1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling 11 // of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/PseudoSourceValue.h" 28 #include "llvm/CodeGen/RegisterPressure.h" 29 #include "llvm/CodeGen/ScheduleDFS.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/Format.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetRegisterInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <queue> 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "misched" 44 45 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 46 cl::ZeroOrMore, cl::init(false), 47 cl::desc("Enable use of AA during MI DAG construction")); 48 49 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 50 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 51 52 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 53 const MachineLoopInfo *mli, 54 bool IsPostRAFlag, bool RemoveKillFlags, 55 LiveIntervals *lis) 56 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), LIS(lis), 57 IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags), 58 CanHandleTerminators(false), FirstDbgValue(nullptr) { 59 assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals"); 60 DbgValues.clear(); 61 assert(!(IsPostRA && MRI.getNumVirtRegs()) && 62 "Virtual registers must be removed prior to PostRA scheduling"); 63 64 const TargetSubtargetInfo &ST = mf.getSubtarget(); 65 SchedModel.init(ST.getSchedModel(), &ST, TII); 66 } 67 68 /// getUnderlyingObjectFromInt - This is the function that does the work of 69 /// looking through basic ptrtoint+arithmetic+inttoptr sequences. 70 static const Value *getUnderlyingObjectFromInt(const Value *V) { 71 do { 72 if (const Operator *U = dyn_cast<Operator>(V)) { 73 // If we find a ptrtoint, we can transfer control back to the 74 // regular getUnderlyingObjectFromInt. 75 if (U->getOpcode() == Instruction::PtrToInt) 76 return U->getOperand(0); 77 // If we find an add of a constant, a multiplied value, or a phi, it's 78 // likely that the other operand will lead us to the base 79 // object. We don't have to worry about the case where the 80 // object address is somehow being computed by the multiply, 81 // because our callers only care when the result is an 82 // identifiable object. 83 if (U->getOpcode() != Instruction::Add || 84 (!isa<ConstantInt>(U->getOperand(1)) && 85 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 86 !isa<PHINode>(U->getOperand(1)))) 87 return V; 88 V = U->getOperand(0); 89 } else { 90 return V; 91 } 92 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 93 } while (1); 94 } 95 96 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects 97 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. 98 static void getUnderlyingObjects(const Value *V, 99 SmallVectorImpl<Value *> &Objects, 100 const DataLayout &DL) { 101 SmallPtrSet<const Value *, 16> Visited; 102 SmallVector<const Value *, 4> Working(1, V); 103 do { 104 V = Working.pop_back_val(); 105 106 SmallVector<Value *, 4> Objs; 107 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 108 109 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 110 I != IE; ++I) { 111 V = *I; 112 if (!Visited.insert(V).second) 113 continue; 114 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 115 const Value *O = 116 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 117 if (O->getType()->isPointerTy()) { 118 Working.push_back(O); 119 continue; 120 } 121 } 122 Objects.push_back(const_cast<Value *>(V)); 123 } 124 } while (!Working.empty()); 125 } 126 127 typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType; 128 typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4> 129 UnderlyingObjectsVector; 130 131 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference 132 /// information and it can be tracked to a normal reference to a known 133 /// object, return the Value for that object. 134 static void getUnderlyingObjectsForInstr(const MachineInstr *MI, 135 const MachineFrameInfo *MFI, 136 UnderlyingObjectsVector &Objects, 137 const DataLayout &DL) { 138 if (!MI->hasOneMemOperand() || 139 (!(*MI->memoperands_begin())->getValue() && 140 !(*MI->memoperands_begin())->getPseudoValue()) || 141 (*MI->memoperands_begin())->isVolatile()) 142 return; 143 144 if (const PseudoSourceValue *PSV = 145 (*MI->memoperands_begin())->getPseudoValue()) { 146 // Function that contain tail calls don't have unique PseudoSourceValue 147 // objects. Two PseudoSourceValues might refer to the same or overlapping 148 // locations. The client code calling this function assumes this is not the 149 // case. So return a conservative answer of no known object. 150 if (MFI->hasTailCall()) 151 return; 152 153 // For now, ignore PseudoSourceValues which may alias LLVM IR values 154 // because the code that uses this function has no way to cope with 155 // such aliases. 156 if (!PSV->isAliased(MFI)) { 157 bool MayAlias = PSV->mayAlias(MFI); 158 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 159 } 160 return; 161 } 162 163 const Value *V = (*MI->memoperands_begin())->getValue(); 164 if (!V) 165 return; 166 167 SmallVector<Value *, 4> Objs; 168 getUnderlyingObjects(V, Objs, DL); 169 170 for (Value *V : Objs) { 171 if (!isIdentifiedObject(V)) { 172 Objects.clear(); 173 return; 174 } 175 176 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 177 } 178 } 179 180 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 181 BB = bb; 182 } 183 184 void ScheduleDAGInstrs::finishBlock() { 185 // Subclasses should no longer refer to the old block. 186 BB = nullptr; 187 } 188 189 /// Initialize the DAG and common scheduler state for the current scheduling 190 /// region. This does not actually create the DAG, only clears it. The 191 /// scheduling driver may call BuildSchedGraph multiple times per scheduling 192 /// region. 193 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 194 MachineBasicBlock::iterator begin, 195 MachineBasicBlock::iterator end, 196 unsigned regioninstrs) { 197 assert(bb == BB && "startBlock should set BB"); 198 RegionBegin = begin; 199 RegionEnd = end; 200 NumRegionInstrs = regioninstrs; 201 } 202 203 /// Close the current scheduling region. Don't clear any state in case the 204 /// driver wants to refer to the previous scheduling region. 205 void ScheduleDAGInstrs::exitRegion() { 206 // Nothing to do. 207 } 208 209 /// addSchedBarrierDeps - Add dependencies from instructions in the current 210 /// list of instructions being scheduled to scheduling barrier by adding 211 /// the exit SU to the register defs and use list. This is because we want to 212 /// make sure instructions which define registers that are either used by 213 /// the terminator or are live-out are properly scheduled. This is 214 /// especially important when the definition latency of the return value(s) 215 /// are too high to be hidden by the branch or when the liveout registers 216 /// used by instructions in the fallthrough block. 217 void ScheduleDAGInstrs::addSchedBarrierDeps() { 218 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 219 ExitSU.setInstr(ExitMI); 220 bool AllDepKnown = ExitMI && 221 (ExitMI->isCall() || ExitMI->isBarrier()); 222 if (ExitMI && AllDepKnown) { 223 // If it's a call or a barrier, add dependencies on the defs and uses of 224 // instruction. 