1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file This implements the ScheduleDAGInstrs class, which implements 11 /// re-scheduling of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 16 #include "llvm/ADT/IntEqClasses.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/LiveIntervals.h" 25 #include "llvm/CodeGen/LivePhysRegs.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineInstrBundle.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/RegisterPressure.h" 36 #include "llvm/CodeGen/ScheduleDAG.h" 37 #include "llvm/CodeGen/ScheduleDFS.h" 38 #include "llvm/CodeGen/SlotIndexes.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/MC/LaneBitmask.h" 50 #include "llvm/MC/MCRegisterInfo.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/Format.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <iterator> 61 #include <string> 62 #include <utility> 63 #include <vector> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "machine-scheduler" 68 69 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 70 cl::ZeroOrMore, cl::init(false), 71 cl::desc("Enable use of AA during MI DAG construction")); 72 73 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 74 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 75 76 // Note: the two options below might be used in tuning compile time vs 77 // output quality. Setting HugeRegion so large that it will never be 78 // reached means best-effort, but may be slow. 79 80 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) 81 // together hold this many SUs, a reduction of maps will be done. 82 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, 83 cl::init(1000), cl::desc("The limit to use while constructing the DAG " 84 "prior to scheduling, at which point a trade-off " 85 "is made to avoid excessive compile time.")); 86 87 static cl::opt<unsigned> ReductionSize( 88 "dag-maps-reduction-size", cl::Hidden, 89 cl::desc("A huge scheduling region will have maps reduced by this many " 90 "nodes at a time. Defaults to HugeRegion / 2.")); 91 92 static unsigned getReductionSize() { 93 // Always reduce a huge region with half of the elements, except 94 // when user sets this number explicitly. 95 if (ReductionSize.getNumOccurrences() == 0) 96 return HugeRegion / 2; 97 return ReductionSize; 98 } 99 100 static void dumpSUList(ScheduleDAGInstrs::SUList &L) { 101 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 102 dbgs() << "{ "; 103 for (const SUnit *su : L) { 104 dbgs() << "SU(" << su->NodeNum << ")"; 105 if (su != L.back()) 106 dbgs() << ", "; 107 } 108 dbgs() << "}\n"; 109 #endif 110 } 111 112 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 113 const MachineLoopInfo *mli, 114 bool RemoveKillFlags) 115 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 116 RemoveKillFlags(RemoveKillFlags), 117 UnknownValue(UndefValue::get( 118 Type::getVoidTy(mf.getFunction().getContext()))) { 119 DbgValues.clear(); 120 121 const TargetSubtargetInfo &ST = mf.getSubtarget(); 122 SchedModel.init(&ST); 123 } 124 125 /// If this machine instr has memory reference information and it can be 126 /// tracked to a normal reference to a known object, return the Value 127 /// for that object. This function returns false the memory location is 128 /// unknown or may alias anything. 129 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI, 130 const MachineFrameInfo &MFI, 131 UnderlyingObjectsVector &Objects, 132 const DataLayout &DL) { 133 auto allMMOsOkay = [&]() { 134 for (const MachineMemOperand *MMO : MI->memoperands()) { 135 if (MMO->isVolatile()) 136 return false; 137 138 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 139 // Function that contain tail calls don't have unique PseudoSourceValue 140 // objects. Two PseudoSourceValues might refer to the same or 141 // overlapping locations. The client code calling this function assumes 142 // this is not the case. So return a conservative answer of no known 143 // object. 144 if (MFI.hasTailCall()) 145 return false; 146 147 // For now, ignore PseudoSourceValues which may alias LLVM IR values 148 // because the code that uses this function has no way to cope with 149 // such aliases. 150 if (PSV->isAliased(&MFI)) 151 return false; 152 153 bool MayAlias = PSV->mayAlias(&MFI); 154 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 155 } else if (const Value *V = MMO->getValue()) { 156 SmallVector<Value *, 4> Objs; 157 if (!getUnderlyingObjectsForCodeGen(V, Objs, DL)) 158 return false; 159 160 for (Value *V : Objs) { 161 assert(isIdentifiedObject(V)); 162 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 163 } 164 } else 165 return false; 166 } 167 return true; 168 }; 169 170 if (!allMMOsOkay()) { 171 Objects.clear(); 172 return false; 173 } 174 175 return true; 176 } 177 178 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 179 BB = bb; 180 } 181 182 void ScheduleDAGInstrs::finishBlock() { 183 // Subclasses should no longer refer to the old block. 184 BB = nullptr; 185 } 186 187 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 188 MachineBasicBlock::iterator begin, 189 MachineBasicBlock::iterator end, 190 unsigned regioninstrs) { 191 assert(bb == BB && "startBlock should set BB"); 192 RegionBegin = begin; 193 RegionEnd = end; 194 NumRegionInstrs = regioninstrs; 195 } 196 197 void ScheduleDAGInstrs::exitRegion() { 198 // Nothing to do. 199 } 200 201 void ScheduleDAGInstrs::addSchedBarrierDeps() { 202 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 203 ExitSU.setInstr(ExitMI); 204 // Add dependencies on the defs and uses of the instruction. 205 if (ExitMI) { 206 for (const MachineOperand &MO : ExitMI->operands()) { 207 if (!MO.isReg() || MO.isDef()) continue; 208 unsigned Reg = MO.getReg(); 209 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 210 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 211 } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) { 212 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO)); 213 } 214 } 215 } 216 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) { 217 // For others, e.g. fallthrough, conditional branch, assume the exit 218 // uses all the registers that are livein to the successor blocks. 