1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file This implements the ScheduleDAGInstrs class, which implements 11 /// re-scheduling of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 16 #include "llvm/ADT/IntEqClasses.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/PseudoSourceValue.h" 28 #include "llvm/CodeGen/RegisterPressure.h" 29 #include "llvm/CodeGen/ScheduleDFS.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/Format.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "misched" 45 46 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 47 cl::ZeroOrMore, cl::init(false), 48 cl::desc("Enable use of AA during MI DAG construction")); 49 50 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 51 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 52 53 // Note: the two options below might be used in tuning compile time vs 54 // output quality. Setting HugeRegion so large that it will never be 55 // reached means best-effort, but may be slow. 56 57 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) 58 // together hold this many SUs, a reduction of maps will be done. 59 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, 60 cl::init(1000), cl::desc("The limit to use while constructing the DAG " 61 "prior to scheduling, at which point a trade-off " 62 "is made to avoid excessive compile time.")); 63 64 static cl::opt<unsigned> ReductionSize( 65 "dag-maps-reduction-size", cl::Hidden, 66 cl::desc("A huge scheduling region will have maps reduced by this many " 67 "nodes at a time. Defaults to HugeRegion / 2.")); 68 69 static unsigned getReductionSize() { 70 // Always reduce a huge region with half of the elements, except 71 // when user sets this number explicitly. 72 if (ReductionSize.getNumOccurrences() == 0) 73 return HugeRegion / 2; 74 return ReductionSize; 75 } 76 77 static void dumpSUList(ScheduleDAGInstrs::SUList &L) { 78 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 79 dbgs() << "{ "; 80 for (const SUnit *su : L) { 81 dbgs() << "SU(" << su->NodeNum << ")"; 82 if (su != L.back()) 83 dbgs() << ", "; 84 } 85 dbgs() << "}\n"; 86 #endif 87 } 88 89 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 90 const MachineLoopInfo *mli, 91 bool RemoveKillFlags) 92 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 93 RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false), 94 TrackLaneMasks(false), AAForDep(nullptr), BarrierChain(nullptr), 95 UnknownValue(UndefValue::get( 96 Type::getVoidTy(mf.getFunction()->getContext()))), 97 FirstDbgValue(nullptr) { 98 DbgValues.clear(); 99 100 const TargetSubtargetInfo &ST = mf.getSubtarget(); 101 SchedModel.init(ST.getSchedModel(), &ST, TII); 102 } 103 104 /// This is the function that does the work of looking through basic 105 /// ptrtoint+arithmetic+inttoptr sequences. 106 static const Value *getUnderlyingObjectFromInt(const Value *V) { 107 do { 108 if (const Operator *U = dyn_cast<Operator>(V)) { 109 // If we find a ptrtoint, we can transfer control back to the 110 // regular getUnderlyingObjectFromInt. 111 if (U->getOpcode() == Instruction::PtrToInt) 112 return U->getOperand(0); 113 // If we find an add of a constant, a multiplied value, or a phi, it's 114 // likely that the other operand will lead us to the base 115 // object. We don't have to worry about the case where the 116 // object address is somehow being computed by the multiply, 117 // because our callers only care when the result is an 118 // identifiable object. 119 if (U->getOpcode() != Instruction::Add || 120 (!isa<ConstantInt>(U->getOperand(1)) && 121 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 122 !isa<PHINode>(U->getOperand(1)))) 123 return V; 124 V = U->getOperand(0); 125 } else { 126 return V; 127 } 128 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 129 } while (1); 130 } 131 132 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 133 /// ptrtoint+arithmetic+inttoptr sequences. 134 static void getUnderlyingObjects(const Value *V, 135 SmallVectorImpl<Value *> &Objects, 136 const DataLayout &DL) { 137 SmallPtrSet<const Value *, 16> Visited; 138 SmallVector<const Value *, 4> Working(1, V); 139 do { 140 V = Working.pop_back_val(); 141 142 SmallVector<Value *, 4> Objs; 143 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 144 145 for (Value *V : Objs) { 146 if (!Visited.insert(V).second) 147 continue; 148 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 149 const Value *O = 150 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 151 if (O->getType()->isPointerTy()) { 152 Working.push_back(O); 153 continue; 154 } 155 } 156 Objects.push_back(const_cast<Value *>(V)); 157 } 158 } while (!Working.empty()); 159 } 160 161 /// If this machine instr has memory reference information and it can be tracked 162 /// to a normal reference to a known object, return the Value for that object. 163 static void getUnderlyingObjectsForInstr(const MachineInstr *MI, 164 const MachineFrameInfo &MFI, 165 UnderlyingObjectsVector &Objects, 166 const DataLayout &DL) { 167 auto allMMOsOkay = [&]() { 168 for (const MachineMemOperand *MMO : MI->memoperands()) { 169 if (MMO->isVolatile()) 170 return false; 171 172 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 173 // Function that contain tail calls don't have unique PseudoSourceValue 174 // objects. Two PseudoSourceValues might refer to the same or 175 // overlapping locations. The client code calling this function assumes 176 // this is not the case. So return a conservative answer of no known 177 // object. 178 if (MFI.hasTailCall()) 179 return false; 180 181 // For now, ignore PseudoSourceValues which may alias LLVM IR values 182 // because the code that uses this function has no way to cope with 183 // such aliases. 184 if (PSV->isAliased(&MFI)) 185 return false; 186 187 bool MayAlias = PSV->mayAlias(&MFI); 188 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 189 } else if (const Value *V = MMO->getValue()) { 190 SmallVector<Value *, 4> Objs; 191 getUnderlyingObjects(V, Objs, DL); 192 193 for (Value *V : Objs) { 194 if (!isIdentifiedObject(V)) 195 return false; 196 197 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 198 } 199 } else 200 return false; 201 } 202 return true; 203 }; 204 205 if (!allMMOsOkay()) 206 Objects.clear(); 207 } 208 209 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 210 BB = bb; 211 } 212 213 void ScheduleDAGInstrs::finishBlock() { 214 // Subclasses should no longer refer to the old block. 