1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling 11 // of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/PseudoSourceValue.h" 27 #include "llvm/CodeGen/RegisterPressure.h" 28 #include "llvm/CodeGen/ScheduleDFS.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/MC/MCInstrItineraries.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/Format.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetRegisterInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <queue> 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "misched" 44 45 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 46 cl::ZeroOrMore, cl::init(false), 47 cl::desc("Enable use of AA during MI GAD construction")); 48 49 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 50 cl::init(true), cl::desc("Enable use of TBAA during MI GAD construction")); 51 52 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 53 const MachineLoopInfo *mli, 54 bool IsPostRAFlag, 55 bool RemoveKillFlags, 56 LiveIntervals *lis) 57 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), LIS(lis), 58 IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags), 59 CanHandleTerminators(false), FirstDbgValue(nullptr) { 60 assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals"); 61 DbgValues.clear(); 62 assert(!(IsPostRA && MRI.getNumVirtRegs()) && 63 "Virtual registers must be removed prior to PostRA scheduling"); 64 65 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 66 SchedModel.init(*ST.getSchedModel(), &ST, TII); 67 } 68 69 /// getUnderlyingObjectFromInt - This is the function that does the work of 70 /// looking through basic ptrtoint+arithmetic+inttoptr sequences. 71 static const Value *getUnderlyingObjectFromInt(const Value *V) { 72 do { 73 if (const Operator *U = dyn_cast<Operator>(V)) { 74 // If we find a ptrtoint, we can transfer control back to the 75 // regular getUnderlyingObjectFromInt. 76 if (U->getOpcode() == Instruction::PtrToInt) 77 return U->getOperand(0); 78 // If we find an add of a constant, a multiplied value, or a phi, it's 79 // likely that the other operand will lead us to the base 80 // object. We don't have to worry about the case where the 81 // object address is somehow being computed by the multiply, 82 // because our callers only care when the result is an 83 // identifiable object. 84 if (U->getOpcode() != Instruction::Add || 85 (!isa<ConstantInt>(U->getOperand(1)) && 86 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 87 !isa<PHINode>(U->getOperand(1)))) 88 return V; 89 V = U->getOperand(0); 90 } else { 91 return V; 92 } 93 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 94 } while (1); 95 } 96 97 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects 98 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. 99 static void getUnderlyingObjects(const Value *V, 100 SmallVectorImpl<Value *> &Objects) { 101 SmallPtrSet<const Value *, 16> Visited; 102 SmallVector<const Value *, 4> Working(1, V); 103 do { 104 V = Working.pop_back_val(); 105 106 SmallVector<Value *, 4> Objs; 107 GetUnderlyingObjects(const_cast<Value *>(V), Objs); 108 109 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 110 I != IE; ++I) { 111 V = *I; 112 if (!Visited.insert(V)) 113 continue; 114 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 115 const Value *O = 116 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 117 if (O->getType()->isPointerTy()) { 118 Working.push_back(O); 119 continue; 120 } 121 } 122 Objects.push_back(const_cast<Value *>(V)); 123 } 124 } while (!Working.empty()); 125 } 126 127 typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType; 128 typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4> 129 UnderlyingObjectsVector; 130 131 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference 132 /// information and it can be tracked to a normal reference to a known 133 /// object, return the Value for that object. 134 static void getUnderlyingObjectsForInstr(const MachineInstr *MI, 135 const MachineFrameInfo *MFI, 136 UnderlyingObjectsVector &Objects) { 137 if (!MI->hasOneMemOperand() || 138 (!(*MI->memoperands_begin())->getValue() && 139 !(*MI->memoperands_begin())->getPseudoValue()) || 140 (*MI->memoperands_begin())->isVolatile()) 141 return; 142 143 if (const PseudoSourceValue *PSV = 144 (*MI->memoperands_begin())->getPseudoValue()) { 145 // For now, ignore PseudoSourceValues which may alias LLVM IR values 146 // because the code that uses this function has no way to cope with 147 // such aliases. 148 if (!PSV->isAliased(MFI)) { 149 bool MayAlias = PSV->mayAlias(MFI); 150 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 151 } 152 return; 153 } 154 155 const Value *V = (*MI->memoperands_begin())->getValue(); 156 if (!V) 157 return; 158 159 SmallVector<Value *, 4> Objs; 160 getUnderlyingObjects(V, Objs); 161 162 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 163 I != IE; ++I) { 164 V = *I; 165 166 if (!isIdentifiedObject(V)) { 167 Objects.clear(); 168 return; 169 } 170 171 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 172 } 173 } 174 175 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 176 BB = bb; 177 } 178 179 void ScheduleDAGInstrs::finishBlock() { 180 // Subclasses should no longer refer to the old block. 181 BB = nullptr; 182 } 183 184 /// Initialize the DAG and common scheduler state for the current scheduling 185 /// region. This does not actually create the DAG, only clears it. The 186 /// scheduling driver may call BuildSchedGraph multiple times per scheduling 187 /// region. 188 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 189 MachineBasicBlock::iterator begin, 190 MachineBasicBlock::iterator end, 191 unsigned regioninstrs) { 192 assert(bb == BB && "startBlock should set BB"); 193 RegionBegin = begin; 194 RegionEnd = end; 195 NumRegionInstrs = regioninstrs; 196 } 197 198 /// Close the current scheduling region. Don't clear any state in case the 199 /// driver wants to refer to the previous scheduling region. 200 void ScheduleDAGInstrs::exitRegion() { 201 // Nothing to do. 202 } 203 204 /// addSchedBarrierDeps - Add dependencies from instructions in the current 205 /// list of instructions being scheduled to scheduling barrier by adding 206 /// the exit SU to the register defs and use list. This is because we want to 207 /// make sure instructions which define registers that are either used by 208 /// the terminator or are live-out are properly scheduled. This is 209 /// especially important when the definition latency of the return value(s) 210 /// are too high to be hidden by the branch or when the liveout registers 211 /// used by instructions in the fallthrough block. 