219 for (const MachineBasicBlock *Succ : BB->successors()) { 220 for (const auto &LI : Succ->liveins()) { 221 if (!Uses.contains(LI.PhysReg)) 222 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 223 } 224 } 225 } 226 } 227 228 /// MO is an operand of SU's instruction that defines a physical register. Adds 229 /// data dependencies from SU to any uses of the physical register. 230 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 231 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 232 assert(MO.isDef() && "expect physreg def"); 233 234 // Ask the target if address-backscheduling is desirable, and if so how much. 235 const TargetSubtargetInfo &ST = MF.getSubtarget(); 236 237 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 238 Alias.isValid(); ++Alias) { 239 if (!Uses.contains(*Alias)) 240 continue; 241 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 242 SUnit *UseSU = I->SU; 243 if (UseSU == SU) 244 continue; 245 246 // Adjust the dependence latency using operand def/use information, 247 // then allow the target to perform its own adjustments. 248 int UseOp = I->OpIdx; 249 MachineInstr *RegUse = nullptr; 250 SDep Dep; 251 if (UseOp < 0) 252 Dep = SDep(SU, SDep::Artificial); 253 else { 254 // Set the hasPhysRegDefs only for physreg defs that have a use within 255 // the scheduling region. 256 SU->hasPhysRegDefs = true; 257 Dep = SDep(SU, SDep::Data, *Alias); 258 RegUse = UseSU->getInstr(); 259 } 260 Dep.setLatency( 261 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 262 UseOp)); 263 264 ST.adjustSchedDependency(SU, UseSU, Dep); 265 UseSU->addPred(Dep); 266 } 267 } 268 } 269 270 /// Adds register dependencies (data, anti, and output) from this SUnit 271 /// to following instructions in the same scheduling region that depend the 272 /// physical register referenced at OperIdx. 273 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 274 MachineInstr *MI = SU->getInstr(); 275 MachineOperand &MO = MI->getOperand(OperIdx); 276 unsigned Reg = MO.getReg(); 277 // We do not need to track any dependencies for constant registers. 278 if (MRI.isConstantPhysReg(Reg)) 279 return; 280 281 // Optionally add output and anti dependencies. For anti 282 // dependencies we use a latency of 0 because for a multi-issue 283 // target we want to allow the defining instruction to issue 284 // in the same cycle as the using instruction. 285 // TODO: Using a latency of 1 here for output dependencies assumes 286 // there's no cost for reusing registers. 287 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 288 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 289 if (!Defs.contains(*Alias)) 290 continue; 291 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 292 SUnit *DefSU = I->SU; 293 if (DefSU == &ExitSU) 294 continue; 295 if (DefSU != SU && 296 (Kind != SDep::Output || !MO.isDead() || 297 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 298 if (Kind == SDep::Anti) 299 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 300 else { 301 SDep Dep(SU, Kind, /*Reg=*/*Alias); 302 Dep.setLatency( 303 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 304 DefSU->addPred(Dep); 305 } 306 } 307 } 308 } 309 310 if (!MO.isDef()) { 311 SU->hasPhysRegUses = true; 312 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 313 // retrieve the existing SUnits list for this register's uses. 314 // Push this SUnit on the use list. 315 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg)); 316 if (RemoveKillFlags) 317 MO.setIsKill(false); 318 } else { 319 addPhysRegDataDeps(SU, OperIdx); 320 321 // clear this register's use list 322 if (Uses.contains(Reg)) 323 Uses.eraseAll(Reg); 324 325 if (!MO.isDead()) { 326 Defs.eraseAll(Reg); 327 } else if (SU->isCall) { 328 // Calls will not be reordered because of chain dependencies (see 329 // below). Since call operands are dead, calls may continue to be added 330 // to the DefList making dependence checking quadratic in the size of 331 // the block. Instead, we leave only one call at the back of the 332 // DefList. 333 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 334 Reg2SUnitsMap::iterator B = P.first; 335 Reg2SUnitsMap::iterator I = P.second; 336 for (bool isBegin = I == B; !isBegin; /* empty */) { 337 isBegin = (--I) == B; 338 if (!I->SU->isCall) 339 break; 340 I = Defs.erase(I); 341 } 342 } 343 344 // Defs are pushed in the order they are visited and never reordered. 345 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 346 } 347 } 348 349 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 350 { 351 unsigned Reg = MO.getReg(); 352 // No point in tracking lanemasks if we don't have interesting subregisters. 353 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 354 if (!RC.HasDisjunctSubRegs) 355 return LaneBitmask::getAll(); 356 357 unsigned SubReg = MO.getSubReg(); 358 if (SubReg == 0) 359 return RC.getLaneMask(); 360 return TRI->getSubRegIndexLaneMask(SubReg); 361 } 362 363 /// Adds register output and data dependencies from this SUnit to instructions 364 /// that occur later in the same scheduling region if they read from or write to 365 /// the virtual register defined at OperIdx. 366 /// 367 /// TODO: Hoist loop induction variable increments. This has to be 368 /// reevaluated. Generally, IV scheduling should be done before coalescing. 369 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 370 MachineInstr *MI = SU->getInstr(); 371 MachineOperand &MO = MI->getOperand(OperIdx); 372 unsigned Reg = MO.getReg(); 373 374 LaneBitmask DefLaneMask; 375 LaneBitmask KillLaneMask; 376 if (TrackLaneMasks) { 377 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 378 DefLaneMask = getLaneMaskForMO(MO); 379 // If we have a <read-undef> flag, none of the lane values comes from an 380 // earlier instruction. 381 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask; 382 383 // Clear undef flag, we'll re-add it later once we know which subregister 384 // Def is first. 