1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file This implements the ScheduleDAGInstrs class, which implements 11 /// re-scheduling of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 16 #include "llvm/ADT/IntEqClasses.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/PseudoSourceValue.h" 28 #include "llvm/CodeGen/RegisterPressure.h" 29 #include "llvm/CodeGen/ScheduleDFS.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/Format.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "misched" 45 46 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 47 cl::ZeroOrMore, cl::init(false), 48 cl::desc("Enable use of AA during MI DAG construction")); 49 50 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 51 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 52 53 // Note: the two options below might be used in tuning compile time vs 54 // output quality. Setting HugeRegion so large that it will never be 55 // reached means best-effort, but may be slow. 56 57 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) 58 // together hold this many SUs, a reduction of maps will be done. 59 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, 60 cl::init(1000), cl::desc("The limit to use while constructing the DAG " 61 "prior to scheduling, at which point a trade-off " 62 "is made to avoid excessive compile time.")); 63 64 static cl::opt<unsigned> ReductionSize( 65 "dag-maps-reduction-size", cl::Hidden, 66 cl::desc("A huge scheduling region will have maps reduced by this many " 67 "nodes at a time. Defaults to HugeRegion / 2.")); 68 69 static unsigned getReductionSize() { 70 // Always reduce a huge region with half of the elements, except 71 // when user sets this number explicitly. 72 if (ReductionSize.getNumOccurrences() == 0) 73 return HugeRegion / 2; 74 return ReductionSize; 75 } 76 77 static void dumpSUList(ScheduleDAGInstrs::SUList &L) { 78 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 79 dbgs() << "{ "; 80 for (const SUnit *su : L) { 81 dbgs() << "SU(" << su->NodeNum << ")"; 82 if (su != L.back()) 83 dbgs() << ", "; 84 } 85 dbgs() << "}\n"; 86 #endif 87 } 88 89 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 90 const MachineLoopInfo *mli, 91 bool RemoveKillFlags) 92 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 93 RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false), 94 TrackLaneMasks(false), AAForDep(nullptr), BarrierChain(nullptr), 95 UnknownValue(UndefValue::get( 96 Type::getVoidTy(mf.getFunction()->getContext()))), 97 FirstDbgValue(nullptr) { 98 DbgValues.clear(); 99 100 const TargetSubtargetInfo &ST = mf.getSubtarget(); 101 SchedModel.init(ST.getSchedModel(), &ST, TII); 102 } 103 104 /// This is the function that does the work of looking through basic 105 /// ptrtoint+arithmetic+inttoptr sequences. 106 static const Value *getUnderlyingObjectFromInt(const Value *V) { 107 do { 108 if (const Operator *U = dyn_cast<Operator>(V)) { 109 // If we find a ptrtoint, we can transfer control back to the 110 // regular getUnderlyingObjectFromInt. 111 if (U->getOpcode() == Instruction::PtrToInt) 112 return U->getOperand(0); 113 // If we find an add of a constant, a multiplied value, or a phi, it's 114 // likely that the other operand will lead us to the base 115 // object. We don't have to worry about the case where the 116 // object address is somehow being computed by the multiply, 117 // because our callers only care when the result is an 118 // identifiable object. 119 if (U->getOpcode() != Instruction::Add || 120 (!isa<ConstantInt>(U->getOperand(1)) && 121 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 122 !isa<PHINode>(U->getOperand(1)))) 123 return V; 124 V = U->getOperand(0); 125 } else { 126 return V; 127 } 128 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 129 } while (1); 130 } 131 132 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 133 /// ptrtoint+arithmetic+inttoptr sequences. 134 static void getUnderlyingObjects(const Value *V, 135 SmallVectorImpl<Value *> &Objects, 136 const DataLayout &DL) { 137 SmallPtrSet<const Value *, 16> Visited; 138 SmallVector<const Value *, 4> Working(1, V); 139 do { 140 V = Working.pop_back_val(); 141 142 SmallVector<Value *, 4> Objs; 143 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 144 145 for (Value *V : Objs) { 146 if (!Visited.insert(V).second) 147 continue; 148 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 149 const Value *O = 150 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 151 if (O->getType()->isPointerTy()) { 152 Working.push_back(O); 153 continue; 154 } 155 } 156 Objects.push_back(const_cast<Value *>(V)); 157 } 158 } while (!Working.empty()); 159 } 160 161 /// If this machine instr has memory reference information and it can be tracked 162 /// to a normal reference to a known object, return the Value for that object. 163 static void getUnderlyingObjectsForInstr(const MachineInstr *MI, 164 const MachineFrameInfo &MFI, 165 UnderlyingObjectsVector &Objects, 166 const DataLayout &DL) { 167 auto allMMOsOkay = [&]() { 168 for (const MachineMemOperand *MMO : MI->memoperands()) { 169 if (MMO->isVolatile()) 170 return false; 171 172 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 173 // Function that contain tail calls don't have unique PseudoSourceValue 174 // objects. Two PseudoSourceValues might refer to the same or 175 // overlapping locations. The client code calling this function assumes 176 // this is not the case. So return a conservative answer of no known 177 // object. 178 if (MFI.hasTailCall()) 179 return false; 180 181 // For now, ignore PseudoSourceValues which may alias LLVM IR values 182 // because the code that uses this function has no way to cope with 183 // such aliases. 184 if (PSV->isAliased(&MFI)) 185 return false; 186 187 bool MayAlias = PSV->mayAlias(&MFI); 188 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 189 } else if (const Value *V = MMO->getValue()) { 190 SmallVector<Value *, 4> Objs; 191 getUnderlyingObjects(V, Objs, DL); 192 193 for (Value *V : Objs) { 194 if (!isIdentifiedObject(V)) 195 return false; 196 197 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 198 } 199 } else 200 return false; 201 } 202 return true; 203 }; 204 205 if (!allMMOsOkay()) 206 Objects.clear(); 207 } 208 209 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 210 BB = bb; 211 } 212 213 void ScheduleDAGInstrs::finishBlock() { 214 // Subclasses should no longer refer to the old block. 215 BB = nullptr; 216 } 217 218 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 219 MachineBasicBlock::iterator begin, 220 MachineBasicBlock::iterator end, 221 unsigned regioninstrs) { 222 assert(bb == BB && "startBlock should set BB"); 223 RegionBegin = begin; 224 RegionEnd = end; 225 NumRegionInstrs = regioninstrs; 226 } 227 228 void ScheduleDAGInstrs::exitRegion() { 229 // Nothing to do. 230 } 231 232 void ScheduleDAGInstrs::addSchedBarrierDeps() { 233 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 234 ExitSU.setInstr(ExitMI); 235 // Add dependencies on the defs and uses of the instruction. 