1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling 11 // of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "misched" 16 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/PseudoSourceValue.h" 27 #include "llvm/CodeGen/RegisterPressure.h" 28 #include "llvm/CodeGen/ScheduleDFS.h" 29 #include "llvm/MC/MCInstrItineraries.h" 30 #include "llvm/Operator.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/Format.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetRegisterInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 using namespace llvm; 40 41 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 42 cl::ZeroOrMore, cl::init(false), 43 cl::desc("Enable use of AA during MI GAD construction")); 44 45 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 46 const MachineLoopInfo &mli, 47 const MachineDominatorTree &mdt, 48 bool IsPostRAFlag, 49 LiveIntervals *lis) 50 : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis), 51 IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) { 52 assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals"); 53 DbgValues.clear(); 54 assert(!(IsPostRA && MRI.getNumVirtRegs()) && 55 "Virtual registers must be removed prior to PostRA scheduling"); 56 57 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 58 SchedModel.init(*ST.getSchedModel(), &ST, TII); 59 } 60 61 /// getUnderlyingObjectFromInt - This is the function that does the work of 62 /// looking through basic ptrtoint+arithmetic+inttoptr sequences. 63 static const Value *getUnderlyingObjectFromInt(const Value *V) { 64 do { 65 if (const Operator *U = dyn_cast<Operator>(V)) { 66 // If we find a ptrtoint, we can transfer control back to the 67 // regular getUnderlyingObjectFromInt. 68 if (U->getOpcode() == Instruction::PtrToInt) 69 return U->getOperand(0); 70 // If we find an add of a constant, a multiplied value, or a phi, it's 71 // likely that the other operand will lead us to the base 72 // object. We don't have to worry about the case where the 73 // object address is somehow being computed by the multiply, 74 // because our callers only care when the result is an 75 // identifiable object. 76 if (U->getOpcode() != Instruction::Add || 77 (!isa<ConstantInt>(U->getOperand(1)) && 78 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 79 !isa<PHINode>(U->getOperand(1)))) 80 return V; 81 V = U->getOperand(0); 82 } else { 83 return V; 84 } 85 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 86 } while (1); 87 } 88 89 /// getUnderlyingObject - This is a wrapper around GetUnderlyingObject 90 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. 91 static const Value *getUnderlyingObject(const Value *V) { 92 // First just call Value::getUnderlyingObject to let it do what it does. 93 do { 94 V = GetUnderlyingObject(V); 95 // If it found an inttoptr, use special code to continue climing. 96 if (Operator::getOpcode(V) != Instruction::IntToPtr) 97 break; 98 const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 99 // If that succeeded in finding a pointer, continue the search. 100 if (!O->getType()->isPointerTy()) 101 break; 102 V = O; 103 } while (1); 104 return V; 105 } 106 107 /// getUnderlyingObjectForInstr - If this machine instr has memory reference 108 /// information and it can be tracked to a normal reference to a known 109 /// object, return the Value for that object. Otherwise return null. 110 static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI, 111 const MachineFrameInfo *MFI, 112 bool &MayAlias) { 113 MayAlias = true; 114 if (!MI->hasOneMemOperand() || 115 !(*MI->memoperands_begin())->getValue() || 116 (*MI->memoperands_begin())->isVolatile()) 117 return 0; 118 119 const Value *V = (*MI->memoperands_begin())->getValue(); 120 if (!V) 121 return 0; 122 123 V = getUnderlyingObject(V); 124 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { 125 // For now, ignore PseudoSourceValues which may alias LLVM IR values 126 // because the code that uses this function has no way to cope with 127 // such aliases. 128 if (PSV->isAliased(MFI)) 129 return 0; 130 131 MayAlias = PSV->mayAlias(MFI); 132 return V; 133 } 134 135 if (isIdentifiedObject(V)) 136 return V; 137 138 return 0; 139 } 140 141 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 142 BB = bb; 143 } 144 145 void ScheduleDAGInstrs::finishBlock() { 146 // Subclasses should no longer refer to the old block. 147 BB = 0; 148 } 149 150 /// Initialize the map with the number of registers. 151 void Reg2SUnitsMap::setRegLimit(unsigned Limit) { 152 PhysRegSet.setUniverse(Limit); 153 SUnits.resize(Limit); 154 } 155 156 /// Clear the map without deallocating storage. 157 void Reg2SUnitsMap::clear() { 158 for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) { 159 SUnits[*I].clear(); 160 } 161 PhysRegSet.clear(); 162 } 163 164 /// Initialize the DAG and common scheduler state for the current scheduling 165 /// region. This does not actually create the DAG, only clears it. The 166 /// scheduling driver may call BuildSchedGraph multiple times per scheduling 167 /// region. 168 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 169 MachineBasicBlock::iterator begin, 170 MachineBasicBlock::iterator end, 171 unsigned endcount) { 172 assert(bb == BB && "startBlock should set BB"); 173 RegionBegin = begin; 174 RegionEnd = end; 175 EndIndex = endcount; 176 MISUnitMap.clear(); 177 178 ScheduleDAG::clearDAG(); 179 } 180 181 /// Close the current scheduling region. Don't clear any state in case the 182 /// driver wants to refer to the previous scheduling region. 