385 MO.setIsUndef(false); 386 } else { 387 DefLaneMask = LaneBitmask::getAll(); 388 KillLaneMask = LaneBitmask::getAll(); 389 } 390 391 if (MO.isDead()) { 392 assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() && 393 "Dead defs should have no uses"); 394 } else { 395 // Add data dependence to all uses we found so far. 396 const TargetSubtargetInfo &ST = MF.getSubtarget(); 397 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 398 E = CurrentVRegUses.end(); I != E; /*empty*/) { 399 LaneBitmask LaneMask = I->LaneMask; 400 // Ignore uses of other lanes. 401 if ((LaneMask & KillLaneMask).none()) { 402 ++I; 403 continue; 404 } 405 406 if ((LaneMask & DefLaneMask).any()) { 407 SUnit *UseSU = I->SU; 408 MachineInstr *Use = UseSU->getInstr(); 409 SDep Dep(SU, SDep::Data, Reg); 410 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 411 I->OperandIndex)); 412 ST.adjustSchedDependency(SU, UseSU, Dep); 413 UseSU->addPred(Dep); 414 } 415 416 LaneMask &= ~KillLaneMask; 417 // If we found a Def for all lanes of this use, remove it from the list. 418 if (LaneMask.any()) { 419 I->LaneMask = LaneMask; 420 ++I; 421 } else 422 I = CurrentVRegUses.erase(I); 423 } 424 } 425 426 // Shortcut: Singly defined vregs do not have output/anti dependencies. 427 if (MRI.hasOneDef(Reg)) 428 return; 429 430 // Add output dependence to the next nearest defs of this vreg. 431 // 432 // Unless this definition is dead, the output dependence should be 433 // transitively redundant with antidependencies from this definition's 434 // uses. We're conservative for now until we have a way to guarantee the uses 435 // are not eliminated sometime during scheduling. The output dependence edge 436 // is also useful if output latency exceeds def-use latency. 437 LaneBitmask LaneMask = DefLaneMask; 438 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 439 CurrentVRegDefs.end())) { 440 // Ignore defs for other lanes. 441 if ((V2SU.LaneMask & LaneMask).none()) 442 continue; 443 // Add an output dependence. 444 SUnit *DefSU = V2SU.SU; 445 // Ignore additional defs of the same lanes in one instruction. This can 446 // happen because lanemasks are shared for targets with too many 447 // subregisters. We also use some representration tricks/hacks where we 448 // add super-register defs/uses, to imply that although we only access parts 449 // of the reg we care about the full one. 450 if (DefSU == SU) 451 continue; 452 SDep Dep(SU, SDep::Output, Reg); 453 Dep.setLatency( 454 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 455 DefSU->addPred(Dep); 456 457 // Update current definition. This can get tricky if the def was about a 458 // bigger lanemask before. We then have to shrink it and create a new 459 // VReg2SUnit for the non-overlapping part. 460 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 461 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 462 V2SU.SU = SU; 463 V2SU.LaneMask = OverlapMask; 464 if (NonOverlapMask.any()) 465 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); 466 } 467 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 468 if (LaneMask.any()) 469 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 470 } 471 472 /// Adds a register data dependency if the instruction that defines the 473 /// virtual register used at OperIdx is mapped to an SUnit. Add a register 474 /// antidependency from this SUnit to instructions that occur later in the same 475 /// scheduling region if they write the virtual register. 476 /// 477 /// TODO: Handle ExitSU "uses" properly. 478 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 479 const MachineInstr *MI = SU->getInstr(); 480 const MachineOperand &MO = MI->getOperand(OperIdx); 481 unsigned Reg = MO.getReg(); 482 483 // Remember the use. Data dependencies will be added when we find the def. 484 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) 485 : LaneBitmask::getAll(); 486 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 487 488 // Add antidependences to the following defs of the vreg. 489 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 490 CurrentVRegDefs.end())) { 491 // Ignore defs for unrelated lanes. 492 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 493 if ((PrevDefLaneMask & LaneMask).none()) 494 continue; 495 if (V2SU.SU == SU) 496 continue; 497 498 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 499 } 500 } 501 502 /// Returns true if MI is an instruction we are unable to reason about 503 /// (like a call or something with unmodeled side effects). 504 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 505 return MI->isCall() || MI->hasUnmodeledSideEffects() || 506 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA)); 507 } 508 509 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, 510 unsigned Latency) { 511 if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) { 512 SDep Dep(SUa, SDep::MayAliasMem); 513 Dep.setLatency(Latency); 514 SUb->addPred(Dep); 515 } 516 } 517 518 /// Creates an SUnit for each real instruction, numbered in top-down 519 /// topological order. The instruction order A < B, implies that no edge exists 520 /// from B to A. 521 /// 522 /// Map each real instruction to its SUnit. 523 /// 524 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 525 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 526 /// instead of pointers. 527 /// 528 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 529 /// the original instruction list. 530 void ScheduleDAGInstrs::initSUnits() { 531 // We'll be allocating one SUnit for each real instruction in the region, 532 // which is contained within a basic block. 533 SUnits.reserve(NumRegionInstrs); 534 535 for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) { 536 if (MI.isDebugInstr()) 537 continue; 538 539 SUnit *SU = newSUnit(&MI); 540 MISUnitMap[&MI] = SU; 541 542 SU->isCall = MI.isCall(); 543 SU->isCommutable = MI.isCommutable(); 544 545 // Assign the Latency field of SU using target-provided information. 546 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 547 548 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 549 // 550 // Reserved resources block an instruction from issuing and stall the 551 // entire pipeline. These are identified by BufferSize=0. 