215 BB = nullptr; 216 } 217 218 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 219 MachineBasicBlock::iterator begin, 220 MachineBasicBlock::iterator end, 221 unsigned regioninstrs) { 222 assert(bb == BB && "startBlock should set BB"); 223 RegionBegin = begin; 224 RegionEnd = end; 225 NumRegionInstrs = regioninstrs; 226 } 227 228 void ScheduleDAGInstrs::exitRegion() { 229 // Nothing to do. 230 } 231 232 void ScheduleDAGInstrs::addSchedBarrierDeps() { 233 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 234 ExitSU.setInstr(ExitMI); 235 // Add dependencies on the defs and uses of the instruction. 236 if (ExitMI) { 237 for (const MachineOperand &MO : ExitMI->operands()) { 238 if (!MO.isReg() || MO.isDef()) continue; 239 unsigned Reg = MO.getReg(); 240 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 241 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 242 } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) { 243 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO)); 244 } 245 } 246 } 247 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) { 248 // For others, e.g. fallthrough, conditional branch, assume the exit 249 // uses all the registers that are livein to the successor blocks. 250 for (const MachineBasicBlock *Succ : BB->successors()) { 251 for (const auto &LI : Succ->liveins()) { 252 if (!Uses.contains(LI.PhysReg)) 253 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 254 } 255 } 256 } 257 } 258 259 /// MO is an operand of SU's instruction that defines a physical register. Adds 260 /// data dependencies from SU to any uses of the physical register. 261 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 262 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 263 assert(MO.isDef() && "expect physreg def"); 264 265 // Ask the target if address-backscheduling is desirable, and if so how much. 266 const TargetSubtargetInfo &ST = MF.getSubtarget(); 267 268 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 269 Alias.isValid(); ++Alias) { 270 if (!Uses.contains(*Alias)) 271 continue; 272 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 273 SUnit *UseSU = I->SU; 274 if (UseSU == SU) 275 continue; 276 277 // Adjust the dependence latency using operand def/use information, 278 // then allow the target to perform its own adjustments. 279 int UseOp = I->OpIdx; 280 MachineInstr *RegUse = nullptr; 281 SDep Dep; 282 if (UseOp < 0) 283 Dep = SDep(SU, SDep::Artificial); 284 else { 285 // Set the hasPhysRegDefs only for physreg defs that have a use within 286 // the scheduling region. 287 SU->hasPhysRegDefs = true; 288 Dep = SDep(SU, SDep::Data, *Alias); 289 RegUse = UseSU->getInstr(); 290 } 291 Dep.setLatency( 292 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 293 UseOp)); 294 295 ST.adjustSchedDependency(SU, UseSU, Dep); 296 UseSU->addPred(Dep); 297 } 298 } 299 } 300 301 /// \brief Adds register dependencies (data, anti, and output) from this SUnit 302 /// to following instructions in the same scheduling region that depend the 303 /// physical register referenced at OperIdx. 304 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 305 MachineInstr *MI = SU->getInstr(); 306 MachineOperand &MO = MI->getOperand(OperIdx); 307 unsigned Reg = MO.getReg(); 308 // We do not need to track any dependencies for constant registers. 309 if (MRI.isConstantPhysReg(Reg)) 310 return; 311 312 // Optionally add output and anti dependencies. For anti 313 // dependencies we use a latency of 0 because for a multi-issue 314 // target we want to allow the defining instruction to issue 315 // in the same cycle as the using instruction. 316 // TODO: Using a latency of 1 here for output dependencies assumes 317 // there's no cost for reusing registers. 318 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 319 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 320 if (!Defs.contains(*Alias)) 321 continue; 322 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 323 SUnit *DefSU = I->SU; 324 if (DefSU == &ExitSU) 325 continue; 326 if (DefSU != SU && 327 (Kind != SDep::Output || !MO.isDead() || 328 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 329 if (Kind == SDep::Anti) 330 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 331 else { 332 SDep Dep(SU, Kind, /*Reg=*/*Alias); 333 Dep.setLatency( 334 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 335 DefSU->addPred(Dep); 336 } 337 } 338 } 339 } 340 341 if (!MO.isDef()) { 342 SU->hasPhysRegUses = true; 343 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 344 // retrieve the existing SUnits list for this register's uses. 345 // Push this SUnit on the use list. 346 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg)); 347 if (RemoveKillFlags) 348 MO.setIsKill(false); 349 } else { 350 addPhysRegDataDeps(SU, OperIdx); 351 352 // clear this register's use list 353 if (Uses.contains(Reg)) 354 Uses.eraseAll(Reg); 355 356 if (!MO.isDead()) { 357 Defs.eraseAll(Reg); 358 } else if (SU->isCall) { 359 // Calls will not be reordered because of chain dependencies (see 360 // below). Since call operands are dead, calls may continue to be added 361 // to the DefList making dependence checking quadratic in the size of 362 // the block. Instead, we leave only one call at the back of the 363 // DefList. 364 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 365 Reg2SUnitsMap::iterator B = P.first; 366 Reg2SUnitsMap::iterator I = P.second; 367 for (bool isBegin = I == B; !isBegin; /* empty */) { 368 isBegin = (--I) == B; 369 if (!I->SU->isCall) 370 break; 371 I = Defs.erase(I); 372 } 373 } 374 375 // Defs are pushed in the order they are visited and never reordered. 376 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 377 } 378 } 379 380 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 381 { 382 unsigned Reg = MO.getReg(); 383 // No point in tracking lanemasks if we don't have interesting subregisters. 384 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 385 if (!RC.HasDisjunctSubRegs) 386 return LaneBitmask::getAll(); 387 388 unsigned SubReg = MO.getSubReg(); 389 if (SubReg == 0) 390 return RC.getLaneMask(); 391 return TRI->getSubRegIndexLaneMask(SubReg); 392 } 393 394 /// Adds register output and data dependencies from this SUnit to instructions 395 /// that occur later in the same scheduling region if they read from or write to 396 /// the virtual register defined at OperIdx. 397 /// 398 /// TODO: Hoist loop induction variable increments. This has to be 399 /// reevaluated. Generally, IV scheduling should be done before coalescing. 400 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 401 MachineInstr *MI = SU->getInstr(); 402 MachineOperand &MO = MI->getOperand(OperIdx); 403 unsigned Reg = MO.getReg(); 404 405 LaneBitmask DefLaneMask; 406 LaneBitmask KillLaneMask; 407 if (TrackLaneMasks) { 408 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 409 DefLaneMask = getLaneMaskForMO(MO); 410 // If we have a <read-undef> flag, none of the lane values comes from an 411 // earlier instruction. 