1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling 11 // of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "misched" 16 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/PseudoSourceValue.h" 27 #include "llvm/CodeGen/RegisterPressure.h" 28 #include "llvm/CodeGen/ScheduleDFS.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/MC/MCInstrItineraries.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/Format.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetRegisterInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <queue> 40 41 using namespace llvm; 42 43 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 44 cl::ZeroOrMore, cl::init(false), 45 cl::desc("Enable use of AA during MI GAD construction")); 46 47 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 48 const MachineLoopInfo &mli, 49 const MachineDominatorTree &mdt, 50 bool IsPostRAFlag, 51 LiveIntervals *lis) 52 : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis), 53 IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) { 54 assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals"); 55 DbgValues.clear(); 56 assert(!(IsPostRA && MRI.getNumVirtRegs()) && 57 "Virtual registers must be removed prior to PostRA scheduling"); 58 59 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 60 SchedModel.init(*ST.getSchedModel(), &ST, TII); 61 } 62 63 /// getUnderlyingObjectFromInt - This is the function that does the work of 64 /// looking through basic ptrtoint+arithmetic+inttoptr sequences. 65 static const Value *getUnderlyingObjectFromInt(const Value *V) { 66 do { 67 if (const Operator *U = dyn_cast<Operator>(V)) { 68 // If we find a ptrtoint, we can transfer control back to the 69 // regular getUnderlyingObjectFromInt. 70 if (U->getOpcode() == Instruction::PtrToInt) 71 return U->getOperand(0); 72 // If we find an add of a constant, a multiplied value, or a phi, it's 73 // likely that the other operand will lead us to the base 74 // object. We don't have to worry about the case where the 75 // object address is somehow being computed by the multiply, 76 // because our callers only care when the result is an 77 // identifiable object. 78 if (U->getOpcode() != Instruction::Add || 79 (!isa<ConstantInt>(U->getOperand(1)) && 80 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 81 !isa<PHINode>(U->getOperand(1)))) 82 return V; 83 V = U->getOperand(0); 84 } else { 85 return V; 86 } 87 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 88 } while (1); 89 } 90 91 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects 92 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. 93 static void getUnderlyingObjects(const Value *V, 94 SmallVectorImpl<Value *> &Objects) { 95 SmallPtrSet<const Value*, 16> Visited; 96 SmallVector<const Value *, 4> Working(1, V); 97 do { 98 V = Working.pop_back_val(); 99 100 SmallVector<Value *, 4> Objs; 101 GetUnderlyingObjects(const_cast<Value *>(V), Objs); 102 103 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 104 I != IE; ++I) { 105 V = *I; 106 if (!Visited.insert(V)) 107 continue; 108 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 109 const Value *O = 110 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 111 if (O->getType()->isPointerTy()) { 112 Working.push_back(O); 113 continue; 114 } 115 } 116 Objects.push_back(const_cast<Value *>(V)); 117 } 118 } while (!Working.empty()); 119 } 120 121 typedef SmallVector<PointerIntPair<const Value *, 1, bool>, 4> 122 UnderlyingObjectsVector; 123 124 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference 125 /// information and it can be tracked to a normal reference to a known 126 /// object, return the Value for that object. 127 static void getUnderlyingObjectsForInstr(const MachineInstr *MI, 128 const MachineFrameInfo *MFI, 129 UnderlyingObjectsVector &Objects) { 130 if (!MI->hasOneMemOperand() || 131 !(*MI->memoperands_begin())->getValue() || 132 (*MI->memoperands_begin())->isVolatile()) 133 return; 134 135 const Value *V = (*MI->memoperands_begin())->getValue(); 136 if (!V) 137 return; 138 139 SmallVector<Value *, 4> Objs; 140 getUnderlyingObjects(V, Objs); 141 142 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 143 I != IE; ++I) { 144 bool MayAlias = true; 145 V = *I; 146 147 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { 148 // For now, ignore PseudoSourceValues which may alias LLVM IR values 149 // because the code that uses this function has no way to cope with 150 // such aliases. 151 152 if (PSV->isAliased(MFI)) { 153 Objects.clear(); 154 return; 155 } 156 157 MayAlias = PSV->mayAlias(MFI); 158 } else if (!isIdentifiedObject(V)) { 159 Objects.clear(); 160 return; 161 } 162 163 Objects.push_back(UnderlyingObjectsVector::value_type(V, MayAlias)); 164 } 165 } 166 167 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 168 BB = bb; 169 } 170 171 void ScheduleDAGInstrs::finishBlock() { 172 // Subclasses should no longer refer to the old block. 173 BB = 0; 174 } 175 176 /// Initialize the DAG and common scheduler state for the current scheduling 177 /// region. This does not actually create the DAG, only clears it. The 178 /// scheduling driver may call BuildSchedGraph multiple times per scheduling 179 /// region. 180 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 181 MachineBasicBlock::iterator begin, 182 MachineBasicBlock::iterator end, 183 unsigned regioninstrs) { 184 assert(bb == BB && "startBlock should set BB"); 185 RegionBegin = begin; 186 RegionEnd = end; 187 NumRegionInstrs = regioninstrs; 188 } 189 190 /// Close the current scheduling region. Don't clear any state in case the 191 /// driver wants to refer to the previous scheduling region. 192 void ScheduleDAGInstrs::exitRegion() { 193 // Nothing to do. 194 } 195 196 /// addSchedBarrierDeps - Add dependencies from instructions in the current 197 /// list of instructions being scheduled to scheduling barrier by adding 198 /// the exit SU to the register defs and use list. This is because we want to 199 /// make sure instructions which define registers that are either used by 200 /// the terminator or are live-out are properly scheduled. This is 201 /// especially important when the definition latency of the return value(s) 202 /// are too high to be hidden by the branch or when the liveout registers 203 /// used by instructions in the fallthrough block. 