552 // 553 // Unbuffered resources prevent execution of subsequent instructions that 554 // require the same resources. This is used for in-order execution pipelines 555 // within an out-of-order core. These are identified by BufferSize=1. 556 if (SchedModel.hasInstrSchedModel()) { 557 const MCSchedClassDesc *SC = getSchedClass(SU); 558 for (const MCWriteProcResEntry &PRE : 559 make_range(SchedModel.getWriteProcResBegin(SC), 560 SchedModel.getWriteProcResEnd(SC))) { 561 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) { 562 case 0: 563 SU->hasReservedResource = true; 564 break; 565 case 1: 566 SU->isUnbuffered = true; 567 break; 568 default: 569 break; 570 } 571 } 572 } 573 } 574 } 575 576 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { 577 /// Current total number of SUs in map. 578 unsigned NumNodes = 0; 579 580 /// 1 for loads, 0 for stores. (see comment in SUList) 581 unsigned TrueMemOrderLatency; 582 583 public: 584 Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {} 585 586 /// To keep NumNodes up to date, insert() is used instead of 587 /// this operator w/ push_back(). 588 ValueType &operator[](const SUList &Key) { 589 llvm_unreachable("Don't use. Use insert() instead."); }; 590 591 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling 592 /// reduce(). 593 void inline insert(SUnit *SU, ValueType V) { 594 MapVector::operator[](V).push_back(SU); 595 NumNodes++; 596 } 597 598 /// Clears the list of SUs mapped to V. 599 void inline clearList(ValueType V) { 600 iterator Itr = find(V); 601 if (Itr != end()) { 602 assert(NumNodes >= Itr->second.size()); 603 NumNodes -= Itr->second.size(); 604 605 Itr->second.clear(); 606 } 607 } 608 609 /// Clears map from all contents. 610 void clear() { 611 MapVector<ValueType, SUList>::clear(); 612 NumNodes = 0; 613 } 614 615 unsigned inline size() const { return NumNodes; } 616 617 /// Counts the number of SUs in this map after a reduction. 618 void reComputeSize() { 619 NumNodes = 0; 620 for (auto &I : *this) 621 NumNodes += I.second.size(); 622 } 623 624 unsigned inline getTrueMemOrderLatency() const { 625 return TrueMemOrderLatency; 626 } 627 628 void dump(); 629 }; 630 631 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 632 Value2SUsMap &Val2SUsMap) { 633 for (auto &I : Val2SUsMap) 634 addChainDependencies(SU, I.second, 635 Val2SUsMap.getTrueMemOrderLatency()); 636 } 637 638 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 639 Value2SUsMap &Val2SUsMap, 640 ValueType V) { 641 Value2SUsMap::iterator Itr = Val2SUsMap.find(V); 642 if (Itr != Val2SUsMap.end()) 643 addChainDependencies(SU, Itr->second, 644 Val2SUsMap.getTrueMemOrderLatency()); 645 } 646 647 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { 648 assert(BarrierChain != nullptr); 649 650 for (auto &I : map) { 651 SUList &sus = I.second; 652 for (auto *SU : sus) 653 SU->addPredBarrier(BarrierChain); 654 } 655 map.clear(); 656 } 657 658 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { 659 assert(BarrierChain != nullptr); 660 661 // Go through all lists of SUs. 662 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { 663 Value2SUsMap::iterator CurrItr = I++; 664 SUList &sus = CurrItr->second; 665 SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); 666 for (; SUItr != SUEE; ++SUItr) { 667 // Stop on BarrierChain or any instruction above it. 668 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) 669 break; 670 671 (*SUItr)->addPredBarrier(BarrierChain); 672 } 673 674 // Remove also the BarrierChain from list if present. 675 if (SUItr != SUEE && *SUItr == BarrierChain) 676 SUItr++; 677 678 // Remove all SUs that are now successors of BarrierChain. 679 if (SUItr != sus.begin()) 680 sus.erase(sus.begin(), SUItr); 681 } 682 683 // Remove all entries with empty su lists. 684 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { 685 return (mapEntry.second.empty()); }); 686 687 // Recompute the size of the map (NumNodes). 688 map.reComputeSize(); 689 } 690 691 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 692 RegPressureTracker *RPTracker, 693 PressureDiffs *PDiffs, 694 LiveIntervals *LIS, 695 bool TrackLaneMasks) { 696 const TargetSubtargetInfo &ST = MF.getSubtarget(); 697 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 698 : ST.useAA(); 699 AAForDep = UseAA ? AA : nullptr; 700 701 BarrierChain = nullptr; 702 703 this->TrackLaneMasks = TrackLaneMasks; 704 MISUnitMap.clear(); 705 ScheduleDAG::clearDAG(); 706 707 // Create an SUnit for each real instruction. 708 initSUnits(); 709 710 if (PDiffs) 711 PDiffs->init(SUnits.size()); 712 713 // We build scheduling units by walking a block's instruction list 714 // from bottom to top. 715 716 // Each MIs' memory operand(s) is analyzed to a list of underlying 717 // objects. The SU is then inserted in the SUList(s) mapped from the 718 // Value(s). Each Value thus gets mapped to lists of SUs depending 719 // on it, stores and loads kept separately. Two SUs are trivially 720 // non-aliasing if they both depend on only identified Values and do 721 // not share any common Value. 722 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); 723 724 // Certain memory accesses are known to not alias any SU in Stores 725 // or Loads, and have therefore their own 'NonAlias' 726 // domain. E.g. spill / reload instructions never alias LLVM I/R 727 // Values. It would be nice to assume that this type of memory 728 // accesses always have a proper memory operand modelling, and are 729 // therefore never unanalyzable, but this is conservatively not 730 // done. 731 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); 732 733 // Remove any stale debug info; sometimes BuildSchedGraph is called again 734 // without emitting the info from the previous call. 735 DbgValues.clear(); 736 FirstDbgValue = nullptr; 737 738 assert(Defs.empty() && Uses.empty() && 739 "Only BuildGraph should update Defs/Uses"); 740 Defs.setUniverse(TRI->getNumRegs()); 741 Uses.setUniverse(TRI->getNumRegs()); 742 743 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 744 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 745 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 746 CurrentVRegDefs.setUniverse(NumVirtRegs); 747 CurrentVRegUses.setUniverse(NumVirtRegs); 748 749 // Model data dependencies between instructions being scheduled and the 750 // ExitSU. 