212 void ScheduleDAGInstrs::addSchedBarrierDeps() { 213 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 214 ExitSU.setInstr(ExitMI); 215 bool AllDepKnown = ExitMI && 216 (ExitMI->isCall() || ExitMI->isBarrier()); 217 if (ExitMI && AllDepKnown) { 218 // If it's a call or a barrier, add dependencies on the defs and uses of 219 // instruction. 220 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { 221 const MachineOperand &MO = ExitMI->getOperand(i); 222 if (!MO.isReg() || MO.isDef()) continue; 223 unsigned Reg = MO.getReg(); 224 if (Reg == 0) continue; 225 226 if (TRI->isPhysicalRegister(Reg)) 227 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 228 else { 229 assert(!IsPostRA && "Virtual register encountered after regalloc."); 230 if (MO.readsReg()) // ignore undef operands 231 addVRegUseDeps(&ExitSU, i); 232 } 233 } 234 } else { 235 // For others, e.g. fallthrough, conditional branch, assume the exit 236 // uses all the registers that are livein to the successor blocks. 237 assert(Uses.empty() && "Uses in set before adding deps?"); 238 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 239 SE = BB->succ_end(); SI != SE; ++SI) 240 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 241 E = (*SI)->livein_end(); I != E; ++I) { 242 unsigned Reg = *I; 243 if (!Uses.contains(Reg)) 244 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 245 } 246 } 247 } 248 249 /// MO is an operand of SU's instruction that defines a physical register. Add 250 /// data dependencies from SU to any uses of the physical register. 251 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 252 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 253 assert(MO.isDef() && "expect physreg def"); 254 255 // Ask the target if address-backscheduling is desirable, and if so how much. 256 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 257 258 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 259 Alias.isValid(); ++Alias) { 260 if (!Uses.contains(*Alias)) 261 continue; 262 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 263 SUnit *UseSU = I->SU; 264 if (UseSU == SU) 265 continue; 266 267 // Adjust the dependence latency using operand def/use information, 268 // then allow the target to perform its own adjustments. 269 int UseOp = I->OpIdx; 270 MachineInstr *RegUse = nullptr; 271 SDep Dep; 272 if (UseOp < 0) 273 Dep = SDep(SU, SDep::Artificial); 274 else { 275 // Set the hasPhysRegDefs only for physreg defs that have a use within 276 // the scheduling region. 277 SU->hasPhysRegDefs = true; 278 Dep = SDep(SU, SDep::Data, *Alias); 279 RegUse = UseSU->getInstr(); 280 } 281 Dep.setLatency( 282 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 283 UseOp)); 284 285 ST.adjustSchedDependency(SU, UseSU, Dep); 286 UseSU->addPred(Dep); 287 } 288 } 289 } 290 291 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from 292 /// this SUnit to following instructions in the same scheduling region that 293 /// depend the physical register referenced at OperIdx. 294 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 295 MachineInstr *MI = SU->getInstr(); 296 MachineOperand &MO = MI->getOperand(OperIdx); 297 298 // Optionally add output and anti dependencies. For anti 299 // dependencies we use a latency of 0 because for a multi-issue 300 // target we want to allow the defining instruction to issue 301 // in the same cycle as the using instruction. 302 // TODO: Using a latency of 1 here for output dependencies assumes 303 // there's no cost for reusing registers. 304 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 305 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 306 Alias.isValid(); ++Alias) { 307 if (!Defs.contains(*Alias)) 308 continue; 309 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 310 SUnit *DefSU = I->SU; 311 if (DefSU == &ExitSU) 312 continue; 313 if (DefSU != SU && 314 (Kind != SDep::Output || !MO.isDead() || 315 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 316 if (Kind == SDep::Anti) 317 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 318 else { 319 SDep Dep(SU, Kind, /*Reg=*/*Alias); 320 Dep.setLatency( 321 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 322 DefSU->addPred(Dep); 323 } 324 } 325 } 326 } 327 328 if (!MO.isDef()) { 329 SU->hasPhysRegUses = true; 330 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 331 // retrieve the existing SUnits list for this register's uses. 332 // Push this SUnit on the use list. 333 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); 334 if (RemoveKillFlags) 335 MO.setIsKill(false); 336 } 337 else { 338 addPhysRegDataDeps(SU, OperIdx); 339 unsigned Reg = MO.getReg(); 340 341 // clear this register's use list 342 if (Uses.contains(Reg)) 343 Uses.eraseAll(Reg); 344 345 if (!MO.isDead()) { 346 Defs.eraseAll(Reg); 347 } else if (SU->isCall) { 348 // Calls will not be reordered because of chain dependencies (see 349 // below). Since call operands are dead, calls may continue to be added 350 // to the DefList making dependence checking quadratic in the size of 351 // the block. Instead, we leave only one call at the back of the 352 // DefList. 353 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 354 Reg2SUnitsMap::iterator B = P.first; 355 Reg2SUnitsMap::iterator I = P.second; 356 for (bool isBegin = I == B; !isBegin; /* empty */) { 357 isBegin = (--I) == B; 358 if (!I->SU->isCall) 359 break; 360 I = Defs.erase(I); 361 } 362 } 363 364 // Defs are pushed in the order they are visited and never reordered. 365 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 366 } 367 } 368 369 /// addVRegDefDeps - Add register output and data dependencies from this SUnit 370 /// to instructions that occur later in the same scheduling region if they read 371 /// from or write to the virtual register defined at OperIdx. 372 /// 373 /// TODO: Hoist loop induction variable increments. This has to be 374 /// reevaluated. Generally, IV scheduling should be done before coalescing. 375 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 376 const MachineInstr *MI = SU->getInstr(); 377 unsigned Reg = MI->getOperand(OperIdx).getReg(); 378 379 // Singly defined vregs do not have output/anti dependencies. 380 // The current operand is a def, so we have at least one. 381 // Check here if there are any others... 382 if (MRI.hasOneDef(Reg)) 383 return; 384 385 // Add output dependence to the next nearest def of this vreg. 386 // 387 // Unless this definition is dead, the output dependence should be 388 // transitively redundant with antidependencies from this definition's 389 // uses. We're conservative for now until we have a way to guarantee the uses 390 // are not eliminated sometime during scheduling. The output dependence edge 391 // is also useful if output latency exceeds def-use latency. 