1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling 11 // of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "misched" 16 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/PseudoSourceValue.h" 28 #include "llvm/CodeGen/RegisterPressure.h" 29 #include "llvm/CodeGen/ScheduleDFS.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/MC/MCInstrItineraries.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/Format.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetSubtargetInfo.h" 40 #include <queue> 41 42 using namespace llvm; 43 44 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 45 cl::ZeroOrMore, cl::init(false), 46 cl::desc("Enable use of AA during MI GAD construction")); 47 48 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 49 const MachineLoopInfo &mli, 50 const MachineDominatorTree &mdt, 51 bool IsPostRAFlag, 52 bool RemoveKillFlags, 53 LiveIntervals *lis) 54 : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis), 55 IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags), 56 CanHandleTerminators(false), FirstDbgValue(0) { 57 assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals"); 58 DbgValues.clear(); 59 assert(!(IsPostRA && MRI.getNumVirtRegs()) && 60 "Virtual registers must be removed prior to PostRA scheduling"); 61 62 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 63 SchedModel.init(*ST.getSchedModel(), &ST, TII); 64 } 65 66 /// getUnderlyingObjectFromInt - This is the function that does the work of 67 /// looking through basic ptrtoint+arithmetic+inttoptr sequences. 68 static const Value *getUnderlyingObjectFromInt(const Value *V) { 69 do { 70 if (const Operator *U = dyn_cast<Operator>(V)) { 71 // If we find a ptrtoint, we can transfer control back to the 72 // regular getUnderlyingObjectFromInt. 73 if (U->getOpcode() == Instruction::PtrToInt) 74 return U->getOperand(0); 75 // If we find an add of a constant, a multiplied value, or a phi, it's 76 // likely that the other operand will lead us to the base 77 // object. We don't have to worry about the case where the 78 // object address is somehow being computed by the multiply, 79 // because our callers only care when the result is an 80 // identifiable object. 81 if (U->getOpcode() != Instruction::Add || 82 (!isa<ConstantInt>(U->getOperand(1)) && 83 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 84 !isa<PHINode>(U->getOperand(1)))) 85 return V; 86 V = U->getOperand(0); 87 } else { 88 return V; 89 } 90 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 91 } while (1); 92 } 93 94 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects 95 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. 96 static void getUnderlyingObjects(const Value *V, 97 SmallVectorImpl<Value *> &Objects) { 98 SmallPtrSet<const Value*, 16> Visited; 99 SmallVector<const Value *, 4> Working(1, V); 100 do { 101 V = Working.pop_back_val(); 102 103 SmallVector<Value *, 4> Objs; 104 GetUnderlyingObjects(const_cast<Value *>(V), Objs); 105 106 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 107 I != IE; ++I) { 108 V = *I; 109 if (!Visited.insert(V)) 110 continue; 111 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 112 const Value *O = 113 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 114 if (O->getType()->isPointerTy()) { 115 Working.push_back(O); 116 continue; 117 } 118 } 119 Objects.push_back(const_cast<Value *>(V)); 120 } 121 } while (!Working.empty()); 122 } 123 124 typedef SmallVector<PointerIntPair<const Value *, 1, bool>, 4> 125 UnderlyingObjectsVector; 126 127 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference 128 /// information and it can be tracked to a normal reference to a known 129 /// object, return the Value for that object. 130 static void getUnderlyingObjectsForInstr(const MachineInstr *MI, 131 const MachineFrameInfo *MFI, 132 UnderlyingObjectsVector &Objects) { 133 if (!MI->hasOneMemOperand() || 134 !(*MI->memoperands_begin())->getValue() || 135 (*MI->memoperands_begin())->isVolatile()) 136 return; 137 138 const Value *V = (*MI->memoperands_begin())->getValue(); 139 if (!V) 140 return; 141 142 SmallVector<Value *, 4> Objs; 143 getUnderlyingObjects(V, Objs); 144 145 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 146 I != IE; ++I) { 147 bool MayAlias = true; 148 V = *I; 149 150 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { 151 // For now, ignore PseudoSourceValues which may alias LLVM IR values 152 // because the code that uses this function has no way to cope with 153 // such aliases. 154 155 if (PSV->isAliased(MFI)) { 156 Objects.clear(); 157 return; 158 } 159 160 MayAlias = PSV->mayAlias(MFI); 161 } else if (!isIdentifiedObject(V)) { 162 Objects.clear(); 163 return; 164 } 165 166 Objects.push_back(UnderlyingObjectsVector::value_type(V, MayAlias)); 167 } 168 } 169 170 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 171 BB = bb; 172 } 173 174 void ScheduleDAGInstrs::finishBlock() { 175 // Subclasses should no longer refer to the old block. 176 BB = 0; 177 } 178 179 /// Initialize the DAG and common scheduler state for the current scheduling 180 /// region. This does not actually create the DAG, only clears it. The 181 /// scheduling driver may call BuildSchedGraph multiple times per scheduling 182 /// region. 183 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 184 MachineBasicBlock::iterator begin, 185 MachineBasicBlock::iterator end, 186 unsigned regioninstrs) { 187 assert(bb == BB && "startBlock should set BB"); 188 RegionBegin = begin; 189 RegionEnd = end; 190 NumRegionInstrs = regioninstrs; 191 } 192 193 /// Close the current scheduling region. Don't clear any state in case the 194 /// driver wants to refer to the previous scheduling region. 195 void ScheduleDAGInstrs::exitRegion() { 196 // Nothing to do. 197 } 198 199 /// addSchedBarrierDeps - Add dependencies from instructions in the current 200 /// list of instructions being scheduled to scheduling barrier by adding 201 /// the exit SU to the register defs and use list. This is because we want to 202 /// make sure instructions which define registers that are either used by 203 /// the terminator or are live-out are properly scheduled. This is 204 /// especially important when the definition latency of the return value(s) 205 /// are too high to be hidden by the branch or when the liveout registers 206 /// used by instructions in the fallthrough block. 207 void ScheduleDAGInstrs::addSchedBarrierDeps() { 208 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0; 209 ExitSU.setInstr(ExitMI); 210 bool AllDepKnown = ExitMI && 211 (ExitMI->isCall() || ExitMI->isBarrier()); 212 if (ExitMI && AllDepKnown) { 213 // If it's a call or a barrier, add dependencies on the defs and uses of 214 // instruction. 