236 if (ExitMI) { 237 for (const MachineOperand &MO : ExitMI->operands()) { 238 if (!MO.isReg() || MO.isDef()) continue; 239 unsigned Reg = MO.getReg(); 240 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 241 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 242 } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) { 243 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO)); 244 } 245 } 246 } 247 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) { 248 // For others, e.g. fallthrough, conditional branch, assume the exit 249 // uses all the registers that are livein to the successor blocks. 250 for (const MachineBasicBlock *Succ : BB->successors()) { 251 for (const auto &LI : Succ->liveins()) { 252 if (!Uses.contains(LI.PhysReg)) 253 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 254 } 255 } 256 } 257 } 258 259 /// MO is an operand of SU's instruction that defines a physical register. Adds 260 /// data dependencies from SU to any uses of the physical register. 261 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 262 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 263 assert(MO.isDef() && "expect physreg def"); 264 265 // Ask the target if address-backscheduling is desirable, and if so how much. 266 const TargetSubtargetInfo &ST = MF.getSubtarget(); 267 268 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 269 Alias.isValid(); ++Alias) { 270 if (!Uses.contains(*Alias)) 271 continue; 272 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 273 SUnit *UseSU = I->SU; 274 if (UseSU == SU) 275 continue; 276 277 // Adjust the dependence latency using operand def/use information, 278 // then allow the target to perform its own adjustments. 279 int UseOp = I->OpIdx; 280 MachineInstr *RegUse = nullptr; 281 SDep Dep; 282 if (UseOp < 0) 283 Dep = SDep(SU, SDep::Artificial); 284 else { 285 // Set the hasPhysRegDefs only for physreg defs that have a use within 286 // the scheduling region. 287 SU->hasPhysRegDefs = true; 288 Dep = SDep(SU, SDep::Data, *Alias); 289 RegUse = UseSU->getInstr(); 290 } 291 Dep.setLatency( 292 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 293 UseOp)); 294 295 ST.adjustSchedDependency(SU, UseSU, Dep); 296 UseSU->addPred(Dep); 297 } 298 } 299 } 300 301 /// \brief Adds register dependencies (data, anti, and output) from this SUnit 302 /// to following instructions in the same scheduling region that depend the 303 /// physical register referenced at OperIdx. 304 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 305 MachineInstr *MI = SU->getInstr(); 306 MachineOperand &MO = MI->getOperand(OperIdx); 307 unsigned Reg = MO.getReg(); 308 // We do not need to track any dependencies for constant registers. 309 if (MRI.isConstantPhysReg(Reg)) 310 return; 311 312 // Optionally add output and anti dependencies. For anti 313 // dependencies we use a latency of 0 because for a multi-issue 314 // target we want to allow the defining instruction to issue 315 // in the same cycle as the using instruction. 316 // TODO: Using a latency of 1 here for output dependencies assumes 317 // there's no cost for reusing registers. 318 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 319 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 320 if (!Defs.contains(*Alias)) 321 continue; 322 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 323 SUnit *DefSU = I->SU; 324 if (DefSU == &ExitSU) 325 continue; 326 if (DefSU != SU && 327 (Kind != SDep::Output || !MO.isDead() || 328 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 329 if (Kind == SDep::Anti) 330 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 331 else { 332 SDep Dep(SU, Kind, /*Reg=*/*Alias); 333 Dep.setLatency( 334 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 335 DefSU->addPred(Dep); 336 } 337 } 338 } 339 } 340 341 if (!MO.isDef()) { 342 SU->hasPhysRegUses = true; 343 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 344 // retrieve the existing SUnits list for this register's uses. 345 // Push this SUnit on the use list. 346 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg)); 347 if (RemoveKillFlags) 348 MO.setIsKill(false); 349 } else { 350 addPhysRegDataDeps(SU, OperIdx); 351 352 // clear this register's use list 353 if (Uses.contains(Reg)) 354 Uses.eraseAll(Reg); 355 356 if (!MO.isDead()) { 357 Defs.eraseAll(Reg); 358 } else if (SU->isCall) { 359 // Calls will not be reordered because of chain dependencies (see 360 // below). Since call operands are dead, calls may continue to be added 361 // to the DefList making dependence checking quadratic in the size of 362 // the block. Instead, we leave only one call at the back of the 363 // DefList. 364 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 365 Reg2SUnitsMap::iterator B = P.first; 366 Reg2SUnitsMap::iterator I = P.second; 367 for (bool isBegin = I == B; !isBegin; /* empty */) { 368 isBegin = (--I) == B; 369 if (!I->SU->isCall) 370 break; 371 I = Defs.erase(I); 372 } 373 } 374 375 // Defs are pushed in the order they are visited and never reordered. 376 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 377 } 378 } 379 380 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 381 { 382 unsigned Reg = MO.getReg(); 383 // No point in tracking lanemasks if we don't have interesting subregisters. 384 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 385 if (!RC.HasDisjunctSubRegs) 386 return LaneBitmask::getAll(); 387 388 unsigned SubReg = MO.getSubReg(); 389 if (SubReg == 0) 390 return RC.getLaneMask(); 391 return TRI->getSubRegIndexLaneMask(SubReg); 392 } 393 394 /// Adds register output and data dependencies from this SUnit to instructions 395 /// that occur later in the same scheduling region if they read from or write to 396 /// the virtual register defined at OperIdx. 397 /// 398 /// TODO: Hoist loop induction variable increments. This has to be 399 /// reevaluated. Generally, IV scheduling should be done before coalescing. 400 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 401 MachineInstr *MI = SU->getInstr(); 402 MachineOperand &MO = MI->getOperand(OperIdx); 403 unsigned Reg = MO.getReg(); 404 405 LaneBitmask DefLaneMask; 406 LaneBitmask KillLaneMask; 407 if (TrackLaneMasks) { 408 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 409 DefLaneMask = getLaneMaskForMO(MO); 410 // If we have a <read-undef> flag, none of the lane values comes from an 411 // earlier instruction. 412 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask; 413 414 // Clear undef flag, we'll re-add it later once we know which subregister 415 // Def is first. 416 MO.setIsUndef(false); 417 } else { 418 DefLaneMask = LaneBitmask::getAll(); 419 KillLaneMask = LaneBitmask::getAll(); 420 } 421 422 if (MO.isDead()) { 423 assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() && 424 "Dead defs should have no uses"); 425 } else { 426 // Add data dependence to all uses we found so far. 427 const TargetSubtargetInfo &ST = MF.getSubtarget(); 428 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 429 E = CurrentVRegUses.end(); I != E; /*empty*/) { 430 LaneBitmask LaneMask = I->LaneMask; 431 // Ignore uses of other lanes. 