183 void ScheduleDAGInstrs::exitRegion() { 184 // Nothing to do. 185 } 186 187 /// addSchedBarrierDeps - Add dependencies from instructions in the current 188 /// list of instructions being scheduled to scheduling barrier by adding 189 /// the exit SU to the register defs and use list. This is because we want to 190 /// make sure instructions which define registers that are either used by 191 /// the terminator or are live-out are properly scheduled. This is 192 /// especially important when the definition latency of the return value(s) 193 /// are too high to be hidden by the branch or when the liveout registers 194 /// used by instructions in the fallthrough block. 195 void ScheduleDAGInstrs::addSchedBarrierDeps() { 196 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0; 197 ExitSU.setInstr(ExitMI); 198 bool AllDepKnown = ExitMI && 199 (ExitMI->isCall() || ExitMI->isBarrier()); 200 if (ExitMI && AllDepKnown) { 201 // If it's a call or a barrier, add dependencies on the defs and uses of 202 // instruction. 203 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { 204 const MachineOperand &MO = ExitMI->getOperand(i); 205 if (!MO.isReg() || MO.isDef()) continue; 206 unsigned Reg = MO.getReg(); 207 if (Reg == 0) continue; 208 209 if (TRI->isPhysicalRegister(Reg)) 210 Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1)); 211 else { 212 assert(!IsPostRA && "Virtual register encountered after regalloc."); 213 if (MO.readsReg()) // ignore undef operands 214 addVRegUseDeps(&ExitSU, i); 215 } 216 } 217 } else { 218 // For others, e.g. fallthrough, conditional branch, assume the exit 219 // uses all the registers that are livein to the successor blocks. 220 assert(Uses.empty() && "Uses in set before adding deps?"); 221 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 222 SE = BB->succ_end(); SI != SE; ++SI) 223 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 224 E = (*SI)->livein_end(); I != E; ++I) { 225 unsigned Reg = *I; 226 if (!Uses.contains(Reg)) 227 Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1)); 228 } 229 } 230 } 231 232 /// MO is an operand of SU's instruction that defines a physical register. Add 233 /// data dependencies from SU to any uses of the physical register. 234 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 235 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 236 assert(MO.isDef() && "expect physreg def"); 237 238 // Ask the target if address-backscheduling is desirable, and if so how much. 239 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 240 241 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 242 Alias.isValid(); ++Alias) { 243 if (!Uses.contains(*Alias)) 244 continue; 245 std::vector<PhysRegSUOper> &UseList = Uses[*Alias]; 246 for (unsigned i = 0, e = UseList.size(); i != e; ++i) { 247 SUnit *UseSU = UseList[i].SU; 248 if (UseSU == SU) 249 continue; 250 251 // Adjust the dependence latency using operand def/use information, 252 // then allow the target to perform its own adjustments. 253 int UseOp = UseList[i].OpIdx; 254 MachineInstr *RegUse = 0; 255 SDep Dep; 256 if (UseOp < 0) 257 Dep = SDep(SU, SDep::Artificial); 258 else { 259 Dep = SDep(SU, SDep::Data, *Alias); 260 RegUse = UseSU->getInstr(); 261 Dep.setMinLatency( 262 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, 263 RegUse, UseOp, /*FindMin=*/true)); 264 } 265 Dep.setLatency( 266 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, 267 RegUse, UseOp, /*FindMin=*/false)); 268 269 ST.adjustSchedDependency(SU, UseSU, Dep); 270 UseSU->addPred(Dep); 271 } 272 } 273 } 274 275 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from 276 /// this SUnit to following instructions in the same scheduling region that 277 /// depend the physical register referenced at OperIdx. 278 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 279 const MachineInstr *MI = SU->getInstr(); 280 const MachineOperand &MO = MI->getOperand(OperIdx); 281 282 // Optionally add output and anti dependencies. For anti 283 // dependencies we use a latency of 0 because for a multi-issue 284 // target we want to allow the defining instruction to issue 285 // in the same cycle as the using instruction. 286 // TODO: Using a latency of 1 here for output dependencies assumes 287 // there's no cost for reusing registers. 288 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 289 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 290 Alias.isValid(); ++Alias) { 291 if (!Defs.contains(*Alias)) 292 continue; 293 std::vector<PhysRegSUOper> &DefList = Defs[*Alias]; 294 for (unsigned i = 0, e = DefList.size(); i != e; ++i) { 295 SUnit *DefSU = DefList[i].SU; 296 if (DefSU == &ExitSU) 297 continue; 298 if (DefSU != SU && 299 (Kind != SDep::Output || !MO.isDead() || 300 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 301 if (Kind == SDep::Anti) 302 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 303 else { 304 SDep Dep(SU, Kind, /*Reg=*/*Alias); 305 unsigned OutLatency = 306 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()); 307 Dep.setMinLatency(OutLatency); 308 Dep.setLatency(OutLatency); 309 DefSU->addPred(Dep); 310 } 311 } 312 } 313 } 314 315 if (!MO.isDef()) { 316 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 317 // retrieve the existing SUnits list for this register's uses. 318 // Push this SUnit on the use list. 319 Uses[MO.getReg()].push_back(PhysRegSUOper(SU, OperIdx)); 320 } 321 else { 322 addPhysRegDataDeps(SU, OperIdx); 323 324 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 325 // retrieve the existing SUnits list for this register's defs. 326 std::vector<PhysRegSUOper> &DefList = Defs[MO.getReg()]; 327 328 // clear this register's use list 329 if (Uses.contains(MO.getReg())) 330 Uses[MO.getReg()].clear(); 331 332 if (!MO.isDead()) 333 DefList.clear(); 334 335 // Calls will not be reordered because of chain dependencies (see 336 // below). Since call operands are dead, calls may continue to be added 337 // to the DefList making dependence checking quadratic in the size of 338 // the block. Instead, we leave only one call at the back of the 339 // DefList. 340 if (SU->isCall) { 341 while (!DefList.empty() && DefList.back().SU->isCall) 342 DefList.pop_back(); 343 } 344 // Defs are pushed in the order they are visited and never reordered. 345 DefList.push_back(PhysRegSUOper(SU, OperIdx)); 346 } 347 } 348 349 /// addVRegDefDeps - Add register output and data dependencies from this SUnit 350 /// to instructions that occur later in the same scheduling region if they read 351 /// from or write to the virtual register defined at OperIdx. 352 /// 353 /// TODO: Hoist loop induction variable increments. This has to be 354 /// reevaluated. Generally, IV scheduling should be done before coalescing. 355 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 356 const MachineInstr *MI = SU->getInstr(); 357 unsigned Reg = MI->getOperand(OperIdx).getReg(); 358 359 // Singly defined vregs do not have output/anti dependencies. 360 // The current operand is a def, so we have at least one. 361 // Check here if there are any others... 362 if (MRI.hasOneDef(Reg)) 363 return; 364 365 // Add output dependence to the next nearest def of this vreg. 366 // 367 // Unless this definition is dead, the output dependence should be 368 // transitively redundant with antidependencies from this definition's 369 // uses. We're conservative for now until we have a way to guarantee the uses 370 // are not eliminated sometime during scheduling. The output dependence edge 371 // is also useful if output latency exceeds def-use latency. 372 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 373 if (DefI == VRegDefs.end()) 374 VRegDefs.insert(VReg2SUnit(Reg, SU)); 375 else { 376 SUnit *DefSU = DefI->SU; 377 if (DefSU != SU && DefSU != &ExitSU) { 378 SDep Dep(SU, SDep::Output, Reg); 379 unsigned OutLatency = 380 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()); 381 Dep.setMinLatency(OutLatency); 382 Dep.setLatency(OutLatency); 383 DefSU->addPred(Dep); 384 } 385 DefI->SU = SU; 386 } 387 } 388 389 /// addVRegUseDeps - Add a register data dependency if the instruction that 390 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a 391 /// register antidependency from this SUnit to instructions that occur later in 392 /// the same scheduling region if they write the virtual register. 393 /// 394 /// TODO: Handle ExitSU "uses" properly. 395 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 396 MachineInstr *MI = SU->getInstr(); 397 unsigned Reg = MI->getOperand(OperIdx).getReg(); 398 399 // Lookup this operand's reaching definition. 400 assert(LIS && "vreg dependencies requires LiveIntervals"); 401 LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI)); 402 VNInfo *VNI = LRQ.valueIn(); 403 404 // VNI will be valid because MachineOperand::readsReg() is checked by caller. 405 assert(VNI && "No value to read by operand"); 406 MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); 407 // Phis and other noninstructions (after coalescing) have a NULL Def. 408 if (Def) { 409 SUnit *DefSU = getSUnit(Def); 410 if (DefSU) { 411 // The reaching Def lives within this scheduling region. 412 // Create a data dependence. 413 SDep dep(DefSU, SDep::Data, Reg); 414 // Adjust the dependence latency using operand def/use information, then 415 // allow the target to perform its own adjustments. 416 int DefOp = Def->findRegisterDefOperandIdx(Reg); 417 dep.setLatency( 418 SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, false)); 419 dep.setMinLatency( 420 SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, true)); 421 422 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 423 ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep)); 424 SU->addPred(dep); 425 } 426 } 427 428 // Add antidependence to the following def of the vreg it uses. 429 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 430 if (DefI != VRegDefs.end() && DefI->SU != SU) 431 DefI->SU->addPred(SDep(SU, SDep::Anti, Reg)); 432 } 433 434 /// Return true if MI is an instruction we are unable to reason about 435 /// (like a call or something with unmodeled side effects). 436 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 437 if (MI->isCall() || MI->hasUnmodeledSideEffects() || 438 (MI->hasOrderedMemoryRef() && 439 (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) 440 return true; 441 return false; 442 } 443 444 // This MI might have either incomplete info, or known to be unsafe 445 // to deal with (i.e. volatile object). 