1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This implements the ScheduleDAGInstrs class, which implements 10 /// re-scheduling of MachineInstrs. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 15 #include "llvm/ADT/IntEqClasses.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/LivePhysRegs.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBundle.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/PseudoSourceValue.h" 34 #include "llvm/CodeGen/RegisterPressure.h" 35 #include "llvm/CodeGen/ScheduleDAG.h" 36 #include "llvm/CodeGen/ScheduleDFS.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/MC/LaneBitmask.h" 49 #include "llvm/MC/MCRegisterInfo.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/Format.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <iterator> 60 #include <string> 61 #include <utility> 62 #include <vector> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "machine-scheduler" 67 68 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 69 cl::ZeroOrMore, cl::init(false), 70 cl::desc("Enable use of AA during MI DAG construction")); 71 72 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 73 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 74 75 // Note: the two options below might be used in tuning compile time vs 76 // output quality. Setting HugeRegion so large that it will never be 77 // reached means best-effort, but may be slow. 78 79 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) 80 // together hold this many SUs, a reduction of maps will be done. 81 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, 82 cl::init(1000), cl::desc("The limit to use while constructing the DAG " 83 "prior to scheduling, at which point a trade-off " 84 "is made to avoid excessive compile time.")); 85 86 static cl::opt<unsigned> ReductionSize( 87 "dag-maps-reduction-size", cl::Hidden, 88 cl::desc("A huge scheduling region will have maps reduced by this many " 89 "nodes at a time. Defaults to HugeRegion / 2.")); 90 91 static unsigned getReductionSize() { 92 // Always reduce a huge region with half of the elements, except 93 // when user sets this number explicitly. 94 if (ReductionSize.getNumOccurrences() == 0) 95 return HugeRegion / 2; 96 return ReductionSize; 97 } 98 99 static void dumpSUList(ScheduleDAGInstrs::SUList &L) { 100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 101 dbgs() << "{ "; 102 for (const SUnit *su : L) { 103 dbgs() << "SU(" << su->NodeNum << ")"; 104 if (su != L.back()) 105 dbgs() << ", "; 106 } 107 dbgs() << "}\n"; 108 #endif 109 } 110 111 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 112 const MachineLoopInfo *mli, 113 bool RemoveKillFlags) 114 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 115 RemoveKillFlags(RemoveKillFlags), 116 UnknownValue(UndefValue::get( 117 Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) { 118 DbgValues.clear(); 119 120 const TargetSubtargetInfo &ST = mf.getSubtarget(); 121 SchedModel.init(&ST); 122 } 123 124 /// If this machine instr has memory reference information and it can be 125 /// tracked to a normal reference to a known object, return the Value 126 /// for that object. This function returns false the memory location is 127 /// unknown or may alias anything. 128 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI, 129 const MachineFrameInfo &MFI, 130 UnderlyingObjectsVector &Objects, 131 const DataLayout &DL) { 132 auto allMMOsOkay = [&]() { 133 for (const MachineMemOperand *MMO : MI->memoperands()) { 134 // TODO: Figure out whether isAtomic is really necessary (see D57601). 135 if (MMO->isVolatile() || MMO->isAtomic()) 136 return false; 137 138 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 139 // Function that contain tail calls don't have unique PseudoSourceValue 140 // objects. Two PseudoSourceValues might refer to the same or 141 // overlapping locations. The client code calling this function assumes 142 // this is not the case. So return a conservative answer of no known 143 // object. 144 if (MFI.hasTailCall()) 145 return false; 146 147 // For now, ignore PseudoSourceValues which may alias LLVM IR values 148 // because the code that uses this function has no way to cope with 149 // such aliases. 150 if (PSV->isAliased(&MFI)) 151 return false; 152 153 bool MayAlias = PSV->mayAlias(&MFI); 154 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 155 } else if (const Value *V = MMO->getValue()) { 156 SmallVector<Value *, 4> Objs; 157 if (!getUnderlyingObjectsForCodeGen(V, Objs, DL)) 158 return false; 159 160 for (Value *V : Objs) { 161 assert(isIdentifiedObject(V)); 162 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 163 } 164 } else 165 return false; 166 } 167 return true; 168 }; 169 170 if (!allMMOsOkay()) { 171 Objects.clear(); 172 return false; 173 } 174 175 return true; 176 } 177 178 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 179 BB = bb; 180 } 181 182 void ScheduleDAGInstrs::finishBlock() { 183 // Subclasses should no longer refer to the old block. 184 BB = nullptr; 185 } 186 187 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 188 MachineBasicBlock::iterator begin, 189 MachineBasicBlock::iterator end, 190 unsigned regioninstrs) { 191 assert(bb == BB && "startBlock should set BB"); 192 RegionBegin = begin; 193 RegionEnd = end; 194 NumRegionInstrs = regioninstrs; 195 } 196 197 void ScheduleDAGInstrs::exitRegion() { 198 // Nothing to do. 199 } 200 201 void ScheduleDAGInstrs::addSchedBarrierDeps() { 202 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 203 ExitSU.setInstr(ExitMI); 204 // Add dependencies on the defs and uses of the instruction. 205 if (ExitMI) { 206 for (const MachineOperand &MO : ExitMI->operands()) { 207 if (!MO.isReg() || MO.isDef()) continue; 208 Register Reg = MO.getReg(); 209 if (Register::isPhysicalRegister(Reg)) { 210 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 211 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) { 212 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO)); 213 } 214 } 215 } 216 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) { 217 // For others, e.g. fallthrough, conditional branch, assume the exit 218 // uses all the registers that are livein to the successor blocks. 219 for (const MachineBasicBlock *Succ : BB->successors()) { 220 for (const auto &LI : Succ->liveins()) { 221 if (!Uses.contains(LI.PhysReg)) 222 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 223 } 224 } 225 } 226 } 227 228 /// MO is an operand of SU's instruction that defines a physical register. Adds 229 /// data dependencies from SU to any uses of the physical register. 