225 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { 226 const MachineOperand &MO = ExitMI->getOperand(i); 227 if (!MO.isReg() || MO.isDef()) continue; 228 unsigned Reg = MO.getReg(); 229 if (Reg == 0) continue; 230 231 if (TRI->isPhysicalRegister(Reg)) 232 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 233 else { 234 assert(!IsPostRA && "Virtual register encountered after regalloc."); 235 if (MO.readsReg()) // ignore undef operands 236 addVRegUseDeps(&ExitSU, i); 237 } 238 } 239 } else { 240 // For others, e.g. fallthrough, conditional branch, assume the exit 241 // uses all the registers that are livein to the successor blocks. 242 assert(Uses.empty() && "Uses in set before adding deps?"); 243 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 244 SE = BB->succ_end(); SI != SE; ++SI) 245 for (const auto &LI : (*SI)->liveins()) { 246 if (!Uses.contains(LI.PhysReg)) 247 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 248 } 249 } 250 } 251 252 /// MO is an operand of SU's instruction that defines a physical register. Add 253 /// data dependencies from SU to any uses of the physical register. 254 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 255 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 256 assert(MO.isDef() && "expect physreg def"); 257 258 // Ask the target if address-backscheduling is desirable, and if so how much. 259 const TargetSubtargetInfo &ST = MF.getSubtarget(); 260 261 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 262 Alias.isValid(); ++Alias) { 263 if (!Uses.contains(*Alias)) 264 continue; 265 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 266 SUnit *UseSU = I->SU; 267 if (UseSU == SU) 268 continue; 269 270 // Adjust the dependence latency using operand def/use information, 271 // then allow the target to perform its own adjustments. 272 int UseOp = I->OpIdx; 273 MachineInstr *RegUse = nullptr; 274 SDep Dep; 275 if (UseOp < 0) 276 Dep = SDep(SU, SDep::Artificial); 277 else { 278 // Set the hasPhysRegDefs only for physreg defs that have a use within 279 // the scheduling region. 280 SU->hasPhysRegDefs = true; 281 Dep = SDep(SU, SDep::Data, *Alias); 282 RegUse = UseSU->getInstr(); 283 } 284 Dep.setLatency( 285 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 286 UseOp)); 287 288 ST.adjustSchedDependency(SU, UseSU, Dep); 289 UseSU->addPred(Dep); 290 } 291 } 292 } 293 294 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from 295 /// this SUnit to following instructions in the same scheduling region that 296 /// depend the physical register referenced at OperIdx. 297 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 298 MachineInstr *MI = SU->getInstr(); 299 MachineOperand &MO = MI->getOperand(OperIdx); 300 301 // Optionally add output and anti dependencies. For anti 302 // dependencies we use a latency of 0 because for a multi-issue 303 // target we want to allow the defining instruction to issue 304 // in the same cycle as the using instruction. 305 // TODO: Using a latency of 1 here for output dependencies assumes 306 // there's no cost for reusing registers. 307 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 308 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 309 Alias.isValid(); ++Alias) { 310 if (!Defs.contains(*Alias)) 311 continue; 312 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 313 SUnit *DefSU = I->SU; 314 if (DefSU == &ExitSU) 315 continue; 316 if (DefSU != SU && 317 (Kind != SDep::Output || !MO.isDead() || 318 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 319 if (Kind == SDep::Anti) 320 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 321 else { 322 SDep Dep(SU, Kind, /*Reg=*/*Alias); 323 Dep.setLatency( 324 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 325 DefSU->addPred(Dep); 326 } 327 } 328 } 329 } 330 331 if (!MO.isDef()) { 332 SU->hasPhysRegUses = true; 333 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 334 // retrieve the existing SUnits list for this register's uses. 335 // Push this SUnit on the use list. 336 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); 337 if (RemoveKillFlags) 338 MO.setIsKill(false); 339 } 340 else { 341 addPhysRegDataDeps(SU, OperIdx); 342 unsigned Reg = MO.getReg(); 343 344 // clear this register's use list 345 if (Uses.contains(Reg)) 346 Uses.eraseAll(Reg); 347 348 if (!MO.isDead()) { 349 Defs.eraseAll(Reg); 350 } else if (SU->isCall) { 351 // Calls will not be reordered because of chain dependencies (see 352 // below). Since call operands are dead, calls may continue to be added 353 // to the DefList making dependence checking quadratic in the size of 354 // the block. Instead, we leave only one call at the back of the 355 // DefList. 356 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 357 Reg2SUnitsMap::iterator B = P.first; 358 Reg2SUnitsMap::iterator I = P.second; 359 for (bool isBegin = I == B; !isBegin; /* empty */) { 360 isBegin = (--I) == B; 361 if (!I->SU->isCall) 362 break; 363 I = Defs.erase(I); 364 } 365 } 366 367 // Defs are pushed in the order they are visited and never reordered. 368 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 369 } 370 } 371 372 /// addVRegDefDeps - Add register output and data dependencies from this SUnit 373 /// to instructions that occur later in the same scheduling region if they read 374 /// from or write to the virtual register defined at OperIdx. 375 /// 376 /// TODO: Hoist loop induction variable increments. This has to be 377 /// reevaluated. Generally, IV scheduling should be done before coalescing. 378 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 379 const MachineInstr *MI = SU->getInstr(); 380 unsigned Reg = MI->getOperand(OperIdx).getReg(); 381 382 // Singly defined vregs do not have output/anti dependencies. 383 // The current operand is a def, so we have at least one. 384 // Check here if there are any others... 385 if (MRI.hasOneDef(Reg)) 386 return; 387 388 // Add output dependence to the next nearest def of this vreg. 389 // 390 // Unless this definition is dead, the output dependence should be 391 // transitively redundant with antidependencies from this definition's 392 // uses. We're conservative for now until we have a way to guarantee the uses 393 // are not eliminated sometime during scheduling. The output dependence edge 394 // is also useful if output latency exceeds def-use latency. 395 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 396 if (DefI == VRegDefs.end()) 397 VRegDefs.insert(VReg2SUnit(Reg, SU)); 398 else { 399 SUnit *DefSU = DefI->SU; 400 if (DefSU != SU && DefSU != &ExitSU) { 401 SDep Dep(SU, SDep::Output, Reg); 402 Dep.setLatency( 403 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 404 DefSU->addPred(Dep); 405 } 406 DefI->SU = SU; 407 } 408 } 409 410 /// addVRegUseDeps - Add a register data dependency if the instruction that 411 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a 412 /// register antidependency from this SUnit to instructions that occur later in 413 /// the same scheduling region if they write the virtual register. 414 /// 415 /// TODO: Handle ExitSU "uses" properly. 