446 static inline bool isUnsafeMemoryObject(MachineInstr *MI, 447 const MachineFrameInfo *MFI) { 448 if (!MI || MI->memoperands_empty()) 449 return true; 450 // We purposefully do no check for hasOneMemOperand() here 451 // in hope to trigger an assert downstream in order to 452 // finish implementation. 453 if ((*MI->memoperands_begin())->isVolatile() || 454 MI->hasUnmodeledSideEffects()) 455 return true; 456 457 const Value *V = (*MI->memoperands_begin())->getValue(); 458 if (!V) 459 return true; 460 461 V = getUnderlyingObject(V); 462 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { 463 // Similarly to getUnderlyingObjectForInstr: 464 // For now, ignore PseudoSourceValues which may alias LLVM IR values 465 // because the code that uses this function has no way to cope with 466 // such aliases. 467 if (PSV->isAliased(MFI)) 468 return true; 469 } 470 // Does this pointer refer to a distinct and identifiable object? 471 if (!isIdentifiedObject(V)) 472 return true; 473 474 return false; 475 } 476 477 /// This returns true if the two MIs need a chain edge betwee them. 478 /// If these are not even memory operations, we still may need 479 /// chain deps between them. The question really is - could 480 /// these two MIs be reordered during scheduling from memory dependency 481 /// point of view. 482 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 483 MachineInstr *MIa, 484 MachineInstr *MIb) { 485 // Cover a trivial case - no edge is need to itself. 486 if (MIa == MIb) 487 return false; 488 489 if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI)) 490 return true; 491 492 // If we are dealing with two "normal" loads, we do not need an edge 493 // between them - they could be reordered. 494 if (!MIa->mayStore() && !MIb->mayStore()) 495 return false; 496 497 // To this point analysis is generic. From here on we do need AA. 498 if (!AA) 499 return true; 500 501 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 502 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 503 504 // FIXME: Need to handle multiple memory operands to support all targets. 505 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 506 llvm_unreachable("Multiple memory operands."); 507 508 // The following interface to AA is fashioned after DAGCombiner::isAlias 509 // and operates with MachineMemOperand offset with some important 510 // assumptions: 511 // - LLVM fundamentally assumes flat address spaces. 512 // - MachineOperand offset can *only* result from legalization and 513 // cannot affect queries other than the trivial case of overlap 514 // checking. 515 // - These offsets never wrap and never step outside 516 // of allocated objects. 517 // - There should never be any negative offsets here. 518 // 519 // FIXME: Modify API to hide this math from "user" 520 // FIXME: Even before we go to AA we can reason locally about some 521 // memory objects. It can save compile time, and possibly catch some 522 // corner cases not currently covered. 523 524 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 525 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 526 527 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 528 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 529 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 530 531 AliasAnalysis::AliasResult AAResult = AA->alias( 532 AliasAnalysis::Location(MMOa->getValue(), Overlapa, 533 MMOa->getTBAAInfo()), 534 AliasAnalysis::Location(MMOb->getValue(), Overlapb, 535 MMOb->getTBAAInfo())); 536 537 return (AAResult != AliasAnalysis::NoAlias); 538 } 539 540 /// This recursive function iterates over chain deps of SUb looking for 541 /// "latest" node that needs a chain edge to SUa. 542 static unsigned 543 iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI, 544 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth, 545 SmallPtrSet<const SUnit*, 16> &Visited) { 546 if (!SUa || !SUb || SUb == ExitSU) 547 return *Depth; 548 549 // Remember visited nodes. 550 if (!Visited.insert(SUb)) 551 return *Depth; 552 // If there is _some_ dependency already in place, do not 553 // descend any further. 554 // TODO: Need to make sure that if that dependency got eliminated or ignored 555 // for any reason in the future, we would not violate DAG topology. 556 // Currently it does not happen, but makes an implicit assumption about 557 // future implementation. 558 // 559 // Independently, if we encounter node that is some sort of global 560 // object (like a call) we already have full set of dependencies to it 561 // and we can stop descending. 562 if (SUa->isSucc(SUb) || 563 isGlobalMemoryObject(AA, SUb->getInstr())) 564 return *Depth; 565 566 // If we do need an edge, or we have exceeded depth budget, 567 // add that edge to the predecessors chain of SUb, 568 // and stop descending. 569 if (*Depth > 200 || 570 MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 571 SUb->addPred(SDep(SUa, SDep::MayAliasMem)); 572 return *Depth; 573 } 574 // Track current depth. 