230 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 231 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 232 assert(MO.isDef() && "expect physreg def"); 233 234 // Ask the target if address-backscheduling is desirable, and if so how much. 235 const TargetSubtargetInfo &ST = MF.getSubtarget(); 236 237 // Only use any non-zero latency for real defs/uses, in contrast to 238 // "fake" operands added by regalloc. 239 const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc(); 240 bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() && 241 !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg())); 242 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 243 Alias.isValid(); ++Alias) { 244 if (!Uses.contains(*Alias)) 245 continue; 246 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 247 SUnit *UseSU = I->SU; 248 if (UseSU == SU) 249 continue; 250 251 // Adjust the dependence latency using operand def/use information, 252 // then allow the target to perform its own adjustments. 253 int UseOp = I->OpIdx; 254 MachineInstr *RegUse = nullptr; 255 SDep Dep; 256 if (UseOp < 0) 257 Dep = SDep(SU, SDep::Artificial); 258 else { 259 // Set the hasPhysRegDefs only for physreg defs that have a use within 260 // the scheduling region. 261 SU->hasPhysRegDefs = true; 262 Dep = SDep(SU, SDep::Data, *Alias); 263 RegUse = UseSU->getInstr(); 264 } 265 const MCInstrDesc *UseMIDesc = 266 (RegUse ? &UseSU->getInstr()->getDesc() : nullptr); 267 bool ImplicitPseudoUse = 268 (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) && 269 !UseMIDesc->hasImplicitUseOfPhysReg(*Alias)); 270 if (!ImplicitPseudoDef && !ImplicitPseudoUse) { 271 Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, 272 RegUse, UseOp)); 273 ST.adjustSchedDependency(SU, UseSU, Dep); 274 } else 275 Dep.setLatency(0); 276 277 UseSU->addPred(Dep); 278 } 279 } 280 } 281 282 /// Adds register dependencies (data, anti, and output) from this SUnit 283 /// to following instructions in the same scheduling region that depend the 284 /// physical register referenced at OperIdx. 285 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 286 MachineInstr *MI = SU->getInstr(); 287 MachineOperand &MO = MI->getOperand(OperIdx); 288 Register Reg = MO.getReg(); 289 // We do not need to track any dependencies for constant registers. 290 if (MRI.isConstantPhysReg(Reg)) 291 return; 292 293 // Optionally add output and anti dependencies. For anti 294 // dependencies we use a latency of 0 because for a multi-issue 295 // target we want to allow the defining instruction to issue 296 // in the same cycle as the using instruction. 297 // TODO: Using a latency of 1 here for output dependencies assumes 298 // there's no cost for reusing registers. 299 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 300 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 301 if (!Defs.contains(*Alias)) 302 continue; 303 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 304 SUnit *DefSU = I->SU; 305 if (DefSU == &ExitSU) 306 continue; 307 if (DefSU != SU && 308 (Kind != SDep::Output || !MO.isDead() || 309 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 310 if (Kind == SDep::Anti) 311 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 312 else { 313 SDep Dep(SU, Kind, /*Reg=*/*Alias); 314 Dep.setLatency( 315 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 316 DefSU->addPred(Dep); 317 } 318 } 319 } 320 } 321 322 if (!MO.isDef()) { 323 SU->hasPhysRegUses = true; 324 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 325 // retrieve the existing SUnits list for this register's uses. 326 // Push this SUnit on the use list. 327 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg)); 328 if (RemoveKillFlags) 329 MO.setIsKill(false); 330 } else { 331 addPhysRegDataDeps(SU, OperIdx); 332 333 // Clear previous uses and defs of this register and its subergisters. 334 for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) { 335 if (Uses.contains(*SubReg)) 336 Uses.eraseAll(*SubReg); 337 if (!MO.isDead()) 338 Defs.eraseAll(*SubReg); 339 } 340 if (MO.isDead() && SU->isCall) { 341 // Calls will not be reordered because of chain dependencies (see 342 // below). Since call operands are dead, calls may continue to be added 343 // to the DefList making dependence checking quadratic in the size of 344 // the block. Instead, we leave only one call at the back of the 345 // DefList. 346 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 347 Reg2SUnitsMap::iterator B = P.first; 348 Reg2SUnitsMap::iterator I = P.second; 349 for (bool isBegin = I == B; !isBegin; /* empty */) { 350 isBegin = (--I) == B; 351 if (!I->SU->isCall) 352 break; 353 I = Defs.erase(I); 354 } 355 } 356 357 // Defs are pushed in the order they are visited and never reordered. 358 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 359 } 360 } 361 362 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 363 { 364 Register Reg = MO.getReg(); 365 // No point in tracking lanemasks if we don't have interesting subregisters. 366 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 367 if (!RC.HasDisjunctSubRegs) 368 return LaneBitmask::getAll(); 369 370 unsigned SubReg = MO.getSubReg(); 371 if (SubReg == 0) 372 return RC.getLaneMask(); 373 return TRI->getSubRegIndexLaneMask(SubReg); 374 } 375 376 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) { 377 auto RegUse = CurrentVRegUses.find(MO.getReg()); 378 if (RegUse == CurrentVRegUses.end()) 379 return true; 380 return (RegUse->LaneMask & getLaneMaskForMO(MO)).none(); 381 } 382 383 /// Adds register output and data dependencies from this SUnit to instructions 384 /// that occur later in the same scheduling region if they read from or write to 385 /// the virtual register defined at OperIdx. 386 /// 387 /// TODO: Hoist loop induction variable increments. This has to be 388 /// reevaluated. Generally, IV scheduling should be done before coalescing. 389 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 390 MachineInstr *MI = SU->getInstr(); 391 MachineOperand &MO = MI->getOperand(OperIdx); 392 Register Reg = MO.getReg(); 393 394 LaneBitmask DefLaneMask; 395 LaneBitmask KillLaneMask; 396 if (TrackLaneMasks) { 397 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 398 DefLaneMask = getLaneMaskForMO(MO); 399 // If we have a <read-undef> flag, none of the lane values comes from an 400 // earlier instruction. 