty(); } 1488 1489 void follow(const SUnit *SU) { 1490 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1491 } 1492 void advance() { ++DFSStack.back().second; } 1493 1494 const SDep *backtrack() { 1495 DFSStack.pop_back(); 1496 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1497 } 1498 1499 const SUnit *getCurr() const { return DFSStack.back().first; } 1500 1501 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1502 1503 SUnit::const_pred_iterator getPredEnd() const { 1504 return getCurr()->Preds.end(); 1505 } 1506 }; 1507 } // anonymous 1508 1509 static bool hasDataSucc(const SUnit *SU) { 1510 for (SUnit::const_succ_iterator 1511 SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) { 1512 if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode()) 1513 return true; 1514 } 1515 return false; 1516 } 1517 1518 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first 1519 /// search from this root. 1520 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1521 if (!IsBottomUp) 1522 llvm_unreachable("Top-down ILP metric is unimplemnted"); 1523 1524 SchedDFSImpl Impl(*this); 1525 for (ArrayRef<SUnit>::const_iterator 1526 SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) { 1527 const SUnit *SU = &*SI; 1528 if (Impl.isVisited(SU) || hasDataSucc(SU)) 1529 continue; 1530 1531 SchedDAGReverseDFS DFS; 1532 Impl.visitPreorder(SU); 1533 DFS.follow(SU); 1534 for (;;) { 1535 // Traverse the leftmost path as far as possible. 1536 while (DFS.getPred() != DFS.getPredEnd()) { 1537 const SDep &PredDep = *DFS.getPred(); 1538 DFS.advance(); 1539 // Ignore non-data edges. 1540 if (PredDep.getKind() != SDep::Data 1541 || PredDep.getSUnit()->isBoundaryNode()) { 1542 continue; 1543 } 1544 // An already visited edge is a cross edge, assuming an acyclic DAG. 1545 if (Impl.isVisited(PredDep.getSUnit())) { 1546 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1547 continue; 1548 } 1549 Impl.visitPreorder(PredDep.getSUnit()); 1550 DFS.follow(PredDep.getSUnit()); 1551 } 1552 // Visit the top of the stack in postorder and backtrack. 1553 const SUnit *Child = DFS.getCurr(); 1554 const SDep *PredDep = DFS.backtrack(); 1555 Impl.visitPostorderNode(Child); 1556 if (PredDep) 1557 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1558 if (DFS.isComplete()) 1559 break; 1560 } 1561 } 1562 Impl.finalize(); 1563 } 1564 1565 /// The root of the given SubtreeID was just scheduled. For all subtrees 1566 /// connected to this tree, record the depth of the connection so that the 1567 /// nearest connected subtrees can be prioritized. 1568 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1569 for (SmallVectorImpl<Connection>::const_iterator 1570 I = SubtreeConnections[SubtreeID].begin(), 1571 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { 1572 SubtreeConnectLevels[I->TreeID] = 1573 std::max(SubtreeConnectLevels[I->TreeID], I->Level); 1574 DEBUG(dbgs() << " Tree: " << I->TreeID 1575 << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); 1576 } 1577 } 1578 1579 LLVM_DUMP_METHOD 1580 void ILPValue::print(raw_ostream &OS) const { 1581 OS << InstrCount << " / " << Length << " = "; 1582 if (!Length) 1583 OS << "BADILP"; 1584 else 1585 OS << format("%g", ((double)InstrCount / Length)); 1586 } 1587 1588 LLVM_DUMP_METHOD 1589 void ILPValue::dump() const { 1590 dbgs() << *this << '\n'; 1591 } 1592 1593 namespace llvm { 1594 1595 LLVM_DUMP_METHOD 1596 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1597 Val.print(OS); 1598 return OS; 1599 } 1600 1601 } // namespace llvm 1602