751 addSchedBarrierDeps(); 752 753 // Walk the list of instructions, from bottom moving up. 754 MachineInstr *DbgMI = nullptr; 755 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 756 MII != MIE; --MII) { 757 MachineInstr &MI = *std::prev(MII); 758 if (DbgMI) { 759 DbgValues.push_back(std::make_pair(DbgMI, &MI)); 760 DbgMI = nullptr; 761 } 762 763 if (MI.isDebugValue()) { 764 DbgMI = &MI; 765 continue; 766 } 767 if (MI.isDebugLabel()) 768 continue; 769 770 SUnit *SU = MISUnitMap[&MI]; 771 assert(SU && "No SUnit mapped to this MI"); 772 773 if (RPTracker) { 774 RegisterOperands RegOpers; 775 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); 776 if (TrackLaneMasks) { 777 SlotIndex SlotIdx = LIS->getInstructionIndex(MI); 778 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 779 } 780 if (PDiffs != nullptr) 781 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 782 783 if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI) 784 RPTracker->recedeSkipDebugValues(); 785 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); 786 RPTracker->recede(RegOpers); 787 } 788 789 assert( 790 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && 791 "Cannot schedule terminators or labels!"); 792 793 // Add register-based dependencies (data, anti, and output). 794 // For some instructions (calls, returns, inline-asm, etc.) there can 795 // be explicit uses and implicit defs, in which case the use will appear 796 // on the operand list before the def. Do two passes over the operand 797 // list to make sure that defs are processed before any uses. 798 bool HasVRegDef = false; 799 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 800 const MachineOperand &MO = MI.getOperand(j); 801 if (!MO.isReg() || !MO.isDef()) 802 continue; 803 unsigned Reg = MO.getReg(); 804 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 805 addPhysRegDeps(SU, j); 806 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 807 HasVRegDef = true; 808 addVRegDefDeps(SU, j); 809 } 810 } 811 // Now process all uses. 812 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 813 const MachineOperand &MO = MI.getOperand(j); 814 // Only look at use operands. 815 // We do not need to check for MO.readsReg() here because subsequent 816 // subregister defs will get output dependence edges and need no 817 // additional use dependencies. 818 if (!MO.isReg() || !MO.isUse()) 819 continue; 820 unsigned Reg = MO.getReg(); 821 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 822 addPhysRegDeps(SU, j); 823 } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) { 824 addVRegUseDeps(SU, j); 825 } 826 } 827 828 // If we haven't seen any uses in this scheduling region, create a 829 // dependence edge to ExitSU to model the live-out latency. This is required 830 // for vreg defs with no in-region use, and prefetches with no vreg def. 831 // 832 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 833 // check currently relies on being called before adding chain deps. 834 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { 835 SDep Dep(SU, SDep::Artificial); 836 Dep.setLatency(SU->Latency - 1); 837 ExitSU.addPred(Dep); 838 } 839 840 // Add memory dependencies (Note: isStoreToStackSlot and 841 // isLoadFromStackSLot are not usable after stack slots are lowered to 842 // actual addresses). 843 844 // This is a barrier event that acts as a pivotal node in the DAG. 845 if (isGlobalMemoryObject(AA, &MI)) { 846 847 // Become the barrier chain. 848 if (BarrierChain) 849 BarrierChain->addPredBarrier(SU); 850 BarrierChain = SU; 851 852 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" 853 << BarrierChain->NodeNum << ").\n";); 854 855 // Add dependencies against everything below it and clear maps. 856 addBarrierChain(Stores); 857 addBarrierChain(Loads); 858 addBarrierChain(NonAliasStores); 859 addBarrierChain(NonAliasLoads); 860 861 continue; 862 } 863 864 // If it's not a store or a variant load, we're done. 865 if (!MI.mayStore() && 866 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))) 867 continue; 868 869 // Always add dependecy edge to BarrierChain if present. 870 if (BarrierChain) 871 BarrierChain->addPredBarrier(SU); 872 873 // Find the underlying objects for MI. The Objs vector is either 874 // empty, or filled with the Values of memory locations which this 875 // SU depends on. 876 UnderlyingObjectsVector Objs; 877 bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs, 878 MF.getDataLayout()); 879 880 if (MI.mayStore()) { 881 if (!ObjsFound) { 882 // An unknown store depends on all stores and loads. 883 addChainDependencies(SU, Stores); 884 addChainDependencies(SU, NonAliasStores); 885 addChainDependencies(SU, Loads); 886 addChainDependencies(SU, NonAliasLoads); 887 888 // Map this store to 'UnknownValue'. 889 Stores.insert(SU, UnknownValue); 890 } else { 891 // Add precise dependencies against all previously seen memory 892 // accesses mapped to the same Value(s). 893 for (const UnderlyingObject &UnderlObj : Objs) { 894 ValueType V = UnderlObj.getValue(); 895 bool ThisMayAlias = UnderlObj.mayAlias(); 896 897 // Add dependencies to previous stores and loads mapped to V. 898 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 899 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); 900 } 901 // Update the store map after all chains have been added to avoid adding 902 // self-loop edge if multiple underlying objects are present. 903 for (const UnderlyingObject &UnderlObj : Objs) { 904 ValueType V = UnderlObj.getValue(); 905 bool ThisMayAlias = UnderlObj.mayAlias(); 906 907 // Map this store to V. 908 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); 909 } 910 // The store may have dependencies to unanalyzable loads and 911 // stores. 