215 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { 216 const MachineOperand &MO = ExitMI->getOperand(i); 217 if (!MO.isReg() || MO.isDef()) continue; 218 unsigned Reg = MO.getReg(); 219 if (Reg == 0) continue; 220 221 if (TRI->isPhysicalRegister(Reg)) 222 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 223 else { 224 assert(!IsPostRA && "Virtual register encountered after regalloc."); 225 if (MO.readsReg()) // ignore undef operands 226 addVRegUseDeps(&ExitSU, i); 227 } 228 } 229 } else { 230 // For others, e.g. fallthrough, conditional branch, assume the exit 231 // uses all the registers that are livein to the successor blocks. 232 assert(Uses.empty() && "Uses in set before adding deps?"); 233 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 234 SE = BB->succ_end(); SI != SE; ++SI) 235 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 236 E = (*SI)->livein_end(); I != E; ++I) { 237 unsigned Reg = *I; 238 if (!Uses.contains(Reg)) 239 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 240 } 241 } 242 } 243 244 /// MO is an operand of SU's instruction that defines a physical register. Add 245 /// data dependencies from SU to any uses of the physical register. 246 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 247 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 248 assert(MO.isDef() && "expect physreg def"); 249 250 // Ask the target if address-backscheduling is desirable, and if so how much. 251 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 252 253 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 254 Alias.isValid(); ++Alias) { 255 if (!Uses.contains(*Alias)) 256 continue; 257 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 258 SUnit *UseSU = I->SU; 259 if (UseSU == SU) 260 continue; 261 262 // Adjust the dependence latency using operand def/use information, 263 // then allow the target to perform its own adjustments. 264 int UseOp = I->OpIdx; 265 MachineInstr *RegUse = 0; 266 SDep Dep; 267 if (UseOp < 0) 268 Dep = SDep(SU, SDep::Artificial); 269 else { 270 // Set the hasPhysRegDefs only for physreg defs that have a use within 271 // the scheduling region. 272 SU->hasPhysRegDefs = true; 273 Dep = SDep(SU, SDep::Data, *Alias); 274 RegUse = UseSU->getInstr(); 275 } 276 Dep.setLatency( 277 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 278 UseOp)); 279 280 ST.adjustSchedDependency(SU, UseSU, Dep); 281 UseSU->addPred(Dep); 282 } 283 } 284 } 285 286 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from 287 /// this SUnit to following instructions in the same scheduling region that 288 /// depend the physical register referenced at OperIdx. 289 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 290 MachineInstr *MI = SU->getInstr(); 291 MachineOperand &MO = MI->getOperand(OperIdx); 292 293 // Optionally add output and anti dependencies. For anti 294 // dependencies we use a latency of 0 because for a multi-issue 295 // target we want to allow the defining instruction to issue 296 // in the same cycle as the using instruction. 297 // TODO: Using a latency of 1 here for output dependencies assumes 298 // there's no cost for reusing registers. 299 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 300 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 301 Alias.isValid(); ++Alias) { 302 if (!Defs.contains(*Alias)) 303 continue; 304 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 305 SUnit *DefSU = I->SU; 306 if (DefSU == &ExitSU) 307 continue; 308 if (DefSU != SU && 309 (Kind != SDep::Output || !MO.isDead() || 310 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 311 if (Kind == SDep::Anti) 312 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 313 else { 314 SDep Dep(SU, Kind, /*Reg=*/*Alias); 315 Dep.setLatency( 316 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 317 DefSU->addPred(Dep); 318 } 319 } 320 } 321 } 322 323 if (!MO.isDef()) { 324 SU->hasPhysRegUses = true; 325 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 326 // retrieve the existing SUnits list for this register's uses. 327 // Push this SUnit on the use list. 328 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); 329 if (RemoveKillFlags) 330 MO.setIsKill(false); 331 } 332 else { 333 addPhysRegDataDeps(SU, OperIdx); 334 unsigned Reg = MO.getReg(); 335 336 // clear this register's use list 337 if (Uses.contains(Reg)) 338 Uses.eraseAll(Reg); 339 340 if (!MO.isDead()) { 341 Defs.eraseAll(Reg); 342 } else if (SU->isCall) { 343 // Calls will not be reordered because of chain dependencies (see 344 // below). Since call operands are dead, calls may continue to be added 345 // to the DefList making dependence checking quadratic in the size of 346 // the block. Instead, we leave only one call at the back of the 347 // DefList. 348 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 349 Reg2SUnitsMap::iterator B = P.first; 350 Reg2SUnitsMap::iterator I = P.second; 351 for (bool isBegin = I == B; !isBegin; /* empty */) { 352 isBegin = (--I) == B; 353 if (!I->SU->isCall) 354 break; 355 I = Defs.erase(I); 356 } 357 } 358 359 // Defs are pushed in the order they are visited and never reordered. 360 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 361 } 362 } 363 364 /// addVRegDefDeps - Add register output and data dependencies from this SUnit 365 /// to instructions that occur later in the same scheduling region if they read 366 /// from or write to the virtual register defined at OperIdx. 367 /// 368 /// TODO: Hoist loop induction variable increments. This has to be 369 /// reevaluated. Generally, IV scheduling should be done before coalescing. 370 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 371 const MachineInstr *MI = SU->getInstr(); 372 unsigned Reg = MI->getOperand(OperIdx).getReg(); 373 374 // Singly defined vregs do not have output/anti dependencies. 375 // The current operand is a def, so we have at least one. 376 // Check here if there are any others... 377 if (MRI.hasOneDef(Reg)) 378 return; 379 380 // Add output dependence to the next nearest def of this vreg. 381 // 382 // Unless this definition is dead, the output dependence should be 383 // transitively redundant with antidependencies from this definition's 384 // uses. We're conservative for now until we have a way to guarantee the uses 385 // are not eliminated sometime during scheduling. The output dependence edge 386 // is also useful if output latency exceeds def-use latency. 