412 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask; 413 414 // Clear undef flag, we'll re-add it later once we know which subregister 415 // Def is first. 416 MO.setIsUndef(false); 417 } else { 418 DefLaneMask = LaneBitmask::getAll(); 419 KillLaneMask = LaneBitmask::getAll(); 420 } 421 422 if (MO.isDead()) { 423 assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() && 424 "Dead defs should have no uses"); 425 } else { 426 // Add data dependence to all uses we found so far. 427 const TargetSubtargetInfo &ST = MF.getSubtarget(); 428 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 429 E = CurrentVRegUses.end(); I != E; /*empty*/) { 430 LaneBitmask LaneMask = I->LaneMask; 431 // Ignore uses of other lanes. 432 if ((LaneMask & KillLaneMask).none()) { 433 ++I; 434 continue; 435 } 436 437 if ((LaneMask & DefLaneMask).any()) { 438 SUnit *UseSU = I->SU; 439 MachineInstr *Use = UseSU->getInstr(); 440 SDep Dep(SU, SDep::Data, Reg); 441 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 442 I->OperandIndex)); 443 ST.adjustSchedDependency(SU, UseSU, Dep); 444 UseSU->addPred(Dep); 445 } 446 447 LaneMask &= ~KillLaneMask; 448 // If we found a Def for all lanes of this use, remove it from the list. 449 if (LaneMask.any()) { 450 I->LaneMask = LaneMask; 451 ++I; 452 } else 453 I = CurrentVRegUses.erase(I); 454 } 455 } 456 457 // Shortcut: Singly defined vregs do not have output/anti dependencies. 458 if (MRI.hasOneDef(Reg)) 459 return; 460 461 // Add output dependence to the next nearest defs of this vreg. 462 // 463 // Unless this definition is dead, the output dependence should be 464 // transitively redundant with antidependencies from this definition's 465 // uses. We're conservative for now until we have a way to guarantee the uses 466 // are not eliminated sometime during scheduling. The output dependence edge 467 // is also useful if output latency exceeds def-use latency. 468 LaneBitmask LaneMask = DefLaneMask; 469 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 470 CurrentVRegDefs.end())) { 471 // Ignore defs for other lanes. 472 if ((V2SU.LaneMask & LaneMask).none()) 473 continue; 474 // Add an output dependence. 475 SUnit *DefSU = V2SU.SU; 476 // Ignore additional defs of the same lanes in one instruction. This can 477 // happen because lanemasks are shared for targets with too many 478 // subregisters. We also use some representration tricks/hacks where we 479 // add super-register defs/uses, to imply that although we only access parts 480 // of the reg we care about the full one. 481 if (DefSU == SU) 482 continue; 483 SDep Dep(SU, SDep::Output, Reg); 484 Dep.setLatency( 485 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 486 DefSU->addPred(Dep); 487 488 // Update current definition. This can get tricky if the def was about a 489 // bigger lanemask before. We then have to shrink it and create a new 490 // VReg2SUnit for the non-overlapping part. 491 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 492 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 493 V2SU.SU = SU; 494 V2SU.LaneMask = OverlapMask; 495 if (NonOverlapMask.any()) 496 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); 497 } 498 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 499 if (LaneMask.any()) 500 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 501 } 502 503 /// \brief Adds a register data dependency if the instruction that defines the 504 /// virtual register used at OperIdx is mapped to an SUnit. Add a register 505 /// antidependency from this SUnit to instructions that occur later in the same 506 /// scheduling region if they write the virtual register. 507 /// 508 /// TODO: Handle ExitSU "uses" properly. 509 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 510 const MachineInstr *MI = SU->getInstr(); 511 const MachineOperand &MO = MI->getOperand(OperIdx); 512 unsigned Reg = MO.getReg(); 513 514 // Remember the use. Data dependencies will be added when we find the def. 515 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) 516 : LaneBitmask::getAll(); 517 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 518 519 // Add antidependences to the following defs of the vreg. 520 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 521 CurrentVRegDefs.end())) { 522 // Ignore defs for unrelated lanes. 523 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 524 if ((PrevDefLaneMask & LaneMask).none()) 525 continue; 526 if (V2SU.SU == SU) 527 continue; 528 529 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 530 } 531 } 532 533 /// Returns true if MI is an instruction we are unable to reason about 534 /// (like a call or something with unmodeled side effects). 535 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 536 return MI->isCall() || MI->hasUnmodeledSideEffects() || 537 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA)); 538 } 539 540 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, 541 unsigned Latency) { 542 if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) { 543 SDep Dep(SUa, SDep::MayAliasMem); 544 Dep.setLatency(Latency); 545 SUb->addPred(Dep); 546 } 547 } 548 549 /// \brief Creates an SUnit for each real instruction, numbered in top-down 550 /// topological order. The instruction order A < B, implies that no edge exists 551 /// from B to A. 552 /// 553 /// Map each real instruction to its SUnit. 554 /// 555 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 556 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 557 /// instead of pointers. 558 /// 559 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 560 /// the original instruction list. 561 void ScheduleDAGInstrs::initSUnits() { 562 // We'll be allocating one SUnit for each real instruction in the region, 563 // which is contained within a basic block. 564 SUnits.reserve(NumRegionInstrs); 565 566 for (MachineInstr &MI : llvm::make_range(RegionBegin, RegionEnd)) { 567 if (MI.isDebugValue()) 568 continue; 569 570 SUnit *SU = newSUnit(&MI); 571 MISUnitMap[&MI] = SU; 572 573 SU->isCall = MI.isCall(); 574 SU->isCommutable = MI.isCommutable(); 575 576 // Assign the Latency field of SU using target-provided information. 577 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 578 579 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 580 // 581 // Reserved resources block an instruction from issuing and stall the 582 // entire pipeline. These are identified by BufferSize=0. 583 // 584 // Unbuffered resources prevent execution of subsequent instructions that 585 // require the same resources. This is used for in-order execution pipelines 586 // within an out-of-order core. These are identified by BufferSize=1. 