416 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 417 MachineInstr *MI = SU->getInstr(); 418 unsigned Reg = MI->getOperand(OperIdx).getReg(); 419 420 // Record this local VReg use. 421 VReg2UseMap::iterator UI = VRegUses.find(Reg); 422 for (; UI != VRegUses.end(); ++UI) { 423 if (UI->SU == SU) 424 break; 425 } 426 if (UI == VRegUses.end()) 427 VRegUses.insert(VReg2SUnit(Reg, SU)); 428 429 // Lookup this operand's reaching definition. 430 assert(LIS && "vreg dependencies requires LiveIntervals"); 431 LiveQueryResult LRQ 432 = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI)); 433 VNInfo *VNI = LRQ.valueIn(); 434 435 // VNI will be valid because MachineOperand::readsReg() is checked by caller. 436 assert(VNI && "No value to read by operand"); 437 MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); 438 // Phis and other noninstructions (after coalescing) have a NULL Def. 439 if (Def) { 440 SUnit *DefSU = getSUnit(Def); 441 if (DefSU) { 442 // The reaching Def lives within this scheduling region. 443 // Create a data dependence. 444 SDep dep(DefSU, SDep::Data, Reg); 445 // Adjust the dependence latency using operand def/use information, then 446 // allow the target to perform its own adjustments. 447 int DefOp = Def->findRegisterDefOperandIdx(Reg); 448 dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx)); 449 450 const TargetSubtargetInfo &ST = MF.getSubtarget(); 451 ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep)); 452 SU->addPred(dep); 453 } 454 } 455 456 // Add antidependence to the following def of the vreg it uses. 457 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 458 if (DefI != VRegDefs.end() && DefI->SU != SU) 459 DefI->SU->addPred(SDep(SU, SDep::Anti, Reg)); 460 } 461 462 /// Return true if MI is an instruction we are unable to reason about 463 /// (like a call or something with unmodeled side effects). 464 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 465 return MI->isCall() || MI->hasUnmodeledSideEffects() || 466 (MI->hasOrderedMemoryRef() && 467 (!MI->mayLoad() || !MI->isInvariantLoad(AA))); 468 } 469 470 // This MI might have either incomplete info, or known to be unsafe 471 // to deal with (i.e. volatile object). 472 static inline bool isUnsafeMemoryObject(MachineInstr *MI, 473 const MachineFrameInfo *MFI, 474 const DataLayout &DL) { 475 if (!MI || MI->memoperands_empty()) 476 return true; 477 // We purposefully do no check for hasOneMemOperand() here 478 // in hope to trigger an assert downstream in order to 479 // finish implementation. 480 if ((*MI->memoperands_begin())->isVolatile() || 481 MI->hasUnmodeledSideEffects()) 482 return true; 483 484 if ((*MI->memoperands_begin())->getPseudoValue()) { 485 // Similarly to getUnderlyingObjectForInstr: 486 // For now, ignore PseudoSourceValues which may alias LLVM IR values 487 // because the code that uses this function has no way to cope with 488 // such aliases. 489 return true; 490 } 491 492 const Value *V = (*MI->memoperands_begin())->getValue(); 493 if (!V) 494 return true; 495 496 SmallVector<Value *, 4> Objs; 497 getUnderlyingObjects(V, Objs, DL); 498 for (Value *V : Objs) { 499 // Does this pointer refer to a distinct and identifiable object? 500 if (!isIdentifiedObject(V)) 501 return true; 502 } 503 504 return false; 505 } 506 507 /// This returns true if the two MIs need a chain edge between them. 508 /// If these are not even memory operations, we still may need 509 /// chain deps between them. The question really is - could 510 /// these two MIs be reordered during scheduling from memory dependency 511 /// point of view. 512 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 513 const DataLayout &DL, MachineInstr *MIa, 514 MachineInstr *MIb) { 515 const MachineFunction *MF = MIa->getParent()->getParent(); 516 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 517 518 // Cover a trivial case - no edge is need to itself. 519 if (MIa == MIb) 520 return false; 521 522 // Let the target decide if memory accesses cannot possibly overlap. 523 if ((MIa->mayLoad() || MIa->mayStore()) && 524 (MIb->mayLoad() || MIb->mayStore())) 525 if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA)) 526 return false; 527 528 // FIXME: Need to handle multiple memory operands to support all targets. 529 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 530 return true; 531 532 if (isUnsafeMemoryObject(MIa, MFI, DL) || isUnsafeMemoryObject(MIb, MFI, DL)) 533 return true; 534 535 // If we are dealing with two "normal" loads, we do not need an edge 536 // between them - they could be reordered. 537 if (!MIa->mayStore() && !MIb->mayStore()) 538 return false; 539 540 // To this point analysis is generic. From here on we do need AA. 541 if (!AA) 542 return true; 543 544 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 545 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 546 547 if (!MMOa->getValue() || !MMOb->getValue()) 548 return true; 549 550 // The following interface to AA is fashioned after DAGCombiner::isAlias 551 // and operates with MachineMemOperand offset with some important 552 // assumptions: 553 // - LLVM fundamentally assumes flat address spaces. 554 // - MachineOperand offset can *only* result from legalization and 555 // cannot affect queries other than the trivial case of overlap 556 // checking. 557 // - These offsets never wrap and never step outside 558 // of allocated objects. 559 // - There should never be any negative offsets here. 560 // 561 // FIXME: Modify API to hide this math from "user" 562 // FIXME: Even before we go to AA we can reason locally about some 563 // memory objects. It can save compile time, and possibly catch some 564 // corner cases not currently covered. 565 566 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 567 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 568 569 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 570 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 571 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 572 573 AliasResult AAResult = 574 AA->alias(MemoryLocation(MMOa->getValue(), Overlapa, 575 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 576 MemoryLocation(MMOb->getValue(), Overlapb, 577 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 578 579 return (AAResult != NoAlias); 580 } 581 582 /// This recursive function iterates over chain deps of SUb looking for 583 /// "latest" node that needs a chain edge to SUa. 584 static unsigned iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI, 585 const DataLayout &DL, SUnit *SUa, SUnit *SUb, 586 SUnit *ExitSU, unsigned *Depth, 587 SmallPtrSetImpl<const SUnit *> &Visited) { 588 if (!SUa || !SUb || SUb == ExitSU) 589 return *Depth; 590 591 // Remember visited nodes. 592 if (!Visited.insert(SUb).second) 593 return *Depth; 594 // If there is _some_ dependency already in place, do not 595 // descend any further. 596 // TODO: Need to make sure that if that dependency got eliminated or ignored 597 // for any reason in the future, we would not violate DAG topology. 598 // Currently it does not happen, but makes an implicit assumption about 599 // future implementation. 