204 void ScheduleDAGInstrs::addSchedBarrierDeps() { 205 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0; 206 ExitSU.setInstr(ExitMI); 207 bool AllDepKnown = ExitMI && 208 (ExitMI->isCall() || ExitMI->isBarrier()); 209 if (ExitMI && AllDepKnown) { 210 // If it's a call or a barrier, add dependencies on the defs and uses of 211 // instruction. 212 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { 213 const MachineOperand &MO = ExitMI->getOperand(i); 214 if (!MO.isReg() || MO.isDef()) continue; 215 unsigned Reg = MO.getReg(); 216 if (Reg == 0) continue; 217 218 if (TRI->isPhysicalRegister(Reg)) 219 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 220 else { 221 assert(!IsPostRA && "Virtual register encountered after regalloc."); 222 if (MO.readsReg()) // ignore undef operands 223 addVRegUseDeps(&ExitSU, i); 224 } 225 } 226 } else { 227 // For others, e.g. fallthrough, conditional branch, assume the exit 228 // uses all the registers that are livein to the successor blocks. 229 assert(Uses.empty() && "Uses in set before adding deps?"); 230 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 231 SE = BB->succ_end(); SI != SE; ++SI) 232 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 233 E = (*SI)->livein_end(); I != E; ++I) { 234 unsigned Reg = *I; 235 if (!Uses.contains(Reg)) 236 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 237 } 238 } 239 } 240 241 /// MO is an operand of SU's instruction that defines a physical register. Add 242 /// data dependencies from SU to any uses of the physical register. 243 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 244 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 245 assert(MO.isDef() && "expect physreg def"); 246 247 // Ask the target if address-backscheduling is desirable, and if so how much. 248 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 249 250 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 251 Alias.isValid(); ++Alias) { 252 if (!Uses.contains(*Alias)) 253 continue; 254 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 255 SUnit *UseSU = I->SU; 256 if (UseSU == SU) 257 continue; 258 259 // Adjust the dependence latency using operand def/use information, 260 // then allow the target to perform its own adjustments. 261 int UseOp = I->OpIdx; 262 MachineInstr *RegUse = 0; 263 SDep Dep; 264 if (UseOp < 0) 265 Dep = SDep(SU, SDep::Artificial); 266 else { 267 // Set the hasPhysRegDefs only for physreg defs that have a use within 268 // the scheduling region. 269 SU->hasPhysRegDefs = true; 270 Dep = SDep(SU, SDep::Data, *Alias); 271 RegUse = UseSU->getInstr(); 272 } 273 Dep.setLatency( 274 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 275 UseOp)); 276 277 ST.adjustSchedDependency(SU, UseSU, Dep); 278 UseSU->addPred(Dep); 279 } 280 } 281 } 282 283 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from 284 /// this SUnit to following instructions in the same scheduling region that 285 /// depend the physical register referenced at OperIdx. 286 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 287 const MachineInstr *MI = SU->getInstr(); 288 const MachineOperand &MO = MI->getOperand(OperIdx); 289 290 // Optionally add output and anti dependencies. For anti 291 // dependencies we use a latency of 0 because for a multi-issue 292 // target we want to allow the defining instruction to issue 293 // in the same cycle as the using instruction. 294 // TODO: Using a latency of 1 here for output dependencies assumes 295 // there's no cost for reusing registers. 296 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 297 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 298 Alias.isValid(); ++Alias) { 299 if (!Defs.contains(*Alias)) 300 continue; 301 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 302 SUnit *DefSU = I->SU; 303 if (DefSU == &ExitSU) 304 continue; 305 if (DefSU != SU && 306 (Kind != SDep::Output || !MO.isDead() || 307 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 308 if (Kind == SDep::Anti) 309 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 310 else { 311 SDep Dep(SU, Kind, /*Reg=*/*Alias); 312 Dep.setLatency( 313 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 314 DefSU->addPred(Dep); 315 } 316 } 317 } 318 } 319 320 if (!MO.isDef()) { 321 SU->hasPhysRegUses = true; 322 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 323 // retrieve the existing SUnits list for this register's uses. 324 // Push this SUnit on the use list. 325 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); 326 } 327 else { 328 addPhysRegDataDeps(SU, OperIdx); 329 unsigned Reg = MO.getReg(); 330 331 // clear this register's use list 332 if (Uses.contains(Reg)) 333 Uses.eraseAll(Reg); 334 335 if (!MO.isDead()) { 336 Defs.eraseAll(Reg); 337 } else if (SU->isCall) { 338 // Calls will not be reordered because of chain dependencies (see 339 // below). Since call operands are dead, calls may continue to be added 340 // to the DefList making dependence checking quadratic in the size of 341 // the block. Instead, we leave only one call at the back of the 342 // DefList. 343 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 344 Reg2SUnitsMap::iterator B = P.first; 345 Reg2SUnitsMap::iterator I = P.second; 346 for (bool isBegin = I == B; !isBegin; /* empty */) { 347 isBegin = (--I) == B; 348 if (!I->SU->isCall) 349 break; 350 I = Defs.erase(I); 351 } 352 } 353 354 // Defs are pushed in the order they are visited and never reordered. 355 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 356 } 357 } 358 359 /// addVRegDefDeps - Add register output and data dependencies from this SUnit 360 /// to instructions that occur later in the same scheduling region if they read 361 /// from or write to the virtual register defined at OperIdx. 