575 (*Depth)++; 576 // Iterate over chain dependencies only. 577 for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end(); 578 I != E; ++I) 579 if (I->isCtrl()) 580 iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited); 581 return *Depth; 582 } 583 584 /// This function assumes that "downward" from SU there exist 585 /// tail/leaf of already constructed DAG. It iterates downward and 586 /// checks whether SU can be aliasing any node dominated 587 /// by it. 588 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI, 589 SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList, 590 unsigned LatencyToLoad) { 591 if (!SU) 592 return; 593 594 SmallPtrSet<const SUnit*, 16> Visited; 595 unsigned Depth = 0; 596 597 for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end(); 598 I != IE; ++I) { 599 if (SU == *I) 600 continue; 601 if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) { 602 SDep Dep(SU, SDep::MayAliasMem); 603 Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0); 604 (*I)->addPred(Dep); 605 } 606 // Now go through all the chain successors and iterate from them. 607 // Keep track of visited nodes. 608 for (SUnit::const_succ_iterator J = (*I)->Succs.begin(), 609 JE = (*I)->Succs.end(); J != JE; ++J) 610 if (J->isCtrl()) 611 iterateChainSucc (AA, MFI, SU, J->getSUnit(), 612 ExitSU, &Depth, Visited); 613 } 614 } 615 616 /// Check whether two objects need a chain edge, if so, add it 617 /// otherwise remember the rejected SU. 618 static inline 619 void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI, 620 SUnit *SUa, SUnit *SUb, 621 std::set<SUnit *> &RejectList, 622 unsigned TrueMemOrderLatency = 0, 623 bool isNormalMemory = false) { 624 // If this is a false dependency, 625 // do not add the edge, but rememeber the rejected node. 626 if (!EnableAASchedMI || 627 MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 628 SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier); 629 Dep.setLatency(TrueMemOrderLatency); 630 SUb->addPred(Dep); 631 } 632 else { 633 // Duplicate entries should be ignored. 634 RejectList.insert(SUb); 635 DEBUG(dbgs() << "\tReject chain dep between SU(" 636 << SUa->NodeNum << ") and SU(" 637 << SUb->NodeNum << ")\n"); 638 } 639 } 640 641 /// Create an SUnit for each real instruction, numbered in top-down toplological 642 /// order. The instruction order A < B, implies that no edge exists from B to A. 643 /// 644 /// Map each real instruction to its SUnit. 645 /// 646 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 647 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 648 /// instead of pointers. 649 /// 650 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 651 /// the original instruction list. 652 void ScheduleDAGInstrs::initSUnits() { 653 // We'll be allocating one SUnit for each real instruction in the region, 654 // which is contained within a basic block. 655 SUnits.reserve(BB->size()); 656 657 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { 658 MachineInstr *MI = I; 659 if (MI->isDebugValue()) 660 continue; 661 662 SUnit *SU = newSUnit(MI); 663 MISUnitMap[MI] = SU; 664 665 SU->isCall = MI->isCall(); 666 SU->isCommutable = MI->isCommutable(); 667 668 // Assign the Latency field of SU using target-provided information. 669 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 670 } 671 } 672 673 /// If RegPressure is non null, compute register pressure as a side effect. The 674 /// DAG builder is an efficient place to do it because it already visits 675 /// operands. 676 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 677 RegPressureTracker *RPTracker) { 678 // Create an SUnit for each real instruction. 679 initSUnits(); 680 681 // We build scheduling units by walking a block's instruction list from bottom 682 // to top. 683 684 // Remember where a generic side-effecting instruction is as we procede. 685 SUnit *BarrierChain = 0, *AliasChain = 0; 686 687 // Memory references to specific known memory locations are tracked 688 // so that they can be given more precise dependencies. We track 689 // separately the known memory locations that may alias and those 690 // that are known not to alias 691 MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs; 692 MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; 693 std::set<SUnit*> RejectMemNodes; 694 695 // Remove any stale debug info; sometimes BuildSchedGraph is called again 696 // without emitting the info from the previous call. 697 DbgValues.clear(); 698 FirstDbgValue = NULL; 699 700 assert(Defs.empty() && Uses.empty() && 701 "Only BuildGraph should update Defs/Uses"); 702 Defs.setRegLimit(TRI->getNumRegs()); 703 Uses.setRegLimit(TRI->getNumRegs()); 704 705 assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); 706 // FIXME: Allow SparseSet to reserve space for the creation of virtual 707 // registers during scheduling. Don't artificially inflate the Universe 708 // because we want to assert that vregs are not created during DAG building. 709 VRegDefs.setUniverse(MRI.getNumVirtRegs()); 710 711 // Model data dependencies between instructions being scheduled and the 712 // ExitSU. 713 addSchedBarrierDeps(); 714 715 // Walk the list of instructions, from bottom moving up. 716 MachineInstr *DbgMI = NULL; 717 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 718 MII != MIE; --MII) { 719 MachineInstr *MI = prior(MII); 720 if (MI && DbgMI) { 721 DbgValues.push_back(std::make_pair(DbgMI, MI)); 722 DbgMI = NULL; 723 } 724 725 if (MI->isDebugValue()) { 726 DbgMI = MI; 727 continue; 728 } 729 if (RPTracker) { 730 RPTracker->recede(); 731 assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI"); 732 } 733 734 assert((!MI->isTerminator() || CanHandleTerminators) && !MI->isLabel() && 735 "Cannot schedule terminators or labels!"); 736 737 SUnit *SU = MISUnitMap[MI]; 738 assert(SU && "No SUnit mapped to this MI"); 739 740 // Add register-based dependencies (data, anti, and output). 