392 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 393 if (DefI == VRegDefs.end()) 394 VRegDefs.insert(VReg2SUnit(Reg, SU)); 395 else { 396 SUnit *DefSU = DefI->SU; 397 if (DefSU != SU && DefSU != &ExitSU) { 398 SDep Dep(SU, SDep::Output, Reg); 399 Dep.setLatency( 400 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 401 DefSU->addPred(Dep); 402 } 403 DefI->SU = SU; 404 } 405 } 406 407 /// addVRegUseDeps - Add a register data dependency if the instruction that 408 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a 409 /// register antidependency from this SUnit to instructions that occur later in 410 /// the same scheduling region if they write the virtual register. 411 /// 412 /// TODO: Handle ExitSU "uses" properly. 413 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 414 MachineInstr *MI = SU->getInstr(); 415 unsigned Reg = MI->getOperand(OperIdx).getReg(); 416 417 // Record this local VReg use. 418 VReg2UseMap::iterator UI = VRegUses.find(Reg); 419 for (; UI != VRegUses.end(); ++UI) { 420 if (UI->SU == SU) 421 break; 422 } 423 if (UI == VRegUses.end()) 424 VRegUses.insert(VReg2SUnit(Reg, SU)); 425 426 // Lookup this operand's reaching definition. 427 assert(LIS && "vreg dependencies requires LiveIntervals"); 428 LiveQueryResult LRQ 429 = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI)); 430 VNInfo *VNI = LRQ.valueIn(); 431 432 // VNI will be valid because MachineOperand::readsReg() is checked by caller. 433 assert(VNI && "No value to read by operand"); 434 MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); 435 // Phis and other noninstructions (after coalescing) have a NULL Def. 436 if (Def) { 437 SUnit *DefSU = getSUnit(Def); 438 if (DefSU) { 439 // The reaching Def lives within this scheduling region. 440 // Create a data dependence. 441 SDep dep(DefSU, SDep::Data, Reg); 442 // Adjust the dependence latency using operand def/use information, then 443 // allow the target to perform its own adjustments. 444 int DefOp = Def->findRegisterDefOperandIdx(Reg); 445 dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx)); 446 447 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 448 ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep)); 449 SU->addPred(dep); 450 } 451 } 452 453 // Add antidependence to the following def of the vreg it uses. 454 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 455 if (DefI != VRegDefs.end() && DefI->SU != SU) 456 DefI->SU->addPred(SDep(SU, SDep::Anti, Reg)); 457 } 458 459 /// Return true if MI is an instruction we are unable to reason about 460 /// (like a call or something with unmodeled side effects). 461 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 462 if (MI->isCall() || MI->hasUnmodeledSideEffects() || 463 (MI->hasOrderedMemoryRef() && 464 (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) 465 return true; 466 return false; 467 } 468 469 // This MI might have either incomplete info, or known to be unsafe 470 // to deal with (i.e. volatile object). 471 static inline bool isUnsafeMemoryObject(MachineInstr *MI, 472 const MachineFrameInfo *MFI) { 473 if (!MI || MI->memoperands_empty()) 474 return true; 475 // We purposefully do no check for hasOneMemOperand() here 476 // in hope to trigger an assert downstream in order to 477 // finish implementation. 478 if ((*MI->memoperands_begin())->isVolatile() || 479 MI->hasUnmodeledSideEffects()) 480 return true; 481 482 if ((*MI->memoperands_begin())->getPseudoValue()) { 483 // Similarly to getUnderlyingObjectForInstr: 484 // For now, ignore PseudoSourceValues which may alias LLVM IR values 485 // because the code that uses this function has no way to cope with 486 // such aliases. 487 return true; 488 } 489 490 const Value *V = (*MI->memoperands_begin())->getValue(); 491 if (!V) 492 return true; 493 494 SmallVector<Value *, 4> Objs; 495 getUnderlyingObjects(V, Objs); 496 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), 497 IE = Objs.end(); I != IE; ++I) { 498 // Does this pointer refer to a distinct and identifiable object? 499 if (!isIdentifiedObject(*I)) 500 return true; 501 } 502 503 return false; 504 } 505 506 /// This returns true if the two MIs need a chain edge betwee them. 507 /// If these are not even memory operations, we still may need 508 /// chain deps between them. The question really is - could 509 /// these two MIs be reordered during scheduling from memory dependency 510 /// point of view. 511 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 512 MachineInstr *MIa, 513 MachineInstr *MIb) { 514 // Cover a trivial case - no edge is need to itself. 515 if (MIa == MIb) 516 return false; 517 518 // FIXME: Need to handle multiple memory operands to support all targets. 519 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 520 return true; 521 522 if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI)) 523 return true; 524 525 // If we are dealing with two "normal" loads, we do not need an edge 526 // between them - they could be reordered. 527 if (!MIa->mayStore() && !MIb->mayStore()) 528 return false; 529 530 // To this point analysis is generic. From here on we do need AA. 531 if (!AA) 532 return true; 533 534 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 535 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 536 537 if (!MMOa->getValue() || !MMOb->getValue()) 538 return true; 539 540 // The following interface to AA is fashioned after DAGCombiner::isAlias 541 // and operates with MachineMemOperand offset with some important 542 // assumptions: 543 // - LLVM fundamentally assumes flat address spaces. 544 // - MachineOperand offset can *only* result from legalization and 545 // cannot affect queries other than the trivial case of overlap 546 // checking. 547 // - These offsets never wrap and never step outside 548 // of allocated objects. 549 // - There should never be any negative offsets here. 550 // 551 // FIXME: Modify API to hide this math from "user" 552 // FIXME: Even before we go to AA we can reason locally about some 553 // memory objects. It can save compile time, and possibly catch some 554 // corner cases not currently covered. 555 556 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 557 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 558 559 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 560 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 561 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 562 563 AliasAnalysis::AliasResult AAResult = AA->alias( 564 AliasAnalysis::Location(MMOa->getValue(), Overlapa, 565 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 566 AliasAnalysis::Location(MMOb->getValue(), Overlapb, 567 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 568 569 return (AAResult != AliasAnalysis::NoAlias); 570 } 571 572 /// This recursive function iterates over chain deps of SUb looking for 573 /// "latest" node that needs a chain edge to SUa. 574 static unsigned 575 iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI, 576 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth, 577 SmallPtrSetImpl<const SUnit*> &Visited) { 578 if (!SUa || !SUb || SUb == ExitSU) 579 return *Depth; 580 581 // Remember visited nodes. 