432 if ((LaneMask & KillLaneMask).none()) { 433 ++I; 434 continue; 435 } 436 437 if ((LaneMask & DefLaneMask).any()) { 438 SUnit *UseSU = I->SU; 439 MachineInstr *Use = UseSU->getInstr(); 440 SDep Dep(SU, SDep::Data, Reg); 441 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 442 I->OperandIndex)); 443 ST.adjustSchedDependency(SU, UseSU, Dep); 444 UseSU->addPred(Dep); 445 } 446 447 LaneMask &= ~KillLaneMask; 448 // If we found a Def for all lanes of this use, remove it from the list. 449 if (LaneMask.any()) { 450 I->LaneMask = LaneMask; 451 ++I; 452 } else 453 I = CurrentVRegUses.erase(I); 454 } 455 } 456 457 // Shortcut: Singly defined vregs do not have output/anti dependencies. 458 if (MRI.hasOneDef(Reg)) 459 return; 460 461 // Add output dependence to the next nearest defs of this vreg. 462 // 463 // Unless this definition is dead, the output dependence should be 464 // transitively redundant with antidependencies from this definition's 465 // uses. We're conservative for now until we have a way to guarantee the uses 466 // are not eliminated sometime during scheduling. The output dependence edge 467 // is also useful if output latency exceeds def-use latency. 468 LaneBitmask LaneMask = DefLaneMask; 469 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 470 CurrentVRegDefs.end())) { 471 // Ignore defs for other lanes. 472 if ((V2SU.LaneMask & LaneMask).none()) 473 continue; 474 // Add an output dependence. 475 SUnit *DefSU = V2SU.SU; 476 // Ignore additional defs of the same lanes in one instruction. This can 477 // happen because lanemasks are shared for targets with too many 478 // subregisters. We also use some representration tricks/hacks where we 479 // add super-register defs/uses, to imply that although we only access parts 480 // of the reg we care about the full one. 481 if (DefSU == SU) 482 continue; 483 SDep Dep(SU, SDep::Output, Reg); 484 Dep.setLatency( 485 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 486 DefSU->addPred(Dep); 487 488 // Update current definition. This can get tricky if the def was about a 489 // bigger lanemask before. We then have to shrink it and create a new 490 // VReg2SUnit for the non-overlapping part. 491 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 492 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 493 V2SU.SU = SU; 494 V2SU.LaneMask = OverlapMask; 495 if (NonOverlapMask.any()) 496 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); 497 } 498 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 499 if (LaneMask.any()) 500 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 501 } 502 503 /// \brief Adds a register data dependency if the instruction that defines the 504 /// virtual register used at OperIdx is mapped to an SUnit. Add a register 505 /// antidependency from this SUnit to instructions that occur later in the same 506 /// scheduling region if they write the virtual register. 507 /// 508 /// TODO: Handle ExitSU "uses" properly. 509 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 510 const MachineInstr *MI = SU->getInstr(); 511 const MachineOperand &MO = MI->getOperand(OperIdx); 512 unsigned Reg = MO.getReg(); 513 514 // Remember the use. Data dependencies will be added when we find the def. 515 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) 516 : LaneBitmask::getAll(); 517 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 518 519 // Add antidependences to the following defs of the vreg. 520 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 521 CurrentVRegDefs.end())) { 522 // Ignore defs for unrelated lanes. 523 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 524 if ((PrevDefLaneMask & LaneMask).none()) 525 continue; 526 if (V2SU.SU == SU) 527 continue; 528 529 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 530 } 531 } 532 533 /// Returns true if MI is an instruction we are unable to reason about 534 /// (like a call or something with unmodeled side effects). 535 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 536 return MI->isCall() || MI->hasUnmodeledSideEffects() || 537 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA)); 538 } 539 540 /// Returns true if the two MIs need a chain edge between them. 541 /// This is called on normal stores and loads. 542 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 543 const DataLayout &DL, MachineInstr *MIa, 544 MachineInstr *MIb) { 545 const MachineFunction *MF = MIa->getParent()->getParent(); 546 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 547 548 assert ((MIa->mayStore() || MIb->mayStore()) && 549 "Dependency checked between two loads"); 550 551 // Let the target decide if memory accesses cannot possibly overlap. 552 if (TII->areMemAccessesTriviallyDisjoint(*MIa, *MIb, AA)) 553 return false; 554 555 // To this point analysis is generic. From here on we do need AA. 556 if (!AA) 557 return true; 558 559 // FIXME: Need to handle multiple memory operands to support all targets. 560 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 561 return true; 562 563 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 564 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 565 566 if (!MMOa->getValue() || !MMOb->getValue()) 567 return true; 568 569 // The following interface to AA is fashioned after DAGCombiner::isAlias 570 // and operates with MachineMemOperand offset with some important 571 // assumptions: 572 // - LLVM fundamentally assumes flat address spaces. 573 // - MachineOperand offset can *only* result from legalization and 574 // cannot affect queries other than the trivial case of overlap 575 // checking. 576 // - These offsets never wrap and never step outside 577 // of allocated objects. 578 // - There should never be any negative offsets here. 579 // 580 // FIXME: Modify API to hide this math from "user" 581 // FIXME: Even before we go to AA we can reason locally about some 582 // memory objects. It can save compile time, and possibly catch some 583 // corner cases not currently covered. 584 585 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 586 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 587 588 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 589 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 590 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 591 592 AliasResult AAResult = 593 AA->alias(MemoryLocation(MMOa->getValue(), Overlapa, 594 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 595 MemoryLocation(MMOb->getValue(), Overlapb, 596 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 597 598 return (AAResult != NoAlias); 599 } 600 601 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, 602 unsigned Latency) { 603 if (MIsNeedChainEdge(AAForDep, &MFI, MF.getDataLayout(), SUa->getInstr(), 604 SUb->getInstr())) { 605 SDep Dep(SUa, SDep::MayAliasMem); 606 Dep.setLatency(Latency); 607 SUb->addPred(Dep); 608 } 609 } 610 611 /// \brief Creates an SUnit for each real instruction, numbered in top-down 612 /// topological order. The instruction order A < B, implies that no edge exists 613 /// from B to A. 614 /// 615 /// Map each real instruction to its SUnit. 