387 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 388 if (DefI == VRegDefs.end()) 389 VRegDefs.insert(VReg2SUnit(Reg, SU)); 390 else { 391 SUnit *DefSU = DefI->SU; 392 if (DefSU != SU && DefSU != &ExitSU) { 393 SDep Dep(SU, SDep::Output, Reg); 394 Dep.setLatency( 395 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 396 DefSU->addPred(Dep); 397 } 398 DefI->SU = SU; 399 } 400 } 401 402 /// addVRegUseDeps - Add a register data dependency if the instruction that 403 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a 404 /// register antidependency from this SUnit to instructions that occur later in 405 /// the same scheduling region if they write the virtual register. 406 /// 407 /// TODO: Handle ExitSU "uses" properly. 408 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 409 MachineInstr *MI = SU->getInstr(); 410 unsigned Reg = MI->getOperand(OperIdx).getReg(); 411 412 // Record this local VReg use. 413 VReg2UseMap::iterator UI = VRegUses.find(Reg); 414 for (; UI != VRegUses.end(); ++UI) { 415 if (UI->SU == SU) 416 break; 417 } 418 if (UI == VRegUses.end()) 419 VRegUses.insert(VReg2SUnit(Reg, SU)); 420 421 // Lookup this operand's reaching definition. 422 assert(LIS && "vreg dependencies requires LiveIntervals"); 423 LiveQueryResult LRQ 424 = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI)); 425 VNInfo *VNI = LRQ.valueIn(); 426 427 // VNI will be valid because MachineOperand::readsReg() is checked by caller. 428 assert(VNI && "No value to read by operand"); 429 MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); 430 // Phis and other noninstructions (after coalescing) have a NULL Def. 431 if (Def) { 432 SUnit *DefSU = getSUnit(Def); 433 if (DefSU) { 434 // The reaching Def lives within this scheduling region. 435 // Create a data dependence. 436 SDep dep(DefSU, SDep::Data, Reg); 437 // Adjust the dependence latency using operand def/use information, then 438 // allow the target to perform its own adjustments. 439 int DefOp = Def->findRegisterDefOperandIdx(Reg); 440 dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx)); 441 442 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 443 ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep)); 444 SU->addPred(dep); 445 } 446 } 447 448 // Add antidependence to the following def of the vreg it uses. 449 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 450 if (DefI != VRegDefs.end() && DefI->SU != SU) 451 DefI->SU->addPred(SDep(SU, SDep::Anti, Reg)); 452 } 453 454 /// Return true if MI is an instruction we are unable to reason about 455 /// (like a call or something with unmodeled side effects). 456 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 457 if (MI->isCall() || MI->hasUnmodeledSideEffects() || 458 (MI->hasOrderedMemoryRef() && 459 (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) 460 return true; 461 return false; 462 } 463 464 // This MI might have either incomplete info, or known to be unsafe 465 // to deal with (i.e. volatile object). 466 static inline bool isUnsafeMemoryObject(MachineInstr *MI, 467 const MachineFrameInfo *MFI) { 468 if (!MI || MI->memoperands_empty()) 469 return true; 470 // We purposefully do no check for hasOneMemOperand() here 471 // in hope to trigger an assert downstream in order to 472 // finish implementation. 473 if ((*MI->memoperands_begin())->isVolatile() || 474 MI->hasUnmodeledSideEffects()) 475 return true; 476 const Value *V = (*MI->memoperands_begin())->getValue(); 477 if (!V) 478 return true; 479 480 SmallVector<Value *, 4> Objs; 481 getUnderlyingObjects(V, Objs); 482 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), 483 IE = Objs.end(); I != IE; ++I) { 484 V = *I; 485 486 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { 487 // Similarly to getUnderlyingObjectForInstr: 488 // For now, ignore PseudoSourceValues which may alias LLVM IR values 489 // because the code that uses this function has no way to cope with 490 // such aliases. 491 if (PSV->isAliased(MFI)) 492 return true; 493 } 494 495 // Does this pointer refer to a distinct and identifiable object? 496 if (!isIdentifiedObject(V)) 497 return true; 498 } 499 500 return false; 501 } 502 503 /// This returns true if the two MIs need a chain edge betwee them. 504 /// If these are not even memory operations, we still may need 505 /// chain deps between them. The question really is - could 506 /// these two MIs be reordered during scheduling from memory dependency 507 /// point of view. 508 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 509 MachineInstr *MIa, 510 MachineInstr *MIb) { 511 // Cover a trivial case - no edge is need to itself. 512 if (MIa == MIb) 513 return false; 514 515 // FIXME: Need to handle multiple memory operands to support all targets. 516 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 517 return true; 518 519 if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI)) 520 return true; 521 522 // If we are dealing with two "normal" loads, we do not need an edge 523 // between them - they could be reordered. 524 if (!MIa->mayStore() && !MIb->mayStore()) 525 return false; 526 527 // To this point analysis is generic. From here on we do need AA. 528 if (!AA) 529 return true; 530 531 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 532 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 533 534 // The following interface to AA is fashioned after DAGCombiner::isAlias 535 // and operates with MachineMemOperand offset with some important 536 // assumptions: 537 // - LLVM fundamentally assumes flat address spaces. 538 // - MachineOperand offset can *only* result from legalization and 539 // cannot affect queries other than the trivial case of overlap 540 // checking. 541 // - These offsets never wrap and never step outside 542 // of allocated objects. 543 // - There should never be any negative offsets here. 544 // 545 // FIXME: Modify API to hide this math from "user" 546 // FIXME: Even before we go to AA we can reason locally about some 547 // memory objects. It can save compile time, and possibly catch some 548 // corner cases not currently covered. 549 550 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 551 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 552 553 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 554 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 555 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 556 557 AliasAnalysis::AliasResult AAResult = AA->alias( 558 AliasAnalysis::Location(MMOa->getValue(), Overlapa, 559 MMOa->getTBAAInfo()), 560 AliasAnalysis::Location(MMOb->getValue(), Overlapb, 561 MMOb->getTBAAInfo())); 562 563 return (AAResult != AliasAnalysis::NoAlias); 564 } 565 566 /// This recursive function iterates over chain deps of SUb looking for 567 /// "latest" node that needs a chain edge to SUa. 568 static unsigned 569 iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI, 570 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth, 571 SmallPtrSet<const SUnit*, 16> &Visited) { 572 if (!SUa || !SUb || SUb == ExitSU) 573 return *Depth; 574 575 // Remember visited nodes. 