401 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask; 402 403 if (MO.getSubReg() != 0 && MO.isUndef()) { 404 // There may be other subregister defs on the same instruction of the same 405 // register in later operands. The lanes of other defs will now be live 406 // after this instruction, so these should not be treated as killed by the 407 // instruction even though they appear to be killed in this one operand. 408 for (int I = OperIdx + 1, E = MI->getNumOperands(); I != E; ++I) { 409 const MachineOperand &OtherMO = MI->getOperand(I); 410 if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg) 411 KillLaneMask &= ~getLaneMaskForMO(OtherMO); 412 } 413 } 414 415 // Clear undef flag, we'll re-add it later once we know which subregister 416 // Def is first. 417 MO.setIsUndef(false); 418 } else { 419 DefLaneMask = LaneBitmask::getAll(); 420 KillLaneMask = LaneBitmask::getAll(); 421 } 422 423 if (MO.isDead()) { 424 assert(deadDefHasNoUse(MO) && "Dead defs should have no uses"); 425 } else { 426 // Add data dependence to all uses we found so far. 427 const TargetSubtargetInfo &ST = MF.getSubtarget(); 428 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 429 E = CurrentVRegUses.end(); I != E; /*empty*/) { 430 LaneBitmask LaneMask = I->LaneMask; 431 // Ignore uses of other lanes. 432 if ((LaneMask & KillLaneMask).none()) { 433 ++I; 434 continue; 435 } 436 437 if ((LaneMask & DefLaneMask).any()) { 438 SUnit *UseSU = I->SU; 439 MachineInstr *Use = UseSU->getInstr(); 440 SDep Dep(SU, SDep::Data, Reg); 441 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 442 I->OperandIndex)); 443 ST.adjustSchedDependency(SU, UseSU, Dep); 444 UseSU->addPred(Dep); 445 } 446 447 LaneMask &= ~KillLaneMask; 448 // If we found a Def for all lanes of this use, remove it from the list. 449 if (LaneMask.any()) { 450 I->LaneMask = LaneMask; 451 ++I; 452 } else 453 I = CurrentVRegUses.erase(I); 454 } 455 } 456 457 // Shortcut: Singly defined vregs do not have output/anti dependencies. 458 if (MRI.hasOneDef(Reg)) 459 return; 460 461 // Add output dependence to the next nearest defs of this vreg. 462 // 463 // Unless this definition is dead, the output dependence should be 464 // transitively redundant with antidependencies from this definition's 465 // uses. We're conservative for now until we have a way to guarantee the uses 466 // are not eliminated sometime during scheduling. The output dependence edge 467 // is also useful if output latency exceeds def-use latency. 468 LaneBitmask LaneMask = DefLaneMask; 469 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 470 CurrentVRegDefs.end())) { 471 // Ignore defs for other lanes. 472 if ((V2SU.LaneMask & LaneMask).none()) 473 continue; 474 // Add an output dependence. 475 SUnit *DefSU = V2SU.SU; 476 // Ignore additional defs of the same lanes in one instruction. This can 477 // happen because lanemasks are shared for targets with too many 478 // subregisters. We also use some representration tricks/hacks where we 479 // add super-register defs/uses, to imply that although we only access parts 480 // of the reg we care about the full one. 481 if (DefSU == SU) 482 continue; 483 SDep Dep(SU, SDep::Output, Reg); 484 Dep.setLatency( 485 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 486 DefSU->addPred(Dep); 487 488 // Update current definition. This can get tricky if the def was about a 489 // bigger lanemask before. We then have to shrink it and create a new 490 // VReg2SUnit for the non-overlapping part. 491 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 492 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 493 V2SU.SU = SU; 494 V2SU.LaneMask = OverlapMask; 495 if (NonOverlapMask.any()) 496 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); 497 } 498 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 499 if (LaneMask.any()) 500 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 501 } 502 503 /// Adds a register data dependency if the instruction that defines the 504 /// virtual register used at OperIdx is mapped to an SUnit. Add a register 505 /// antidependency from this SUnit to instructions that occur later in the same 506 /// scheduling region if they write the virtual register. 507 /// 508 /// TODO: Handle ExitSU "uses" properly. 509 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 510 const MachineInstr *MI = SU->getInstr(); 511 const MachineOperand &MO = MI->getOperand(OperIdx); 512 Register Reg = MO.getReg(); 513 514 // Remember the use. Data dependencies will be added when we find the def. 515 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) 516 : LaneBitmask::getAll(); 517 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 518 519 // Add antidependences to the following defs of the vreg. 520 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 521 CurrentVRegDefs.end())) { 522 // Ignore defs for unrelated lanes. 523 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 524 if ((PrevDefLaneMask & LaneMask).none()) 525 continue; 526 if (V2SU.SU == SU) 527 continue; 528 529 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 530 } 531 } 532 533 /// Returns true if MI is an instruction we are unable to reason about 534 /// (like a call or something with unmodeled side effects). 535 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 536 return MI->isCall() || MI->hasUnmodeledSideEffects() || 537 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA)); 538 } 539 540 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, 541 unsigned Latency) { 542 if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) { 543 SDep Dep(SUa, SDep::MayAliasMem); 544 Dep.setLatency(Latency); 545 SUb->addPred(Dep); 546 } 547 } 548 549 /// Creates an SUnit for each real instruction, numbered in top-down 550 /// topological order. The instruction order A < B, implies that no edge exists 551 /// from B to A. 552 /// 553 /// Map each real instruction to its SUnit. 554 /// 555 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 556 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 557 /// instead of pointers. 558 /// 559 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 560 /// the original instruction list. 561 void ScheduleDAGInstrs::initSUnits() { 562 // We'll be allocating one SUnit for each real instruction in the region, 563 // which is contained within a basic block. 564 SUnits.reserve(NumRegionInstrs); 565 566 for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) { 567 if (MI.isDebugInstr()) 568 continue; 569 570 SUnit *SU = newSUnit(&MI); 571 MISUnitMap[&MI] = SU; 572 573 SU->isCall = MI.isCall(); 574 SU->isCommutable = MI.isCommutable(); 575 576 // Assign the Latency field of SU using target-provided information. 