600 // 601 // Independently, if we encounter node that is some sort of global 602 // object (like a call) we already have full set of dependencies to it 603 // and we can stop descending. 604 if (SUa->isSucc(SUb) || 605 isGlobalMemoryObject(AA, SUb->getInstr())) 606 return *Depth; 607 608 // If we do need an edge, or we have exceeded depth budget, 609 // add that edge to the predecessors chain of SUb, 610 // and stop descending. 611 if (*Depth > 200 || 612 MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) { 613 SUb->addPred(SDep(SUa, SDep::MayAliasMem)); 614 return *Depth; 615 } 616 // Track current depth. 617 (*Depth)++; 618 // Iterate over memory dependencies only. 619 for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end(); 620 I != E; ++I) 621 if (I->isNormalMemoryOrBarrier()) 622 iterateChainSucc(AA, MFI, DL, SUa, I->getSUnit(), ExitSU, Depth, Visited); 623 return *Depth; 624 } 625 626 /// This function assumes that "downward" from SU there exist 627 /// tail/leaf of already constructed DAG. It iterates downward and 628 /// checks whether SU can be aliasing any node dominated 629 /// by it. 630 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI, 631 const DataLayout &DL, SUnit *SU, SUnit *ExitSU, 632 std::set<SUnit *> &CheckList, 633 unsigned LatencyToLoad) { 634 if (!SU) 635 return; 636 637 SmallPtrSet<const SUnit*, 16> Visited; 638 unsigned Depth = 0; 639 640 for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end(); 641 I != IE; ++I) { 642 if (SU == *I) 643 continue; 644 if (MIsNeedChainEdge(AA, MFI, DL, SU->getInstr(), (*I)->getInstr())) { 645 SDep Dep(SU, SDep::MayAliasMem); 646 Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0); 647 (*I)->addPred(Dep); 648 } 649 650 // Iterate recursively over all previously added memory chain 651 // successors. Keep track of visited nodes. 652 for (SUnit::const_succ_iterator J = (*I)->Succs.begin(), 653 JE = (*I)->Succs.end(); J != JE; ++J) 654 if (J->isNormalMemoryOrBarrier()) 655 iterateChainSucc(AA, MFI, DL, SU, J->getSUnit(), ExitSU, &Depth, 656 Visited); 657 } 658 } 659 660 /// Check whether two objects need a chain edge, if so, add it 661 /// otherwise remember the rejected SU. 662 static inline void addChainDependency(AliasAnalysis *AA, 663 const MachineFrameInfo *MFI, 664 const DataLayout &DL, SUnit *SUa, 665 SUnit *SUb, std::set<SUnit *> &RejectList, 666 unsigned TrueMemOrderLatency = 0, 667 bool isNormalMemory = false) { 668 // If this is a false dependency, 669 // do not add the edge, but remember the rejected node. 670 if (MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) { 671 SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier); 672 Dep.setLatency(TrueMemOrderLatency); 673 SUb->addPred(Dep); 674 } 675 else { 676 // Duplicate entries should be ignored. 677 RejectList.insert(SUb); 678 DEBUG(dbgs() << "\tReject chain dep between SU(" 679 << SUa->NodeNum << ") and SU(" 680 << SUb->NodeNum << ")\n"); 681 } 682 } 683 684 /// Create an SUnit for each real instruction, numbered in top-down topological 685 /// order. The instruction order A < B, implies that no edge exists from B to A. 686 /// 687 /// Map each real instruction to its SUnit. 688 /// 689 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 690 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 691 /// instead of pointers. 692 /// 693 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 694 /// the original instruction list. 695 void ScheduleDAGInstrs::initSUnits() { 696 // We'll be allocating one SUnit for each real instruction in the region, 697 // which is contained within a basic block. 698 SUnits.reserve(NumRegionInstrs); 699 700 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { 701 MachineInstr *MI = I; 702 if (MI->isDebugValue()) 703 continue; 704 705 SUnit *SU = newSUnit(MI); 706 MISUnitMap[MI] = SU; 707 708 SU->isCall = MI->isCall(); 709 SU->isCommutable = MI->isCommutable(); 710 711 // Assign the Latency field of SU using target-provided information. 712 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 713 714 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 715 // 716 // Reserved resources block an instruction from issuing and stall the 717 // entire pipeline. These are identified by BufferSize=0. 718 // 719 // Unbuffered resources prevent execution of subsequent instructions that 720 // require the same resources. This is used for in-order execution pipelines 721 // within an out-of-order core. These are identified by BufferSize=1. 722 if (SchedModel.hasInstrSchedModel()) { 723 const MCSchedClassDesc *SC = getSchedClass(SU); 724 for (TargetSchedModel::ProcResIter 725 PI = SchedModel.getWriteProcResBegin(SC), 726 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 727 switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) { 728 case 0: 729 SU->hasReservedResource = true; 730 break; 731 case 1: 732 SU->isUnbuffered = true; 733 break; 734 default: 735 break; 736 } 737 } 738 } 739 } 740 } 741 742 /// If RegPressure is non-null, compute register pressure as a side effect. The 743 /// DAG builder is an efficient place to do it because it already visits 744 /// operands. 745 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 746 RegPressureTracker *RPTracker, 747 PressureDiffs *PDiffs) { 748 const TargetSubtargetInfo &ST = MF.getSubtarget(); 749 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 750 : ST.useAA(); 751 AliasAnalysis *AAForDep = UseAA ? AA : nullptr; 752 753 MISUnitMap.clear(); 754 ScheduleDAG::clearDAG(); 755 756 // Create an SUnit for each real instruction. 757 initSUnits(); 758 759 if (PDiffs) 760 PDiffs->init(SUnits.size()); 761 762 // We build scheduling units by walking a block's instruction list from bottom 763 // to top. 764 765 // Remember where a generic side-effecting instruction is as we proceed. 766 SUnit *BarrierChain = nullptr, *AliasChain = nullptr; 767 768 // Memory references to specific known memory locations are tracked 769 // so that they can be given more precise dependencies. We track 770 // separately the known memory locations that may alias and those 771 // that are known not to alias 772 MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs; 773 MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; 774 std::set<SUnit*> RejectMemNodes; 775 776 // Remove any stale debug info; sometimes BuildSchedGraph is called again 777 // without emitting the info from the previous call. 778 DbgValues.clear(); 779 FirstDbgValue = nullptr; 780 781 assert(Defs.empty() && Uses.empty() && 782 "Only BuildGraph should update Defs/Uses"); 783 Defs.setUniverse(TRI->getNumRegs()); 784 Uses.setUniverse(TRI->getNumRegs()); 785 786 assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); 787 VRegUses.clear(); 788 VRegDefs.setUniverse(MRI.getNumVirtRegs()); 789 VRegUses.setUniverse(MRI.getNumVirtRegs()); 790 791 // Model data dependencies between instructions being scheduled and the 792 // ExitSU. 