576 if (!Visited.insert(SUb)) 577 return *Depth; 578 // If there is _some_ dependency already in place, do not 579 // descend any further. 580 // TODO: Need to make sure that if that dependency got eliminated or ignored 581 // for any reason in the future, we would not violate DAG topology. 582 // Currently it does not happen, but makes an implicit assumption about 583 // future implementation. 584 // 585 // Independently, if we encounter node that is some sort of global 586 // object (like a call) we already have full set of dependencies to it 587 // and we can stop descending. 588 if (SUa->isSucc(SUb) || 589 isGlobalMemoryObject(AA, SUb->getInstr())) 590 return *Depth; 591 592 // If we do need an edge, or we have exceeded depth budget, 593 // add that edge to the predecessors chain of SUb, 594 // and stop descending. 595 if (*Depth > 200 || 596 MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 597 SUb->addPred(SDep(SUa, SDep::MayAliasMem)); 598 return *Depth; 599 } 600 // Track current depth. 601 (*Depth)++; 602 // Iterate over chain dependencies only. 603 for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end(); 604 I != E; ++I) 605 if (I->isCtrl()) 606 iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited); 607 return *Depth; 608 } 609 610 /// This function assumes that "downward" from SU there exist 611 /// tail/leaf of already constructed DAG. It iterates downward and 612 /// checks whether SU can be aliasing any node dominated 613 /// by it. 614 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI, 615 SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList, 616 unsigned LatencyToLoad) { 617 if (!SU) 618 return; 619 620 SmallPtrSet<const SUnit*, 16> Visited; 621 unsigned Depth = 0; 622 623 for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end(); 624 I != IE; ++I) { 625 if (SU == *I) 626 continue; 627 if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) { 628 SDep Dep(SU, SDep::MayAliasMem); 629 Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0); 630 (*I)->addPred(Dep); 631 } 632 // Now go through all the chain successors and iterate from them. 633 // Keep track of visited nodes. 634 for (SUnit::const_succ_iterator J = (*I)->Succs.begin(), 635 JE = (*I)->Succs.end(); J != JE; ++J) 636 if (J->isCtrl()) 637 iterateChainSucc (AA, MFI, SU, J->getSUnit(), 638 ExitSU, &Depth, Visited); 639 } 640 } 641 642 /// Check whether two objects need a chain edge, if so, add it 643 /// otherwise remember the rejected SU. 644 static inline 645 void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI, 646 SUnit *SUa, SUnit *SUb, 647 std::set<SUnit *> &RejectList, 648 unsigned TrueMemOrderLatency = 0, 649 bool isNormalMemory = false) { 650 // If this is a false dependency, 651 // do not add the edge, but rememeber the rejected node. 652 if (!AA || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 653 SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier); 654 Dep.setLatency(TrueMemOrderLatency); 655 SUb->addPred(Dep); 656 } 657 else { 658 // Duplicate entries should be ignored. 659 RejectList.insert(SUb); 660 DEBUG(dbgs() << "\tReject chain dep between SU(" 661 << SUa->NodeNum << ") and SU(" 662 << SUb->NodeNum << ")\n"); 663 } 664 } 665 666 /// Create an SUnit for each real instruction, numbered in top-down toplological 667 /// order. The instruction order A < B, implies that no edge exists from B to A. 668 /// 669 /// Map each real instruction to its SUnit. 670 /// 671 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 672 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 673 /// instead of pointers. 674 /// 675 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 676 /// the original instruction list. 677 void ScheduleDAGInstrs::initSUnits() { 678 // We'll be allocating one SUnit for each real instruction in the region, 679 // which is contained within a basic block. 680 SUnits.reserve(NumRegionInstrs); 681 682 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { 683 MachineInstr *MI = I; 684 if (MI->isDebugValue()) 685 continue; 686 687 SUnit *SU = newSUnit(MI); 688 MISUnitMap[MI] = SU; 689 690 SU->isCall = MI->isCall(); 691 SU->isCommutable = MI->isCommutable(); 692 693 // Assign the Latency field of SU using target-provided information. 694 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 695 696 // If this SUnit uses an unbuffered resource, mark it as such. 697 // These resources are used for in-order execution pipelines within an 698 // out-of-order core and are identified by BufferSize=1. BufferSize=0 is 699 // used for dispatch/issue groups and is not considered here. 700 if (SchedModel.hasInstrSchedModel()) { 701 const MCSchedClassDesc *SC = getSchedClass(SU); 702 for (TargetSchedModel::ProcResIter 703 PI = SchedModel.getWriteProcResBegin(SC), 704 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 705 switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) { 706 case 0: 707 SU->hasReservedResource = true; 708 break; 709 case 1: 710 SU->isUnbuffered = true; 711 break; 712 default: 713 break; 714 } 715 } 716 } 717 } 718 } 719 720 /// If RegPressure is non-null, compute register pressure as a side effect. The 721 /// DAG builder is an efficient place to do it because it already visits 722 /// operands. 723 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 724 RegPressureTracker *RPTracker, 725 PressureDiffs *PDiffs) { 726 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 727 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 728 : ST.useAA(); 729 AliasAnalysis *AAForDep = UseAA ? AA : 0; 730 731 MISUnitMap.clear(); 732 ScheduleDAG::clearDAG(); 733 734 // Create an SUnit for each real instruction. 735 initSUnits(); 736 737 if (PDiffs) 738 PDiffs->init(SUnits.size()); 739 740 // We build scheduling units by walking a block's instruction list from bottom 741 // to top. 742 743 // Remember where a generic side-effecting instruction is as we procede. 744 SUnit *BarrierChain = 0, *AliasChain = 0; 745 746 // Memory references to specific known memory locations are tracked 747 // so that they can be given more precise dependencies. We track 748 // separately the known memory locations that may alias and those 749 // that are known not to alias 750 MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs; 751 MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; 752 std::set<SUnit*> RejectMemNodes; 753 754 // Remove any stale debug info; sometimes BuildSchedGraph is called again 755 // without emitting the info from the previous call. 756 DbgValues.clear(); 757 FirstDbgValue = NULL; 758 759 assert(Defs.empty() && Uses.empty() && 760 "Only BuildGraph should update Defs/Uses"); 761 Defs.setUniverse(TRI->getNumRegs()); 762 Uses.setUniverse(TRI->getNumRegs()); 763 764 assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); 765 VRegUses.clear(); 766 VRegDefs.setUniverse(MRI.getNumVirtRegs()); 767 VRegUses.setUniverse(MRI.getNumVirtRegs()); 768 769 // Model data dependencies between instructions being scheduled and the 770 // ExitSU. 