362 /// 363 /// TODO: Hoist loop induction variable increments. This has to be 364 /// reevaluated. Generally, IV scheduling should be done before coalescing. 365 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 366 const MachineInstr *MI = SU->getInstr(); 367 unsigned Reg = MI->getOperand(OperIdx).getReg(); 368 369 // Singly defined vregs do not have output/anti dependencies. 370 // The current operand is a def, so we have at least one. 371 // Check here if there are any others... 372 if (MRI.hasOneDef(Reg)) 373 return; 374 375 // Add output dependence to the next nearest def of this vreg. 376 // 377 // Unless this definition is dead, the output dependence should be 378 // transitively redundant with antidependencies from this definition's 379 // uses. We're conservative for now until we have a way to guarantee the uses 380 // are not eliminated sometime during scheduling. The output dependence edge 381 // is also useful if output latency exceeds def-use latency. 382 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 383 if (DefI == VRegDefs.end()) 384 VRegDefs.insert(VReg2SUnit(Reg, SU)); 385 else { 386 SUnit *DefSU = DefI->SU; 387 if (DefSU != SU && DefSU != &ExitSU) { 388 SDep Dep(SU, SDep::Output, Reg); 389 Dep.setLatency( 390 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 391 DefSU->addPred(Dep); 392 } 393 DefI->SU = SU; 394 } 395 } 396 397 /// addVRegUseDeps - Add a register data dependency if the instruction that 398 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a 399 /// register antidependency from this SUnit to instructions that occur later in 400 /// the same scheduling region if they write the virtual register. 401 /// 402 /// TODO: Handle ExitSU "uses" properly. 403 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 404 MachineInstr *MI = SU->getInstr(); 405 unsigned Reg = MI->getOperand(OperIdx).getReg(); 406 407 // Record this local VReg use. 408 VReg2UseMap::iterator UI = VRegUses.find(Reg); 409 for (; UI != VRegUses.end(); ++UI) { 410 if (UI->SU == SU) 411 break; 412 } 413 if (UI == VRegUses.end()) 414 VRegUses.insert(VReg2SUnit(Reg, SU)); 415 416 // Lookup this operand's reaching definition. 417 assert(LIS && "vreg dependencies requires LiveIntervals"); 418 LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI)); 419 VNInfo *VNI = LRQ.valueIn(); 420 421 // VNI will be valid because MachineOperand::readsReg() is checked by caller. 422 assert(VNI && "No value to read by operand"); 423 MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); 424 // Phis and other noninstructions (after coalescing) have a NULL Def. 425 if (Def) { 426 SUnit *DefSU = getSUnit(Def); 427 if (DefSU) { 428 // The reaching Def lives within this scheduling region. 429 // Create a data dependence. 430 SDep dep(DefSU, SDep::Data, Reg); 431 // Adjust the dependence latency using operand def/use information, then 432 // allow the target to perform its own adjustments. 433 int DefOp = Def->findRegisterDefOperandIdx(Reg); 434 dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx)); 435 436 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 437 ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep)); 438 SU->addPred(dep); 439 } 440 } 441 442 // Add antidependence to the following def of the vreg it uses. 443 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 444 if (DefI != VRegDefs.end() && DefI->SU != SU) 445 DefI->SU->addPred(SDep(SU, SDep::Anti, Reg)); 446 } 447 448 /// Return true if MI is an instruction we are unable to reason about 449 /// (like a call or something with unmodeled side effects). 450 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 451 if (MI->isCall() || MI->hasUnmodeledSideEffects() || 452 (MI->hasOrderedMemoryRef() && 453 (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) 454 return true; 455 return false; 456 } 457 458 // This MI might have either incomplete info, or known to be unsafe 459 // to deal with (i.e. volatile object). 460 static inline bool isUnsafeMemoryObject(MachineInstr *MI, 461 const MachineFrameInfo *MFI) { 462 if (!MI || MI->memoperands_empty()) 463 return true; 464 // We purposefully do no check for hasOneMemOperand() here 465 // in hope to trigger an assert downstream in order to 466 // finish implementation. 467 if ((*MI->memoperands_begin())->isVolatile() || 468 MI->hasUnmodeledSideEffects()) 469 return true; 470 const Value *V = (*MI->memoperands_begin())->getValue(); 471 if (!V) 472 return true; 473 474 SmallVector<Value *, 4> Objs; 475 getUnderlyingObjects(V, Objs); 476 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), 477 IE = Objs.end(); I != IE; ++I) { 478 V = *I; 479 480 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { 481 // Similarly to getUnderlyingObjectForInstr: 482 // For now, ignore PseudoSourceValues which may alias LLVM IR values 483 // because the code that uses this function has no way to cope with 484 // such aliases. 485 if (PSV->isAliased(MFI)) 486 return true; 487 } 488 489 // Does this pointer refer to a distinct and identifiable object? 490 if (!isIdentifiedObject(V)) 491 return true; 492 } 493 494 return false; 495 } 496 497 /// This returns true if the two MIs need a chain edge betwee them. 498 /// If these are not even memory operations, we still may need 499 /// chain deps between them. The question really is - could 500 /// these two MIs be reordered during scheduling from memory dependency 501 /// point of view. 502 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 503 MachineInstr *MIa, 504 MachineInstr *MIb) { 505 // Cover a trivial case - no edge is need to itself. 506 if (MIa == MIb) 507 return false; 508 509 if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI)) 510 return true; 511 512 // If we are dealing with two "normal" loads, we do not need an edge 513 // between them - they could be reordered. 514 if (!MIa->mayStore() && !MIb->mayStore()) 515 return false; 516 517 // To this point analysis is generic. From here on we do need AA. 518 if (!AA) 519 return true; 520 521 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 522 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 523 524 // FIXME: Need to handle multiple memory operands to support all targets. 