793 addSchedBarrierDeps(); 794 795 // Walk the list of instructions, from bottom moving up. 796 MachineInstr *DbgMI = nullptr; 797 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 798 MII != MIE; --MII) { 799 MachineInstr *MI = std::prev(MII); 800 if (MI && DbgMI) { 801 DbgValues.push_back(std::make_pair(DbgMI, MI)); 802 DbgMI = nullptr; 803 } 804 805 if (MI->isDebugValue()) { 806 DbgMI = MI; 807 continue; 808 } 809 SUnit *SU = MISUnitMap[MI]; 810 assert(SU && "No SUnit mapped to this MI"); 811 812 if (RPTracker) { 813 PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : nullptr; 814 RPTracker->recede(/*LiveUses=*/nullptr, PDiff); 815 assert(RPTracker->getPos() == std::prev(MII) && 816 "RPTracker can't find MI"); 817 } 818 819 assert( 820 (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) && 821 "Cannot schedule terminators or labels!"); 822 823 // Add register-based dependencies (data, anti, and output). 824 bool HasVRegDef = false; 825 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { 826 const MachineOperand &MO = MI->getOperand(j); 827 if (!MO.isReg()) continue; 828 unsigned Reg = MO.getReg(); 829 if (Reg == 0) continue; 830 831 if (TRI->isPhysicalRegister(Reg)) 832 addPhysRegDeps(SU, j); 833 else { 834 assert(!IsPostRA && "Virtual register encountered!"); 835 if (MO.isDef()) { 836 HasVRegDef = true; 837 addVRegDefDeps(SU, j); 838 } 839 else if (MO.readsReg()) // ignore undef operands 840 addVRegUseDeps(SU, j); 841 } 842 } 843 // If we haven't seen any uses in this scheduling region, create a 844 // dependence edge to ExitSU to model the live-out latency. This is required 845 // for vreg defs with no in-region use, and prefetches with no vreg def. 846 // 847 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 848 // check currently relies on being called before adding chain deps. 849 if (SU->NumSuccs == 0 && SU->Latency > 1 850 && (HasVRegDef || MI->mayLoad())) { 851 SDep Dep(SU, SDep::Artificial); 852 Dep.setLatency(SU->Latency - 1); 853 ExitSU.addPred(Dep); 854 } 855 856 // Add chain dependencies. 857 // Chain dependencies used to enforce memory order should have 858 // latency of 0 (except for true dependency of Store followed by 859 // aliased Load... we estimate that with a single cycle of latency 860 // assuming the hardware will bypass) 861 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable 862 // after stack slots are lowered to actual addresses. 863 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and 864 // produce more precise dependence information. 865 unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0; 866 if (isGlobalMemoryObject(AA, MI)) { 867 // Be conservative with these and add dependencies on all memory 868 // references, even those that are known to not alias. 869 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 870 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { 871 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 872 I->second[i]->addPred(SDep(SU, SDep::Barrier)); 873 } 874 } 875 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 876 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { 877 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 878 SDep Dep(SU, SDep::Barrier); 879 Dep.setLatency(TrueMemOrderLatency); 880 I->second[i]->addPred(Dep); 881 } 882 } 883 // Add SU to the barrier chain. 884 if (BarrierChain) 885 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 886 BarrierChain = SU; 887 // This is a barrier event that acts as a pivotal node in the DAG, 888 // so it is safe to clear list of exposed nodes. 889 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes, 890 TrueMemOrderLatency); 891 RejectMemNodes.clear(); 892 NonAliasMemDefs.clear(); 893 NonAliasMemUses.clear(); 894 895 // fall-through 896 new_alias_chain: 897 // Chain all possibly aliasing memory references through SU. 898 if (AliasChain) { 899 unsigned ChainLatency = 0; 900 if (AliasChain->getInstr()->mayLoad()) 901 ChainLatency = TrueMemOrderLatency; 902 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain, 903 RejectMemNodes, ChainLatency); 904 } 905 AliasChain = SU; 906 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 907 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 908 PendingLoads[k], RejectMemNodes, 909 TrueMemOrderLatency); 910 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 911 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) { 912 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 913 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 914 I->second[i], RejectMemNodes); 915 } 916 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 917 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { 918 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 919 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 920 I->second[i], RejectMemNodes, TrueMemOrderLatency); 921 } 922 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes, 923 TrueMemOrderLatency); 924 PendingLoads.clear(); 925 AliasMemDefs.clear(); 926 AliasMemUses.clear(); 927 } else if (MI->mayStore()) { 928 // Add dependence on barrier chain, if needed. 929 // There is no point to check aliasing on barrier event. Even if 930 // SU and barrier _could_ be reordered, they should not. In addition, 931 // we have lost all RejectMemNodes below barrier. 932 if (BarrierChain) 933 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 934 935 UnderlyingObjectsVector Objs; 936 getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout()); 937 938 if (Objs.empty()) { 939 // Treat all other stores conservatively. 940 goto new_alias_chain; 941 } 942 943 bool MayAlias = false; 944 for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end(); 945 K != KE; ++K) { 946 ValueType V = K->getPointer(); 947 bool ThisMayAlias = K->getInt(); 948 if (ThisMayAlias) 949 MayAlias = true; 950 951 // A store to a specific PseudoSourceValue. Add precise dependencies. 952 // Record the def in MemDefs, first adding a dep if there is 953 // an existing def. 954 MapVector<ValueType, std::vector<SUnit *> >::iterator I = 955 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 956 MapVector<ValueType, std::vector<SUnit *> >::iterator IE = 957 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 958 if (I != IE) { 959 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 960 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 961 I->second[i], RejectMemNodes, 0, true); 962 963 // If we're not using AA, then we only need one store per object. 964 if (!AAForDep) 965 I->second.clear(); 966 I->second.push_back(SU); 967 } else { 968 if (ThisMayAlias) { 969 if (!AAForDep) 970 AliasMemDefs[V].clear(); 971 AliasMemDefs[V].push_back(SU); 972 } else { 973 if (!AAForDep) 974 NonAliasMemDefs[V].clear(); 975 NonAliasMemDefs[V].push_back(SU); 976 } 977 } 978 // Handle the uses in MemUses, if there are any. 979 MapVector<ValueType, std::vector<SUnit *> >::iterator J = 980 ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); 981 MapVector<ValueType, std::vector<SUnit *> >::iterator JE = 982 ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); 983 if (J != JE) { 984 for (unsigned i = 0, e = J->second.size(); i != e; ++i) 985 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 986 J->second[i], RejectMemNodes, 987 TrueMemOrderLatency, true); 988 J->second.clear(); 989 } 990 } 991 if (MayAlias) { 992 // Add dependencies from all the PendingLoads, i.e. loads 993 // with no underlying object. 