582 if (!Visited.insert(SUb)) 583 return *Depth; 584 // If there is _some_ dependency already in place, do not 585 // descend any further. 586 // TODO: Need to make sure that if that dependency got eliminated or ignored 587 // for any reason in the future, we would not violate DAG topology. 588 // Currently it does not happen, but makes an implicit assumption about 589 // future implementation. 590 // 591 // Independently, if we encounter node that is some sort of global 592 // object (like a call) we already have full set of dependencies to it 593 // and we can stop descending. 594 if (SUa->isSucc(SUb) || 595 isGlobalMemoryObject(AA, SUb->getInstr())) 596 return *Depth; 597 598 // If we do need an edge, or we have exceeded depth budget, 599 // add that edge to the predecessors chain of SUb, 600 // and stop descending. 601 if (*Depth > 200 || 602 MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 603 SUb->addPred(SDep(SUa, SDep::MayAliasMem)); 604 return *Depth; 605 } 606 // Track current depth. 607 (*Depth)++; 608 // Iterate over chain dependencies only. 609 for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end(); 610 I != E; ++I) 611 if (I->isCtrl()) 612 iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited); 613 return *Depth; 614 } 615 616 /// This function assumes that "downward" from SU there exist 617 /// tail/leaf of already constructed DAG. It iterates downward and 618 /// checks whether SU can be aliasing any node dominated 619 /// by it. 620 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI, 621 SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList, 622 unsigned LatencyToLoad) { 623 if (!SU) 624 return; 625 626 SmallPtrSet<const SUnit*, 16> Visited; 627 unsigned Depth = 0; 628 629 for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end(); 630 I != IE; ++I) { 631 if (SU == *I) 632 continue; 633 if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) { 634 SDep Dep(SU, SDep::MayAliasMem); 635 Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0); 636 (*I)->addPred(Dep); 637 } 638 // Now go through all the chain successors and iterate from them. 639 // Keep track of visited nodes. 640 for (SUnit::const_succ_iterator J = (*I)->Succs.begin(), 641 JE = (*I)->Succs.end(); J != JE; ++J) 642 if (J->isCtrl()) 643 iterateChainSucc (AA, MFI, SU, J->getSUnit(), 644 ExitSU, &Depth, Visited); 645 } 646 } 647 648 /// Check whether two objects need a chain edge, if so, add it 649 /// otherwise remember the rejected SU. 650 static inline 651 void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI, 652 SUnit *SUa, SUnit *SUb, 653 std::set<SUnit *> &RejectList, 654 unsigned TrueMemOrderLatency = 0, 655 bool isNormalMemory = false) { 656 // If this is a false dependency, 657 // do not add the edge, but rememeber the rejected node. 658 if (!AA || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 659 SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier); 660 Dep.setLatency(TrueMemOrderLatency); 661 SUb->addPred(Dep); 662 } 663 else { 664 // Duplicate entries should be ignored. 665 RejectList.insert(SUb); 666 DEBUG(dbgs() << "\tReject chain dep between SU(" 667 << SUa->NodeNum << ") and SU(" 668 << SUb->NodeNum << ")\n"); 669 } 670 } 671 672 /// Create an SUnit for each real instruction, numbered in top-down toplological 673 /// order. The instruction order A < B, implies that no edge exists from B to A. 674 /// 675 /// Map each real instruction to its SUnit. 676 /// 677 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 678 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 679 /// instead of pointers. 680 /// 681 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 682 /// the original instruction list. 683 void ScheduleDAGInstrs::initSUnits() { 684 // We'll be allocating one SUnit for each real instruction in the region, 685 // which is contained within a basic block. 686 SUnits.reserve(NumRegionInstrs); 687 688 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { 689 MachineInstr *MI = I; 690 if (MI->isDebugValue()) 691 continue; 692 693 SUnit *SU = newSUnit(MI); 694 MISUnitMap[MI] = SU; 695 696 SU->isCall = MI->isCall(); 697 SU->isCommutable = MI->isCommutable(); 698 699 // Assign the Latency field of SU using target-provided information. 700 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 701 702 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 703 // 704 // Reserved resources block an instruction from issuing and stall the 705 // entire pipeline. These are identified by BufferSize=0. 706 // 707 // Unbuffered resources prevent execution of subsequent instructions that 708 // require the same resources. This is used for in-order execution pipelines 709 // within an out-of-order core. These are identified by BufferSize=1. 710 if (SchedModel.hasInstrSchedModel()) { 711 const MCSchedClassDesc *SC = getSchedClass(SU); 712 for (TargetSchedModel::ProcResIter 713 PI = SchedModel.getWriteProcResBegin(SC), 714 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 715 switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) { 716 case 0: 717 SU->hasReservedResource = true; 718 break; 719 case 1: 720 SU->isUnbuffered = true; 721 break; 722 default: 723 break; 724 } 725 } 726 } 727 } 728 } 729 730 /// If RegPressure is non-null, compute register pressure as a side effect. The 731 /// DAG builder is an efficient place to do it because it already visits 732 /// operands. 733 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 734 RegPressureTracker *RPTracker, 735 PressureDiffs *PDiffs) { 736 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 737 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 738 : ST.useAA(); 739 AliasAnalysis *AAForDep = UseAA ? AA : nullptr; 740 741 MISUnitMap.clear(); 742 ScheduleDAG::clearDAG(); 743 744 // Create an SUnit for each real instruction. 745 initSUnits(); 746 747 if (PDiffs) 748 PDiffs->init(SUnits.size()); 749 750 // We build scheduling units by walking a block's instruction list from bottom 751 // to top. 752 753 // Remember where a generic side-effecting instruction is as we procede. 754 SUnit *BarrierChain = nullptr, *AliasChain = nullptr; 755 756 // Memory references to specific known memory locations are tracked 757 // so that they can be given more precise dependencies. We track 758 // separately the known memory locations that may alias and those 759 // that are known not to alias 760 MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs; 761 MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; 762 std::set<SUnit*> RejectMemNodes; 763 764 // Remove any stale debug info; sometimes BuildSchedGraph is called again 765 // without emitting the info from the previous call. 766 DbgValues.clear(); 767 FirstDbgValue = nullptr; 768 769 assert(Defs.empty() && Uses.empty() && 770 "Only BuildGraph should update Defs/Uses"); 771 Defs.setUniverse(TRI->getNumRegs()); 772 Uses.setUniverse(TRI->getNumRegs()); 773 774 assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); 775 VRegUses.clear(); 776 VRegDefs.setUniverse(MRI.getNumVirtRegs()); 777 VRegUses.setUniverse(MRI.getNumVirtRegs()); 778 779 // Model data dependencies between instructions being scheduled and the 780 // ExitSU. 