587 if (SchedModel.hasInstrSchedModel()) { 588 const MCSchedClassDesc *SC = getSchedClass(SU); 589 for (const MCWriteProcResEntry &PRE : 590 make_range(SchedModel.getWriteProcResBegin(SC), 591 SchedModel.getWriteProcResEnd(SC))) { 592 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) { 593 case 0: 594 SU->hasReservedResource = true; 595 break; 596 case 1: 597 SU->isUnbuffered = true; 598 break; 599 default: 600 break; 601 } 602 } 603 } 604 } 605 } 606 607 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { 608 /// Current total number of SUs in map. 609 unsigned NumNodes; 610 611 /// 1 for loads, 0 for stores. (see comment in SUList) 612 unsigned TrueMemOrderLatency; 613 614 public: 615 Value2SUsMap(unsigned lat = 0) : NumNodes(0), TrueMemOrderLatency(lat) {} 616 617 /// To keep NumNodes up to date, insert() is used instead of 618 /// this operator w/ push_back(). 619 ValueType &operator[](const SUList &Key) { 620 llvm_unreachable("Don't use. Use insert() instead."); }; 621 622 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling 623 /// reduce(). 624 void inline insert(SUnit *SU, ValueType V) { 625 MapVector::operator[](V).push_back(SU); 626 NumNodes++; 627 } 628 629 /// Clears the list of SUs mapped to V. 630 void inline clearList(ValueType V) { 631 iterator Itr = find(V); 632 if (Itr != end()) { 633 assert (NumNodes >= Itr->second.size()); 634 NumNodes -= Itr->second.size(); 635 636 Itr->second.clear(); 637 } 638 } 639 640 /// Clears map from all contents. 641 void clear() { 642 MapVector<ValueType, SUList>::clear(); 643 NumNodes = 0; 644 } 645 646 unsigned inline size() const { return NumNodes; } 647 648 /// Counts the number of SUs in this map after a reduction. 649 void reComputeSize(void) { 650 NumNodes = 0; 651 for (auto &I : *this) 652 NumNodes += I.second.size(); 653 } 654 655 unsigned inline getTrueMemOrderLatency() const { 656 return TrueMemOrderLatency; 657 } 658 659 void dump(); 660 }; 661 662 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 663 Value2SUsMap &Val2SUsMap) { 664 for (auto &I : Val2SUsMap) 665 addChainDependencies(SU, I.second, 666 Val2SUsMap.getTrueMemOrderLatency()); 667 } 668 669 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 670 Value2SUsMap &Val2SUsMap, 671 ValueType V) { 672 Value2SUsMap::iterator Itr = Val2SUsMap.find(V); 673 if (Itr != Val2SUsMap.end()) 674 addChainDependencies(SU, Itr->second, 675 Val2SUsMap.getTrueMemOrderLatency()); 676 } 677 678 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { 679 assert (BarrierChain != nullptr); 680 681 for (auto &I : map) { 682 SUList &sus = I.second; 683 for (auto *SU : sus) 684 SU->addPredBarrier(BarrierChain); 685 } 686 map.clear(); 687 } 688 689 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { 690 assert (BarrierChain != nullptr); 691 692 // Go through all lists of SUs. 693 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { 694 Value2SUsMap::iterator CurrItr = I++; 695 SUList &sus = CurrItr->second; 696 SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); 697 for (; SUItr != SUEE; ++SUItr) { 698 // Stop on BarrierChain or any instruction above it. 699 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) 700 break; 701 702 (*SUItr)->addPredBarrier(BarrierChain); 703 } 704 705 // Remove also the BarrierChain from list if present. 706 if (SUItr != SUEE && *SUItr == BarrierChain) 707 SUItr++; 708 709 // Remove all SUs that are now successors of BarrierChain. 710 if (SUItr != sus.begin()) 711 sus.erase(sus.begin(), SUItr); 712 } 713 714 // Remove all entries with empty su lists. 715 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { 716 return (mapEntry.second.empty()); }); 717 718 // Recompute the size of the map (NumNodes). 719 map.reComputeSize(); 720 } 721 722 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 723 RegPressureTracker *RPTracker, 724 PressureDiffs *PDiffs, 725 LiveIntervals *LIS, 726 bool TrackLaneMasks) { 727 const TargetSubtargetInfo &ST = MF.getSubtarget(); 728 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 729 : ST.useAA(); 730 AAForDep = UseAA ? AA : nullptr; 731 732 BarrierChain = nullptr; 733 734 this->TrackLaneMasks = TrackLaneMasks; 735 MISUnitMap.clear(); 736 ScheduleDAG::clearDAG(); 737 738 // Create an SUnit for each real instruction. 739 initSUnits(); 740 741 if (PDiffs) 742 PDiffs->init(SUnits.size()); 743 744 // We build scheduling units by walking a block's instruction list 745 // from bottom to top. 746 747 // Each MIs' memory operand(s) is analyzed to a list of underlying 748 // objects. The SU is then inserted in the SUList(s) mapped from the 749 // Value(s). Each Value thus gets mapped to lists of SUs depending 750 // on it, stores and loads kept separately. Two SUs are trivially 751 // non-aliasing if they both depend on only identified Values and do 752 // not share any common Value. 753 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); 754 755 // Certain memory accesses are known to not alias any SU in Stores 756 // or Loads, and have therefore their own 'NonAlias' 757 // domain. E.g. spill / reload instructions never alias LLVM I/R 758 // Values. It would be nice to assume that this type of memory 759 // accesses always have a proper memory operand modelling, and are 760 // therefore never unanalyzable, but this is conservatively not 761 // done. 762 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); 763 764 // Remove any stale debug info; sometimes BuildSchedGraph is called again 765 // without emitting the info from the previous call. 766 DbgValues.clear(); 767 FirstDbgValue = nullptr; 768 769 assert(Defs.empty() && Uses.empty() && 770 "Only BuildGraph should update Defs/Uses"); 771 Defs.setUniverse(TRI->getNumRegs()); 772 Uses.setUniverse(TRI->getNumRegs()); 773 774 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 775 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 776 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 777 CurrentVRegDefs.setUniverse(NumVirtRegs); 778 CurrentVRegUses.setUniverse(NumVirtRegs); 779 780 // Model data dependencies between instructions being scheduled and the 781 // ExitSU. 782 addSchedBarrierDeps(); 783 784 // Walk the list of instructions, from bottom moving up. 785 MachineInstr *DbgMI = nullptr; 786 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 787 MII != MIE; --MII) { 788 MachineInstr &MI = *std::prev(MII); 789 if (DbgMI) { 790 DbgValues.push_back(std::make_pair(DbgMI, &MI)); 791 DbgMI = nullptr; 792 } 793 794 if (MI.isDebugValue()) { 795 DbgMI = &MI; 796 continue; 797 } 798 SUnit *SU = MISUnitMap[&MI]; 799 assert(SU && "No SUnit mapped to this MI"); 800 801 if (RPTracker) { 802 RegisterOperands RegOpers; 803 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); 804 if (TrackLaneMasks) { 805 SlotIndex SlotIdx = LIS->getInstructionIndex(MI); 806 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 807 } 808 if (PDiffs != nullptr) 809 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 810 811 RPTracker->recedeSkipDebugValues(); 812 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); 813 RPTracker->recede(RegOpers); 814 } 815 816 assert( 817 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && 818 "Cannot schedule terminators or labels!"); 819 820 // Add register-based dependencies (data, anti, and output). 