616 /// 617 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 618 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 619 /// instead of pointers. 620 /// 621 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 622 /// the original instruction list. 623 void ScheduleDAGInstrs::initSUnits() { 624 // We'll be allocating one SUnit for each real instruction in the region, 625 // which is contained within a basic block. 626 SUnits.reserve(NumRegionInstrs); 627 628 for (MachineInstr &MI : llvm::make_range(RegionBegin, RegionEnd)) { 629 if (MI.isDebugValue()) 630 continue; 631 632 SUnit *SU = newSUnit(&MI); 633 MISUnitMap[&MI] = SU; 634 635 SU->isCall = MI.isCall(); 636 SU->isCommutable = MI.isCommutable(); 637 638 // Assign the Latency field of SU using target-provided information. 639 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 640 641 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 642 // 643 // Reserved resources block an instruction from issuing and stall the 644 // entire pipeline. These are identified by BufferSize=0. 645 // 646 // Unbuffered resources prevent execution of subsequent instructions that 647 // require the same resources. This is used for in-order execution pipelines 648 // within an out-of-order core. These are identified by BufferSize=1. 649 if (SchedModel.hasInstrSchedModel()) { 650 const MCSchedClassDesc *SC = getSchedClass(SU); 651 for (const MCWriteProcResEntry &PRE : 652 make_range(SchedModel.getWriteProcResBegin(SC), 653 SchedModel.getWriteProcResEnd(SC))) { 654 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) { 655 case 0: 656 SU->hasReservedResource = true; 657 break; 658 case 1: 659 SU->isUnbuffered = true; 660 break; 661 default: 662 break; 663 } 664 } 665 } 666 } 667 } 668 669 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { 670 /// Current total number of SUs in map. 671 unsigned NumNodes; 672 673 /// 1 for loads, 0 for stores. (see comment in SUList) 674 unsigned TrueMemOrderLatency; 675 676 public: 677 Value2SUsMap(unsigned lat = 0) : NumNodes(0), TrueMemOrderLatency(lat) {} 678 679 /// To keep NumNodes up to date, insert() is used instead of 680 /// this operator w/ push_back(). 681 ValueType &operator[](const SUList &Key) { 682 llvm_unreachable("Don't use. Use insert() instead."); }; 683 684 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling 685 /// reduce(). 686 void inline insert(SUnit *SU, ValueType V) { 687 MapVector::operator[](V).push_back(SU); 688 NumNodes++; 689 } 690 691 /// Clears the list of SUs mapped to V. 692 void inline clearList(ValueType V) { 693 iterator Itr = find(V); 694 if (Itr != end()) { 695 assert (NumNodes >= Itr->second.size()); 696 NumNodes -= Itr->second.size(); 697 698 Itr->second.clear(); 699 } 700 } 701 702 /// Clears map from all contents. 703 void clear() { 704 MapVector<ValueType, SUList>::clear(); 705 NumNodes = 0; 706 } 707 708 unsigned inline size() const { return NumNodes; } 709 710 /// Counts the number of SUs in this map after a reduction. 711 void reComputeSize(void) { 712 NumNodes = 0; 713 for (auto &I : *this) 714 NumNodes += I.second.size(); 715 } 716 717 unsigned inline getTrueMemOrderLatency() const { 718 return TrueMemOrderLatency; 719 } 720 721 void dump(); 722 }; 723 724 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 725 Value2SUsMap &Val2SUsMap) { 726 for (auto &I : Val2SUsMap) 727 addChainDependencies(SU, I.second, 728 Val2SUsMap.getTrueMemOrderLatency()); 729 } 730 731 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 732 Value2SUsMap &Val2SUsMap, 733 ValueType V) { 734 Value2SUsMap::iterator Itr = Val2SUsMap.find(V); 735 if (Itr != Val2SUsMap.end()) 736 addChainDependencies(SU, Itr->second, 737 Val2SUsMap.getTrueMemOrderLatency()); 738 } 739 740 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { 741 assert (BarrierChain != nullptr); 742 743 for (auto &I : map) { 744 SUList &sus = I.second; 745 for (auto *SU : sus) 746 SU->addPredBarrier(BarrierChain); 747 } 748 map.clear(); 749 } 750 751 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { 752 assert (BarrierChain != nullptr); 753 754 // Go through all lists of SUs. 755 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { 756 Value2SUsMap::iterator CurrItr = I++; 757 SUList &sus = CurrItr->second; 758 SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); 759 for (; SUItr != SUEE; ++SUItr) { 760 // Stop on BarrierChain or any instruction above it. 761 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) 762 break; 763 764 (*SUItr)->addPredBarrier(BarrierChain); 765 } 766 767 // Remove also the BarrierChain from list if present. 768 if (SUItr != SUEE && *SUItr == BarrierChain) 769 SUItr++; 770 771 // Remove all SUs that are now successors of BarrierChain. 772 if (SUItr != sus.begin()) 773 sus.erase(sus.begin(), SUItr); 774 } 775 776 // Remove all entries with empty su lists. 777 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { 778 return (mapEntry.second.empty()); }); 779 780 // Recompute the size of the map (NumNodes). 781 map.reComputeSize(); 782 } 783 784 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 785 RegPressureTracker *RPTracker, 786 PressureDiffs *PDiffs, 787 LiveIntervals *LIS, 788 bool TrackLaneMasks) { 789 const TargetSubtargetInfo &ST = MF.getSubtarget(); 790 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 791 : ST.useAA(); 792 AAForDep = UseAA ? AA : nullptr; 793 794 BarrierChain = nullptr; 795 796 this->TrackLaneMasks = TrackLaneMasks; 797 MISUnitMap.clear(); 798 ScheduleDAG::clearDAG(); 799 800 // Create an SUnit for each real instruction. 801 initSUnits(); 802 803 if (PDiffs) 804 PDiffs->init(SUnits.size()); 805 806 // We build scheduling units by walking a block's instruction list 807 // from bottom to top. 808 809 // Each MIs' memory operand(s) is analyzed to a list of underlying 810 // objects. The SU is then inserted in the SUList(s) mapped from the 811 // Value(s). Each Value thus gets mapped to lists of SUs depending 812 // on it, stores and loads kept separately. Two SUs are trivially 813 // non-aliasing if they both depend on only identified Values and do 814 // not share any common Value. 815 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); 816 817 // Certain memory accesses are known to not alias any SU in Stores 818 // or Loads, and have therefore their own 'NonAlias' 819 // domain. E.g. spill / reload instructions never alias LLVM I/R 820 // Values. It would be nice to assume that this type of memory 821 // accesses always have a proper memory operand modelling, and are 822 // therefore never unanalyzable, but this is conservatively not 823 // done. 824 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); 825 826 // Remove any stale debug info; sometimes BuildSchedGraph is called again 827 // without emitting the info from the previous call. 828 DbgValues.clear(); 829 FirstDbgValue = nullptr; 830 831 assert(Defs.empty() && Uses.empty() && 832 "Only BuildGraph should update Defs/Uses"); 833 Defs.setUniverse(TRI->getNumRegs()); 834 Uses.setUniverse(TRI->getNumRegs()); 835 836 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 837 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 838 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 839 CurrentVRegDefs.setUniverse(NumVirtRegs); 840 CurrentVRegUses.setUniverse(NumVirtRegs); 841 842 // Model data dependencies between instructions being scheduled and the 843 // ExitSU. 