912 addChainDependencies(SU, Loads, UnknownValue); 913 addChainDependencies(SU, Stores, UnknownValue); 914 } 915 } else { // SU is a load. 916 if (!ObjsFound) { 917 // An unknown load depends on all stores. 918 addChainDependencies(SU, Stores); 919 addChainDependencies(SU, NonAliasStores); 920 921 Loads.insert(SU, UnknownValue); 922 } else { 923 for (const UnderlyingObject &UnderlObj : Objs) { 924 ValueType V = UnderlObj.getValue(); 925 bool ThisMayAlias = UnderlObj.mayAlias(); 926 927 // Add precise dependencies against all previously seen stores 928 // mapping to the same Value(s). 929 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 930 931 // Map this load to V. 932 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); 933 } 934 // The load may have dependencies to unanalyzable stores. 935 addChainDependencies(SU, Stores, UnknownValue); 936 } 937 } 938 939 // Reduce maps if they grow huge. 940 if (Stores.size() + Loads.size() >= HugeRegion) { 941 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); 942 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); 943 } 944 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { 945 LLVM_DEBUG( 946 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); 947 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); 948 } 949 } 950 951 if (DbgMI) 952 FirstDbgValue = DbgMI; 953 954 Defs.clear(); 955 Uses.clear(); 956 CurrentVRegDefs.clear(); 957 CurrentVRegUses.clear(); 958 } 959 960 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { 961 PSV->printCustom(OS); 962 return OS; 963 } 964 965 void ScheduleDAGInstrs::Value2SUsMap::dump() { 966 for (auto &Itr : *this) { 967 if (Itr.first.is<const Value*>()) { 968 const Value *V = Itr.first.get<const Value*>(); 969 if (isa<UndefValue>(V)) 970 dbgs() << "Unknown"; 971 else 972 V->printAsOperand(dbgs()); 973 } 974 else if (Itr.first.is<const PseudoSourceValue*>()) 975 dbgs() << Itr.first.get<const PseudoSourceValue*>(); 976 else 977 llvm_unreachable("Unknown Value type."); 978 979 dbgs() << " : "; 980 dumpSUList(Itr.second); 981 } 982 } 983 984 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, 985 Value2SUsMap &loads, unsigned N) { 986 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump(); 987 dbgs() << "Loading SUnits:\n"; loads.dump()); 988 989 // Insert all SU's NodeNums into a vector and sort it. 990 std::vector<unsigned> NodeNums; 991 NodeNums.reserve(stores.size() + loads.size()); 992 for (auto &I : stores) 993 for (auto *SU : I.second) 994 NodeNums.push_back(SU->NodeNum); 995 for (auto &I : loads) 996 for (auto *SU : I.second) 997 NodeNums.push_back(SU->NodeNum); 998 llvm::sort(NodeNums.begin(), NodeNums.end()); 999 1000 // The N last elements in NodeNums will be removed, and the SU with 1001 // the lowest NodeNum of them will become the new BarrierChain to 1002 // let the not yet seen SUs have a dependency to the removed SUs. 1003 assert(N <= NodeNums.size()); 1004 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; 1005 if (BarrierChain) { 1006 // The aliasing and non-aliasing maps reduce independently of each 1007 // other, but share a common BarrierChain. Check if the 1008 // newBarrierChain is above the former one. If it is not, it may 1009 // introduce a loop to use newBarrierChain, so keep the old one. 1010 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { 1011 BarrierChain->addPredBarrier(newBarrierChain); 1012 BarrierChain = newBarrierChain; 1013 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU(" 1014 << BarrierChain->NodeNum << ").\n";); 1015 } 1016 else 1017 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU(" 1018 << BarrierChain->NodeNum << ").\n";); 1019 } 1020 else 1021 BarrierChain = newBarrierChain; 1022 1023 insertBarrierChain(stores); 1024 insertBarrierChain(loads); 1025 1026 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump(); 1027 dbgs() << "Loading SUnits:\n"; loads.dump()); 1028 } 1029 1030 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs, 1031 MachineInstr &MI, bool addToLiveRegs) { 1032 for (MachineOperand &MO : MI.operands()) { 1033 if (!MO.isReg() || !MO.readsReg()) 1034 continue; 1035 unsigned Reg = MO.getReg(); 1036 if (!Reg) 1037 continue; 1038 1039 // Things that are available after the instruction are killed by it. 1040 bool IsKill = LiveRegs.available(MRI, Reg); 1041 MO.setIsKill(IsKill); 1042 if (addToLiveRegs) 1043 LiveRegs.addReg(Reg); 1044 } 1045 } 1046 1047 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) { 1048 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n'); 1049 1050 LiveRegs.init(*TRI); 1051 LiveRegs.addLiveOuts(MBB); 1052 1053 // Examine block from end to start... 1054 for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) { 1055 if (MI.isDebugInstr()) 1056 continue; 1057 1058 // Update liveness. Registers that are defed but not used in this 1059 // instruction are now dead. Mark register and all subregs as they 1060 // are completely defined. 1061 for (ConstMIBundleOperands O(MI); O.isValid(); ++O) { 1062 const MachineOperand &MO = *O; 1063 if (MO.isReg()) { 1064 if (!MO.isDef()) 1065 continue; 1066 unsigned Reg = MO.getReg(); 1067 if (!Reg) 1068 continue; 1069 LiveRegs.removeReg(Reg); 1070 } else if (MO.isRegMask()) { 1071 LiveRegs.removeRegsInMask(MO); 1072 } 1073 } 1074 1075 // If there is a bundle header fix it up first. 1076 if (!MI.isBundled()) { 1077 toggleKills(MRI, LiveRegs, MI, true); 1078 } else { 1079 MachineBasicBlock::instr_iterator First = MI.getIterator(); 1080 if (MI.isBundle()) { 1081 toggleKills(MRI, LiveRegs, MI, false); 1082 ++First; 1083 } 1084 // Some targets make the (questionable) assumtion that the instructions 1085 // inside the bundle are ordered and consequently only the last use of 1086 // a register inside the bundle can kill it. 1087 MachineBasicBlock::instr_iterator I = std::next(First); 1088 while (I->isBundledWithSucc()) 1089 ++I; 1090 do { 1091 if (!I->isDebugInstr()) 1092 toggleKills(MRI, LiveRegs, *I, true); 1093 --I; 1094 } while(I != First); 1095 } 1096 } 1097 } 1098 1099 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1100 // Cannot completely remove virtual function even in release mode. 1101 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1102 SU->getInstr()->dump(); 1103 #endif 1104 } 1105 1106 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1107 std::string s; 1108 raw_string_ostream oss(s); 1109 if (SU == &EntrySU) 1110 oss << "<entry>"; 1111 else if (SU == &ExitSU) 1112 oss << "<exit>"; 1113 else 1114 SU->getInstr()->print(oss, /*SkipOpers=*/true); 1115 return oss.str(); 1116 } 1117 1118 /// Return the basic block label. It is not necessarilly unique because a block 1119 /// contains multiple scheduling regions. But it is fine for visualization. 