821 // For some instructions (calls, returns, inline-asm, etc.) there can 822 // be explicit uses and implicit defs, in which case the use will appear 823 // on the operand list before the def. Do two passes over the operand 824 // list to make sure that defs are processed before any uses. 825 bool HasVRegDef = false; 826 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 827 const MachineOperand &MO = MI.getOperand(j); 828 if (!MO.isReg() || !MO.isDef()) 829 continue; 830 unsigned Reg = MO.getReg(); 831 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 832 addPhysRegDeps(SU, j); 833 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 834 HasVRegDef = true; 835 addVRegDefDeps(SU, j); 836 } 837 } 838 // Now process all uses. 839 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 840 const MachineOperand &MO = MI.getOperand(j); 841 // Only look at use operands. 842 // We do not need to check for MO.readsReg() here because subsequent 843 // subregister defs will get output dependence edges and need no 844 // additional use dependencies. 845 if (!MO.isReg() || !MO.isUse()) 846 continue; 847 unsigned Reg = MO.getReg(); 848 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 849 addPhysRegDeps(SU, j); 850 } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) { 851 addVRegUseDeps(SU, j); 852 } 853 } 854 855 // If we haven't seen any uses in this scheduling region, create a 856 // dependence edge to ExitSU to model the live-out latency. This is required 857 // for vreg defs with no in-region use, and prefetches with no vreg def. 858 // 859 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 860 // check currently relies on being called before adding chain deps. 861 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { 862 SDep Dep(SU, SDep::Artificial); 863 Dep.setLatency(SU->Latency - 1); 864 ExitSU.addPred(Dep); 865 } 866 867 // Add memory dependencies (Note: isStoreToStackSlot and 868 // isLoadFromStackSLot are not usable after stack slots are lowered to 869 // actual addresses). 870 871 // This is a barrier event that acts as a pivotal node in the DAG. 872 if (isGlobalMemoryObject(AA, &MI)) { 873 874 // Become the barrier chain. 875 if (BarrierChain) 876 BarrierChain->addPredBarrier(SU); 877 BarrierChain = SU; 878 879 DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" 880 << BarrierChain->NodeNum << ").\n";); 881 882 // Add dependencies against everything below it and clear maps. 883 addBarrierChain(Stores); 884 addBarrierChain(Loads); 885 addBarrierChain(NonAliasStores); 886 addBarrierChain(NonAliasLoads); 887 888 continue; 889 } 890 891 // If it's not a store or a variant load, we're done. 892 if (!MI.mayStore() && 893 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))) 894 continue; 895 896 // Always add dependecy edge to BarrierChain if present. 897 if (BarrierChain) 898 BarrierChain->addPredBarrier(SU); 899 900 // Find the underlying objects for MI. The Objs vector is either 901 // empty, or filled with the Values of memory locations which this 902 // SU depends on. An empty vector means the memory location is 903 // unknown, and may alias anything. 904 UnderlyingObjectsVector Objs; 905 getUnderlyingObjectsForInstr(&MI, MFI, Objs, MF.getDataLayout()); 906 907 if (MI.mayStore()) { 908 if (Objs.empty()) { 909 // An unknown store depends on all stores and loads. 910 addChainDependencies(SU, Stores); 911 addChainDependencies(SU, NonAliasStores); 912 addChainDependencies(SU, Loads); 913 addChainDependencies(SU, NonAliasLoads); 914 915 // Map this store to 'UnknownValue'. 916 Stores.insert(SU, UnknownValue); 917 } else { 918 // Add precise dependencies against all previously seen memory 919 // accesses mapped to the same Value(s). 920 for (const UnderlyingObject &UnderlObj : Objs) { 921 ValueType V = UnderlObj.getValue(); 922 bool ThisMayAlias = UnderlObj.mayAlias(); 923 924 // Add dependencies to previous stores and loads mapped to V. 925 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 926 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); 927 } 928 // Update the store map after all chains have been added to avoid adding 929 // self-loop edge if multiple underlying objects are present. 930 for (const UnderlyingObject &UnderlObj : Objs) { 931 ValueType V = UnderlObj.getValue(); 932 bool ThisMayAlias = UnderlObj.mayAlias(); 933 934 // Map this store to V. 935 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); 936 } 937 // The store may have dependencies to unanalyzable loads and 938 // stores. 939 addChainDependencies(SU, Loads, UnknownValue); 940 addChainDependencies(SU, Stores, UnknownValue); 941 } 942 } else { // SU is a load. 943 if (Objs.empty()) { 944 // An unknown load depends on all stores. 945 addChainDependencies(SU, Stores); 946 addChainDependencies(SU, NonAliasStores); 947 948 Loads.insert(SU, UnknownValue); 949 } else { 950 for (const UnderlyingObject &UnderlObj : Objs) { 951 ValueType V = UnderlObj.getValue(); 952 bool ThisMayAlias = UnderlObj.mayAlias(); 953 954 // Add precise dependencies against all previously seen stores 955 // mapping to the same Value(s). 956 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 957 958 // Map this load to V. 959 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); 960 } 961 // The load may have dependencies to unanalyzable stores. 962 addChainDependencies(SU, Stores, UnknownValue); 963 } 964 } 965 966 // Reduce maps if they grow huge. 967 if (Stores.size() + Loads.size() >= HugeRegion) { 968 DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); 969 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); 970 } 971 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { 972 DEBUG(dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); 973 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); 974 } 975 } 976 977 if (DbgMI) 978 FirstDbgValue = DbgMI; 979 980 Defs.clear(); 981 Uses.clear(); 982 CurrentVRegDefs.clear(); 983 CurrentVRegUses.clear(); 984 } 985 986 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { 987 PSV->printCustom(OS); 988 return OS; 989 } 990 991 void ScheduleDAGInstrs::Value2SUsMap::dump() { 992 for (auto &Itr : *this) { 993 if (Itr.first.is<const Value*>()) { 994 const Value *V = Itr.first.get<const Value*>(); 995 if (isa<UndefValue>(V)) 996 dbgs() << "Unknown"; 997 else 998 V->printAsOperand(dbgs()); 999 } 1000 else if (Itr.first.is<const PseudoSourceValue*>()) 1001 dbgs() << Itr.first.get<const PseudoSourceValue*>(); 1002 else 1003 llvm_unreachable("Unknown Value type."); 1004 1005 dbgs() << " : "; 1006 dumpSUList(Itr.second); 1007 } 1008 } 1009 1010 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, 1011 Value2SUsMap &loads, unsigned N) { 1012 DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; 1013 stores.dump(); 1014 dbgs() << "Loading SUnits:\n"; 1015 loads.dump()); 1016 1017 // Insert all SU's NodeNums into a vector and sort it. 1018 std::vector<unsigned> NodeNums; 1019 NodeNums.reserve(stores.size() + loads.size()); 1020 for (auto &I : stores) 1021 for (auto *SU : I.second) 1022 NodeNums.push_back(SU->NodeNum); 1023 for (auto &I : loads) 1024 for (auto *SU : I.second) 1025 NodeNums.push_back(SU->NodeNum); 1026 std::sort(NodeNums.begin(), NodeNums.end()); 1027 1028 // The N last elements in NodeNums will be removed, and the SU with 1029 // the lowest NodeNum of them will become the new BarrierChain to 1030 // let the not yet seen SUs have a dependency to the removed SUs. 1031 assert (N <= NodeNums.size()); 1032 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; 1033 if (BarrierChain) { 1034 // The aliasing and non-aliasing maps reduce independently of each 1035 // other, but share a common BarrierChain. Check if the 1036 // newBarrierChain is above the former one. If it is not, it may 1037 // introduce a loop to use newBarrierChain, so keep the old one. 1038 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { 1039 BarrierChain->addPredBarrier(newBarrierChain); 1040 BarrierChain = newBarrierChain; 1041 DEBUG(dbgs() << "Inserting new barrier chain: SU(" 1042 << BarrierChain->NodeNum << ").\n";); 1043 } 1044 else 1045 DEBUG(dbgs() << "Keeping old barrier chain: SU(" 1046 << BarrierChain->NodeNum << ").\n";); 1047 } 1048 else 1049 BarrierChain = newBarrierChain; 1050 1051 insertBarrierChain(stores); 1052 insertBarrierChain(loads); 1053 1054 DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; 1055 stores.dump(); 1056 dbgs() << "Loading SUnits:\n"; 1057 loads.dump()); 1058 } 1059 1060 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { 1061 // Start with no live registers. 1062 LiveRegs.reset(); 1063 1064 // Examine the live-in regs of all successors. 1065 for (const MachineBasicBlock *Succ : BB->successors()) { 1066 for (const auto &LI : Succ->liveins()) { 1067 // Repeat, for reg and all subregs. 1068 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 1069 SubRegs.isValid(); ++SubRegs) 1070 LiveRegs.set(*SubRegs); 1071 } 1072 } 1073 } 1074 1075 /// \brief If we change a kill flag on the bundle instruction implicit register 1076 /// operands, then we also need to propagate that to any instructions inside 1077 /// the bundle which had the same kill state. 1078 static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg, 1079 bool NewKillState, 1080 const TargetRegisterInfo *TRI) { 1081 if (MI->getOpcode() != TargetOpcode::BUNDLE) 1082 return; 1083 1084 // Walk backwards from the last instruction in the bundle to the first. 1085 // Once we set a kill flag on an instruction, we bail out, as otherwise we 1086 // might set it on too many operands. We will clear as many flags as we 1087 // can though. 1088 MachineBasicBlock::instr_iterator Begin = MI->getIterator(); 1089 MachineBasicBlock::instr_iterator End = getBundleEnd(Begin); 1090 while (Begin != End) { 1091 if (NewKillState) { 1092 if ((--End)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 1093 return; 1094 } else 1095 (--End)->clearRegisterKills(Reg, TRI); 1096 } 1097 } 1098 1099 void ScheduleDAGInstrs::toggleKillFlag(MachineInstr &MI, MachineOperand &MO) { 1100 if (MO.isDebug()) 1101 return; 1102 1103 // Setting kill flag... 1104 if (!MO.isKill()) { 1105 MO.setIsKill(true); 1106 toggleBundleKillFlag(&MI, MO.getReg(), true, TRI); 1107 return; 1108 } 1109 1110 // If MO itself is live, clear the kill flag... 1111 if (LiveRegs.test(MO.getReg())) { 1112 MO.setIsKill(false); 1113 toggleBundleKillFlag(&MI, MO.getReg(), false, TRI); 1114 return; 1115 } 1116 1117 // If any subreg of MO is live, then create an imp-def for that 1118 // subreg and keep MO marked as killed. 1119 MO.setIsKill(false); 1120 toggleBundleKillFlag(&MI, MO.getReg(), false, TRI); 1121 bool AllDead = true; 1122 const unsigned SuperReg = MO.getReg(); 1123 MachineInstrBuilder MIB(MF, &MI); 1124 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { 1125 if (LiveRegs.test(*SubRegs)) { 1126 MIB.addReg(*SubRegs, RegState::ImplicitDefine); 1127 AllDead = false; 1128 } 1129 } 1130 1131 if(AllDead) { 1132 MO.setIsKill(true); 1133 toggleBundleKillFlag(&MI, MO.getReg(), true, TRI); 1134 } 1135 } 1136 1137 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { 1138 // FIXME: Reuse the LivePhysRegs utility for this. 1139 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); 1140 1141 LiveRegs.resize(TRI->getNumRegs()); 1142 BitVector killedRegs(TRI->getNumRegs()); 1143 1144 startBlockForKills(MBB); 1145 1146 // Examine block from end to start... 1147 unsigned Count = MBB->size(); 1148 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); 1149 I != E; --Count) { 1150 MachineInstr &MI = *--I; 1151 if (MI.isDebugValue()) 1152 continue; 1153 1154 // Update liveness. Registers that are defed but not used in this 1155 // instruction are now dead. Mark register and all subregs as they 1156 // are completely defined. 1157 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1158 MachineOperand &MO = MI.getOperand(i); 1159 if (MO.isRegMask()) 1160 LiveRegs.clearBitsNotInMask(MO.getRegMask()); 1161 if (!MO.isReg()) continue; 1162 unsigned Reg = MO.getReg(); 1163 if (Reg == 0) continue; 1164 if (!MO.isDef()) continue; 1165 // Ignore two-addr defs. 1166 if (MI.isRegTiedToUseOperand(i)) continue; 1167 1168 // Repeat for reg and all subregs. 1169 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1170 SubRegs.isValid(); ++SubRegs) 1171 LiveRegs.reset(*SubRegs); 1172 } 1173 1174 // Examine all used registers and set/clear kill flag. When a 1175 // register is used multiple times we only set the kill flag on 1176 // the first use. Don't set kill flags on undef operands. 