844 addSchedBarrierDeps(); 845 846 // Walk the list of instructions, from bottom moving up. 847 MachineInstr *DbgMI = nullptr; 848 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 849 MII != MIE; --MII) { 850 MachineInstr &MI = *std::prev(MII); 851 if (DbgMI) { 852 DbgValues.push_back(std::make_pair(DbgMI, &MI)); 853 DbgMI = nullptr; 854 } 855 856 if (MI.isDebugValue()) { 857 DbgMI = &MI; 858 continue; 859 } 860 SUnit *SU = MISUnitMap[&MI]; 861 assert(SU && "No SUnit mapped to this MI"); 862 863 if (RPTracker) { 864 RegisterOperands RegOpers; 865 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); 866 if (TrackLaneMasks) { 867 SlotIndex SlotIdx = LIS->getInstructionIndex(MI); 868 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 869 } 870 if (PDiffs != nullptr) 871 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 872 873 RPTracker->recedeSkipDebugValues(); 874 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); 875 RPTracker->recede(RegOpers); 876 } 877 878 assert( 879 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && 880 "Cannot schedule terminators or labels!"); 881 882 // Add register-based dependencies (data, anti, and output). 883 // For some instructions (calls, returns, inline-asm, etc.) there can 884 // be explicit uses and implicit defs, in which case the use will appear 885 // on the operand list before the def. Do two passes over the operand 886 // list to make sure that defs are processed before any uses. 887 bool HasVRegDef = false; 888 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 889 const MachineOperand &MO = MI.getOperand(j); 890 if (!MO.isReg() || !MO.isDef()) 891 continue; 892 unsigned Reg = MO.getReg(); 893 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 894 addPhysRegDeps(SU, j); 895 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 896 HasVRegDef = true; 897 addVRegDefDeps(SU, j); 898 } 899 } 900 // Now process all uses. 901 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 902 const MachineOperand &MO = MI.getOperand(j); 903 // Only look at use operands. 904 // We do not need to check for MO.readsReg() here because subsequent 905 // subregister defs will get output dependence edges and need no 906 // additional use dependencies. 907 if (!MO.isReg() || !MO.isUse()) 908 continue; 909 unsigned Reg = MO.getReg(); 910 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 911 addPhysRegDeps(SU, j); 912 } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) { 913 addVRegUseDeps(SU, j); 914 } 915 } 916 917 // If we haven't seen any uses in this scheduling region, create a 918 // dependence edge to ExitSU to model the live-out latency. This is required 919 // for vreg defs with no in-region use, and prefetches with no vreg def. 920 // 921 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 922 // check currently relies on being called before adding chain deps. 923 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { 924 SDep Dep(SU, SDep::Artificial); 925 Dep.setLatency(SU->Latency - 1); 926 ExitSU.addPred(Dep); 927 } 928 929 // Add memory dependencies (Note: isStoreToStackSlot and 930 // isLoadFromStackSLot are not usable after stack slots are lowered to 931 // actual addresses). 932 933 // This is a barrier event that acts as a pivotal node in the DAG. 934 if (isGlobalMemoryObject(AA, &MI)) { 935 936 // Become the barrier chain. 937 if (BarrierChain) 938 BarrierChain->addPredBarrier(SU); 939 BarrierChain = SU; 940 941 DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" 942 << BarrierChain->NodeNum << ").\n";); 943 944 // Add dependencies against everything below it and clear maps. 945 addBarrierChain(Stores); 946 addBarrierChain(Loads); 947 addBarrierChain(NonAliasStores); 948 addBarrierChain(NonAliasLoads); 949 950 continue; 951 } 952 953 // If it's not a store or a variant load, we're done. 954 if (!MI.mayStore() && 955 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))) 956 continue; 957 958 // Always add dependecy edge to BarrierChain if present. 959 if (BarrierChain) 960 BarrierChain->addPredBarrier(SU); 961 962 // Find the underlying objects for MI. The Objs vector is either 963 // empty, or filled with the Values of memory locations which this 964 // SU depends on. An empty vector means the memory location is 965 // unknown, and may alias anything. 966 UnderlyingObjectsVector Objs; 967 getUnderlyingObjectsForInstr(&MI, MFI, Objs, MF.getDataLayout()); 968 969 if (MI.mayStore()) { 970 if (Objs.empty()) { 971 // An unknown store depends on all stores and loads. 972 addChainDependencies(SU, Stores); 973 addChainDependencies(SU, NonAliasStores); 974 addChainDependencies(SU, Loads); 975 addChainDependencies(SU, NonAliasLoads); 976 977 // Map this store to 'UnknownValue'. 978 Stores.insert(SU, UnknownValue); 979 } else { 980 // Add precise dependencies against all previously seen memory 981 // accesses mapped to the same Value(s). 982 for (const UnderlyingObject &UnderlObj : Objs) { 983 ValueType V = UnderlObj.getValue(); 984 bool ThisMayAlias = UnderlObj.mayAlias(); 985 986 // Add dependencies to previous stores and loads mapped to V. 987 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 988 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); 989 } 990 // Update the store map after all chains have been added to avoid adding 991 // self-loop edge if multiple underlying objects are present. 992 for (const UnderlyingObject &UnderlObj : Objs) { 993 ValueType V = UnderlObj.getValue(); 994 bool ThisMayAlias = UnderlObj.mayAlias(); 995 996 // Map this store to V. 997 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); 998 } 999 // The store may have dependencies to unanalyzable loads and 1000 // stores. 1001 addChainDependencies(SU, Loads, UnknownValue); 1002 addChainDependencies(SU, Stores, UnknownValue); 1003 } 1004 } else { // SU is a load. 1005 if (Objs.empty()) { 1006 // An unknown load depends on all stores. 1007 addChainDependencies(SU, Stores); 1008 addChainDependencies(SU, NonAliasStores); 1009 1010 Loads.insert(SU, UnknownValue); 1011 } else { 1012 for (const UnderlyingObject &UnderlObj : Objs) { 1013 ValueType V = UnderlObj.getValue(); 1014 bool ThisMayAlias = UnderlObj.mayAlias(); 1015 1016 // Add precise dependencies against all previously seen stores 1017 // mapping to the same Value(s). 1018 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 1019 1020 // Map this load to V. 1021 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); 1022 } 1023 // The load may have dependencies to unanalyzable stores. 