771 addSchedBarrierDeps(); 772 773 // Walk the list of instructions, from bottom moving up. 774 MachineInstr *DbgMI = NULL; 775 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 776 MII != MIE; --MII) { 777 MachineInstr *MI = prior(MII); 778 if (MI && DbgMI) { 779 DbgValues.push_back(std::make_pair(DbgMI, MI)); 780 DbgMI = NULL; 781 } 782 783 if (MI->isDebugValue()) { 784 DbgMI = MI; 785 continue; 786 } 787 SUnit *SU = MISUnitMap[MI]; 788 assert(SU && "No SUnit mapped to this MI"); 789 790 if (RPTracker) { 791 PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : 0; 792 RPTracker->recede(/*LiveUses=*/0, PDiff); 793 assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI"); 794 } 795 796 assert((CanHandleTerminators || (!MI->isTerminator() && !MI->isLabel())) && 797 "Cannot schedule terminators or labels!"); 798 799 // Add register-based dependencies (data, anti, and output). 800 bool HasVRegDef = false; 801 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { 802 const MachineOperand &MO = MI->getOperand(j); 803 if (!MO.isReg()) continue; 804 unsigned Reg = MO.getReg(); 805 if (Reg == 0) continue; 806 807 if (TRI->isPhysicalRegister(Reg)) 808 addPhysRegDeps(SU, j); 809 else { 810 assert(!IsPostRA && "Virtual register encountered!"); 811 if (MO.isDef()) { 812 HasVRegDef = true; 813 addVRegDefDeps(SU, j); 814 } 815 else if (MO.readsReg()) // ignore undef operands 816 addVRegUseDeps(SU, j); 817 } 818 } 819 // If we haven't seen any uses in this scheduling region, create a 820 // dependence edge to ExitSU to model the live-out latency. This is required 821 // for vreg defs with no in-region use, and prefetches with no vreg def. 822 // 823 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 824 // check currently relies on being called before adding chain deps. 825 if (SU->NumSuccs == 0 && SU->Latency > 1 826 && (HasVRegDef || MI->mayLoad())) { 827 SDep Dep(SU, SDep::Artificial); 828 Dep.setLatency(SU->Latency - 1); 829 ExitSU.addPred(Dep); 830 } 831 832 // Add chain dependencies. 833 // Chain dependencies used to enforce memory order should have 834 // latency of 0 (except for true dependency of Store followed by 835 // aliased Load... we estimate that with a single cycle of latency 836 // assuming the hardware will bypass) 837 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable 838 // after stack slots are lowered to actual addresses. 839 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and 840 // produce more precise dependence information. 841 unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0; 842 if (isGlobalMemoryObject(AA, MI)) { 843 // Be conservative with these and add dependencies on all memory 844 // references, even those that are known to not alias. 845 for (MapVector<const Value *, SUnit *>::iterator I = 846 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { 847 I->second->addPred(SDep(SU, SDep::Barrier)); 848 } 849 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I = 850 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { 851 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 852 SDep Dep(SU, SDep::Barrier); 853 Dep.setLatency(TrueMemOrderLatency); 854 I->second[i]->addPred(Dep); 855 } 856 } 857 // Add SU to the barrier chain. 858 if (BarrierChain) 859 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 860 BarrierChain = SU; 861 // This is a barrier event that acts as a pivotal node in the DAG, 862 // so it is safe to clear list of exposed nodes. 863 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 864 TrueMemOrderLatency); 865 RejectMemNodes.clear(); 866 NonAliasMemDefs.clear(); 867 NonAliasMemUses.clear(); 868 869 // fall-through 870 new_alias_chain: 871 // Chain all possibly aliasing memory references though SU. 872 if (AliasChain) { 873 unsigned ChainLatency = 0; 874 if (AliasChain->getInstr()->mayLoad()) 875 ChainLatency = TrueMemOrderLatency; 876 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes, 877 ChainLatency); 878 } 879 AliasChain = SU; 880 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 881 addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes, 882 TrueMemOrderLatency); 883 for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(), 884 E = AliasMemDefs.end(); I != E; ++I) 885 addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes); 886 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I = 887 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { 888 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 889 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes, 890 TrueMemOrderLatency); 891 } 892 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 893 TrueMemOrderLatency); 894 PendingLoads.clear(); 895 AliasMemDefs.clear(); 896 AliasMemUses.clear(); 897 } else if (MI->mayStore()) { 898 UnderlyingObjectsVector Objs; 899 getUnderlyingObjectsForInstr(MI, MFI, Objs); 900 901 if (Objs.empty()) { 902 // Treat all other stores conservatively. 903 goto new_alias_chain; 904 } 905 906 bool MayAlias = false; 907 for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end(); 908 K != KE; ++K) { 909 const Value *V = K->getPointer(); 910 bool ThisMayAlias = K->getInt(); 911 if (ThisMayAlias) 912 MayAlias = true; 913 914 // A store to a specific PseudoSourceValue. Add precise dependencies. 915 // Record the def in MemDefs, first adding a dep if there is 916 // an existing def. 917 MapVector<const Value *, SUnit *>::iterator I = 918 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 919 MapVector<const Value *, SUnit *>::iterator IE = 920 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 921 if (I != IE) { 922 addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes, 923 0, true); 924 I->second = SU; 925 } else { 926 if (ThisMayAlias) 927 AliasMemDefs[V] = SU; 928 else 929 NonAliasMemDefs[V] = SU; 930 } 931 // Handle the uses in MemUses, if there are any. 932 MapVector<const Value *, std::vector<SUnit *> >::iterator J = 933 ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); 934 MapVector<const Value *, std::vector<SUnit *> >::iterator JE = 935 ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); 936 if (J != JE) { 937 for (unsigned i = 0, e = J->second.size(); i != e; ++i) 938 addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes, 939 TrueMemOrderLatency, true); 940 J->second.clear(); 941 } 942 } 943 if (MayAlias) { 944 // Add dependencies from all the PendingLoads, i.e. loads 945 // with no underlying object. 