577 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 578 579 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 580 // 581 // Reserved resources block an instruction from issuing and stall the 582 // entire pipeline. These are identified by BufferSize=0. 583 // 584 // Unbuffered resources prevent execution of subsequent instructions that 585 // require the same resources. This is used for in-order execution pipelines 586 // within an out-of-order core. These are identified by BufferSize=1. 587 if (SchedModel.hasInstrSchedModel()) { 588 const MCSchedClassDesc *SC = getSchedClass(SU); 589 for (const MCWriteProcResEntry &PRE : 590 make_range(SchedModel.getWriteProcResBegin(SC), 591 SchedModel.getWriteProcResEnd(SC))) { 592 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) { 593 case 0: 594 SU->hasReservedResource = true; 595 break; 596 case 1: 597 SU->isUnbuffered = true; 598 break; 599 default: 600 break; 601 } 602 } 603 } 604 } 605 } 606 607 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { 608 /// Current total number of SUs in map. 609 unsigned NumNodes = 0; 610 611 /// 1 for loads, 0 for stores. (see comment in SUList) 612 unsigned TrueMemOrderLatency; 613 614 public: 615 Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {} 616 617 /// To keep NumNodes up to date, insert() is used instead of 618 /// this operator w/ push_back(). 619 ValueType &operator[](const SUList &Key) { 620 llvm_unreachable("Don't use. Use insert() instead."); }; 621 622 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling 623 /// reduce(). 624 void inline insert(SUnit *SU, ValueType V) { 625 MapVector::operator[](V).push_back(SU); 626 NumNodes++; 627 } 628 629 /// Clears the list of SUs mapped to V. 630 void inline clearList(ValueType V) { 631 iterator Itr = find(V); 632 if (Itr != end()) { 633 assert(NumNodes >= Itr->second.size()); 634 NumNodes -= Itr->second.size(); 635 636 Itr->second.clear(); 637 } 638 } 639 640 /// Clears map from all contents. 641 void clear() { 642 MapVector<ValueType, SUList>::clear(); 643 NumNodes = 0; 644 } 645 646 unsigned inline size() const { return NumNodes; } 647 648 /// Counts the number of SUs in this map after a reduction. 649 void reComputeSize() { 650 NumNodes = 0; 651 for (auto &I : *this) 652 NumNodes += I.second.size(); 653 } 654 655 unsigned inline getTrueMemOrderLatency() const { 656 return TrueMemOrderLatency; 657 } 658 659 void dump(); 660 }; 661 662 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 663 Value2SUsMap &Val2SUsMap) { 664 for (auto &I : Val2SUsMap) 665 addChainDependencies(SU, I.second, 666 Val2SUsMap.getTrueMemOrderLatency()); 667 } 668 669 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 670 Value2SUsMap &Val2SUsMap, 671 ValueType V) { 672 Value2SUsMap::iterator Itr = Val2SUsMap.find(V); 673 if (Itr != Val2SUsMap.end()) 674 addChainDependencies(SU, Itr->second, 675 Val2SUsMap.getTrueMemOrderLatency()); 676 } 677 678 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { 679 assert(BarrierChain != nullptr); 680 681 for (auto &I : map) { 682 SUList &sus = I.second; 683 for (auto *SU : sus) 684 SU->addPredBarrier(BarrierChain); 685 } 686 map.clear(); 687 } 688 689 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { 690 assert(BarrierChain != nullptr); 691 692 // Go through all lists of SUs. 693 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { 694 Value2SUsMap::iterator CurrItr = I++; 695 SUList &sus = CurrItr->second; 696 SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); 697 for (; SUItr != SUEE; ++SUItr) { 698 // Stop on BarrierChain or any instruction above it. 699 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) 700 break; 701 702 (*SUItr)->addPredBarrier(BarrierChain); 703 } 704 705 // Remove also the BarrierChain from list if present. 706 if (SUItr != SUEE && *SUItr == BarrierChain) 707 SUItr++; 708 709 // Remove all SUs that are now successors of BarrierChain. 710 if (SUItr != sus.begin()) 711 sus.erase(sus.begin(), SUItr); 712 } 713 714 // Remove all entries with empty su lists. 715 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { 716 return (mapEntry.second.empty()); }); 717 718 // Recompute the size of the map (NumNodes). 719 map.reComputeSize(); 720 } 721 722 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 723 RegPressureTracker *RPTracker, 724 PressureDiffs *PDiffs, 725 LiveIntervals *LIS, 726 bool TrackLaneMasks) { 727 const TargetSubtargetInfo &ST = MF.getSubtarget(); 728 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 729 : ST.useAA(); 730 AAForDep = UseAA ? AA : nullptr; 731 732 BarrierChain = nullptr; 733 734 this->TrackLaneMasks = TrackLaneMasks; 735 MISUnitMap.clear(); 736 ScheduleDAG::clearDAG(); 737 738 // Create an SUnit for each real instruction. 739 initSUnits(); 740 741 if (PDiffs) 742 PDiffs->init(SUnits.size()); 743 744 // We build scheduling units by walking a block's instruction list 745 // from bottom to top. 746 747 // Each MIs' memory operand(s) is analyzed to a list of underlying 748 // objects. The SU is then inserted in the SUList(s) mapped from the 749 // Value(s). Each Value thus gets mapped to lists of SUs depending 750 // on it, stores and loads kept separately. Two SUs are trivially 751 // non-aliasing if they both depend on only identified Values and do 752 // not share any common Value. 753 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); 754 755 // Certain memory accesses are known to not alias any SU in Stores 756 // or Loads, and have therefore their own 'NonAlias' 757 // domain. E.g. spill / reload instructions never alias LLVM I/R 758 // Values. It would be nice to assume that this type of memory 759 // accesses always have a proper memory operand modelling, and are 760 // therefore never unanalyzable, but this is conservatively not 761 // done. 762 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); 763 764 // Track all instructions that may raise floating-point exceptions. 765 // These do not depend on one other (or normal loads or stores), but 766 // must not be rescheduled across global barriers. Note that we don't 767 // really need a "map" here since we don't track those MIs by value; 768 // using the same Value2SUsMap data type here is simply a matter of 769 // convenience. 