994 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 995 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 996 PendingLoads[k], RejectMemNodes, 997 TrueMemOrderLatency); 998 // Add dependence on alias chain, if needed. 999 if (AliasChain) 1000 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain, 1001 RejectMemNodes); 1002 } 1003 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes, 1004 TrueMemOrderLatency); 1005 } else if (MI->mayLoad()) { 1006 bool MayAlias = true; 1007 if (MI->isInvariantLoad(AA)) { 1008 // Invariant load, no chain dependencies needed! 1009 } else { 1010 UnderlyingObjectsVector Objs; 1011 getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout()); 1012 1013 if (Objs.empty()) { 1014 // A load with no underlying object. Depend on all 1015 // potentially aliasing stores. 1016 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 1017 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) 1018 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1019 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 1020 I->second[i], RejectMemNodes); 1021 1022 PendingLoads.push_back(SU); 1023 MayAlias = true; 1024 } else { 1025 MayAlias = false; 1026 } 1027 1028 for (UnderlyingObjectsVector::iterator 1029 J = Objs.begin(), JE = Objs.end(); J != JE; ++J) { 1030 ValueType V = J->getPointer(); 1031 bool ThisMayAlias = J->getInt(); 1032 1033 if (ThisMayAlias) 1034 MayAlias = true; 1035 1036 // A load from a specific PseudoSourceValue. Add precise dependencies. 1037 MapVector<ValueType, std::vector<SUnit *> >::iterator I = 1038 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 1039 MapVector<ValueType, std::vector<SUnit *> >::iterator IE = 1040 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 1041 if (I != IE) 1042 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1043 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 1044 I->second[i], RejectMemNodes, 0, true); 1045 if (ThisMayAlias) 1046 AliasMemUses[V].push_back(SU); 1047 else 1048 NonAliasMemUses[V].push_back(SU); 1049 } 1050 if (MayAlias) 1051 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, 1052 RejectMemNodes, /*Latency=*/0); 1053 // Add dependencies on alias and barrier chains, if needed. 1054 if (MayAlias && AliasChain) 1055 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain, 1056 RejectMemNodes); 1057 if (BarrierChain) 1058 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 1059 } 1060 } 1061 } 1062 if (DbgMI) 1063 FirstDbgValue = DbgMI; 1064 1065 Defs.clear(); 1066 Uses.clear(); 1067 VRegDefs.clear(); 1068 PendingLoads.clear(); 1069 } 1070 1071 /// \brief Initialize register live-range state for updating kills. 1072 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { 1073 // Start with no live registers. 1074 LiveRegs.reset(); 1075 1076 // Examine the live-in regs of all successors. 1077 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 1078 SE = BB->succ_end(); SI != SE; ++SI) { 1079 for (const auto &LI : (*SI)->liveins()) { 1080 // Repeat, for reg and all subregs. 1081 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 1082 SubRegs.isValid(); ++SubRegs) 1083 LiveRegs.set(*SubRegs); 1084 } 1085 } 1086 } 1087 1088 /// \brief If we change a kill flag on the bundle instruction implicit register 1089 /// operands, then we also need to propagate that to any instructions inside 1090 /// the bundle which had the same kill state. 1091 static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg, 1092 bool NewKillState) { 1093 if (MI->getOpcode() != TargetOpcode::BUNDLE) 1094 return; 1095 1096 // Walk backwards from the last instruction in the bundle to the first. 1097 // Once we set a kill flag on an instruction, we bail out, as otherwise we 1098 // might set it on too many operands. We will clear as many flags as we 1099 // can though. 1100 MachineBasicBlock::instr_iterator Begin = MI->getIterator(); 1101 MachineBasicBlock::instr_iterator End = getBundleEnd(MI); 1102 while (Begin != End) { 1103 for (MachineOperand &MO : (--End)->operands()) { 1104 if (!MO.isReg() || MO.isDef() || Reg != MO.getReg()) 1105 continue; 1106 1107 // DEBUG_VALUE nodes do not contribute to code generation and should 1108 // always be ignored. Failure to do so may result in trying to modify 1109 // KILL flags on DEBUG_VALUE nodes, which is distressing. 1110 if (MO.isDebug()) 1111 continue; 1112 1113 // If the register has the internal flag then it could be killing an 1114 // internal def of the register. In this case, just skip. We only want 1115 // to toggle the flag on operands visible outside the bundle. 1116 if (MO.isInternalRead()) 1117 continue; 1118 1119 if (MO.isKill() == NewKillState) 1120 continue; 1121 MO.setIsKill(NewKillState); 1122 if (NewKillState) 1123 return; 1124 } 1125 } 1126 } 1127 1128 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) { 1129 // Setting kill flag... 1130 if (!MO.isKill()) { 1131 MO.setIsKill(true); 1132 toggleBundleKillFlag(MI, MO.getReg(), true); 1133 return false; 1134 } 1135 1136 // If MO itself is live, clear the kill flag... 1137 if (LiveRegs.test(MO.getReg())) { 1138 MO.setIsKill(false); 1139 toggleBundleKillFlag(MI, MO.getReg(), false); 1140 return false; 1141 } 1142 1143 // If any subreg of MO is live, then create an imp-def for that 1144 // subreg and keep MO marked as killed. 1145 MO.setIsKill(false); 1146 toggleBundleKillFlag(MI, MO.getReg(), false); 1147 bool AllDead = true; 1148 const unsigned SuperReg = MO.getReg(); 1149 MachineInstrBuilder MIB(MF, MI); 1150 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { 1151 if (LiveRegs.test(*SubRegs)) { 1152 MIB.addReg(*SubRegs, RegState::ImplicitDefine); 1153 AllDead = false; 1154 } 1155 } 1156 1157 if(AllDead) { 1158 MO.setIsKill(true); 1159 toggleBundleKillFlag(MI, MO.getReg(), true); 1160 } 1161 return false; 1162 } 1163 1164 // FIXME: Reuse the LivePhysRegs utility for this. 1165 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { 1166 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); 1167 1168 LiveRegs.resize(TRI->getNumRegs()); 1169 BitVector killedRegs(TRI->getNumRegs()); 1170 1171 startBlockForKills(MBB); 1172 1173 // Examine block from end to start... 1174 unsigned Count = MBB->size(); 1175 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); 1176 I != E; --Count) { 1177 MachineInstr *MI = --I; 1178 if (MI->isDebugValue()) 1179 continue; 1180 1181 // Update liveness. Registers that are defed but not used in this 1182 // instruction are now dead. Mark register and all subregs as they 1183 // are completely defined. 1184 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1185 MachineOperand &MO = MI->getOperand(i); 1186 if (MO.isRegMask()) 1187 LiveRegs.clearBitsNotInMask(MO.getRegMask()); 1188 if (!MO.isReg()) continue; 1189 unsigned Reg = MO.getReg(); 1190 if (Reg == 0) continue; 1191 if (!MO.isDef()) continue; 1192 // Ignore two-addr defs. 1193 if (MI->isRegTiedToUseOperand(i)) continue; 1194 1195 // Repeat for reg and all subregs. 1196 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1197 SubRegs.isValid(); ++SubRegs) 1198 LiveRegs.reset(*SubRegs); 1199 } 1200 1201 // Examine all used registers and set/clear kill flag. When a 1202 // register is used multiple times we only set the kill flag on 1203 // the first use. Don't set kill flags on undef operands. 