946 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 947 addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes, 948 TrueMemOrderLatency); 949 // Add dependence on alias chain, if needed. 950 if (AliasChain) 951 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes); 952 // But we also should check dependent instructions for the 953 // SU in question. 954 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 955 TrueMemOrderLatency); 956 } 957 // Add dependence on barrier chain, if needed. 958 // There is no point to check aliasing on barrier event. Even if 959 // SU and barrier _could_ be reordered, they should not. In addition, 960 // we have lost all RejectMemNodes below barrier. 961 if (BarrierChain) 962 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 963 964 if (!ExitSU.isPred(SU)) 965 // Push store's up a bit to avoid them getting in between cmp 966 // and branches. 967 ExitSU.addPred(SDep(SU, SDep::Artificial)); 968 } else if (MI->mayLoad()) { 969 bool MayAlias = true; 970 if (MI->isInvariantLoad(AA)) { 971 // Invariant load, no chain dependencies needed! 972 } else { 973 UnderlyingObjectsVector Objs; 974 getUnderlyingObjectsForInstr(MI, MFI, Objs); 975 976 if (Objs.empty()) { 977 // A load with no underlying object. Depend on all 978 // potentially aliasing stores. 979 for (MapVector<const Value *, SUnit *>::iterator I = 980 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) 981 addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes); 982 983 PendingLoads.push_back(SU); 984 MayAlias = true; 985 } else { 986 MayAlias = false; 987 } 988 989 for (UnderlyingObjectsVector::iterator 990 J = Objs.begin(), JE = Objs.end(); J != JE; ++J) { 991 const Value *V = J->getPointer(); 992 bool ThisMayAlias = J->getInt(); 993 994 if (ThisMayAlias) 995 MayAlias = true; 996 997 // A load from a specific PseudoSourceValue. Add precise dependencies. 998 MapVector<const Value *, SUnit *>::iterator I = 999 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 1000 MapVector<const Value *, SUnit *>::iterator IE = 1001 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 1002 if (I != IE) 1003 addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes, 1004 0, true); 1005 if (ThisMayAlias) 1006 AliasMemUses[V].push_back(SU); 1007 else 1008 NonAliasMemUses[V].push_back(SU); 1009 } 1010 if (MayAlias) 1011 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0); 1012 // Add dependencies on alias and barrier chains, if needed. 1013 if (MayAlias && AliasChain) 1014 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes); 1015 if (BarrierChain) 1016 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 1017 } 1018 } 1019 } 1020 if (DbgMI) 1021 FirstDbgValue = DbgMI; 1022 1023 Defs.clear(); 1024 Uses.clear(); 1025 VRegDefs.clear(); 1026 PendingLoads.clear(); 1027 } 1028 1029 /// \brief Initialize register live-range state for updating kills. 1030 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { 1031 // Start with no live registers. 1032 LiveRegs.reset(); 1033 1034 // Examine the live-in regs of all successors. 1035 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 1036 SE = BB->succ_end(); SI != SE; ++SI) { 1037 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 1038 E = (*SI)->livein_end(); I != E; ++I) { 1039 unsigned Reg = *I; 1040 // Repeat, for reg and all subregs. 1041 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1042 SubRegs.isValid(); ++SubRegs) 1043 LiveRegs.set(*SubRegs); 1044 } 1045 } 1046 } 1047 1048 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) { 1049 // Setting kill flag... 1050 if (!MO.isKill()) { 1051 MO.setIsKill(true); 1052 return false; 1053 } 1054 1055 // If MO itself is live, clear the kill flag... 1056 if (LiveRegs.test(MO.getReg())) { 1057 MO.setIsKill(false); 1058 return false; 1059 } 1060 1061 // If any subreg of MO is live, then create an imp-def for that 1062 // subreg and keep MO marked as killed. 1063 MO.setIsKill(false); 1064 bool AllDead = true; 1065 const unsigned SuperReg = MO.getReg(); 1066 MachineInstrBuilder MIB(MF, MI); 1067 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { 1068 if (LiveRegs.test(*SubRegs)) { 1069 MIB.addReg(*SubRegs, RegState::ImplicitDefine); 1070 AllDead = false; 1071 } 1072 } 1073 1074 if(AllDead) 1075 MO.setIsKill(true); 1076 return false; 1077 } 1078 1079 // FIXME: Reuse the LivePhysRegs utility for this. 1080 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { 1081 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); 1082 1083 LiveRegs.resize(TRI->getNumRegs()); 1084 BitVector killedRegs(TRI->getNumRegs()); 1085 1086 startBlockForKills(MBB); 1087 1088 // Examine block from end to start... 1089 unsigned Count = MBB->size(); 1090 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); 1091 I != E; --Count) { 1092 MachineInstr *MI = --I; 1093 if (MI->isDebugValue()) 1094 continue; 1095 1096 // Update liveness. Registers that are defed but not used in this 1097 // instruction are now dead. Mark register and all subregs as they 1098 // are completely defined. 1099 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1100 MachineOperand &MO = MI->getOperand(i); 1101 if (MO.isRegMask()) 1102 LiveRegs.clearBitsNotInMask(MO.getRegMask()); 1103 if (!MO.isReg()) continue; 1104 unsigned Reg = MO.getReg(); 1105 if (Reg == 0) continue; 1106 if (!MO.isDef()) continue; 1107 // Ignore two-addr defs. 1108 if (MI->isRegTiedToUseOperand(i)) continue; 1109 1110 // Repeat for reg and all subregs. 1111 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1112 SubRegs.isValid(); ++SubRegs) 1113 LiveRegs.reset(*SubRegs); 1114 } 1115 1116 // Examine all used registers and set/clear kill flag. When a 1117 // register is used multiple times we only set the kill flag on 1118 // the first use. Don't set kill flags on undef operands. 