1120 std::string ScheduleDAGInstrs::getDAGName() const { 1121 return "dag." + BB->getFullName(); 1122 } 1123 1124 //===----------------------------------------------------------------------===// 1125 // SchedDFSResult Implementation 1126 //===----------------------------------------------------------------------===// 1127 1128 namespace llvm { 1129 1130 /// Internal state used to compute SchedDFSResult. 1131 class SchedDFSImpl { 1132 SchedDFSResult &R; 1133 1134 /// Join DAG nodes into equivalence classes by their subtree. 1135 IntEqClasses SubtreeClasses; 1136 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1137 std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs; 1138 1139 struct RootData { 1140 unsigned NodeID; 1141 unsigned ParentNodeID; ///< Parent node (member of the parent subtree). 1142 unsigned SubInstrCount = 0; ///< Instr count in this tree only, not 1143 /// children. 1144 1145 RootData(unsigned id): NodeID(id), 1146 ParentNodeID(SchedDFSResult::InvalidSubtreeID) {} 1147 1148 unsigned getSparseSetIndex() const { return NodeID; } 1149 }; 1150 1151 SparseSet<RootData> RootSet; 1152 1153 public: 1154 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1155 RootSet.setUniverse(R.DFSNodeData.size()); 1156 } 1157 1158 /// Returns true if this node been visited by the DFS traversal. 1159 /// 1160 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1161 /// ID. Later, SubtreeID is updated but remains valid. 1162 bool isVisited(const SUnit *SU) const { 1163 return R.DFSNodeData[SU->NodeNum].SubtreeID 1164 != SchedDFSResult::InvalidSubtreeID; 1165 } 1166 1167 /// Initializes this node's instruction count. We don't need to flag the node 1168 /// visited until visitPostorder because the DAG cannot have cycles. 1169 void visitPreorder(const SUnit *SU) { 1170 R.DFSNodeData[SU->NodeNum].InstrCount = 1171 SU->getInstr()->isTransient() ? 0 : 1; 1172 } 1173 1174 /// Called once for each node after all predecessors are visited. Revisit this 1175 /// node's predecessors and potentially join them now that we know the ILP of 1176 /// the other predecessors. 1177 void visitPostorderNode(const SUnit *SU) { 1178 // Mark this node as the root of a subtree. It may be joined with its 1179 // successors later. 1180 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1181 RootData RData(SU->NodeNum); 1182 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1183 1184 // If any predecessors are still in their own subtree, they either cannot be 1185 // joined or are large enough to remain separate. If this parent node's 1186 // total instruction count is not greater than a child subtree by at least 1187 // the subtree limit, then try to join it now since splitting subtrees is 1188 // only useful if multiple high-pressure paths are possible. 1189 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1190 for (const SDep &PredDep : SU->Preds) { 1191 if (PredDep.getKind() != SDep::Data) 1192 continue; 1193 unsigned PredNum = PredDep.getSUnit()->NodeNum; 1194 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1195 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false); 1196 1197 // Either link or merge the TreeData entry from the child to the parent. 1198 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1199 // If the predecessor's parent is invalid, this is a tree edge and the 1200 // current node is the parent. 1201 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1202 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1203 } 1204 else if (RootSet.count(PredNum)) { 1205 // The predecessor is not a root, but is still in the root set. This 1206 // must be the new parent that it was just joined to. Note that 1207 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1208 // set to the original parent. 1209 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1210 RootSet.erase(PredNum); 1211 } 1212 } 1213 RootSet[SU->NodeNum] = RData; 1214 } 1215 1216 /// Called once for each tree edge after calling visitPostOrderNode on 1217 /// the predecessor. Increment the parent node's instruction count and 1218 /// preemptively join this subtree to its parent's if it is small enough. 1219 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1220 R.DFSNodeData[Succ->NodeNum].InstrCount 1221 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1222 joinPredSubtree(PredDep, Succ); 1223 } 1224 1225 /// Adds a connection for cross edges. 1226 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1227 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1228 } 1229 1230 /// Sets each node's subtree ID to the representative ID and record 1231 /// connections between trees. 1232 void finalize() { 1233 SubtreeClasses.compress(); 1234 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1235 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1236 && "number of roots should match trees"); 1237 for (const RootData &Root : RootSet) { 1238 unsigned TreeID = SubtreeClasses[Root.NodeID]; 1239 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1240 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; 1241 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; 1242 // Note that SubInstrCount may be greater than InstrCount if we joined 1243 // subtrees across a cross edge. InstrCount will be attributed to the 1244 // original parent, while SubInstrCount will be attributed to the joined 1245 // parent. 