525 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 526 llvm_unreachable("Multiple memory operands."); 527 528 // The following interface to AA is fashioned after DAGCombiner::isAlias 529 // and operates with MachineMemOperand offset with some important 530 // assumptions: 531 // - LLVM fundamentally assumes flat address spaces. 532 // - MachineOperand offset can *only* result from legalization and 533 // cannot affect queries other than the trivial case of overlap 534 // checking. 535 // - These offsets never wrap and never step outside 536 // of allocated objects. 537 // - There should never be any negative offsets here. 538 // 539 // FIXME: Modify API to hide this math from "user" 540 // FIXME: Even before we go to AA we can reason locally about some 541 // memory objects. It can save compile time, and possibly catch some 542 // corner cases not currently covered. 543 544 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 545 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 546 547 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 548 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 549 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 550 551 AliasAnalysis::AliasResult AAResult = AA->alias( 552 AliasAnalysis::Location(MMOa->getValue(), Overlapa, 553 MMOa->getTBAAInfo()), 554 AliasAnalysis::Location(MMOb->getValue(), Overlapb, 555 MMOb->getTBAAInfo())); 556 557 return (AAResult != AliasAnalysis::NoAlias); 558 } 559 560 /// This recursive function iterates over chain deps of SUb looking for 561 /// "latest" node that needs a chain edge to SUa. 562 static unsigned 563 iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI, 564 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth, 565 SmallPtrSet<const SUnit*, 16> &Visited) { 566 if (!SUa || !SUb || SUb == ExitSU) 567 return *Depth; 568 569 // Remember visited nodes. 570 if (!Visited.insert(SUb)) 571 return *Depth; 572 // If there is _some_ dependency already in place, do not 573 // descend any further. 574 // TODO: Need to make sure that if that dependency got eliminated or ignored 575 // for any reason in the future, we would not violate DAG topology. 576 // Currently it does not happen, but makes an implicit assumption about 577 // future implementation. 578 // 579 // Independently, if we encounter node that is some sort of global 580 // object (like a call) we already have full set of dependencies to it 581 // and we can stop descending. 582 if (SUa->isSucc(SUb) || 583 isGlobalMemoryObject(AA, SUb->getInstr())) 584 return *Depth; 585 586 // If we do need an edge, or we have exceeded depth budget, 587 // add that edge to the predecessors chain of SUb, 588 // and stop descending. 589 if (*Depth > 200 || 590 MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 591 SUb->addPred(SDep(SUa, SDep::MayAliasMem)); 592 return *Depth; 593 } 594 // Track current depth. 595 (*Depth)++; 596 // Iterate over chain dependencies only. 597 for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end(); 598 I != E; ++I) 599 if (I->isCtrl()) 600 iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited); 601 return *Depth; 602 } 603 604 /// This function assumes that "downward" from SU there exist 605 /// tail/leaf of already constructed DAG. It iterates downward and 606 /// checks whether SU can be aliasing any node dominated 607 /// by it. 608 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI, 609 SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList, 610 unsigned LatencyToLoad) { 611 if (!SU) 612 return; 613 614 SmallPtrSet<const SUnit*, 16> Visited; 615 unsigned Depth = 0; 616 617 for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end(); 618 I != IE; ++I) { 619 if (SU == *I) 620 continue; 621 if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) { 622 SDep Dep(SU, SDep::MayAliasMem); 623 Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0); 624 (*I)->addPred(Dep); 625 } 626 // Now go through all the chain successors and iterate from them. 627 // Keep track of visited nodes. 628 for (SUnit::const_succ_iterator J = (*I)->Succs.begin(), 629 JE = (*I)->Succs.end(); J != JE; ++J) 630 if (J->isCtrl()) 631 iterateChainSucc (AA, MFI, SU, J->getSUnit(), 632 ExitSU, &Depth, Visited); 633 } 634 } 635 636 /// Check whether two objects need a chain edge, if so, add it 637 /// otherwise remember the rejected SU. 638 static inline 639 void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI, 640 SUnit *SUa, SUnit *SUb, 641 std::set<SUnit *> &RejectList, 642 unsigned TrueMemOrderLatency = 0, 643 bool isNormalMemory = false) { 644 // If this is a false dependency, 645 // do not add the edge, but rememeber the rejected node. 646 if (!AA || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 647 SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier); 648 Dep.setLatency(TrueMemOrderLatency); 649 SUb->addPred(Dep); 650 } 651 else { 652 // Duplicate entries should be ignored. 653 RejectList.insert(SUb); 654 DEBUG(dbgs() << "\tReject chain dep between SU(" 655 << SUa->NodeNum << ") and SU(" 656 << SUb->NodeNum << ")\n"); 657 } 658 } 659 660 /// Create an SUnit for each real instruction, numbered in top-down toplological 661 /// order. The instruction order A < B, implies that no edge exists from B to A. 662 /// 663 /// Map each real instruction to its SUnit. 664 /// 665 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 666 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 667 /// instead of pointers. 668 /// 669 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 670 /// the original instruction list. 671 void ScheduleDAGInstrs::initSUnits() { 672 // We'll be allocating one SUnit for each real instruction in the region, 673 // which is contained within a basic block. 