1024 addChainDependencies(SU, Stores, UnknownValue); 1025 } 1026 } 1027 1028 // Reduce maps if they grow huge. 1029 if (Stores.size() + Loads.size() >= HugeRegion) { 1030 DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); 1031 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); 1032 } 1033 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { 1034 DEBUG(dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); 1035 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); 1036 } 1037 } 1038 1039 if (DbgMI) 1040 FirstDbgValue = DbgMI; 1041 1042 Defs.clear(); 1043 Uses.clear(); 1044 CurrentVRegDefs.clear(); 1045 CurrentVRegUses.clear(); 1046 } 1047 1048 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { 1049 PSV->printCustom(OS); 1050 return OS; 1051 } 1052 1053 void ScheduleDAGInstrs::Value2SUsMap::dump() { 1054 for (auto &Itr : *this) { 1055 if (Itr.first.is<const Value*>()) { 1056 const Value *V = Itr.first.get<const Value*>(); 1057 if (isa<UndefValue>(V)) 1058 dbgs() << "Unknown"; 1059 else 1060 V->printAsOperand(dbgs()); 1061 } 1062 else if (Itr.first.is<const PseudoSourceValue*>()) 1063 dbgs() << Itr.first.get<const PseudoSourceValue*>(); 1064 else 1065 llvm_unreachable("Unknown Value type."); 1066 1067 dbgs() << " : "; 1068 dumpSUList(Itr.second); 1069 } 1070 } 1071 1072 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, 1073 Value2SUsMap &loads, unsigned N) { 1074 DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; 1075 stores.dump(); 1076 dbgs() << "Loading SUnits:\n"; 1077 loads.dump()); 1078 1079 // Insert all SU's NodeNums into a vector and sort it. 1080 std::vector<unsigned> NodeNums; 1081 NodeNums.reserve(stores.size() + loads.size()); 1082 for (auto &I : stores) 1083 for (auto *SU : I.second) 1084 NodeNums.push_back(SU->NodeNum); 1085 for (auto &I : loads) 1086 for (auto *SU : I.second) 1087 NodeNums.push_back(SU->NodeNum); 1088 std::sort(NodeNums.begin(), NodeNums.end()); 1089 1090 // The N last elements in NodeNums will be removed, and the SU with 1091 // the lowest NodeNum of them will become the new BarrierChain to 1092 // let the not yet seen SUs have a dependency to the removed SUs. 1093 assert (N <= NodeNums.size()); 1094 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; 1095 if (BarrierChain) { 1096 // The aliasing and non-aliasing maps reduce independently of each 1097 // other, but share a common BarrierChain. Check if the 1098 // newBarrierChain is above the former one. If it is not, it may 1099 // introduce a loop to use newBarrierChain, so keep the old one. 1100 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { 1101 BarrierChain->addPredBarrier(newBarrierChain); 1102 BarrierChain = newBarrierChain; 1103 DEBUG(dbgs() << "Inserting new barrier chain: SU(" 1104 << BarrierChain->NodeNum << ").\n";); 1105 } 1106 else 1107 DEBUG(dbgs() << "Keeping old barrier chain: SU(" 1108 << BarrierChain->NodeNum << ").\n";); 1109 } 1110 else 1111 BarrierChain = newBarrierChain; 1112 1113 insertBarrierChain(stores); 1114 insertBarrierChain(loads); 1115 1116 DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; 1117 stores.dump(); 1118 dbgs() << "Loading SUnits:\n"; 1119 loads.dump()); 1120 } 1121 1122 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { 1123 // Start with no live registers. 1124 LiveRegs.reset(); 1125 1126 // Examine the live-in regs of all successors. 1127 for (const MachineBasicBlock *Succ : BB->successors()) { 1128 for (const auto &LI : Succ->liveins()) { 1129 // Repeat, for reg and all subregs. 1130 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 1131 SubRegs.isValid(); ++SubRegs) 1132 LiveRegs.set(*SubRegs); 1133 } 1134 } 1135 } 1136 1137 /// \brief If we change a kill flag on the bundle instruction implicit register 1138 /// operands, then we also need to propagate that to any instructions inside 1139 /// the bundle which had the same kill state. 1140 static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg, 1141 bool NewKillState, 1142 const TargetRegisterInfo *TRI) { 1143 if (MI->getOpcode() != TargetOpcode::BUNDLE) 1144 return; 1145 1146 // Walk backwards from the last instruction in the bundle to the first. 1147 // Once we set a kill flag on an instruction, we bail out, as otherwise we 1148 // might set it on too many operands. We will clear as many flags as we 1149 // can though. 1150 MachineBasicBlock::instr_iterator Begin = MI->getIterator(); 1151 MachineBasicBlock::instr_iterator End = getBundleEnd(Begin); 1152 while (Begin != End) { 1153 if (NewKillState) { 1154 if ((--End)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 1155 return; 1156 } else 1157 (--End)->clearRegisterKills(Reg, TRI); 1158 } 1159 } 1160 1161 void ScheduleDAGInstrs::toggleKillFlag(MachineInstr &MI, MachineOperand &MO) { 1162 if (MO.isDebug()) 1163 return; 1164 1165 // Setting kill flag... 1166 if (!MO.isKill()) { 1167 MO.setIsKill(true); 1168 toggleBundleKillFlag(&MI, MO.getReg(), true, TRI); 1169 return; 1170 } 1171 1172 // If MO itself is live, clear the kill flag... 1173 if (LiveRegs.test(MO.getReg())) { 1174 MO.setIsKill(false); 1175 toggleBundleKillFlag(&MI, MO.getReg(), false, TRI); 1176 return; 1177 } 1178 1179 // If any subreg of MO is live, then create an imp-def for that 1180 // subreg and keep MO marked as killed. 1181 MO.setIsKill(false); 1182 toggleBundleKillFlag(&MI, MO.getReg(), false, TRI); 1183 bool AllDead = true; 1184 const unsigned SuperReg = MO.getReg(); 1185 MachineInstrBuilder MIB(MF, &MI); 1186 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { 1187 if (LiveRegs.test(*SubRegs)) { 1188 MIB.addReg(*SubRegs, RegState::ImplicitDefine); 1189 AllDead = false; 1190 } 1191 } 1192 1193 if(AllDead) { 1194 MO.setIsKill(true); 1195 toggleBundleKillFlag(&MI, MO.getReg(), true, TRI); 1196 } 1197 } 1198 1199 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { 1200 // FIXME: Reuse the LivePhysRegs utility for this. 1201 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); 1202 1203 LiveRegs.resize(TRI->getNumRegs()); 1204 BitVector killedRegs(TRI->getNumRegs()); 1205 1206 startBlockForKills(MBB); 1207 1208 // Examine block from end to start... 1209 unsigned Count = MBB->size(); 1210 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); 1211 I != E; --Count) { 1212 MachineInstr &MI = *--I; 1213 if (MI.isDebugValue()) 1214 continue; 1215 1216 // Update liveness. Registers that are defed but not used in this 1217 // instruction are now dead. Mark register and all subregs as they 1218 // are completely defined. 1219 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1220 MachineOperand &MO = MI.getOperand(i); 1221 if (MO.isRegMask()) 1222 LiveRegs.clearBitsNotInMask(MO.getRegMask()); 1223 if (!MO.isReg()) continue; 1224 unsigned Reg = MO.getReg(); 1225 if (Reg == 0) continue; 1226 if (!MO.isDef()) continue; 1227 // Ignore two-addr defs. 1228 if (MI.isRegTiedToUseOperand(i)) continue; 1229 1230 // Repeat for reg and all subregs. 1231 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1232 SubRegs.isValid(); ++SubRegs) 1233 LiveRegs.reset(*SubRegs); 1234 } 1235 1236 // Examine all used registers and set/clear kill flag. When a 1237 // register is used multiple times we only set the kill flag on 1238 // the first use. Don't set kill flags on undef operands. 