1119 killedRegs.reset(); 1120 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1121 MachineOperand &MO = MI->getOperand(i); 1122 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1123 unsigned Reg = MO.getReg(); 1124 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1125 1126 bool kill = false; 1127 if (!killedRegs.test(Reg)) { 1128 kill = true; 1129 // A register is not killed if any subregs are live... 1130 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 1131 if (LiveRegs.test(*SubRegs)) { 1132 kill = false; 1133 break; 1134 } 1135 } 1136 1137 // If subreg is not live, then register is killed if it became 1138 // live in this instruction 1139 if (kill) 1140 kill = !LiveRegs.test(Reg); 1141 } 1142 1143 if (MO.isKill() != kill) { 1144 DEBUG(dbgs() << "Fixing " << MO << " in "); 1145 // Warning: toggleKillFlag may invalidate MO. 1146 toggleKillFlag(MI, MO); 1147 DEBUG(MI->dump()); 1148 } 1149 1150 killedRegs.set(Reg); 1151 } 1152 1153 // Mark any used register (that is not using undef) and subregs as 1154 // now live... 1155 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1156 MachineOperand &MO = MI->getOperand(i); 1157 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1158 unsigned Reg = MO.getReg(); 1159 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1160 1161 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1162 SubRegs.isValid(); ++SubRegs) 1163 LiveRegs.set(*SubRegs); 1164 } 1165 } 1166 } 1167 1168 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1169 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1170 SU->getInstr()->dump(); 1171 #endif 1172 } 1173 1174 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1175 std::string s; 1176 raw_string_ostream oss(s); 1177 if (SU == &EntrySU) 1178 oss << "<entry>"; 1179 else if (SU == &ExitSU) 1180 oss << "<exit>"; 1181 else 1182 SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true); 1183 return oss.str(); 1184 } 1185 1186 /// Return the basic block label. It is not necessarilly unique because a block 1187 /// contains multiple scheduling regions. But it is fine for visualization. 1188 std::string ScheduleDAGInstrs::getDAGName() const { 1189 return "dag." + BB->getFullName(); 1190 } 1191 1192 //===----------------------------------------------------------------------===// 1193 // SchedDFSResult Implementation 1194 //===----------------------------------------------------------------------===// 1195 1196 namespace llvm { 1197 /// \brief Internal state used to compute SchedDFSResult. 1198 class SchedDFSImpl { 1199 SchedDFSResult &R; 1200 1201 /// Join DAG nodes into equivalence classes by their subtree. 1202 IntEqClasses SubtreeClasses; 1203 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1204 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 1205 1206 struct RootData { 1207 unsigned NodeID; 1208 unsigned ParentNodeID; // Parent node (member of the parent subtree). 1209 unsigned SubInstrCount; // Instr count in this tree only, not children. 1210 1211 RootData(unsigned id): NodeID(id), 1212 ParentNodeID(SchedDFSResult::InvalidSubtreeID), 1213 SubInstrCount(0) {} 1214 1215 unsigned getSparseSetIndex() const { return NodeID; } 1216 }; 1217 1218 SparseSet<RootData> RootSet; 1219 1220 public: 1221 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1222 RootSet.setUniverse(R.DFSNodeData.size()); 1223 } 1224 1225 /// Return true if this node been visited by the DFS traversal. 1226 /// 1227 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1228 /// ID. Later, SubtreeID is updated but remains valid. 1229 bool isVisited(const SUnit *SU) const { 1230 return R.DFSNodeData[SU->NodeNum].SubtreeID 1231 != SchedDFSResult::InvalidSubtreeID; 1232 } 1233 1234 /// Initialize this node's instruction count. We don't need to flag the node 1235 /// visited until visitPostorder because the DAG cannot have cycles. 1236 void visitPreorder(const SUnit *SU) { 1237 R.DFSNodeData[SU->NodeNum].InstrCount = 1238 SU->getInstr()->isTransient() ? 0 : 1; 1239 } 1240 1241 /// Called once for each node after all predecessors are visited. Revisit this 1242 /// node's predecessors and potentially join them now that we know the ILP of 1243 /// the other predecessors. 1244 void visitPostorderNode(const SUnit *SU) { 1245 // Mark this node as the root of a subtree. It may be joined with its 1246 // successors later. 1247 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1248 RootData RData(SU->NodeNum); 1249 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1250 1251 // If any predecessors are still in their own subtree, they either cannot be 1252 // joined or are large enough to remain separate. If this parent node's 1253 // total instruction count is not greater than a child subtree by at least 1254 // the subtree limit, then try to join it now since splitting subtrees is 1255 // only useful if multiple high-pressure paths are possible. 1256 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1257 for (SUnit::const_pred_iterator 1258 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1259 if (PI->getKind() != SDep::Data) 1260 continue; 1261 unsigned PredNum = PI->getSUnit()->NodeNum; 1262 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1263 joinPredSubtree(*PI, SU, /*CheckLimit=*/false); 1264 1265 // Either link or merge the TreeData entry from the child to the parent. 1266 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1267 // If the predecessor's parent is invalid, this is a tree edge and the 1268 // current node is the parent. 1269 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1270 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1271 } 1272 else if (RootSet.count(PredNum)) { 1273 // The predecessor is not a root, but is still in the root set. This 1274 // must be the new parent that it was just joined to. Note that 1275 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1276 // set to the original parent. 1277 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1278 RootSet.erase(PredNum); 1279 } 1280 } 1281 RootSet[SU->NodeNum] = RData; 1282 } 1283 1284 /// Called once for each tree edge after calling visitPostOrderNode on the 1285 /// predecessor. Increment the parent node's instruction count and 1286 /// preemptively join this subtree to its parent's if it is small enough. 1287 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1288 R.DFSNodeData[Succ->NodeNum].InstrCount 1289 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1290 joinPredSubtree(PredDep, Succ); 1291 } 1292 1293 /// Add a connection for cross edges. 1294 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1295 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1296 } 1297 1298 /// Set each node's subtree ID to the representative ID and record connections 1299 /// between trees. 1300 void finalize() { 1301 SubtreeClasses.compress(); 1302 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1303 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1304 && "number of roots should match trees"); 1305 for (SparseSet<RootData>::const_iterator 1306 RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) { 1307 unsigned TreeID = SubtreeClasses[RI->NodeID]; 1308 if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1309 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID]; 1310 R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount; 1311 // Note that SubInstrCount may be greater than InstrCount if we joined 1312 // subtrees across a cross edge. InstrCount will be attributed to the 1313 // original parent, while SubInstrCount will be attributed to the joined 1314 // parent. 