770 Value2SUsMap FPExceptions; 771 772 // Remove any stale debug info; sometimes BuildSchedGraph is called again 773 // without emitting the info from the previous call. 774 DbgValues.clear(); 775 FirstDbgValue = nullptr; 776 777 assert(Defs.empty() && Uses.empty() && 778 "Only BuildGraph should update Defs/Uses"); 779 Defs.setUniverse(TRI->getNumRegs()); 780 Uses.setUniverse(TRI->getNumRegs()); 781 782 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 783 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 784 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 785 CurrentVRegDefs.setUniverse(NumVirtRegs); 786 CurrentVRegUses.setUniverse(NumVirtRegs); 787 788 // Model data dependencies between instructions being scheduled and the 789 // ExitSU. 790 addSchedBarrierDeps(); 791 792 // Walk the list of instructions, from bottom moving up. 793 MachineInstr *DbgMI = nullptr; 794 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 795 MII != MIE; --MII) { 796 MachineInstr &MI = *std::prev(MII); 797 if (DbgMI) { 798 DbgValues.push_back(std::make_pair(DbgMI, &MI)); 799 DbgMI = nullptr; 800 } 801 802 if (MI.isDebugValue()) { 803 DbgMI = &MI; 804 continue; 805 } 806 if (MI.isDebugLabel()) 807 continue; 808 809 SUnit *SU = MISUnitMap[&MI]; 810 assert(SU && "No SUnit mapped to this MI"); 811 812 if (RPTracker) { 813 RegisterOperands RegOpers; 814 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); 815 if (TrackLaneMasks) { 816 SlotIndex SlotIdx = LIS->getInstructionIndex(MI); 817 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 818 } 819 if (PDiffs != nullptr) 820 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 821 822 if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI) 823 RPTracker->recedeSkipDebugValues(); 824 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); 825 RPTracker->recede(RegOpers); 826 } 827 828 assert( 829 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && 830 "Cannot schedule terminators or labels!"); 831 832 // Add register-based dependencies (data, anti, and output). 833 // For some instructions (calls, returns, inline-asm, etc.) there can 834 // be explicit uses and implicit defs, in which case the use will appear 835 // on the operand list before the def. Do two passes over the operand 836 // list to make sure that defs are processed before any uses. 837 bool HasVRegDef = false; 838 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 839 const MachineOperand &MO = MI.getOperand(j); 840 if (!MO.isReg() || !MO.isDef()) 841 continue; 842 Register Reg = MO.getReg(); 843 if (Register::isPhysicalRegister(Reg)) { 844 addPhysRegDeps(SU, j); 845 } else if (Register::isVirtualRegister(Reg)) { 846 HasVRegDef = true; 847 addVRegDefDeps(SU, j); 848 } 849 } 850 // Now process all uses. 851 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 852 const MachineOperand &MO = MI.getOperand(j); 853 // Only look at use operands. 854 // We do not need to check for MO.readsReg() here because subsequent 855 // subregister defs will get output dependence edges and need no 856 // additional use dependencies. 857 if (!MO.isReg() || !MO.isUse()) 858 continue; 859 Register Reg = MO.getReg(); 860 if (Register::isPhysicalRegister(Reg)) { 861 addPhysRegDeps(SU, j); 862 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) { 863 addVRegUseDeps(SU, j); 864 } 865 } 866 867 // If we haven't seen any uses in this scheduling region, create a 868 // dependence edge to ExitSU to model the live-out latency. This is required 869 // for vreg defs with no in-region use, and prefetches with no vreg def. 870 // 871 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 872 // check currently relies on being called before adding chain deps. 873 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { 874 SDep Dep(SU, SDep::Artificial); 875 Dep.setLatency(SU->Latency - 1); 876 ExitSU.addPred(Dep); 877 } 878 879 // Add memory dependencies (Note: isStoreToStackSlot and 880 // isLoadFromStackSLot are not usable after stack slots are lowered to 881 // actual addresses). 882 883 // This is a barrier event that acts as a pivotal node in the DAG. 884 if (isGlobalMemoryObject(AA, &MI)) { 885 886 // Become the barrier chain. 887 if (BarrierChain) 888 BarrierChain->addPredBarrier(SU); 889 BarrierChain = SU; 890 891 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" 892 << BarrierChain->NodeNum << ").\n";); 893 894 // Add dependencies against everything below it and clear maps. 895 addBarrierChain(Stores); 896 addBarrierChain(Loads); 897 addBarrierChain(NonAliasStores); 898 addBarrierChain(NonAliasLoads); 899 addBarrierChain(FPExceptions); 900 901 continue; 902 } 903 904 // Instructions that may raise FP exceptions may not be moved 905 // across any global barriers. 906 if (MI.mayRaiseFPException()) { 907 if (BarrierChain) 908 BarrierChain->addPredBarrier(SU); 909 910 FPExceptions.insert(SU, UnknownValue); 911 912 if (FPExceptions.size() >= HugeRegion) { 913 LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";); 914 Value2SUsMap empty; 915 reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize()); 916 } 917 } 918 919 // If it's not a store or a variant load, we're done. 920 if (!MI.mayStore() && 921 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))) 922 continue; 923 924 // Always add dependecy edge to BarrierChain if present. 925 if (BarrierChain) 926 BarrierChain->addPredBarrier(SU); 927 928 // Find the underlying objects for MI. The Objs vector is either 929 // empty, or filled with the Values of memory locations which this 930 // SU depends on. 931 UnderlyingObjectsVector Objs; 932 bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs, 933 MF.getDataLayout()); 934 935 if (MI.mayStore()) { 936 if (!ObjsFound) { 937 // An unknown store depends on all stores and loads. 938 addChainDependencies(SU, Stores); 939 addChainDependencies(SU, NonAliasStores); 940 addChainDependencies(SU, Loads); 941 addChainDependencies(SU, NonAliasLoads); 942 943 // Map this store to 'UnknownValue'. 944 Stores.insert(SU, UnknownValue); 945 } else { 946 // Add precise dependencies against all previously seen memory 947 // accesses mapped to the same Value(s). 948 for (const UnderlyingObject &UnderlObj : Objs) { 949 ValueType V = UnderlObj.getValue(); 950 bool ThisMayAlias = UnderlObj.mayAlias(); 951 952 // Add dependencies to previous stores and loads mapped to V. 953 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 954 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); 955 } 956 // Update the store map after all chains have been added to avoid adding 957 // self-loop edge if multiple underlying objects are present. 