781 addSchedBarrierDeps(); 782 783 // Walk the list of instructions, from bottom moving up. 784 MachineInstr *DbgMI = nullptr; 785 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 786 MII != MIE; --MII) { 787 MachineInstr *MI = std::prev(MII); 788 if (MI && DbgMI) { 789 DbgValues.push_back(std::make_pair(DbgMI, MI)); 790 DbgMI = nullptr; 791 } 792 793 if (MI->isDebugValue()) { 794 DbgMI = MI; 795 continue; 796 } 797 SUnit *SU = MISUnitMap[MI]; 798 assert(SU && "No SUnit mapped to this MI"); 799 800 if (RPTracker) { 801 PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : nullptr; 802 RPTracker->recede(/*LiveUses=*/nullptr, PDiff); 803 assert(RPTracker->getPos() == std::prev(MII) && 804 "RPTracker can't find MI"); 805 } 806 807 assert( 808 (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) && 809 "Cannot schedule terminators or labels!"); 810 811 // Add register-based dependencies (data, anti, and output). 812 bool HasVRegDef = false; 813 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { 814 const MachineOperand &MO = MI->getOperand(j); 815 if (!MO.isReg()) continue; 816 unsigned Reg = MO.getReg(); 817 if (Reg == 0) continue; 818 819 if (TRI->isPhysicalRegister(Reg)) 820 addPhysRegDeps(SU, j); 821 else { 822 assert(!IsPostRA && "Virtual register encountered!"); 823 if (MO.isDef()) { 824 HasVRegDef = true; 825 addVRegDefDeps(SU, j); 826 } 827 else if (MO.readsReg()) // ignore undef operands 828 addVRegUseDeps(SU, j); 829 } 830 } 831 // If we haven't seen any uses in this scheduling region, create a 832 // dependence edge to ExitSU to model the live-out latency. This is required 833 // for vreg defs with no in-region use, and prefetches with no vreg def. 834 // 835 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 836 // check currently relies on being called before adding chain deps. 837 if (SU->NumSuccs == 0 && SU->Latency > 1 838 && (HasVRegDef || MI->mayLoad())) { 839 SDep Dep(SU, SDep::Artificial); 840 Dep.setLatency(SU->Latency - 1); 841 ExitSU.addPred(Dep); 842 } 843 844 // Add chain dependencies. 845 // Chain dependencies used to enforce memory order should have 846 // latency of 0 (except for true dependency of Store followed by 847 // aliased Load... we estimate that with a single cycle of latency 848 // assuming the hardware will bypass) 849 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable 850 // after stack slots are lowered to actual addresses. 851 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and 852 // produce more precise dependence information. 853 unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0; 854 if (isGlobalMemoryObject(AA, MI)) { 855 // Be conservative with these and add dependencies on all memory 856 // references, even those that are known to not alias. 857 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 858 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { 859 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 860 I->second[i]->addPred(SDep(SU, SDep::Barrier)); 861 } 862 } 863 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 864 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { 865 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 866 SDep Dep(SU, SDep::Barrier); 867 Dep.setLatency(TrueMemOrderLatency); 868 I->second[i]->addPred(Dep); 869 } 870 } 871 // Add SU to the barrier chain. 872 if (BarrierChain) 873 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 874 BarrierChain = SU; 875 // This is a barrier event that acts as a pivotal node in the DAG, 876 // so it is safe to clear list of exposed nodes. 877 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 878 TrueMemOrderLatency); 879 RejectMemNodes.clear(); 880 NonAliasMemDefs.clear(); 881 NonAliasMemUses.clear(); 882 883 // fall-through 884 new_alias_chain: 885 // Chain all possibly aliasing memory references though SU. 886 if (AliasChain) { 887 unsigned ChainLatency = 0; 888 if (AliasChain->getInstr()->mayLoad()) 889 ChainLatency = TrueMemOrderLatency; 890 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes, 891 ChainLatency); 892 } 893 AliasChain = SU; 894 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 895 addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes, 896 TrueMemOrderLatency); 897 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 898 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) { 899 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 900 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes); 901 } 902 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 903 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { 904 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 905 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes, 906 TrueMemOrderLatency); 907 } 908 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 909 TrueMemOrderLatency); 910 PendingLoads.clear(); 911 AliasMemDefs.clear(); 912 AliasMemUses.clear(); 913 } else if (MI->mayStore()) { 914 UnderlyingObjectsVector Objs; 915 getUnderlyingObjectsForInstr(MI, MFI, Objs); 916 917 if (Objs.empty()) { 918 // Treat all other stores conservatively. 919 goto new_alias_chain; 920 } 921 922 bool MayAlias = false; 923 for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end(); 924 K != KE; ++K) { 925 ValueType V = K->getPointer(); 926 bool ThisMayAlias = K->getInt(); 927 if (ThisMayAlias) 928 MayAlias = true; 929 930 // A store to a specific PseudoSourceValue. Add precise dependencies. 931 // Record the def in MemDefs, first adding a dep if there is 932 // an existing def. 933 MapVector<ValueType, std::vector<SUnit *> >::iterator I = 934 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 935 MapVector<ValueType, std::vector<SUnit *> >::iterator IE = 936 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 937 if (I != IE) { 938 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 939 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes, 940 0, true); 941 942 // If we're not using AA, then we only need one store per object. 