741 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { 742 const MachineOperand &MO = MI->getOperand(j); 743 if (!MO.isReg()) continue; 744 unsigned Reg = MO.getReg(); 745 if (Reg == 0) continue; 746 747 if (TRI->isPhysicalRegister(Reg)) 748 addPhysRegDeps(SU, j); 749 else { 750 assert(!IsPostRA && "Virtual register encountered!"); 751 if (MO.isDef()) 752 addVRegDefDeps(SU, j); 753 else if (MO.readsReg()) // ignore undef operands 754 addVRegUseDeps(SU, j); 755 } 756 } 757 758 // Add chain dependencies. 759 // Chain dependencies used to enforce memory order should have 760 // latency of 0 (except for true dependency of Store followed by 761 // aliased Load... we estimate that with a single cycle of latency 762 // assuming the hardware will bypass) 763 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable 764 // after stack slots are lowered to actual addresses. 765 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and 766 // produce more precise dependence information. 767 unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0; 768 if (isGlobalMemoryObject(AA, MI)) { 769 // Be conservative with these and add dependencies on all memory 770 // references, even those that are known to not alias. 771 for (MapVector<const Value *, SUnit *>::iterator I = 772 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { 773 I->second->addPred(SDep(SU, SDep::Barrier)); 774 } 775 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I = 776 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { 777 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 778 SDep Dep(SU, SDep::Barrier); 779 Dep.setLatency(TrueMemOrderLatency); 780 I->second[i]->addPred(Dep); 781 } 782 } 783 // Add SU to the barrier chain. 784 if (BarrierChain) 785 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 786 BarrierChain = SU; 787 // This is a barrier event that acts as a pivotal node in the DAG, 788 // so it is safe to clear list of exposed nodes. 789 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 790 TrueMemOrderLatency); 791 RejectMemNodes.clear(); 792 NonAliasMemDefs.clear(); 793 NonAliasMemUses.clear(); 794 795 // fall-through 796 new_alias_chain: 797 // Chain all possibly aliasing memory references though SU. 798 if (AliasChain) { 799 unsigned ChainLatency = 0; 800 if (AliasChain->getInstr()->mayLoad()) 801 ChainLatency = TrueMemOrderLatency; 802 addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes, 803 ChainLatency); 804 } 805 AliasChain = SU; 806 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 807 addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes, 808 TrueMemOrderLatency); 809 for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(), 810 E = AliasMemDefs.end(); I != E; ++I) 811 addChainDependency(AA, MFI, SU, I->second, RejectMemNodes); 812 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I = 813 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { 814 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 815 addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes, 816 TrueMemOrderLatency); 817 } 818 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 819 TrueMemOrderLatency); 820 PendingLoads.clear(); 821 AliasMemDefs.clear(); 822 AliasMemUses.clear(); 823 } else if (MI->mayStore()) { 824 bool MayAlias = true; 825 if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { 826 // A store to a specific PseudoSourceValue. Add precise dependencies. 827 // Record the def in MemDefs, first adding a dep if there is 828 // an existing def. 829 MapVector<const Value *, SUnit *>::iterator I = 830 ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 831 MapVector<const Value *, SUnit *>::iterator IE = 832 ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 833 if (I != IE) { 834 addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true); 835 I->second = SU; 836 } else { 837 if (MayAlias) 838 AliasMemDefs[V] = SU; 839 else 840 NonAliasMemDefs[V] = SU; 841 } 842 // Handle the uses in MemUses, if there are any. 843 MapVector<const Value *, std::vector<SUnit *> >::iterator J = 844 ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); 845 MapVector<const Value *, std::vector<SUnit *> >::iterator JE = 846 ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); 847 if (J != JE) { 848 for (unsigned i = 0, e = J->second.size(); i != e; ++i) 849 addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes, 850 TrueMemOrderLatency, true); 851 J->second.clear(); 852 } 853 if (MayAlias) { 854 // Add dependencies from all the PendingLoads, i.e. loads 855 // with no underlying object. 856 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 857 addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes, 858 TrueMemOrderLatency); 859 // Add dependence on alias chain, if needed. 860 if (AliasChain) 861 addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes); 862 // But we also should check dependent instructions for the 863 // SU in question. 864 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 865 TrueMemOrderLatency); 866 } 867 // Add dependence on barrier chain, if needed. 