1204 killedRegs.reset(); 1205 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1206 MachineOperand &MO = MI->getOperand(i); 1207 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1208 unsigned Reg = MO.getReg(); 1209 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1210 1211 bool kill = false; 1212 if (!killedRegs.test(Reg)) { 1213 kill = true; 1214 // A register is not killed if any subregs are live... 1215 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 1216 if (LiveRegs.test(*SubRegs)) { 1217 kill = false; 1218 break; 1219 } 1220 } 1221 1222 // If subreg is not live, then register is killed if it became 1223 // live in this instruction 1224 if (kill) 1225 kill = !LiveRegs.test(Reg); 1226 } 1227 1228 if (MO.isKill() != kill) { 1229 DEBUG(dbgs() << "Fixing " << MO << " in "); 1230 // Warning: toggleKillFlag may invalidate MO. 1231 toggleKillFlag(MI, MO); 1232 DEBUG(MI->dump()); 1233 DEBUG(if (MI->getOpcode() == TargetOpcode::BUNDLE) { 1234 MachineBasicBlock::instr_iterator Begin = MI->getIterator(); 1235 MachineBasicBlock::instr_iterator End = getBundleEnd(MI); 1236 while (++Begin != End) 1237 DEBUG(Begin->dump()); 1238 }); 1239 } 1240 1241 killedRegs.set(Reg); 1242 } 1243 1244 // Mark any used register (that is not using undef) and subregs as 1245 // now live... 1246 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1247 MachineOperand &MO = MI->getOperand(i); 1248 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1249 unsigned Reg = MO.getReg(); 1250 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1251 1252 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1253 SubRegs.isValid(); ++SubRegs) 1254 LiveRegs.set(*SubRegs); 1255 } 1256 } 1257 } 1258 1259 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1260 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1261 SU->getInstr()->dump(); 1262 #endif 1263 } 1264 1265 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1266 std::string s; 1267 raw_string_ostream oss(s); 1268 if (SU == &EntrySU) 1269 oss << "<entry>"; 1270 else if (SU == &ExitSU) 1271 oss << "<exit>"; 1272 else 1273 SU->getInstr()->print(oss, /*SkipOpers=*/true); 1274 return oss.str(); 1275 } 1276 1277 /// Return the basic block label. It is not necessarilly unique because a block 1278 /// contains multiple scheduling regions. But it is fine for visualization. 1279 std::string ScheduleDAGInstrs::getDAGName() const { 1280 return "dag." + BB->getFullName(); 1281 } 1282 1283 //===----------------------------------------------------------------------===// 1284 // SchedDFSResult Implementation 1285 //===----------------------------------------------------------------------===// 1286 1287 namespace llvm { 1288 /// \brief Internal state used to compute SchedDFSResult. 1289 class SchedDFSImpl { 1290 SchedDFSResult &R; 1291 1292 /// Join DAG nodes into equivalence classes by their subtree. 1293 IntEqClasses SubtreeClasses; 1294 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1295 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 1296 1297 struct RootData { 1298 unsigned NodeID; 1299 unsigned ParentNodeID; // Parent node (member of the parent subtree). 1300 unsigned SubInstrCount; // Instr count in this tree only, not children. 1301 1302 RootData(unsigned id): NodeID(id), 1303 ParentNodeID(SchedDFSResult::InvalidSubtreeID), 1304 SubInstrCount(0) {} 1305 1306 unsigned getSparseSetIndex() const { return NodeID; } 1307 }; 1308 1309 SparseSet<RootData> RootSet; 1310 1311 public: 1312 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1313 RootSet.setUniverse(R.DFSNodeData.size()); 1314 } 1315 1316 /// Return true if this node been visited by the DFS traversal. 1317 /// 1318 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1319 /// ID. Later, SubtreeID is updated but remains valid. 1320 bool isVisited(const SUnit *SU) const { 1321 return R.DFSNodeData[SU->NodeNum].SubtreeID 1322 != SchedDFSResult::InvalidSubtreeID; 1323 } 1324 1325 /// Initialize this node's instruction count. We don't need to flag the node 1326 /// visited until visitPostorder because the DAG cannot have cycles. 1327 void visitPreorder(const SUnit *SU) { 1328 R.DFSNodeData[SU->NodeNum].InstrCount = 1329 SU->getInstr()->isTransient() ? 0 : 1; 1330 } 1331 1332 /// Called once for each node after all predecessors are visited. Revisit this 1333 /// node's predecessors and potentially join them now that we know the ILP of 1334 /// the other predecessors. 1335 void visitPostorderNode(const SUnit *SU) { 1336 // Mark this node as the root of a subtree. It may be joined with its 1337 // successors later. 1338 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1339 RootData RData(SU->NodeNum); 1340 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1341 1342 // If any predecessors are still in their own subtree, they either cannot be 1343 // joined or are large enough to remain separate. If this parent node's 1344 // total instruction count is not greater than a child subtree by at least 1345 // the subtree limit, then try to join it now since splitting subtrees is 1346 // only useful if multiple high-pressure paths are possible. 1347 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1348 for (SUnit::const_pred_iterator 1349 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1350 if (PI->getKind() != SDep::Data) 1351 continue; 1352 unsigned PredNum = PI->getSUnit()->NodeNum; 1353 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1354 joinPredSubtree(*PI, SU, /*CheckLimit=*/false); 1355 1356 // Either link or merge the TreeData entry from the child to the parent. 1357 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1358 // If the predecessor's parent is invalid, this is a tree edge and the 1359 // current node is the parent. 1360 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1361 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1362 } 1363 else if (RootSet.count(PredNum)) { 1364 // The predecessor is not a root, but is still in the root set. This 1365 // must be the new parent that it was just joined to. Note that 1366 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1367 // set to the original parent. 1368 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1369 RootSet.erase(PredNum); 1370 } 1371 } 1372 RootSet[SU->NodeNum] = RData; 1373 } 1374 1375 /// Called once for each tree edge after calling visitPostOrderNode on the 1376 /// predecessor. Increment the parent node's instruction count and 1377 /// preemptively join this subtree to its parent's if it is small enough. 1378 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1379 R.DFSNodeData[Succ->NodeNum].InstrCount 1380 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1381 joinPredSubtree(PredDep, Succ); 1382 } 1383 1384 /// Add a connection for cross edges. 1385 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1386 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1387 } 1388 1389 /// Set each node's subtree ID to the representative ID and record connections 1390 /// between trees. 