943 if (!AAForDep) 944 I->second.clear(); 945 I->second.push_back(SU); 946 } else { 947 if (ThisMayAlias) { 948 if (!AAForDep) 949 AliasMemDefs[V].clear(); 950 AliasMemDefs[V].push_back(SU); 951 } else { 952 if (!AAForDep) 953 NonAliasMemDefs[V].clear(); 954 NonAliasMemDefs[V].push_back(SU); 955 } 956 } 957 // Handle the uses in MemUses, if there are any. 958 MapVector<ValueType, std::vector<SUnit *> >::iterator J = 959 ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); 960 MapVector<ValueType, std::vector<SUnit *> >::iterator JE = 961 ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); 962 if (J != JE) { 963 for (unsigned i = 0, e = J->second.size(); i != e; ++i) 964 addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes, 965 TrueMemOrderLatency, true); 966 J->second.clear(); 967 } 968 } 969 if (MayAlias) { 970 // Add dependencies from all the PendingLoads, i.e. loads 971 // with no underlying object. 972 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 973 addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes, 974 TrueMemOrderLatency); 975 // Add dependence on alias chain, if needed. 976 if (AliasChain) 977 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes); 978 // But we also should check dependent instructions for the 979 // SU in question. 980 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 981 TrueMemOrderLatency); 982 } 983 // Add dependence on barrier chain, if needed. 984 // There is no point to check aliasing on barrier event. Even if 985 // SU and barrier _could_ be reordered, they should not. In addition, 986 // we have lost all RejectMemNodes below barrier. 987 if (BarrierChain) 988 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 989 } else if (MI->mayLoad()) { 990 bool MayAlias = true; 991 if (MI->isInvariantLoad(AA)) { 992 // Invariant load, no chain dependencies needed! 993 } else { 994 UnderlyingObjectsVector Objs; 995 getUnderlyingObjectsForInstr(MI, MFI, Objs); 996 997 if (Objs.empty()) { 998 // A load with no underlying object. Depend on all 999 // potentially aliasing stores. 1000 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 1001 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) 1002 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1003 addChainDependency(AAForDep, MFI, SU, I->second[i], 1004 RejectMemNodes); 1005 1006 PendingLoads.push_back(SU); 1007 MayAlias = true; 1008 } else { 1009 MayAlias = false; 1010 } 1011 1012 for (UnderlyingObjectsVector::iterator 1013 J = Objs.begin(), JE = Objs.end(); J != JE; ++J) { 1014 ValueType V = J->getPointer(); 1015 bool ThisMayAlias = J->getInt(); 1016 1017 if (ThisMayAlias) 1018 MayAlias = true; 1019 1020 // A load from a specific PseudoSourceValue. Add precise dependencies. 1021 MapVector<ValueType, std::vector<SUnit *> >::iterator I = 1022 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 1023 MapVector<ValueType, std::vector<SUnit *> >::iterator IE = 1024 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 1025 if (I != IE) 1026 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1027 addChainDependency(AAForDep, MFI, SU, I->second[i], 1028 RejectMemNodes, 0, true); 1029 if (ThisMayAlias) 1030 AliasMemUses[V].push_back(SU); 1031 else 1032 NonAliasMemUses[V].push_back(SU); 1033 } 1034 if (MayAlias) 1035 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0); 1036 // Add dependencies on alias and barrier chains, if needed. 1037 if (MayAlias && AliasChain) 1038 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes); 1039 if (BarrierChain) 1040 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 1041 } 1042 } 1043 } 1044 if (DbgMI) 1045 FirstDbgValue = DbgMI; 1046 1047 Defs.clear(); 1048 Uses.clear(); 1049 VRegDefs.clear(); 1050 PendingLoads.clear(); 1051 } 1052 1053 /// \brief Initialize register live-range state for updating kills. 1054 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { 1055 // Start with no live registers. 1056 LiveRegs.reset(); 1057 1058 // Examine the live-in regs of all successors. 1059 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 1060 SE = BB->succ_end(); SI != SE; ++SI) { 1061 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 1062 E = (*SI)->livein_end(); I != E; ++I) { 1063 unsigned Reg = *I; 1064 // Repeat, for reg and all subregs. 1065 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1066 SubRegs.isValid(); ++SubRegs) 1067 LiveRegs.set(*SubRegs); 1068 } 1069 } 1070 } 1071 1072 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) { 1073 // Setting kill flag... 1074 if (!MO.isKill()) { 1075 MO.setIsKill(true); 1076 return false; 1077 } 1078 1079 // If MO itself is live, clear the kill flag... 1080 if (LiveRegs.test(MO.getReg())) { 1081 MO.setIsKill(false); 1082 return false; 1083 } 1084 1085 // If any subreg of MO is live, then create an imp-def for that 1086 // subreg and keep MO marked as killed. 1087 MO.setIsKill(false); 1088 bool AllDead = true; 1089 const unsigned SuperReg = MO.getReg(); 1090 MachineInstrBuilder MIB(MF, MI); 1091 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { 1092 if (LiveRegs.test(*SubRegs)) { 1093 MIB.addReg(*SubRegs, RegState::ImplicitDefine); 1094 AllDead = false; 1095 } 1096 } 1097 1098 if(AllDead) 1099 MO.setIsKill(true); 1100 return false; 1101 } 1102 1103 // FIXME: Reuse the LivePhysRegs utility for this. 1104 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { 1105 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); 1106 1107 LiveRegs.resize(TRI->getNumRegs()); 1108 BitVector killedRegs(TRI->getNumRegs()); 1109 1110 startBlockForKills(MBB); 1111 1112 // Examine block from end to start... 1113 unsigned Count = MBB->size(); 1114 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); 1115 I != E; --Count) { 1116 MachineInstr *MI = --I; 1117 if (MI->isDebugValue()) 1118 continue; 1119 1120 // Update liveness. Registers that are defed but not used in this 1121 // instruction are now dead. Mark register and all subregs as they 1122 // are completely defined. 1123 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1124 MachineOperand &MO = MI->getOperand(i); 1125 if (MO.isRegMask()) 1126 LiveRegs.clearBitsNotInMask(MO.getRegMask()); 1127 if (!MO.isReg()) continue; 1128 unsigned Reg = MO.getReg(); 1129 if (Reg == 0) continue; 1130 if (!MO.isDef()) continue; 1131 // Ignore two-addr defs. 1132 if (MI->isRegTiedToUseOperand(i)) continue; 1133 1134 // Repeat for reg and all subregs. 1135 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1136 SubRegs.isValid(); ++SubRegs) 1137 LiveRegs.reset(*SubRegs); 1138 } 1139 1140 // Examine all used registers and set/clear kill flag. When a 1141 // register is used multiple times we only set the kill flag on 1142 // the first use. Don't set kill flags on undef operands. 