1177 killedRegs.reset(); 1178 1179 // toggleKillFlag can append new operands (implicit defs), so using 1180 // a range-based loop is not safe. The new operands will be appended 1181 // at the end of the operand list and they don't need to be visited, 1182 // so iterating until the currently last operand is ok. 1183 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1184 MachineOperand &MO = MI.getOperand(i); 1185 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1186 unsigned Reg = MO.getReg(); 1187 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1188 1189 bool kill = false; 1190 if (!killedRegs.test(Reg)) { 1191 kill = true; 1192 // A register is not killed if any subregs are live... 1193 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 1194 if (LiveRegs.test(*SubRegs)) { 1195 kill = false; 1196 break; 1197 } 1198 } 1199 1200 // If subreg is not live, then register is killed if it became 1201 // live in this instruction 1202 if (kill) 1203 kill = !LiveRegs.test(Reg); 1204 } 1205 1206 if (MO.isKill() != kill) { 1207 DEBUG(dbgs() << "Fixing " << MO << " in "); 1208 toggleKillFlag(MI, MO); 1209 DEBUG(MI.dump()); 1210 DEBUG({ 1211 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1212 MachineBasicBlock::instr_iterator Begin = MI.getIterator(); 1213 MachineBasicBlock::instr_iterator End = getBundleEnd(Begin); 1214 while (++Begin != End) 1215 DEBUG(Begin->dump()); 1216 } 1217 }); 1218 } 1219 1220 killedRegs.set(Reg); 1221 } 1222 1223 // Mark any used register (that is not using undef) and subregs as 1224 // now live... 1225 for (const MachineOperand &MO : MI.operands()) { 1226 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1227 unsigned Reg = MO.getReg(); 1228 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1229 1230 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1231 SubRegs.isValid(); ++SubRegs) 1232 LiveRegs.set(*SubRegs); 1233 } 1234 } 1235 } 1236 1237 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1238 // Cannot completely remove virtual function even in release mode. 1239 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1240 SU->getInstr()->dump(); 1241 #endif 1242 } 1243 1244 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1245 std::string s; 1246 raw_string_ostream oss(s); 1247 if (SU == &EntrySU) 1248 oss << "<entry>"; 1249 else if (SU == &ExitSU) 1250 oss << "<exit>"; 1251 else 1252 SU->getInstr()->print(oss, /*SkipOpers=*/true); 1253 return oss.str(); 1254 } 1255 1256 /// Return the basic block label. It is not necessarilly unique because a block 1257 /// contains multiple scheduling regions. But it is fine for visualization. 1258 std::string ScheduleDAGInstrs::getDAGName() const { 1259 return "dag." + BB->getFullName(); 1260 } 1261 1262 //===----------------------------------------------------------------------===// 1263 // SchedDFSResult Implementation 1264 //===----------------------------------------------------------------------===// 1265 1266 namespace llvm { 1267 /// Internal state used to compute SchedDFSResult. 1268 class SchedDFSImpl { 1269 SchedDFSResult &R; 1270 1271 /// Join DAG nodes into equivalence classes by their subtree. 1272 IntEqClasses SubtreeClasses; 1273 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1274 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 1275 1276 struct RootData { 1277 unsigned NodeID; 1278 unsigned ParentNodeID; ///< Parent node (member of the parent subtree). 1279 unsigned SubInstrCount; ///< Instr count in this tree only, not children. 1280 1281 RootData(unsigned id): NodeID(id), 1282 ParentNodeID(SchedDFSResult::InvalidSubtreeID), 1283 SubInstrCount(0) {} 1284 1285 unsigned getSparseSetIndex() const { return NodeID; } 1286 }; 1287 1288 SparseSet<RootData> RootSet; 1289 1290 public: 1291 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1292 RootSet.setUniverse(R.DFSNodeData.size()); 1293 } 1294 1295 /// Returns true if this node been visited by the DFS traversal. 1296 /// 1297 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1298 /// ID. Later, SubtreeID is updated but remains valid. 1299 bool isVisited(const SUnit *SU) const { 1300 return R.DFSNodeData[SU->NodeNum].SubtreeID 1301 != SchedDFSResult::InvalidSubtreeID; 1302 } 1303 1304 /// Initializes this node's instruction count. We don't need to flag the node 1305 /// visited until visitPostorder because the DAG cannot have cycles. 1306 void visitPreorder(const SUnit *SU) { 1307 R.DFSNodeData[SU->NodeNum].InstrCount = 1308 SU->getInstr()->isTransient() ? 0 : 1; 1309 } 1310 1311 /// Called once for each node after all predecessors are visited. Revisit this 1312 /// node's predecessors and potentially join them now that we know the ILP of 1313 /// the other predecessors. 1314 void visitPostorderNode(const SUnit *SU) { 1315 // Mark this node as the root of a subtree. It may be joined with its 1316 // successors later. 1317 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1318 RootData RData(SU->NodeNum); 1319 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1320 1321 // If any predecessors are still in their own subtree, they either cannot be 1322 // joined or are large enough to remain separate. If this parent node's 1323 // total instruction count is not greater than a child subtree by at least 1324 // the subtree limit, then try to join it now since splitting subtrees is 1325 // only useful if multiple high-pressure paths are possible. 1326 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1327 for (const SDep &PredDep : SU->Preds) { 1328 if (PredDep.getKind() != SDep::Data) 1329 continue; 1330 unsigned PredNum = PredDep.getSUnit()->NodeNum; 1331 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1332 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false); 1333 1334 // Either link or merge the TreeData entry from the child to the parent. 1335 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1336 // If the predecessor's parent is invalid, this is a tree edge and the 1337 // current node is the parent. 1338 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1339 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1340 } 1341 else if (RootSet.count(PredNum)) { 1342 // The predecessor is not a root, but is still in the root set. This 1343 // must be the new parent that it was just joined to. Note that 1344 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1345 // set to the original parent. 1346 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1347 RootSet.erase(PredNum); 1348 } 1349 } 1350 RootSet[SU->NodeNum] = RData; 1351 } 1352 1353 /// \brief Called once for each tree edge after calling visitPostOrderNode on 1354 /// the predecessor. Increment the parent node's instruction count and 1355 /// preemptively join this subtree to its parent's if it is small enough. 1356 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1357 R.DFSNodeData[Succ->NodeNum].InstrCount 1358 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1359 joinPredSubtree(PredDep, Succ); 1360 } 1361 1362 /// Adds a connection for cross edges. 1363 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1364 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1365 } 1366 1367 /// Sets each node's subtree ID to the representative ID and record 1368 /// connections between trees. 