868 // There is no point to check aliasing on barrier event. Even if 869 // SU and barrier _could_ be reordered, they should not. In addition, 870 // we have lost all RejectMemNodes below barrier. 871 if (BarrierChain) 872 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 873 } else { 874 // Treat all other stores conservatively. 875 goto new_alias_chain; 876 } 877 878 if (!ExitSU.isPred(SU)) 879 // Push store's up a bit to avoid them getting in between cmp 880 // and branches. 881 ExitSU.addPred(SDep(SU, SDep::Artificial)); 882 } else if (MI->mayLoad()) { 883 bool MayAlias = true; 884 if (MI->isInvariantLoad(AA)) { 885 // Invariant load, no chain dependencies needed! 886 } else { 887 if (const Value *V = 888 getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { 889 // A load from a specific PseudoSourceValue. Add precise dependencies. 890 MapVector<const Value *, SUnit *>::iterator I = 891 ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 892 MapVector<const Value *, SUnit *>::iterator IE = 893 ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 894 if (I != IE) 895 addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true); 896 if (MayAlias) 897 AliasMemUses[V].push_back(SU); 898 else 899 NonAliasMemUses[V].push_back(SU); 900 } else { 901 // A load with no underlying object. Depend on all 902 // potentially aliasing stores. 903 for (MapVector<const Value *, SUnit *>::iterator I = 904 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) 905 addChainDependency(AA, MFI, SU, I->second, RejectMemNodes); 906 907 PendingLoads.push_back(SU); 908 MayAlias = true; 909 } 910 if (MayAlias) 911 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0); 912 // Add dependencies on alias and barrier chains, if needed. 913 if (MayAlias && AliasChain) 914 addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes); 915 if (BarrierChain) 916 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 917 } 918 } 919 } 920 if (DbgMI) 921 FirstDbgValue = DbgMI; 922 923 Defs.clear(); 924 Uses.clear(); 925 VRegDefs.clear(); 926 PendingLoads.clear(); 927 } 928 929 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 930 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 931 SU->getInstr()->dump(); 932 #endif 933 } 934 935 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 936 std::string s; 937 raw_string_ostream oss(s); 938 if (SU == &EntrySU) 939 oss << "<entry>"; 940 else if (SU == &ExitSU) 941 oss << "<exit>"; 942 else 943 SU->getInstr()->print(oss); 944 return oss.str(); 945 } 946 947 /// Return the basic block label. It is not necessarilly unique because a block 948 /// contains multiple scheduling regions. But it is fine for visualization. 949 std::string ScheduleDAGInstrs::getDAGName() const { 950 return "dag." + BB->getFullName(); 951 } 952 953 //===----------------------------------------------------------------------===// 954 // SchedDFSResult Implementation 955 //===----------------------------------------------------------------------===// 956 957 namespace llvm { 958 /// \brief Internal state used to compute SchedDFSResult. 959 class SchedDFSImpl { 960 SchedDFSResult &R; 961 962 /// Join DAG nodes into equivalence classes by their subtree. 963 IntEqClasses SubtreeClasses; 964 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 965 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 966 967 public: 968 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSData.size()) {} 969 970 /// SubtreID is initialized to zero, set to itself to flag the root of a 971 /// subtree, set to the parent to indicate an interior node, 972 /// then set to a representative subtree ID during finalization. 973 bool isVisited(const SUnit *SU) const { 974 return R.DFSData[SU->NodeNum].SubtreeID; 975 } 976 977 /// Initialize this node's instruction count. We don't need to flag the node 978 /// visited until visitPostorder because the DAG cannot have cycles. 979 void visitPreorder(const SUnit *SU) { 980 R.DFSData[SU->NodeNum].InstrCount = SU->getInstr()->isTransient() ? 0 : 1; 981 } 982 983 /// Mark this node as either the root of a subtree or an interior 984 /// node. Increment the parent node's instruction count. 985 void visitPostorder(const SUnit *SU, const SDep *PredDep, const SUnit *Parent) { 986 R.DFSData[SU->NodeNum].SubtreeID = SU->NodeNum; 987 988 // Join the child to its parent if they are connected via data dependence 989 // and do not exceed the limit. 990 if (!Parent || PredDep->getKind() != SDep::Data) 991 return; 992 993 unsigned PredCnt = R.DFSData[SU->NodeNum].InstrCount; 994 if (PredCnt > R.SubtreeLimit) 995 return; 996 997 R.DFSData[SU->NodeNum].SubtreeID = Parent->NodeNum; 998 999 // Add the recently finished predecessor's bottom-up descendent count. 1000 R.DFSData[Parent->NodeNum].InstrCount += PredCnt; 1001 SubtreeClasses.join(Parent->NodeNum, SU->NodeNum); 1002 } 1003 1004 /// Determine whether the DFS cross edge should be considered a subtree edge 1005 /// or a connection between subtrees. 1006 void visitCross(const SDep &PredDep, const SUnit *Succ) { 1007 if (PredDep.getKind() == SDep::Data) { 1008 // If this is a cross edge to a root, join the subtrees. This happens when 1009 // the root was first reached by a non-data dependence. 