1143 killedRegs.reset(); 1144 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1145 MachineOperand &MO = MI->getOperand(i); 1146 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1147 unsigned Reg = MO.getReg(); 1148 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1149 1150 bool kill = false; 1151 if (!killedRegs.test(Reg)) { 1152 kill = true; 1153 // A register is not killed if any subregs are live... 1154 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 1155 if (LiveRegs.test(*SubRegs)) { 1156 kill = false; 1157 break; 1158 } 1159 } 1160 1161 // If subreg is not live, then register is killed if it became 1162 // live in this instruction 1163 if (kill) 1164 kill = !LiveRegs.test(Reg); 1165 } 1166 1167 if (MO.isKill() != kill) { 1168 DEBUG(dbgs() << "Fixing " << MO << " in "); 1169 // Warning: toggleKillFlag may invalidate MO. 1170 toggleKillFlag(MI, MO); 1171 DEBUG(MI->dump()); 1172 } 1173 1174 killedRegs.set(Reg); 1175 } 1176 1177 // Mark any used register (that is not using undef) and subregs as 1178 // now live... 1179 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1180 MachineOperand &MO = MI->getOperand(i); 1181 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1182 unsigned Reg = MO.getReg(); 1183 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1184 1185 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1186 SubRegs.isValid(); ++SubRegs) 1187 LiveRegs.set(*SubRegs); 1188 } 1189 } 1190 } 1191 1192 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1193 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1194 SU->getInstr()->dump(); 1195 #endif 1196 } 1197 1198 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1199 std::string s; 1200 raw_string_ostream oss(s); 1201 if (SU == &EntrySU) 1202 oss << "<entry>"; 1203 else if (SU == &ExitSU) 1204 oss << "<exit>"; 1205 else 1206 SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true); 1207 return oss.str(); 1208 } 1209 1210 /// Return the basic block label. It is not necessarilly unique because a block 1211 /// contains multiple scheduling regions. But it is fine for visualization. 1212 std::string ScheduleDAGInstrs::getDAGName() const { 1213 return "dag." + BB->getFullName(); 1214 } 1215 1216 //===----------------------------------------------------------------------===// 1217 // SchedDFSResult Implementation 1218 //===----------------------------------------------------------------------===// 1219 1220 namespace llvm { 1221 /// \brief Internal state used to compute SchedDFSResult. 1222 class SchedDFSImpl { 1223 SchedDFSResult &R; 1224 1225 /// Join DAG nodes into equivalence classes by their subtree. 1226 IntEqClasses SubtreeClasses; 1227 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1228 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 1229 1230 struct RootData { 1231 unsigned NodeID; 1232 unsigned ParentNodeID; // Parent node (member of the parent subtree). 1233 unsigned SubInstrCount; // Instr count in this tree only, not children. 1234 1235 RootData(unsigned id): NodeID(id), 1236 ParentNodeID(SchedDFSResult::InvalidSubtreeID), 1237 SubInstrCount(0) {} 1238 1239 unsigned getSparseSetIndex() const { return NodeID; } 1240 }; 1241 1242 SparseSet<RootData> RootSet; 1243 1244 public: 1245 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1246 RootSet.setUniverse(R.DFSNodeData.size()); 1247 } 1248 1249 /// Return true if this node been visited by the DFS traversal. 1250 /// 1251 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1252 /// ID. Later, SubtreeID is updated but remains valid. 1253 bool isVisited(const SUnit *SU) const { 1254 return R.DFSNodeData[SU->NodeNum].SubtreeID 1255 != SchedDFSResult::InvalidSubtreeID; 1256 } 1257 1258 /// Initialize this node's instruction count. We don't need to flag the node 1259 /// visited until visitPostorder because the DAG cannot have cycles. 1260 void visitPreorder(const SUnit *SU) { 1261 R.DFSNodeData[SU->NodeNum].InstrCount = 1262 SU->getInstr()->isTransient() ? 0 : 1; 1263 } 1264 1265 /// Called once for each node after all predecessors are visited. Revisit this 1266 /// node's predecessors and potentially join them now that we know the ILP of 1267 /// the other predecessors. 1268 void visitPostorderNode(const SUnit *SU) { 1269 // Mark this node as the root of a subtree. It may be joined with its 1270 // successors later. 1271 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1272 RootData RData(SU->NodeNum); 1273 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1274 1275 // If any predecessors are still in their own subtree, they either cannot be 1276 // joined or are large enough to remain separate. If this parent node's 1277 // total instruction count is not greater than a child subtree by at least 1278 // the subtree limit, then try to join it now since splitting subtrees is 1279 // only useful if multiple high-pressure paths are possible. 1280 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1281 for (SUnit::const_pred_iterator 1282 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1283 if (PI->getKind() != SDep::Data) 1284 continue; 1285 unsigned PredNum = PI->getSUnit()->NodeNum; 1286 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1287 joinPredSubtree(*PI, SU, /*CheckLimit=*/false); 1288 1289 // Either link or merge the TreeData entry from the child to the parent. 1290 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1291 // If the predecessor's parent is invalid, this is a tree edge and the 1292 // current node is the parent. 1293 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1294 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1295 } 1296 else if (RootSet.count(PredNum)) { 1297 // The predecessor is not a root, but is still in the root set. This 1298 // must be the new parent that it was just joined to. Note that 1299 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1300 // set to the original parent. 1301 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1302 RootSet.erase(PredNum); 1303 } 1304 } 1305 RootSet[SU->NodeNum] = RData; 1306 } 1307 1308 /// Called once for each tree edge after calling visitPostOrderNode on the 1309 /// predecessor. Increment the parent node's instruction count and 1310 /// preemptively join this subtree to its parent's if it is small enough. 1311 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1312 R.DFSNodeData[Succ->NodeNum].InstrCount 1313 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1314 joinPredSubtree(PredDep, Succ); 1315 } 1316 1317 /// Add a connection for cross edges. 1318 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1319 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1320 } 1321 1322 /// Set each node's subtree ID to the representative ID and record connections 1323 /// between trees. 1324 void finalize() { 1325 SubtreeClasses.compress(); 1326 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1327 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1328 && "number of roots should match trees"); 1329 for (SparseSet<RootData>::const_iterator 1330 RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) { 1331 unsigned TreeID = SubtreeClasses[RI->NodeID]; 1332 if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1333 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID]; 1334 R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount; 1335 // Note that SubInstrCount may be greater than InstrCount if we joined 1336 // subtrees across a cross edge. InstrCount will be attributed to the 1337 // original parent, while SubInstrCount will be attributed to the joined 1338 // parent. 