674 SUnits.reserve(NumRegionInstrs); 675 676 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { 677 MachineInstr *MI = I; 678 if (MI->isDebugValue()) 679 continue; 680 681 SUnit *SU = newSUnit(MI); 682 MISUnitMap[MI] = SU; 683 684 SU->isCall = MI->isCall(); 685 SU->isCommutable = MI->isCommutable(); 686 687 // Assign the Latency field of SU using target-provided information. 688 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 689 } 690 } 691 692 /// If RegPressure is non null, compute register pressure as a side effect. The 693 /// DAG builder is an efficient place to do it because it already visits 694 /// operands. 695 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 696 RegPressureTracker *RPTracker, 697 PressureDiffs *PDiffs) { 698 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 699 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 700 : ST.useAA(); 701 AliasAnalysis *AAForDep = UseAA ? AA : 0; 702 703 MISUnitMap.clear(); 704 ScheduleDAG::clearDAG(); 705 706 // Create an SUnit for each real instruction. 707 initSUnits(); 708 709 if (PDiffs) 710 PDiffs->init(SUnits.size()); 711 712 // We build scheduling units by walking a block's instruction list from bottom 713 // to top. 714 715 // Remember where a generic side-effecting instruction is as we procede. 716 SUnit *BarrierChain = 0, *AliasChain = 0; 717 718 // Memory references to specific known memory locations are tracked 719 // so that they can be given more precise dependencies. We track 720 // separately the known memory locations that may alias and those 721 // that are known not to alias 722 MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs; 723 MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; 724 std::set<SUnit*> RejectMemNodes; 725 726 // Remove any stale debug info; sometimes BuildSchedGraph is called again 727 // without emitting the info from the previous call. 728 DbgValues.clear(); 729 FirstDbgValue = NULL; 730 731 assert(Defs.empty() && Uses.empty() && 732 "Only BuildGraph should update Defs/Uses"); 733 Defs.setUniverse(TRI->getNumRegs()); 734 Uses.setUniverse(TRI->getNumRegs()); 735 736 assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); 737 VRegUses.clear(); 738 VRegDefs.setUniverse(MRI.getNumVirtRegs()); 739 VRegUses.setUniverse(MRI.getNumVirtRegs()); 740 741 // Model data dependencies between instructions being scheduled and the 742 // ExitSU. 743 addSchedBarrierDeps(); 744 745 // Walk the list of instructions, from bottom moving up. 746 MachineInstr *DbgMI = NULL; 747 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 748 MII != MIE; --MII) { 749 MachineInstr *MI = prior(MII); 750 if (MI && DbgMI) { 751 DbgValues.push_back(std::make_pair(DbgMI, MI)); 752 DbgMI = NULL; 753 } 754 755 if (MI->isDebugValue()) { 756 DbgMI = MI; 757 continue; 758 } 759 SUnit *SU = MISUnitMap[MI]; 760 assert(SU && "No SUnit mapped to this MI"); 761 762 if (RPTracker) { 763 PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : 0; 764 RPTracker->recede(/*LiveUses=*/0, PDiff); 765 assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI"); 766 } 767 768 assert((CanHandleTerminators || (!MI->isTerminator() && !MI->isLabel())) && 769 "Cannot schedule terminators or labels!"); 770 771 // Add register-based dependencies (data, anti, and output). 772 bool HasVRegDef = false; 773 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { 774 const MachineOperand &MO = MI->getOperand(j); 775 if (!MO.isReg()) continue; 776 unsigned Reg = MO.getReg(); 777 if (Reg == 0) continue; 778 779 if (TRI->isPhysicalRegister(Reg)) 780 addPhysRegDeps(SU, j); 781 else { 782 assert(!IsPostRA && "Virtual register encountered!"); 783 if (MO.isDef()) { 784 HasVRegDef = true; 785 addVRegDefDeps(SU, j); 786 } 787 else if (MO.readsReg()) // ignore undef operands 788 addVRegUseDeps(SU, j); 789 } 790 } 791 // If we haven't seen any uses in this scheduling region, create a 792 // dependence edge to ExitSU to model the live-out latency. This is required 793 // for vreg defs with no in-region use, and prefetches with no vreg def. 794 // 795 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 796 // check currently relies on being called before adding chain deps. 797 if (SU->NumSuccs == 0 && SU->Latency > 1 798 && (HasVRegDef || MI->mayLoad())) { 799 SDep Dep(SU, SDep::Artificial); 800 Dep.setLatency(SU->Latency - 1); 801 ExitSU.addPred(Dep); 802 } 803 804 // Add chain dependencies. 805 // Chain dependencies used to enforce memory order should have 806 // latency of 0 (except for true dependency of Store followed by 807 // aliased Load... we estimate that with a single cycle of latency 808 // assuming the hardware will bypass) 809 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable 810 // after stack slots are lowered to actual addresses. 811 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and 812 // produce more precise dependence information. 813 unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0; 814 if (isGlobalMemoryObject(AA, MI)) { 815 // Be conservative with these and add dependencies on all memory 816 // references, even those that are known to not alias. 817 for (MapVector<const Value *, SUnit *>::iterator I = 818 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { 819 I->second->addPred(SDep(SU, SDep::Barrier)); 820 } 821 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I = 822 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { 823 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 824 SDep Dep(SU, SDep::Barrier); 825 Dep.setLatency(TrueMemOrderLatency); 826 I->second[i]->addPred(Dep); 827 } 828 } 829 // Add SU to the barrier chain. 830 if (BarrierChain) 831 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 832 BarrierChain = SU; 833 // This is a barrier event that acts as a pivotal node in the DAG, 834 // so it is safe to clear list of exposed nodes. 