958 for (const UnderlyingObject &UnderlObj : Objs) { 959 ValueType V = UnderlObj.getValue(); 960 bool ThisMayAlias = UnderlObj.mayAlias(); 961 962 // Map this store to V. 963 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); 964 } 965 // The store may have dependencies to unanalyzable loads and 966 // stores. 967 addChainDependencies(SU, Loads, UnknownValue); 968 addChainDependencies(SU, Stores, UnknownValue); 969 } 970 } else { // SU is a load. 971 if (!ObjsFound) { 972 // An unknown load depends on all stores. 973 addChainDependencies(SU, Stores); 974 addChainDependencies(SU, NonAliasStores); 975 976 Loads.insert(SU, UnknownValue); 977 } else { 978 for (const UnderlyingObject &UnderlObj : Objs) { 979 ValueType V = UnderlObj.getValue(); 980 bool ThisMayAlias = UnderlObj.mayAlias(); 981 982 // Add precise dependencies against all previously seen stores 983 // mapping to the same Value(s). 984 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 985 986 // Map this load to V. 987 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); 988 } 989 // The load may have dependencies to unanalyzable stores. 990 addChainDependencies(SU, Stores, UnknownValue); 991 } 992 } 993 994 // Reduce maps if they grow huge. 995 if (Stores.size() + Loads.size() >= HugeRegion) { 996 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); 997 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); 998 } 999 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { 1000 LLVM_DEBUG( 1001 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); 1002 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); 1003 } 1004 } 1005 1006 if (DbgMI) 1007 FirstDbgValue = DbgMI; 1008 1009 Defs.clear(); 1010 Uses.clear(); 1011 CurrentVRegDefs.clear(); 1012 CurrentVRegUses.clear(); 1013 1014 Topo.MarkDirty(); 1015 } 1016 1017 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { 1018 PSV->printCustom(OS); 1019 return OS; 1020 } 1021 1022 void ScheduleDAGInstrs::Value2SUsMap::dump() { 1023 for (auto &Itr : *this) { 1024 if (Itr.first.is<const Value*>()) { 1025 const Value *V = Itr.first.get<const Value*>(); 1026 if (isa<UndefValue>(V)) 1027 dbgs() << "Unknown"; 1028 else 1029 V->printAsOperand(dbgs()); 1030 } 1031 else if (Itr.first.is<const PseudoSourceValue*>()) 1032 dbgs() << Itr.first.get<const PseudoSourceValue*>(); 1033 else 1034 llvm_unreachable("Unknown Value type."); 1035 1036 dbgs() << " : "; 1037 dumpSUList(Itr.second); 1038 } 1039 } 1040 1041 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, 1042 Value2SUsMap &loads, unsigned N) { 1043 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump(); 1044 dbgs() << "Loading SUnits:\n"; loads.dump()); 1045 1046 // Insert all SU's NodeNums into a vector and sort it. 1047 std::vector<unsigned> NodeNums; 1048 NodeNums.reserve(stores.size() + loads.size()); 1049 for (auto &I : stores) 1050 for (auto *SU : I.second) 1051 NodeNums.push_back(SU->NodeNum); 1052 for (auto &I : loads) 1053 for (auto *SU : I.second) 1054 NodeNums.push_back(SU->NodeNum); 1055 llvm::sort(NodeNums); 1056 1057 // The N last elements in NodeNums will be removed, and the SU with 1058 // the lowest NodeNum of them will become the new BarrierChain to 1059 // let the not yet seen SUs have a dependency to the removed SUs. 1060 assert(N <= NodeNums.size()); 1061 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; 1062 if (BarrierChain) { 1063 // The aliasing and non-aliasing maps reduce independently of each 1064 // other, but share a common BarrierChain. Check if the 1065 // newBarrierChain is above the former one. If it is not, it may 1066 // introduce a loop to use newBarrierChain, so keep the old one. 1067 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { 1068 BarrierChain->addPredBarrier(newBarrierChain); 1069 BarrierChain = newBarrierChain; 1070 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU(" 1071 << BarrierChain->NodeNum << ").\n";); 1072 } 1073 else 1074 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU(" 1075 << BarrierChain->NodeNum << ").\n";); 1076 } 1077 else 1078 BarrierChain = newBarrierChain; 1079 1080 insertBarrierChain(stores); 1081 insertBarrierChain(loads); 1082 1083 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump(); 1084 dbgs() << "Loading SUnits:\n"; loads.dump()); 1085 } 1086 1087 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs, 1088 MachineInstr &MI, bool addToLiveRegs) { 1089 for (MachineOperand &MO : MI.operands()) { 1090 if (!MO.isReg() || !MO.readsReg()) 1091 continue; 1092 Register Reg = MO.getReg(); 1093 if (!Reg) 1094 continue; 1095 1096 // Things that are available after the instruction are killed by it. 1097 bool IsKill = LiveRegs.available(MRI, Reg); 1098 MO.setIsKill(IsKill); 1099 if (addToLiveRegs) 1100 LiveRegs.addReg(Reg); 1101 } 1102 } 1103 1104 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) { 1105 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n'); 1106 1107 LiveRegs.init(*TRI); 1108 LiveRegs.addLiveOuts(MBB); 1109 1110 // Examine block from end to start... 1111 for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) { 1112 if (MI.isDebugInstr()) 1113 continue; 1114 1115 // Update liveness. Registers that are defed but not used in this 1116 // instruction are now dead. Mark register and all subregs as they 1117 // are completely defined. 1118 for (ConstMIBundleOperands O(MI); O.isValid(); ++O) { 1119 const MachineOperand &MO = *O; 1120 if (MO.isReg()) { 1121 if (!MO.isDef()) 1122 continue; 1123 Register Reg = MO.getReg(); 1124 if (!Reg) 1125 continue; 1126 LiveRegs.removeReg(Reg); 1127 } else if (MO.isRegMask()) { 1128 LiveRegs.removeRegsInMask(MO); 1129 } 1130 } 1131 1132 // If there is a bundle header fix it up first. 