1339 } 1340 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1341 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1342 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1343 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1344 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1345 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1346 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1347 } 1348 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator 1349 I = ConnectionPairs.begin(), E = ConnectionPairs.end(); 1350 I != E; ++I) { 1351 unsigned PredTree = SubtreeClasses[I->first->NodeNum]; 1352 unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; 1353 if (PredTree == SuccTree) 1354 continue; 1355 unsigned Depth = I->first->getDepth(); 1356 addConnection(PredTree, SuccTree, Depth); 1357 addConnection(SuccTree, PredTree, Depth); 1358 } 1359 } 1360 1361 protected: 1362 /// Join the predecessor subtree with the successor that is its DFS 1363 /// parent. Apply some heuristics before joining. 1364 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1365 bool CheckLimit = true) { 1366 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1367 1368 // Check if the predecessor is already joined. 1369 const SUnit *PredSU = PredDep.getSUnit(); 1370 unsigned PredNum = PredSU->NodeNum; 1371 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1372 return false; 1373 1374 // Four is the magic number of successors before a node is considered a 1375 // pinch point. 1376 unsigned NumDataSucs = 0; 1377 for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(), 1378 SE = PredSU->Succs.end(); SI != SE; ++SI) { 1379 if (SI->getKind() == SDep::Data) { 1380 if (++NumDataSucs >= 4) 1381 return false; 1382 } 1383 } 1384 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1385 return false; 1386 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1387 SubtreeClasses.join(Succ->NodeNum, PredNum); 1388 return true; 1389 } 1390 1391 /// Called by finalize() to record a connection between trees. 1392 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1393 if (!Depth) 1394 return; 1395 1396 do { 1397 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1398 R.SubtreeConnections[FromTree]; 1399 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator 1400 I = Connections.begin(), E = Connections.end(); I != E; ++I) { 1401 if (I->TreeID == ToTree) { 1402 I->Level = std::max(I->Level, Depth); 1403 return; 1404 } 1405 } 1406 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1407 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1408 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1409 } 1410 }; 1411 } // namespace llvm 1412 1413 namespace { 1414 /// \brief Manage the stack used by a reverse depth-first search over the DAG. 1415 class SchedDAGReverseDFS { 1416 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 1417 public: 1418 bool isComplete() const { return DFSStack.empty(); } 1419 1420 void follow(const SUnit *SU) { 1421 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1422 } 1423 void advance() { ++DFSStack.back().second; } 1424 1425 const SDep *backtrack() { 1426 DFSStack.pop_back(); 1427 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1428 } 1429 1430 const SUnit *getCurr() const { return DFSStack.back().first; } 1431 1432 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1433 1434 SUnit::const_pred_iterator getPredEnd() const { 1435 return getCurr()->Preds.end(); 1436 } 1437 }; 1438 } // anonymous 1439 1440 static bool hasDataSucc(const SUnit *SU) { 1441 for (SUnit::const_succ_iterator 1442 SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) { 1443 if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode()) 1444 return true; 1445 } 1446 return false; 1447 } 1448 1449 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first 1450 /// search from this root. 1451 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1452 if (!IsBottomUp) 1453 llvm_unreachable("Top-down ILP metric is unimplemnted"); 1454 1455 SchedDFSImpl Impl(*this); 1456 for (ArrayRef<SUnit>::const_iterator 1457 SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) { 1458 const SUnit *SU = &*SI; 1459 if (Impl.isVisited(SU) || hasDataSucc(SU)) 1460 continue; 1461 1462 SchedDAGReverseDFS DFS; 1463 Impl.visitPreorder(SU); 1464 DFS.follow(SU); 1465 for (;;) { 1466 // Traverse the leftmost path as far as possible. 1467 while (DFS.getPred() != DFS.getPredEnd()) { 1468 const SDep &PredDep = *DFS.getPred(); 1469 DFS.advance(); 1470 // Ignore non-data edges. 1471 if (PredDep.getKind() != SDep::Data 1472 || PredDep.getSUnit()->isBoundaryNode()) { 1473 continue; 1474 } 1475 // An already visited edge is a cross edge, assuming an acyclic DAG. 1476 if (Impl.isVisited(PredDep.getSUnit())) { 1477 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1478 continue; 1479 } 1480 Impl.visitPreorder(PredDep.getSUnit()); 1481 DFS.follow(PredDep.getSUnit()); 1482 } 1483 // Visit the top of the stack in postorder and backtrack. 1484 const SUnit *Child = DFS.getCurr(); 1485 const SDep *PredDep = DFS.backtrack(); 1486 Impl.visitPostorderNode(Child); 1487 if (PredDep) 1488 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1489 if (DFS.isComplete()) 1490 break; 1491 } 1492 } 1493 Impl.finalize(); 1494 } 1495 1496 /// The root of the given SubtreeID was just scheduled. For all subtrees 1497 /// connected to this tree, record the depth of the connection so that the 1498 /// nearest connected subtrees can be prioritized. 1499 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1500 for (SmallVectorImpl<Connection>::const_iterator 1501 I = SubtreeConnections[SubtreeID].begin(), 1502 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { 1503 SubtreeConnectLevels[I->TreeID] = 1504 std::max(SubtreeConnectLevels[I->TreeID], I->Level); 1505 DEBUG(dbgs() << " Tree: " << I->TreeID 1506 << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); 1507 } 1508 } 1509 1510 LLVM_DUMP_METHOD 1511 void ILPValue::print(raw_ostream &OS) const { 1512 OS << InstrCount << " / " << Length << " = "; 1513 if (!Length) 1514 OS << "BADILP"; 1515 else 1516 OS << format("%g", ((double)InstrCount / Length)); 1517 } 1518 1519 LLVM_DUMP_METHOD 1520 void ILPValue::dump() const { 1521 dbgs() << *this << '\n'; 1522 } 1523 1524 namespace llvm { 1525 1526 LLVM_DUMP_METHOD 1527 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1528 Val.print(OS); 1529 return OS; 1530 } 1531 1532 } // namespace llvm 1533