1239 killedRegs.reset(); 1240 1241 // toggleKillFlag can append new operands (implicit defs), so using 1242 // a range-based loop is not safe. The new operands will be appended 1243 // at the end of the operand list and they don't need to be visited, 1244 // so iterating until the currently last operand is ok. 1245 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1246 MachineOperand &MO = MI.getOperand(i); 1247 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1248 unsigned Reg = MO.getReg(); 1249 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1250 1251 bool kill = false; 1252 if (!killedRegs.test(Reg)) { 1253 kill = true; 1254 // A register is not killed if any subregs are live... 1255 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 1256 if (LiveRegs.test(*SubRegs)) { 1257 kill = false; 1258 break; 1259 } 1260 } 1261 1262 // If subreg is not live, then register is killed if it became 1263 // live in this instruction 1264 if (kill) 1265 kill = !LiveRegs.test(Reg); 1266 } 1267 1268 if (MO.isKill() != kill) { 1269 DEBUG(dbgs() << "Fixing " << MO << " in "); 1270 toggleKillFlag(MI, MO); 1271 DEBUG(MI.dump()); 1272 DEBUG({ 1273 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1274 MachineBasicBlock::instr_iterator Begin = MI.getIterator(); 1275 MachineBasicBlock::instr_iterator End = getBundleEnd(Begin); 1276 while (++Begin != End) 1277 DEBUG(Begin->dump()); 1278 } 1279 }); 1280 } 1281 1282 killedRegs.set(Reg); 1283 } 1284 1285 // Mark any used register (that is not using undef) and subregs as 1286 // now live... 1287 for (const MachineOperand &MO : MI.operands()) { 1288 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1289 unsigned Reg = MO.getReg(); 1290 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1291 1292 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1293 SubRegs.isValid(); ++SubRegs) 1294 LiveRegs.set(*SubRegs); 1295 } 1296 } 1297 } 1298 1299 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1300 // Cannot completely remove virtual function even in release mode. 1301 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1302 SU->getInstr()->dump(); 1303 #endif 1304 } 1305 1306 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1307 std::string s; 1308 raw_string_ostream oss(s); 1309 if (SU == &EntrySU) 1310 oss << "<entry>"; 1311 else if (SU == &ExitSU) 1312 oss << "<exit>"; 1313 else 1314 SU->getInstr()->print(oss, /*SkipOpers=*/true); 1315 return oss.str(); 1316 } 1317 1318 /// Return the basic block label. It is not necessarilly unique because a block 1319 /// contains multiple scheduling regions. But it is fine for visualization. 1320 std::string ScheduleDAGInstrs::getDAGName() const { 1321 return "dag." + BB->getFullName(); 1322 } 1323 1324 //===----------------------------------------------------------------------===// 1325 // SchedDFSResult Implementation 1326 //===----------------------------------------------------------------------===// 1327 1328 namespace llvm { 1329 /// Internal state used to compute SchedDFSResult. 1330 class SchedDFSImpl { 1331 SchedDFSResult &R; 1332 1333 /// Join DAG nodes into equivalence classes by their subtree. 1334 IntEqClasses SubtreeClasses; 1335 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1336 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 1337 1338 struct RootData { 1339 unsigned NodeID; 1340 unsigned ParentNodeID; ///< Parent node (member of the parent subtree). 1341 unsigned SubInstrCount; ///< Instr count in this tree only, not children. 1342 1343 RootData(unsigned id): NodeID(id), 1344 ParentNodeID(SchedDFSResult::InvalidSubtreeID), 1345 SubInstrCount(0) {} 1346 1347 unsigned getSparseSetIndex() const { return NodeID; } 1348 }; 1349 1350 SparseSet<RootData> RootSet; 1351 1352 public: 1353 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1354 RootSet.setUniverse(R.DFSNodeData.size()); 1355 } 1356 1357 /// Returns true if this node been visited by the DFS traversal. 1358 /// 1359 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1360 /// ID. Later, SubtreeID is updated but remains valid. 1361 bool isVisited(const SUnit *SU) const { 1362 return R.DFSNodeData[SU->NodeNum].SubtreeID 1363 != SchedDFSResult::InvalidSubtreeID; 1364 } 1365 1366 /// Initializes this node's instruction count. We don't need to flag the node 1367 /// visited until visitPostorder because the DAG cannot have cycles. 1368 void visitPreorder(const SUnit *SU) { 1369 R.DFSNodeData[SU->NodeNum].InstrCount = 1370 SU->getInstr()->isTransient() ? 0 : 1; 1371 } 1372 1373 /// Called once for each node after all predecessors are visited. Revisit this 1374 /// node's predecessors and potentially join them now that we know the ILP of 1375 /// the other predecessors. 1376 void visitPostorderNode(const SUnit *SU) { 1377 // Mark this node as the root of a subtree. It may be joined with its 1378 // successors later. 1379 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1380 RootData RData(SU->NodeNum); 1381 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1382 1383 // If any predecessors are still in their own subtree, they either cannot be 1384 // joined or are large enough to remain separate. If this parent node's 1385 // total instruction count is not greater than a child subtree by at least 1386 // the subtree limit, then try to join it now since splitting subtrees is 1387 // only useful if multiple high-pressure paths are possible. 1388 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1389 for (const SDep &PredDep : SU->Preds) { 1390 if (PredDep.getKind() != SDep::Data) 1391 continue; 1392 unsigned PredNum = PredDep.getSUnit()->NodeNum; 1393 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1394 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false); 1395 1396 // Either link or merge the TreeData entry from the child to the parent. 1397 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1398 // If the predecessor's parent is invalid, this is a tree edge and the 1399 // current node is the parent. 1400 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1401 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1402 } 1403 else if (RootSet.count(PredNum)) { 1404 // The predecessor is not a root, but is still in the root set. This 1405 // must be the new parent that it was just joined to. Note that 1406 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1407 // set to the original parent. 1408 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1409 RootSet.erase(PredNum); 1410 } 1411 } 1412 RootSet[SU->NodeNum] = RData; 1413 } 1414 1415 /// \brief Called once for each tree edge after calling visitPostOrderNode on 1416 /// the predecessor. Increment the parent node's instruction count and 1417 /// preemptively join this subtree to its parent's if it is small enough. 1418 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1419 R.DFSNodeData[Succ->NodeNum].InstrCount 1420 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1421 joinPredSubtree(PredDep, Succ); 1422 } 1423 1424 /// Adds a connection for cross edges. 