1246 } 1247 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1248 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1249 LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1250 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1251 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1252 LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1253 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1254 } 1255 for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) { 1256 unsigned PredTree = SubtreeClasses[P.first->NodeNum]; 1257 unsigned SuccTree = SubtreeClasses[P.second->NodeNum]; 1258 if (PredTree == SuccTree) 1259 continue; 1260 unsigned Depth = P.first->getDepth(); 1261 addConnection(PredTree, SuccTree, Depth); 1262 addConnection(SuccTree, PredTree, Depth); 1263 } 1264 } 1265 1266 protected: 1267 /// Joins the predecessor subtree with the successor that is its DFS parent. 1268 /// Applies some heuristics before joining. 1269 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1270 bool CheckLimit = true) { 1271 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1272 1273 // Check if the predecessor is already joined. 1274 const SUnit *PredSU = PredDep.getSUnit(); 1275 unsigned PredNum = PredSU->NodeNum; 1276 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1277 return false; 1278 1279 // Four is the magic number of successors before a node is considered a 1280 // pinch point. 1281 unsigned NumDataSucs = 0; 1282 for (const SDep &SuccDep : PredSU->Succs) { 1283 if (SuccDep.getKind() == SDep::Data) { 1284 if (++NumDataSucs >= 4) 1285 return false; 1286 } 1287 } 1288 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1289 return false; 1290 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1291 SubtreeClasses.join(Succ->NodeNum, PredNum); 1292 return true; 1293 } 1294 1295 /// Called by finalize() to record a connection between trees. 1296 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1297 if (!Depth) 1298 return; 1299 1300 do { 1301 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1302 R.SubtreeConnections[FromTree]; 1303 for (SchedDFSResult::Connection &C : Connections) { 1304 if (C.TreeID == ToTree) { 1305 C.Level = std::max(C.Level, Depth); 1306 return; 1307 } 1308 } 1309 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1310 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1311 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1312 } 1313 }; 1314 1315 } // end namespace llvm 1316 1317 namespace { 1318 1319 /// Manage the stack used by a reverse depth-first search over the DAG. 1320 class SchedDAGReverseDFS { 1321 std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack; 1322 1323 public: 1324 bool isComplete() const { return DFSStack.empty(); } 1325 1326 void follow(const SUnit *SU) { 1327 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1328 } 1329 void advance() { ++DFSStack.back().second; } 1330 1331 const SDep *backtrack() { 1332 DFSStack.pop_back(); 1333 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1334 } 1335 1336 const SUnit *getCurr() const { return DFSStack.back().first; } 1337 1338 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1339 1340 SUnit::const_pred_iterator getPredEnd() const { 1341 return getCurr()->Preds.end(); 1342 } 1343 }; 1344 1345 } // end anonymous namespace 1346 1347 static bool hasDataSucc(const SUnit *SU) { 1348 for (const SDep &SuccDep : SU->Succs) { 1349 if (SuccDep.getKind() == SDep::Data && 1350 !SuccDep.getSUnit()->isBoundaryNode()) 1351 return true; 1352 } 1353 return false; 1354 } 1355 1356 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first 1357 /// search from this root. 1358 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1359 if (!IsBottomUp) 1360 llvm_unreachable("Top-down ILP metric is unimplemented"); 1361 1362 SchedDFSImpl Impl(*this); 1363 for (const SUnit &SU : SUnits) { 1364 if (Impl.isVisited(&SU) || hasDataSucc(&SU)) 1365 continue; 1366 1367 SchedDAGReverseDFS DFS; 1368 Impl.visitPreorder(&SU); 1369 DFS.follow(&SU); 1370 while (true) { 1371 // Traverse the leftmost path as far as possible. 1372 while (DFS.getPred() != DFS.getPredEnd()) { 1373 const SDep &PredDep = *DFS.getPred(); 1374 DFS.advance(); 1375 // Ignore non-data edges. 1376 if (PredDep.getKind() != SDep::Data 1377 || PredDep.getSUnit()->isBoundaryNode()) { 1378 continue; 1379 } 1380 // An already visited edge is a cross edge, assuming an acyclic DAG. 1381 if (Impl.isVisited(PredDep.getSUnit())) { 1382 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1383 continue; 1384 } 1385 Impl.visitPreorder(PredDep.getSUnit()); 1386 DFS.follow(PredDep.getSUnit()); 1387 } 1388 // Visit the top of the stack in postorder and backtrack. 1389 const SUnit *Child = DFS.getCurr(); 1390 const SDep *PredDep = DFS.backtrack(); 1391 Impl.visitPostorderNode(Child); 1392 if (PredDep) 1393 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1394 if (DFS.isComplete()) 1395 break; 1396 } 1397 } 1398 Impl.finalize(); 1399 } 1400 1401 /// The root of the given SubtreeID was just scheduled. For all subtrees 1402 /// connected to this tree, record the depth of the connection so that the 1403 /// nearest connected subtrees can be prioritized. 1404 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1405 for (const Connection &C : SubtreeConnections[SubtreeID]) { 1406 SubtreeConnectLevels[C.TreeID] = 1407 std::max(SubtreeConnectLevels[C.TreeID], C.Level); 1408 LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @" 1409 << SubtreeConnectLevels[C.TreeID] << '\n'); 1410 } 1411 } 1412 1413 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1414 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const { 1415 OS << InstrCount << " / " << Length << " = "; 1416 if (!Length) 1417 OS << "BADILP"; 1418 else 1419 OS << format("%g", ((double)InstrCount / Length)); 1420 } 1421 1422 LLVM_DUMP_METHOD void ILPValue::dump() const { 1423 dbgs() << *this << '\n'; 1424 } 1425 1426 namespace llvm { 1427 1428 LLVM_DUMP_METHOD 1429 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1430 Val.print(OS); 1431 return OS; 1432 } 1433 1434 } // end namespace llvm 1435 1436 #endif 1437