1133 if (!MI.isBundled()) { 1134 toggleKills(MRI, LiveRegs, MI, true); 1135 } else { 1136 MachineBasicBlock::instr_iterator Bundle = MI.getIterator(); 1137 if (MI.isBundle()) 1138 toggleKills(MRI, LiveRegs, MI, false); 1139 1140 // Some targets make the (questionable) assumtion that the instructions 1141 // inside the bundle are ordered and consequently only the last use of 1142 // a register inside the bundle can kill it. 1143 MachineBasicBlock::instr_iterator I = std::next(Bundle); 1144 while (I->isBundledWithSucc()) 1145 ++I; 1146 do { 1147 if (!I->isDebugInstr()) 1148 toggleKills(MRI, LiveRegs, *I, true); 1149 --I; 1150 } while (I != Bundle); 1151 } 1152 } 1153 } 1154 1155 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const { 1156 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1157 dumpNodeName(SU); 1158 dbgs() << ": "; 1159 SU.getInstr()->dump(); 1160 #endif 1161 } 1162 1163 void ScheduleDAGInstrs::dump() const { 1164 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1165 if (EntrySU.getInstr() != nullptr) 1166 dumpNodeAll(EntrySU); 1167 for (const SUnit &SU : SUnits) 1168 dumpNodeAll(SU); 1169 if (ExitSU.getInstr() != nullptr) 1170 dumpNodeAll(ExitSU); 1171 #endif 1172 } 1173 1174 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1175 std::string s; 1176 raw_string_ostream oss(s); 1177 if (SU == &EntrySU) 1178 oss << "<entry>"; 1179 else if (SU == &ExitSU) 1180 oss << "<exit>"; 1181 else 1182 SU->getInstr()->print(oss, /*SkipOpers=*/true); 1183 return oss.str(); 1184 } 1185 1186 /// Return the basic block label. It is not necessarilly unique because a block 1187 /// contains multiple scheduling regions. But it is fine for visualization. 1188 std::string ScheduleDAGInstrs::getDAGName() const { 1189 return "dag." + BB->getFullName(); 1190 } 1191 1192 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 1193 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 1194 } 1195 1196 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) { 1197 if (SuccSU != &ExitSU) { 1198 // Do not use WillCreateCycle, it assumes SD scheduling. 1199 // If Pred is reachable from Succ, then the edge creates a cycle. 1200 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 1201 return false; 1202 Topo.AddPredQueued(SuccSU, PredDep.getSUnit()); 1203 } 1204 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 1205 // Return true regardless of whether a new edge needed to be inserted. 1206 return true; 1207 } 1208 1209 //===----------------------------------------------------------------------===// 1210 // SchedDFSResult Implementation 1211 //===----------------------------------------------------------------------===// 1212 1213 namespace llvm { 1214 1215 /// Internal state used to compute SchedDFSResult. 1216 class SchedDFSImpl { 1217 SchedDFSResult &R; 1218 1219 /// Join DAG nodes into equivalence classes by their subtree. 1220 IntEqClasses SubtreeClasses; 1221 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1222 std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs; 1223 1224 struct RootData { 1225 unsigned NodeID; 1226 unsigned ParentNodeID; ///< Parent node (member of the parent subtree). 1227 unsigned SubInstrCount = 0; ///< Instr count in this tree only, not 1228 /// children. 1229 1230 RootData(unsigned id): NodeID(id), 1231 ParentNodeID(SchedDFSResult::InvalidSubtreeID) {} 1232 1233 unsigned getSparseSetIndex() const { return NodeID; } 1234 }; 1235 1236 SparseSet<RootData> RootSet; 1237 1238 public: 1239 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1240 RootSet.setUniverse(R.DFSNodeData.size()); 1241 } 1242 1243 /// Returns true if this node been visited by the DFS traversal. 1244 /// 1245 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1246 /// ID. Later, SubtreeID is updated but remains valid. 1247 bool isVisited(const SUnit *SU) const { 1248 return R.DFSNodeData[SU->NodeNum].SubtreeID 1249 != SchedDFSResult::InvalidSubtreeID; 1250 } 1251 1252 /// Initializes this node's instruction count. We don't need to flag the node 1253 /// visited until visitPostorder because the DAG cannot have cycles. 1254 void visitPreorder(const SUnit *SU) { 1255 R.DFSNodeData[SU->NodeNum].InstrCount = 1256 SU->getInstr()->isTransient() ? 0 : 1; 1257 } 1258 1259 /// Called once for each node after all predecessors are visited. Revisit this 1260 /// node's predecessors and potentially join them now that we know the ILP of 1261 /// the other predecessors. 1262 void visitPostorderNode(const SUnit *SU) { 1263 // Mark this node as the root of a subtree. It may be joined with its 1264 // successors later. 1265 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1266 RootData RData(SU->NodeNum); 1267 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1268 1269 // If any predecessors are still in their own subtree, they either cannot be 1270 // joined or are large enough to remain separate. If this parent node's 1271 // total instruction count is not greater than a child subtree by at least 1272 // the subtree limit, then try to join it now since splitting subtrees is 1273 // only useful if multiple high-pressure paths are possible. 1274 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1275 for (const SDep &PredDep : SU->Preds) { 1276 if (PredDep.getKind() != SDep::Data) 1277 continue; 1278 unsigned PredNum = PredDep.getSUnit()->NodeNum; 1279 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1280 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false); 1281 1282 // Either link or merge the TreeData entry from the child to the parent. 1283 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1284 // If the predecessor's parent is invalid, this is a tree edge and the 1285 // current node is the parent. 1286 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1287 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1288 } 1289 else if (RootSet.count(PredNum)) { 1290 // The predecessor is not a root, but is still in the root set. This 1291 // must be the new parent that it was just joined to. Note that 1292 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1293 // set to the original parent. 1294 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1295 RootSet.erase(PredNum); 1296 } 1297 } 1298 RootSet[SU->NodeNum] = RData; 1299 } 1300 1301 /// Called once for each tree edge after calling visitPostOrderNode on 1302 /// the predecessor. Increment the parent node's instruction count and 1303 /// preemptively join this subtree to its parent's if it is small enough. 1304 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1305 R.DFSNodeData[Succ->NodeNum].InstrCount 1306 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1307 joinPredSubtree(PredDep, Succ); 1308 } 1309 1310 /// Adds a connection for cross edges. 1311 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1312 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1313 } 1314 1315 /// Sets each node's subtree ID to the representative ID and record 1316 /// connections between trees. 