1369 void finalize() { 1370 SubtreeClasses.compress(); 1371 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1372 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1373 && "number of roots should match trees"); 1374 for (const RootData &Root : RootSet) { 1375 unsigned TreeID = SubtreeClasses[Root.NodeID]; 1376 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1377 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; 1378 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; 1379 // Note that SubInstrCount may be greater than InstrCount if we joined 1380 // subtrees across a cross edge. InstrCount will be attributed to the 1381 // original parent, while SubInstrCount will be attributed to the joined 1382 // parent. 1383 } 1384 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1385 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1386 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1387 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1388 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1389 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1390 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1391 } 1392 for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) { 1393 unsigned PredTree = SubtreeClasses[P.first->NodeNum]; 1394 unsigned SuccTree = SubtreeClasses[P.second->NodeNum]; 1395 if (PredTree == SuccTree) 1396 continue; 1397 unsigned Depth = P.first->getDepth(); 1398 addConnection(PredTree, SuccTree, Depth); 1399 addConnection(SuccTree, PredTree, Depth); 1400 } 1401 } 1402 1403 protected: 1404 /// Joins the predecessor subtree with the successor that is its DFS parent. 1405 /// Applies some heuristics before joining. 1406 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1407 bool CheckLimit = true) { 1408 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1409 1410 // Check if the predecessor is already joined. 1411 const SUnit *PredSU = PredDep.getSUnit(); 1412 unsigned PredNum = PredSU->NodeNum; 1413 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1414 return false; 1415 1416 // Four is the magic number of successors before a node is considered a 1417 // pinch point. 1418 unsigned NumDataSucs = 0; 1419 for (const SDep &SuccDep : PredSU->Succs) { 1420 if (SuccDep.getKind() == SDep::Data) { 1421 if (++NumDataSucs >= 4) 1422 return false; 1423 } 1424 } 1425 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1426 return false; 1427 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1428 SubtreeClasses.join(Succ->NodeNum, PredNum); 1429 return true; 1430 } 1431 1432 /// Called by finalize() to record a connection between trees. 1433 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1434 if (!Depth) 1435 return; 1436 1437 do { 1438 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1439 R.SubtreeConnections[FromTree]; 1440 for (SchedDFSResult::Connection &C : Connections) { 1441 if (C.TreeID == ToTree) { 1442 C.Level = std::max(C.Level, Depth); 1443 return; 1444 } 1445 } 1446 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1447 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1448 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1449 } 1450 }; 1451 } // end namespace llvm 1452 1453 namespace { 1454 /// Manage the stack used by a reverse depth-first search over the DAG. 1455 class SchedDAGReverseDFS { 1456 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 1457 public: 1458 bool isComplete() const { return DFSStack.empty(); } 1459 1460 void follow(const SUnit *SU) { 1461 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1462 } 1463 void advance() { ++DFSStack.back().second; } 1464 1465 const SDep *backtrack() { 1466 DFSStack.pop_back(); 1467 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1468 } 1469 1470 const SUnit *getCurr() const { return DFSStack.back().first; } 1471 1472 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1473 1474 SUnit::const_pred_iterator getPredEnd() const { 1475 return getCurr()->Preds.end(); 1476 } 1477 }; 1478 } // anonymous 1479 1480 static bool hasDataSucc(const SUnit *SU) { 1481 for (const SDep &SuccDep : SU->Succs) { 1482 if (SuccDep.getKind() == SDep::Data && 1483 !SuccDep.getSUnit()->isBoundaryNode()) 1484 return true; 1485 } 1486 return false; 1487 } 1488 1489 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first 1490 /// search from this root. 1491 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1492 if (!IsBottomUp) 1493 llvm_unreachable("Top-down ILP metric is unimplemnted"); 1494 1495 SchedDFSImpl Impl(*this); 1496 for (const SUnit &SU : SUnits) { 1497 if (Impl.isVisited(&SU) || hasDataSucc(&SU)) 1498 continue; 1499 1500 SchedDAGReverseDFS DFS; 1501 Impl.visitPreorder(&SU); 1502 DFS.follow(&SU); 1503 for (;;) { 1504 // Traverse the leftmost path as far as possible. 1505 while (DFS.getPred() != DFS.getPredEnd()) { 1506 const SDep &PredDep = *DFS.getPred(); 1507 DFS.advance(); 1508 // Ignore non-data edges. 1509 if (PredDep.getKind() != SDep::Data 1510 || PredDep.getSUnit()->isBoundaryNode()) { 1511 continue; 1512 } 1513 // An already visited edge is a cross edge, assuming an acyclic DAG. 1514 if (Impl.isVisited(PredDep.getSUnit())) { 1515 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1516 continue; 1517 } 1518 Impl.visitPreorder(PredDep.getSUnit()); 1519 DFS.follow(PredDep.getSUnit()); 1520 } 1521 // Visit the top of the stack in postorder and backtrack. 1522 const SUnit *Child = DFS.getCurr(); 1523 const SDep *PredDep = DFS.backtrack(); 1524 Impl.visitPostorderNode(Child); 1525 if (PredDep) 1526 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1527 if (DFS.isComplete()) 1528 break; 1529 } 1530 } 1531 Impl.finalize(); 1532 } 1533 1534 /// The root of the given SubtreeID was just scheduled. For all subtrees 1535 /// connected to this tree, record the depth of the connection so that the 1536 /// nearest connected subtrees can be prioritized. 1537 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1538 for (const Connection &C : SubtreeConnections[SubtreeID]) { 1539 SubtreeConnectLevels[C.TreeID] = 1540 std::max(SubtreeConnectLevels[C.TreeID], C.Level); 1541 DEBUG(dbgs() << " Tree: " << C.TreeID 1542 << " @" << SubtreeConnectLevels[C.TreeID] << '\n'); 1543 } 1544 } 1545 1546 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1547 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const { 1548 OS << InstrCount << " / " << Length << " = "; 1549 if (!Length) 1550 OS << "BADILP"; 1551 else 1552 OS << format("%g", ((double)InstrCount / Length)); 1553 } 1554 1555 LLVM_DUMP_METHOD void ILPValue::dump() const { 1556 dbgs() << *this << '\n'; 1557 } 1558 1559 namespace llvm { 1560 1561 LLVM_DUMP_METHOD 1562 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1563 Val.print(OS); 1564 return OS; 1565 } 1566 1567 } // end namespace llvm 1568 #endif 1569