835 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 836 TrueMemOrderLatency); 837 RejectMemNodes.clear(); 838 NonAliasMemDefs.clear(); 839 NonAliasMemUses.clear(); 840 841 // fall-through 842 new_alias_chain: 843 // Chain all possibly aliasing memory references though SU. 844 if (AliasChain) { 845 unsigned ChainLatency = 0; 846 if (AliasChain->getInstr()->mayLoad()) 847 ChainLatency = TrueMemOrderLatency; 848 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes, 849 ChainLatency); 850 } 851 AliasChain = SU; 852 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 853 addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes, 854 TrueMemOrderLatency); 855 for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(), 856 E = AliasMemDefs.end(); I != E; ++I) 857 addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes); 858 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I = 859 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { 860 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 861 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes, 862 TrueMemOrderLatency); 863 } 864 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 865 TrueMemOrderLatency); 866 PendingLoads.clear(); 867 AliasMemDefs.clear(); 868 AliasMemUses.clear(); 869 } else if (MI->mayStore()) { 870 UnderlyingObjectsVector Objs; 871 getUnderlyingObjectsForInstr(MI, MFI, Objs); 872 873 if (Objs.empty()) { 874 // Treat all other stores conservatively. 875 goto new_alias_chain; 876 } 877 878 bool MayAlias = false; 879 for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end(); 880 K != KE; ++K) { 881 const Value *V = K->getPointer(); 882 bool ThisMayAlias = K->getInt(); 883 if (ThisMayAlias) 884 MayAlias = true; 885 886 // A store to a specific PseudoSourceValue. Add precise dependencies. 887 // Record the def in MemDefs, first adding a dep if there is 888 // an existing def. 889 MapVector<const Value *, SUnit *>::iterator I = 890 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 891 MapVector<const Value *, SUnit *>::iterator IE = 892 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 893 if (I != IE) { 894 addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes, 895 0, true); 896 I->second = SU; 897 } else { 898 if (ThisMayAlias) 899 AliasMemDefs[V] = SU; 900 else 901 NonAliasMemDefs[V] = SU; 902 } 903 // Handle the uses in MemUses, if there are any. 904 MapVector<const Value *, std::vector<SUnit *> >::iterator J = 905 ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); 906 MapVector<const Value *, std::vector<SUnit *> >::iterator JE = 907 ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); 908 if (J != JE) { 909 for (unsigned i = 0, e = J->second.size(); i != e; ++i) 910 addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes, 911 TrueMemOrderLatency, true); 912 J->second.clear(); 913 } 914 } 915 if (MayAlias) { 916 // Add dependencies from all the PendingLoads, i.e. loads 917 // with no underlying object. 918 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 919 addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes, 920 TrueMemOrderLatency); 921 // Add dependence on alias chain, if needed. 922 if (AliasChain) 923 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes); 924 // But we also should check dependent instructions for the 925 // SU in question. 926 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 927 TrueMemOrderLatency); 928 } 929 // Add dependence on barrier chain, if needed. 930 // There is no point to check aliasing on barrier event. Even if 931 // SU and barrier _could_ be reordered, they should not. In addition, 932 // we have lost all RejectMemNodes below barrier. 933 if (BarrierChain) 934 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 935 936 if (!ExitSU.isPred(SU)) 937 // Push store's up a bit to avoid them getting in between cmp 938 // and branches. 939 ExitSU.addPred(SDep(SU, SDep::Artificial)); 940 } else if (MI->mayLoad()) { 941 bool MayAlias = true; 942 if (MI->isInvariantLoad(AA)) { 943 // Invariant load, no chain dependencies needed! 944 } else { 945 UnderlyingObjectsVector Objs; 946 getUnderlyingObjectsForInstr(MI, MFI, Objs); 947 948 if (Objs.empty()) { 949 // A load with no underlying object. Depend on all 950 // potentially aliasing stores. 951 for (MapVector<const Value *, SUnit *>::iterator I = 952 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) 953 addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes); 954 955 PendingLoads.push_back(SU); 956 MayAlias = true; 957 } else { 958 MayAlias = false; 959 } 960 961 for (UnderlyingObjectsVector::iterator 962 J = Objs.begin(), JE = Objs.end(); J != JE; ++J) { 963 const Value *V = J->getPointer(); 964 bool ThisMayAlias = J->getInt(); 965 966 if (ThisMayAlias) 967 MayAlias = true; 968 969 // A load from a specific PseudoSourceValue. Add precise dependencies. 970 MapVector<const Value *, SUnit *>::iterator I = 971 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 972 MapVector<const Value *, SUnit *>::iterator IE = 973 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 974 if (I != IE) 975 addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes, 976 0, true); 977 if (ThisMayAlias) 978 AliasMemUses[V].push_back(SU); 979 else 980 NonAliasMemUses[V].push_back(SU); 981 } 982 if (MayAlias) 983 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0); 984 // Add dependencies on alias and barrier chains, if needed. 985 if (MayAlias && AliasChain) 986 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes); 987 if (BarrierChain) 988 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 989 } 990 } 991 } 992 if (DbgMI) 993 FirstDbgValue = DbgMI; 994 995 Defs.clear(); 996 Uses.clear(); 997 VRegDefs.clear(); 998 PendingLoads.clear(); 999 } 1000 1001 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1002 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1003 SU->getInstr()->dump(); 1004 #endif 1005 } 1006 1007 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1008 std::string s; 1009 raw_string_ostream oss(s); 1010 if (SU == &EntrySU) 1011 oss << "<entry>"; 1012 else if (SU == &ExitSU) 1013 oss << "<exit>"; 1014 else 1015 SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true); 1016 return oss.str(); 1017 } 1018 1019 /// Return the basic block label. It is not necessarilly unique because a block 1020 /// contains multiple scheduling regions. But it is fine for visualization. 