1425 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1426 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1427 } 1428 1429 /// Sets each node's subtree ID to the representative ID and record 1430 /// connections between trees. 1431 void finalize() { 1432 SubtreeClasses.compress(); 1433 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1434 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1435 && "number of roots should match trees"); 1436 for (const RootData &Root : RootSet) { 1437 unsigned TreeID = SubtreeClasses[Root.NodeID]; 1438 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1439 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; 1440 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; 1441 // Note that SubInstrCount may be greater than InstrCount if we joined 1442 // subtrees across a cross edge. InstrCount will be attributed to the 1443 // original parent, while SubInstrCount will be attributed to the joined 1444 // parent. 1445 } 1446 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1447 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1448 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1449 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1450 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1451 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1452 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1453 } 1454 for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) { 1455 unsigned PredTree = SubtreeClasses[P.first->NodeNum]; 1456 unsigned SuccTree = SubtreeClasses[P.second->NodeNum]; 1457 if (PredTree == SuccTree) 1458 continue; 1459 unsigned Depth = P.first->getDepth(); 1460 addConnection(PredTree, SuccTree, Depth); 1461 addConnection(SuccTree, PredTree, Depth); 1462 } 1463 } 1464 1465 protected: 1466 /// Joins the predecessor subtree with the successor that is its DFS parent. 1467 /// Applies some heuristics before joining. 1468 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1469 bool CheckLimit = true) { 1470 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1471 1472 // Check if the predecessor is already joined. 1473 const SUnit *PredSU = PredDep.getSUnit(); 1474 unsigned PredNum = PredSU->NodeNum; 1475 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1476 return false; 1477 1478 // Four is the magic number of successors before a node is considered a 1479 // pinch point. 1480 unsigned NumDataSucs = 0; 1481 for (const SDep &SuccDep : PredSU->Succs) { 1482 if (SuccDep.getKind() == SDep::Data) { 1483 if (++NumDataSucs >= 4) 1484 return false; 1485 } 1486 } 1487 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1488 return false; 1489 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1490 SubtreeClasses.join(Succ->NodeNum, PredNum); 1491 return true; 1492 } 1493 1494 /// Called by finalize() to record a connection between trees. 1495 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1496 if (!Depth) 1497 return; 1498 1499 do { 1500 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1501 R.SubtreeConnections[FromTree]; 1502 for (SchedDFSResult::Connection &C : Connections) { 1503 if (C.TreeID == ToTree) { 1504 C.Level = std::max(C.Level, Depth); 1505 return; 1506 } 1507 } 1508 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1509 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1510 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1511 } 1512 }; 1513 } // end namespace llvm 1514 1515 namespace { 1516 /// Manage the stack used by a reverse depth-first search over the DAG. 1517 class SchedDAGReverseDFS { 1518 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 1519 public: 1520 bool isComplete() const { return DFSStack.empty(); } 1521 1522 void follow(const SUnit *SU) { 1523 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1524 } 1525 void advance() { ++DFSStack.back().second; } 1526 1527 const SDep *backtrack() { 1528 DFSStack.pop_back(); 1529 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1530 } 1531 1532 const SUnit *getCurr() const { return DFSStack.back().first; } 1533 1534 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1535 1536 SUnit::const_pred_iterator getPredEnd() const { 1537 return getCurr()->Preds.end(); 1538 } 1539 }; 1540 } // anonymous 1541 1542 static bool hasDataSucc(const SUnit *SU) { 1543 for (const SDep &SuccDep : SU->Succs) { 1544 if (SuccDep.getKind() == SDep::Data && 1545 !SuccDep.getSUnit()->isBoundaryNode()) 1546 return true; 1547 } 1548 return false; 1549 } 1550 1551 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first 1552 /// search from this root. 1553 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1554 if (!IsBottomUp) 1555 llvm_unreachable("Top-down ILP metric is unimplemnted"); 1556 1557 SchedDFSImpl Impl(*this); 1558 for (const SUnit &SU : SUnits) { 1559 if (Impl.isVisited(&SU) || hasDataSucc(&SU)) 1560 continue; 1561 1562 SchedDAGReverseDFS DFS; 1563 Impl.visitPreorder(&SU); 1564 DFS.follow(&SU); 1565 for (;;) { 1566 // Traverse the leftmost path as far as possible. 1567 while (DFS.getPred() != DFS.getPredEnd()) { 1568 const SDep &PredDep = *DFS.getPred(); 1569 DFS.advance(); 1570 // Ignore non-data edges. 1571 if (PredDep.getKind() != SDep::Data 1572 || PredDep.getSUnit()->isBoundaryNode()) { 1573 continue; 1574 } 1575 // An already visited edge is a cross edge, assuming an acyclic DAG. 1576 if (Impl.isVisited(PredDep.getSUnit())) { 1577 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1578 continue; 1579 } 1580 Impl.visitPreorder(PredDep.getSUnit()); 1581 DFS.follow(PredDep.getSUnit()); 1582 } 1583 // Visit the top of the stack in postorder and backtrack. 1584 const SUnit *Child = DFS.getCurr(); 1585 const SDep *PredDep = DFS.backtrack(); 1586 Impl.visitPostorderNode(Child); 1587 if (PredDep) 1588 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1589 if (DFS.isComplete()) 1590 break; 1591 } 1592 } 1593 Impl.finalize(); 1594 } 1595 1596 /// The root of the given SubtreeID was just scheduled. For all subtrees 1597 /// connected to this tree, record the depth of the connection so that the 1598 /// nearest connected subtrees can be prioritized. 1599 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1600 for (const Connection &C : SubtreeConnections[SubtreeID]) { 1601 SubtreeConnectLevels[C.TreeID] = 1602 std::max(SubtreeConnectLevels[C.TreeID], C.Level); 1603 DEBUG(dbgs() << " Tree: " << C.TreeID 1604 << " @" << SubtreeConnectLevels[C.TreeID] << '\n'); 1605 } 1606 } 1607 1608 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1609 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const { 1610 OS << InstrCount << " / " << Length << " = "; 1611 if (!Length) 1612 OS << "BADILP"; 1613 else 1614 OS << format("%g", ((double)InstrCount / Length)); 1615 } 1616 1617 LLVM_DUMP_METHOD void ILPValue::dump() const { 1618 dbgs() << *this << '\n'; 1619 } 1620 1621 namespace llvm { 1622 1623 LLVM_DUMP_METHOD 1624 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1625 Val.print(OS); 1626 return OS; 1627 } 1628 1629 } // end namespace llvm 1630 #endif 1631