1010 unsigned NodeNum = PredDep.getSUnit()->NodeNum; 1011 unsigned PredCnt = R.DFSData[NodeNum].InstrCount; 1012 if (R.DFSData[NodeNum].SubtreeID == NodeNum && PredCnt < R.SubtreeLimit) { 1013 R.DFSData[NodeNum].SubtreeID = Succ->NodeNum; 1014 R.DFSData[Succ->NodeNum].InstrCount += PredCnt; 1015 SubtreeClasses.join(Succ->NodeNum, NodeNum); 1016 return; 1017 } 1018 } 1019 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1020 } 1021 1022 /// Set each node's subtree ID to the representative ID and record connections 1023 /// between trees. 1024 void finalize() { 1025 SubtreeClasses.compress(); 1026 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1027 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1028 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1029 for (unsigned Idx = 0, End = R.DFSData.size(); Idx != End; ++Idx) { 1030 R.DFSData[Idx].SubtreeID = SubtreeClasses[Idx]; 1031 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1032 << R.DFSData[Idx].SubtreeID << '\n'); 1033 } 1034 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator 1035 I = ConnectionPairs.begin(), E = ConnectionPairs.end(); 1036 I != E; ++I) { 1037 unsigned PredTree = SubtreeClasses[I->first->NodeNum]; 1038 unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; 1039 if (PredTree == SuccTree) 1040 continue; 1041 unsigned Depth = I->first->getDepth(); 1042 addConnection(PredTree, SuccTree, Depth); 1043 addConnection(SuccTree, PredTree, Depth); 1044 } 1045 } 1046 1047 protected: 1048 /// Called by finalize() to record a connection between trees. 1049 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1050 if (!Depth) 1051 return; 1052 1053 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1054 R.SubtreeConnections[FromTree]; 1055 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator 1056 I = Connections.begin(), E = Connections.end(); I != E; ++I) { 1057 if (I->TreeID == ToTree) { 1058 I->Level = std::max(I->Level, Depth); 1059 return; 1060 } 1061 } 1062 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1063 } 1064 }; 1065 } // namespace llvm 1066 1067 namespace { 1068 /// \brief Manage the stack used by a reverse depth-first search over the DAG. 1069 class SchedDAGReverseDFS { 1070 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 1071 public: 1072 bool isComplete() const { return DFSStack.empty(); } 1073 1074 void follow(const SUnit *SU) { 1075 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1076 } 1077 void advance() { ++DFSStack.back().second; } 1078 1079 const SDep *backtrack() { 1080 DFSStack.pop_back(); 1081 return DFSStack.empty() ? 0 : llvm::prior(DFSStack.back().second); 1082 } 1083 1084 const SUnit *getCurr() const { return DFSStack.back().first; } 1085 1086 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1087 1088 SUnit::const_pred_iterator getPredEnd() const { 1089 return getCurr()->Preds.end(); 1090 } 1091 }; 1092 } // anonymous 1093 1094 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first 1095 /// search from this root. 1096 void SchedDFSResult::compute(ArrayRef<SUnit *> Roots) { 1097 if (!IsBottomUp) 1098 llvm_unreachable("Top-down ILP metric is unimplemnted"); 1099 1100 SchedDFSImpl Impl(*this); 1101 for (ArrayRef<const SUnit*>::const_iterator 1102 RootI = Roots.begin(), RootE = Roots.end(); RootI != RootE; ++RootI) { 1103 SchedDAGReverseDFS DFS; 1104 Impl.visitPreorder(*RootI); 1105 DFS.follow(*RootI); 1106 for (;;) { 1107 // Traverse the leftmost path as far as possible. 1108 while (DFS.getPred() != DFS.getPredEnd()) { 1109 const SDep &PredDep = *DFS.getPred(); 1110 DFS.advance(); 1111 // If the pred is already valid, skip it. We may preorder visit a node 1112 // with InstrCount==0 more than once, but it won't affect heuristics 1113 // because we don't care about cross edges to leaf copies. 1114 if (Impl.isVisited(PredDep.getSUnit())) { 1115 Impl.visitCross(PredDep, DFS.getCurr()); 1116 continue; 1117 } 1118 Impl.visitPreorder(PredDep.getSUnit()); 1119 DFS.follow(PredDep.getSUnit()); 1120 } 1121 // Visit the top of the stack in postorder and backtrack. 1122 const SUnit *Child = DFS.getCurr(); 1123 const SDep *PredDep = DFS.backtrack(); 1124 Impl.visitPostorder(Child, PredDep, PredDep ? DFS.getCurr() : 0); 1125 if (DFS.isComplete()) 1126 break; 1127 } 1128 } 1129 Impl.finalize(); 1130 } 1131 1132 /// The root of the given SubtreeID was just scheduled. For all subtrees 1133 /// connected to this tree, record the depth of the connection so that the 1134 /// nearest connected subtrees can be prioritized. 1135 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1136 for (SmallVectorImpl<Connection>::const_iterator 1137 I = SubtreeConnections[SubtreeID].begin(), 1138 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { 1139 SubtreeConnectLevels[I->TreeID] = 1140 std::max(SubtreeConnectLevels[I->TreeID], I->Level); 1141 DEBUG(dbgs() << " Tree: " << I->TreeID 1142 << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); 1143 } 1144 } 1145 1146 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1147 void ILPValue::print(raw_ostream &OS) const { 1148 OS << InstrCount << " / " << Length << " = "; 1149 if (!Length) 1150 OS << "BADILP"; 1151 else 1152 OS << format("%g", ((double)InstrCount / Length)); 1153 } 1154 1155 void ILPValue::dump() const { 1156 dbgs() << *this << '\n'; 1157 } 1158 1159 namespace llvm { 1160 1161 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1162 Val.print(OS); 1163 return OS; 1164 } 1165 1166 } // namespace llvm 1167 #endif // !NDEBUG || LLVM_ENABLE_DUMP 1168