1021 std::string ScheduleDAGInstrs::getDAGName() const { 1022 return "dag." + BB->getFullName(); 1023 } 1024 1025 //===----------------------------------------------------------------------===// 1026 // SchedDFSResult Implementation 1027 //===----------------------------------------------------------------------===// 1028 1029 namespace llvm { 1030 /// \brief Internal state used to compute SchedDFSResult. 1031 class SchedDFSImpl { 1032 SchedDFSResult &R; 1033 1034 /// Join DAG nodes into equivalence classes by their subtree. 1035 IntEqClasses SubtreeClasses; 1036 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1037 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 1038 1039 struct RootData { 1040 unsigned NodeID; 1041 unsigned ParentNodeID; // Parent node (member of the parent subtree). 1042 unsigned SubInstrCount; // Instr count in this tree only, not children. 1043 1044 RootData(unsigned id): NodeID(id), 1045 ParentNodeID(SchedDFSResult::InvalidSubtreeID), 1046 SubInstrCount(0) {} 1047 1048 unsigned getSparseSetIndex() const { return NodeID; } 1049 }; 1050 1051 SparseSet<RootData> RootSet; 1052 1053 public: 1054 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1055 RootSet.setUniverse(R.DFSNodeData.size()); 1056 } 1057 1058 /// Return true if this node been visited by the DFS traversal. 1059 /// 1060 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1061 /// ID. Later, SubtreeID is updated but remains valid. 1062 bool isVisited(const SUnit *SU) const { 1063 return R.DFSNodeData[SU->NodeNum].SubtreeID 1064 != SchedDFSResult::InvalidSubtreeID; 1065 } 1066 1067 /// Initialize this node's instruction count. We don't need to flag the node 1068 /// visited until visitPostorder because the DAG cannot have cycles. 1069 void visitPreorder(const SUnit *SU) { 1070 R.DFSNodeData[SU->NodeNum].InstrCount = 1071 SU->getInstr()->isTransient() ? 0 : 1; 1072 } 1073 1074 /// Called once for each node after all predecessors are visited. Revisit this 1075 /// node's predecessors and potentially join them now that we know the ILP of 1076 /// the other predecessors. 1077 void visitPostorderNode(const SUnit *SU) { 1078 // Mark this node as the root of a subtree. It may be joined with its 1079 // successors later. 1080 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1081 RootData RData(SU->NodeNum); 1082 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1083 1084 // If any predecessors are still in their own subtree, they either cannot be 1085 // joined or are large enough to remain separate. If this parent node's 1086 // total instruction count is not greater than a child subtree by at least 1087 // the subtree limit, then try to join it now since splitting subtrees is 1088 // only useful if multiple high-pressure paths are possible. 1089 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1090 for (SUnit::const_pred_iterator 1091 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1092 if (PI->getKind() != SDep::Data) 1093 continue; 1094 unsigned PredNum = PI->getSUnit()->NodeNum; 1095 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1096 joinPredSubtree(*PI, SU, /*CheckLimit=*/false); 1097 1098 // Either link or merge the TreeData entry from the child to the parent. 1099 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1100 // If the predecessor's parent is invalid, this is a tree edge and the 1101 // current node is the parent. 1102 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1103 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1104 } 1105 else if (RootSet.count(PredNum)) { 1106 // The predecessor is not a root, but is still in the root set. This 1107 // must be the new parent that it was just joined to. Note that 1108 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1109 // set to the original parent. 1110 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1111 RootSet.erase(PredNum); 1112 } 1113 } 1114 RootSet[SU->NodeNum] = RData; 1115 } 1116 1117 /// Called once for each tree edge after calling visitPostOrderNode on the 1118 /// predecessor. Increment the parent node's instruction count and 1119 /// preemptively join this subtree to its parent's if it is small enough. 1120 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1121 R.DFSNodeData[Succ->NodeNum].InstrCount 1122 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1123 joinPredSubtree(PredDep, Succ); 1124 } 1125 1126 /// Add a connection for cross edges. 1127 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1128 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1129 } 1130 1131 /// Set each node's subtree ID to the representative ID and record connections 1132 /// between trees. 1133 void finalize() { 1134 SubtreeClasses.compress(); 1135 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1136 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1137 && "number of roots should match trees"); 1138 for (SparseSet<RootData>::const_iterator 1139 RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) { 1140 unsigned TreeID = SubtreeClasses[RI->NodeID]; 1141 if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1142 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID]; 1143 R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount; 1144 // Note that SubInstrCount may be greater than InstrCount if we joined 1145 // subtrees across a cross edge. InstrCount will be attributed to the 1146 // original parent, while SubInstrCount will be attributed to the joined 1147 // parent. 