1317 void finalize() { 1318 SubtreeClasses.compress(); 1319 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1320 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1321 && "number of roots should match trees"); 1322 for (const RootData &Root : RootSet) { 1323 unsigned TreeID = SubtreeClasses[Root.NodeID]; 1324 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1325 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; 1326 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; 1327 // Note that SubInstrCount may be greater than InstrCount if we joined 1328 // subtrees across a cross edge. InstrCount will be attributed to the 1329 // original parent, while SubInstrCount will be attributed to the joined 1330 // parent. 1331 } 1332 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1333 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1334 LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1335 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1336 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1337 LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1338 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1339 } 1340 for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) { 1341 unsigned PredTree = SubtreeClasses[P.first->NodeNum]; 1342 unsigned SuccTree = SubtreeClasses[P.second->NodeNum]; 1343 if (PredTree == SuccTree) 1344 continue; 1345 unsigned Depth = P.first->getDepth(); 1346 addConnection(PredTree, SuccTree, Depth); 1347 addConnection(SuccTree, PredTree, Depth); 1348 } 1349 } 1350 1351 protected: 1352 /// Joins the predecessor subtree with the successor that is its DFS parent. 1353 /// Applies some heuristics before joining. 1354 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1355 bool CheckLimit = true) { 1356 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1357 1358 // Check if the predecessor is already joined. 1359 const SUnit *PredSU = PredDep.getSUnit(); 1360 unsigned PredNum = PredSU->NodeNum; 1361 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1362 return false; 1363 1364 // Four is the magic number of successors before a node is considered a 1365 // pinch point. 1366 unsigned NumDataSucs = 0; 1367 for (const SDep &SuccDep : PredSU->Succs) { 1368 if (SuccDep.getKind() == SDep::Data) { 1369 if (++NumDataSucs >= 4) 1370 return false; 1371 } 1372 } 1373 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1374 return false; 1375 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1376 SubtreeClasses.join(Succ->NodeNum, PredNum); 1377 return true; 1378 } 1379 1380 /// Called by finalize() to record a connection between trees. 1381 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1382 if (!Depth) 1383 return; 1384 1385 do { 1386 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1387 R.SubtreeConnections[FromTree]; 1388 for (SchedDFSResult::Connection &C : Connections) { 1389 if (C.TreeID == ToTree) { 1390 C.Level = std::max(C.Level, Depth); 1391 return; 1392 } 1393 } 1394 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1395 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1396 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1397 } 1398 }; 1399 1400 } // end namespace llvm 1401 1402 namespace { 1403 1404 /// Manage the stack used by a reverse depth-first search over the DAG. 1405 class SchedDAGReverseDFS { 1406 std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack; 1407 1408 public: 1409 bool isComplete() const { return DFSStack.empty(); } 1410 1411 void follow(const SUnit *SU) { 1412 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1413 } 1414 void advance() { ++DFSStack.back().second; } 1415 1416 const SDep *backtrack() { 1417 DFSStack.pop_back(); 1418 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1419 } 1420 1421 const SUnit *getCurr() const { return DFSStack.back().first; } 1422 1423 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1424 1425 SUnit::const_pred_iterator getPredEnd() const { 1426 return getCurr()->Preds.end(); 1427 } 1428 }; 1429 1430 } // end anonymous namespace 1431 1432 static bool hasDataSucc(const SUnit *SU) { 1433 for (const SDep &SuccDep : SU->Succs) { 1434 if (SuccDep.getKind() == SDep::Data && 1435 !SuccDep.getSUnit()->isBoundaryNode()) 1436 return true; 1437 } 1438 return false; 1439 } 1440 1441 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first 1442 /// search from this root. 1443 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1444 if (!IsBottomUp) 1445 llvm_unreachable("Top-down ILP metric is unimplemented"); 1446 1447 SchedDFSImpl Impl(*this); 1448 for (const SUnit &SU : SUnits) { 1449 if (Impl.isVisited(&SU) || hasDataSucc(&SU)) 1450 continue; 1451 1452 SchedDAGReverseDFS DFS; 1453 Impl.visitPreorder(&SU); 1454 DFS.follow(&SU); 1455 while (true) { 1456 // Traverse the leftmost path as far as possible. 1457 while (DFS.getPred() != DFS.getPredEnd()) { 1458 const SDep &PredDep = *DFS.getPred(); 1459 DFS.advance(); 1460 // Ignore non-data edges. 1461 if (PredDep.getKind() != SDep::Data 1462 || PredDep.getSUnit()->isBoundaryNode()) { 1463 continue; 1464 } 1465 // An already visited edge is a cross edge, assuming an acyclic DAG. 1466 if (Impl.isVisited(PredDep.getSUnit())) { 1467 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1468 continue; 1469 } 1470 Impl.visitPreorder(PredDep.getSUnit()); 1471 DFS.follow(PredDep.getSUnit()); 1472 } 1473 // Visit the top of the stack in postorder and backtrack. 1474 const SUnit *Child = DFS.getCurr(); 1475 const SDep *PredDep = DFS.backtrack(); 1476 Impl.visitPostorderNode(Child); 1477 if (PredDep) 1478 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1479 if (DFS.isComplete()) 1480 break; 1481 } 1482 } 1483 Impl.finalize(); 1484 } 1485 1486 /// The root of the given SubtreeID was just scheduled. For all subtrees 1487 /// connected to this tree, record the depth of the connection so that the 1488 /// nearest connected subtrees can be prioritized. 1489 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1490 for (const Connection &C : SubtreeConnections[SubtreeID]) { 1491 SubtreeConnectLevels[C.TreeID] = 1492 std::max(SubtreeConnectLevels[C.TreeID], C.Level); 1493 LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @" 1494 << SubtreeConnectLevels[C.TreeID] << '\n'); 1495 } 1496 } 1497 1498 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1499 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const { 1500 OS << InstrCount << " / " << Length << " = "; 1501 if (!Length) 1502 OS << "BADILP"; 1503 else 1504 OS << format("%g", ((double)InstrCount / Length)); 1505 } 1506 1507 LLVM_DUMP_METHOD void ILPValue::dump() const { 1508 dbgs() << *this << '\n'; 1509 } 1510 1511 namespace llvm { 1512 1513 LLVM_DUMP_METHOD 1514 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1515 Val.print(OS); 1516 return OS; 1517 } 1518 1519 } // end namespace llvm 1520 1521 #endif 1522