1391 void finalize() { 1392 SubtreeClasses.compress(); 1393 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1394 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1395 && "number of roots should match trees"); 1396 for (SparseSet<RootData>::const_iterator 1397 RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) { 1398 unsigned TreeID = SubtreeClasses[RI->NodeID]; 1399 if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1400 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID]; 1401 R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount; 1402 // Note that SubInstrCount may be greater than InstrCount if we joined 1403 // subtrees across a cross edge. InstrCount will be attributed to the 1404 // original parent, while SubInstrCount will be attributed to the joined 1405 // parent. 1406 } 1407 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1408 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1409 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1410 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1411 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1412 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1413 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1414 } 1415 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator 1416 I = ConnectionPairs.begin(), E = ConnectionPairs.end(); 1417 I != E; ++I) { 1418 unsigned PredTree = SubtreeClasses[I->first->NodeNum]; 1419 unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; 1420 if (PredTree == SuccTree) 1421 continue; 1422 unsigned Depth = I->first->getDepth(); 1423 addConnection(PredTree, SuccTree, Depth); 1424 addConnection(SuccTree, PredTree, Depth); 1425 } 1426 } 1427 1428 protected: 1429 /// Join the predecessor subtree with the successor that is its DFS 1430 /// parent. Apply some heuristics before joining. 1431 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1432 bool CheckLimit = true) { 1433 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1434 1435 // Check if the predecessor is already joined. 1436 const SUnit *PredSU = PredDep.getSUnit(); 1437 unsigned PredNum = PredSU->NodeNum; 1438 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1439 return false; 1440 1441 // Four is the magic number of successors before a node is considered a 1442 // pinch point. 1443 unsigned NumDataSucs = 0; 1444 for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(), 1445 SE = PredSU->Succs.end(); SI != SE; ++SI) { 1446 if (SI->getKind() == SDep::Data) { 1447 if (++NumDataSucs >= 4) 1448 return false; 1449 } 1450 } 1451 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1452 return false; 1453 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1454 SubtreeClasses.join(Succ->NodeNum, PredNum); 1455 return true; 1456 } 1457 1458 /// Called by finalize() to record a connection between trees. 1459 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1460 if (!Depth) 1461 return; 1462 1463 do { 1464 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1465 R.SubtreeConnections[FromTree]; 1466 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator 1467 I = Connections.begin(), E = Connections.end(); I != E; ++I) { 1468 if (I->TreeID == ToTree) { 1469 I->Level = std::max(I->Level, Depth); 1470 return; 1471 } 1472 } 1473 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1474 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1475 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1476 } 1477 }; 1478 } // namespace llvm 1479 1480 namespace { 1481 /// \brief Manage the stack used by a reverse depth-first search over the DAG. 1482 class SchedDAGReverseDFS { 1483 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 1484 public: 1485 bool isComplete() const { return DFSStack.empty(); } 1486 1487 void follow(const SUnit *SU) { 1488 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1489 } 1490 void advance() { ++DFSStack.back().second; } 1491 1492 const SDep *backtrack() { 1493 DFSStack.pop_back(); 1494 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1495 } 1496 1497 const SUnit *getCurr() const { return DFSStack.back().first; } 1498 1499 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1500 1501 SUnit::const_pred_iterator getPredEnd() const { 1502 return getCurr()->Preds.end(); 1503 } 1504 }; 1505 } // anonymous 1506 1507 static bool hasDataSucc(const SUnit *SU) { 1508 for (SUnit::const_succ_iterator 1509 SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) { 1510 if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode()) 1511 return true; 1512 } 1513 return false; 1514 } 1515 1516 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first 1517 /// search from this root. 1518 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1519 if (!IsBottomUp) 1520 llvm_unreachable("Top-down ILP metric is unimplemnted"); 1521 1522 SchedDFSImpl Impl(*this); 1523 for (ArrayRef<SUnit>::const_iterator 1524 SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) { 1525 const SUnit *SU = &*SI; 1526 if (Impl.isVisited(SU) || hasDataSucc(SU)) 1527 continue; 1528 1529 SchedDAGReverseDFS DFS; 1530 Impl.visitPreorder(SU); 1531 DFS.follow(SU); 1532 for (;;) { 1533 // Traverse the leftmost path as far as possible. 1534 while (DFS.getPred() != DFS.getPredEnd()) { 1535 const SDep &PredDep = *DFS.getPred(); 1536 DFS.advance(); 1537 // Ignore non-data edges. 1538 if (PredDep.getKind() != SDep::Data 1539 || PredDep.getSUnit()->isBoundaryNode()) { 1540 continue; 1541 } 1542 // An already visited edge is a cross edge, assuming an acyclic DAG. 1543 if (Impl.isVisited(PredDep.getSUnit())) { 1544 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1545 continue; 1546 } 1547 Impl.visitPreorder(PredDep.getSUnit()); 1548 DFS.follow(PredDep.getSUnit()); 1549 } 1550 // Visit the top of the stack in postorder and backtrack. 1551 const SUnit *Child = DFS.getCurr(); 1552 const SDep *PredDep = DFS.backtrack(); 1553 Impl.visitPostorderNode(Child); 1554 if (PredDep) 1555 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1556 if (DFS.isComplete()) 1557 break; 1558 } 1559 } 1560 Impl.finalize(); 1561 } 1562 1563 /// The root of the given SubtreeID was just scheduled. For all subtrees 1564 /// connected to this tree, record the depth of the connection so that the 1565 /// nearest connected subtrees can be prioritized. 1566 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1567 for (SmallVectorImpl<Connection>::const_iterator 1568 I = SubtreeConnections[SubtreeID].begin(), 1569 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { 1570 SubtreeConnectLevels[I->TreeID] = 1571 std::max(SubtreeConnectLevels[I->TreeID], I->Level); 1572 DEBUG(dbgs() << " Tree: " << I->TreeID 1573 << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); 1574 } 1575 } 1576 1577 LLVM_DUMP_METHOD 1578 void ILPValue::print(raw_ostream &OS) const { 1579 OS << InstrCount << " / " << Length << " = "; 1580 if (!Length) 1581 OS << "BADILP"; 1582 else 1583 OS << format("%g", ((double)InstrCount / Length)); 1584 } 1585 1586 LLVM_DUMP_METHOD 1587 void ILPValue::dump() const { 1588 dbgs() << *this << '\n'; 1589 } 1590 1591 namespace llvm { 1592 1593 LLVM_DUMP_METHOD 1594 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1595 Val.print(OS); 1596 return OS; 1597 } 1598 1599 } // namespace llvm 1600