1148 } 1149 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1150 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1151 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1152 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1153 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1154 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1155 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1156 } 1157 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator 1158 I = ConnectionPairs.begin(), E = ConnectionPairs.end(); 1159 I != E; ++I) { 1160 unsigned PredTree = SubtreeClasses[I->first->NodeNum]; 1161 unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; 1162 if (PredTree == SuccTree) 1163 continue; 1164 unsigned Depth = I->first->getDepth(); 1165 addConnection(PredTree, SuccTree, Depth); 1166 addConnection(SuccTree, PredTree, Depth); 1167 } 1168 } 1169 1170 protected: 1171 /// Join the predecessor subtree with the successor that is its DFS 1172 /// parent. Apply some heuristics before joining. 1173 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1174 bool CheckLimit = true) { 1175 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1176 1177 // Check if the predecessor is already joined. 1178 const SUnit *PredSU = PredDep.getSUnit(); 1179 unsigned PredNum = PredSU->NodeNum; 1180 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1181 return false; 1182 1183 // Four is the magic number of successors before a node is considered a 1184 // pinch point. 1185 unsigned NumDataSucs = 0; 1186 for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(), 1187 SE = PredSU->Succs.end(); SI != SE; ++SI) { 1188 if (SI->getKind() == SDep::Data) { 1189 if (++NumDataSucs >= 4) 1190 return false; 1191 } 1192 } 1193 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1194 return false; 1195 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1196 SubtreeClasses.join(Succ->NodeNum, PredNum); 1197 return true; 1198 } 1199 1200 /// Called by finalize() to record a connection between trees. 1201 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1202 if (!Depth) 1203 return; 1204 1205 do { 1206 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1207 R.SubtreeConnections[FromTree]; 1208 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator 1209 I = Connections.begin(), E = Connections.end(); I != E; ++I) { 1210 if (I->TreeID == ToTree) { 1211 I->Level = std::max(I->Level, Depth); 1212 return; 1213 } 1214 } 1215 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1216 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1217 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1218 } 1219 }; 1220 } // namespace llvm 1221 1222 namespace { 1223 /// \brief Manage the stack used by a reverse depth-first search over the DAG. 1224 class SchedDAGReverseDFS { 1225 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 1226 public: 1227 bool isComplete() const { return DFSStack.empty(); } 1228 1229 void follow(const SUnit *SU) { 1230 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1231 } 1232 void advance() { ++DFSStack.back().second; } 1233 1234 const SDep *backtrack() { 1235 DFSStack.pop_back(); 1236 return DFSStack.empty() ? 0 : llvm::prior(DFSStack.back().second); 1237 } 1238 1239 const SUnit *getCurr() const { return DFSStack.back().first; } 1240 1241 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1242 1243 SUnit::const_pred_iterator getPredEnd() const { 1244 return getCurr()->Preds.end(); 1245 } 1246 }; 1247 } // anonymous 1248 1249 static bool hasDataSucc(const SUnit *SU) { 1250 for (SUnit::const_succ_iterator 1251 SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) { 1252 if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode()) 1253 return true; 1254 } 1255 return false; 1256 } 1257 1258 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first 1259 /// search from this root. 1260 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1261 if (!IsBottomUp) 1262 llvm_unreachable("Top-down ILP metric is unimplemnted"); 1263 1264 SchedDFSImpl Impl(*this); 1265 for (ArrayRef<SUnit>::const_iterator 1266 SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) { 1267 const SUnit *SU = &*SI; 1268 if (Impl.isVisited(SU) || hasDataSucc(SU)) 1269 continue; 1270 1271 SchedDAGReverseDFS DFS; 1272 Impl.visitPreorder(SU); 1273 DFS.follow(SU); 1274 for (;;) { 1275 // Traverse the leftmost path as far as possible. 1276 while (DFS.getPred() != DFS.getPredEnd()) { 1277 const SDep &PredDep = *DFS.getPred(); 1278 DFS.advance(); 1279 // Ignore non-data edges. 1280 if (PredDep.getKind() != SDep::Data 1281 || PredDep.getSUnit()->isBoundaryNode()) { 1282 continue; 1283 } 1284 // An already visited edge is a cross edge, assuming an acyclic DAG. 1285 if (Impl.isVisited(PredDep.getSUnit())) { 1286 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1287 continue; 1288 } 1289 Impl.visitPreorder(PredDep.getSUnit()); 1290 DFS.follow(PredDep.getSUnit()); 1291 } 1292 // Visit the top of the stack in postorder and backtrack. 1293 const SUnit *Child = DFS.getCurr(); 1294 const SDep *PredDep = DFS.backtrack(); 1295 Impl.visitPostorderNode(Child); 1296 if (PredDep) 1297 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1298 if (DFS.isComplete()) 1299 break; 1300 } 1301 } 1302 Impl.finalize(); 1303 } 1304 1305 /// The root of the given SubtreeID was just scheduled. For all subtrees 1306 /// connected to this tree, record the depth of the connection so that the 1307 /// nearest connected subtrees can be prioritized. 1308 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1309 for (SmallVectorImpl<Connection>::const_iterator 1310 I = SubtreeConnections[SubtreeID].begin(), 1311 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { 1312 SubtreeConnectLevels[I->TreeID] = 1313 std::max(SubtreeConnectLevels[I->TreeID], I->Level); 1314 DEBUG(dbgs() << " Tree: " << I->TreeID 1315 << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); 1316 } 1317 } 1318 1319 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1320 void ILPValue::print(raw_ostream &OS) const { 1321 OS << InstrCount << " / " << Length << " = "; 1322 if (!Length) 1323 OS << "BADILP"; 1324 else 1325 OS << format("%g", ((double)InstrCount / Length)); 1326 } 1327 1328 void ILPValue::dump() const { 1329 dbgs() << *this << '\n'; 1330 } 1331 1332 namespace llvm { 1333 1334 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1335 Val.print(OS); 1336 return OS; 1337 } 1338 1339 } // namespace llvm 1340 #endif // !NDEBUG || LLVM_ENABLE_DUMP 1341