1315 } 1316 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1317 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1318 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1319 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1320 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1321 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1322 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1323 } 1324 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator 1325 I = ConnectionPairs.begin(), E = ConnectionPairs.end(); 1326 I != E; ++I) { 1327 unsigned PredTree = SubtreeClasses[I->first->NodeNum]; 1328 unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; 1329 if (PredTree == SuccTree) 1330 continue; 1331 unsigned Depth = I->first->getDepth(); 1332 addConnection(PredTree, SuccTree, Depth); 1333 addConnection(SuccTree, PredTree, Depth); 1334 } 1335 } 1336 1337 protected: 1338 /// Join the predecessor subtree with the successor that is its DFS 1339 /// parent. Apply some heuristics before joining. 1340 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1341 bool CheckLimit = true) { 1342 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1343 1344 // Check if the predecessor is already joined. 1345 const SUnit *PredSU = PredDep.getSUnit(); 1346 unsigned PredNum = PredSU->NodeNum; 1347 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1348 return false; 1349 1350 // Four is the magic number of successors before a node is considered a 1351 // pinch point. 1352 unsigned NumDataSucs = 0; 1353 for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(), 1354 SE = PredSU->Succs.end(); SI != SE; ++SI) { 1355 if (SI->getKind() == SDep::Data) { 1356 if (++NumDataSucs >= 4) 1357 return false; 1358 } 1359 } 1360 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1361 return false; 1362 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1363 SubtreeClasses.join(Succ->NodeNum, PredNum); 1364 return true; 1365 } 1366 1367 /// Called by finalize() to record a connection between trees. 1368 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1369 if (!Depth) 1370 return; 1371 1372 do { 1373 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1374 R.SubtreeConnections[FromTree]; 1375 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator 1376 I = Connections.begin(), E = Connections.end(); I != E; ++I) { 1377 if (I->TreeID == ToTree) { 1378 I->Level = std::max(I->Level, Depth); 1379 return; 1380 } 1381 } 1382 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1383 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1384 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1385 } 1386 }; 1387 } // namespace llvm 1388 1389 namespace { 1390 /// \brief Manage the stack used by a reverse depth-first search over the DAG. 1391 class SchedDAGReverseDFS { 1392 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 1393 public: 1394 bool isComplete() const { return DFSStack.empty(); } 1395 1396 void follow(const SUnit *SU) { 1397 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1398 } 1399 void advance() { ++DFSStack.back().second; } 1400 1401 const SDep *backtrack() { 1402 DFSStack.pop_back(); 1403 return DFSStack.empty() ? 0 : llvm::prior(DFSStack.back().second); 1404 } 1405 1406 const SUnit *getCurr() const { return DFSStack.back().first; } 1407 1408 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1409 1410 SUnit::const_pred_iterator getPredEnd() const { 1411 return getCurr()->Preds.end(); 1412 } 1413 }; 1414 } // anonymous 1415 1416 static bool hasDataSucc(const SUnit *SU) { 1417 for (SUnit::const_succ_iterator 1418 SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) { 1419 if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode()) 1420 return true; 1421 } 1422 return false; 1423 } 1424 1425 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first 1426 /// search from this root. 1427 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1428 if (!IsBottomUp) 1429 llvm_unreachable("Top-down ILP metric is unimplemnted"); 1430 1431 SchedDFSImpl Impl(*this); 1432 for (ArrayRef<SUnit>::const_iterator 1433 SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) { 1434 const SUnit *SU = &*SI; 1435 if (Impl.isVisited(SU) || hasDataSucc(SU)) 1436 continue; 1437 1438 SchedDAGReverseDFS DFS; 1439 Impl.visitPreorder(SU); 1440 DFS.follow(SU); 1441 for (;;) { 1442 // Traverse the leftmost path as far as possible. 1443 while (DFS.getPred() != DFS.getPredEnd()) { 1444 const SDep &PredDep = *DFS.getPred(); 1445 DFS.advance(); 1446 // Ignore non-data edges. 1447 if (PredDep.getKind() != SDep::Data 1448 || PredDep.getSUnit()->isBoundaryNode()) { 1449 continue; 1450 } 1451 // An already visited edge is a cross edge, assuming an acyclic DAG. 1452 if (Impl.isVisited(PredDep.getSUnit())) { 1453 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1454 continue; 1455 } 1456 Impl.visitPreorder(PredDep.getSUnit()); 1457 DFS.follow(PredDep.getSUnit()); 1458 } 1459 // Visit the top of the stack in postorder and backtrack. 1460 const SUnit *Child = DFS.getCurr(); 1461 const SDep *PredDep = DFS.backtrack(); 1462 Impl.visitPostorderNode(Child); 1463 if (PredDep) 1464 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1465 if (DFS.isComplete()) 1466 break; 1467 } 1468 } 1469 Impl.finalize(); 1470 } 1471 1472 /// The root of the given SubtreeID was just scheduled. For all subtrees 1473 /// connected to this tree, record the depth of the connection so that the 1474 /// nearest connected subtrees can be prioritized. 1475 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1476 for (SmallVectorImpl<Connection>::const_iterator 1477 I = SubtreeConnections[SubtreeID].begin(), 1478 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { 1479 SubtreeConnectLevels[I->TreeID] = 1480 std::max(SubtreeConnectLevels[I->TreeID], I->Level); 1481 DEBUG(dbgs() << " Tree: " << I->TreeID 1482 << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); 1483 } 1484 } 1485 1486 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1487 void ILPValue::print(raw_ostream &OS) const { 1488 OS << InstrCount << " / " << Length << " = "; 1489 if (!Length) 1490 OS << "BADILP"; 1491 else 1492 OS << format("%g", ((double)InstrCount / Length)); 1493 } 1494 1495 void ILPValue::dump() const { 1496 dbgs() << *this << '\n'; 1497 } 1498 1499 namespace llvm { 1500 1501 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1502 Val.print(OS); 1503 return OS; 1504 } 1505 1506 } // namespace llvm 1507 #endif // !NDEBUG || LLVM_ENABLE_DUMP 1508