1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
11 // of MachineInstrs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
16 #include "llvm/ADT/IntEqClasses.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/PseudoSourceValue.h"
28 #include "llvm/CodeGen/RegisterPressure.h"
29 #include "llvm/CodeGen/ScheduleDFS.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/Format.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include "llvm/Target/TargetRegisterInfo.h"
40 #include "llvm/Target/TargetSubtargetInfo.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "misched"
45 
46 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
47     cl::ZeroOrMore, cl::init(false),
48     cl::desc("Enable use of AA during MI DAG construction"));
49 
50 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
51     cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
52 
53 // Note: the two options below might be used in tuning compile time vs
54 // output quality. Setting HugeRegion so large that it will never be
55 // reached means best-effort, but may be slow.
56 
57 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
58 // together hold this many SUs, a reduction of maps will be done.
59 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
60     cl::init(1000), cl::desc("The limit to use while constructing the DAG "
61                              "prior to scheduling, at which point a trade-off "
62                              "is made to avoid excessive compile time."));
63 
64 static cl::opt<unsigned> ReductionSize(
65     "dag-maps-reduction-size", cl::Hidden,
66     cl::desc("A huge scheduling region will have maps reduced by this many "
67              "nodes at a time. Defaults to HugeRegion / 2."));
68 
69 static unsigned getReductionSize() {
70   // Always reduce a huge region with half of the elements, except
71   // when user sets this number explicitly.
72   if (ReductionSize.getNumOccurrences() == 0)
73     return HugeRegion / 2;
74   return ReductionSize;
75 }
76 
77 static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
78 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
79   dbgs() << "{ ";
80   for (const SUnit *su : L) {
81     dbgs() << "SU(" << su->NodeNum << ")";
82     if (su != L.back())
83       dbgs() << ", ";
84   }
85   dbgs() << "}\n";
86 #endif
87 }
88 
89 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
90                                      const MachineLoopInfo *mli,
91                                      bool RemoveKillFlags)
92     : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
93       RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false),
94       TrackLaneMasks(false), AAForDep(nullptr), BarrierChain(nullptr),
95       UnknownValue(UndefValue::get(
96                      Type::getVoidTy(mf.getFunction()->getContext()))),
97       FirstDbgValue(nullptr) {
98   DbgValues.clear();
99 
100   const TargetSubtargetInfo &ST = mf.getSubtarget();
101   SchedModel.init(ST.getSchedModel(), &ST, TII);
102 }
103 
104 /// getUnderlyingObjectFromInt - This is the function that does the work of
105 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
106 static const Value *getUnderlyingObjectFromInt(const Value *V) {
107   do {
108     if (const Operator *U = dyn_cast<Operator>(V)) {
109       // If we find a ptrtoint, we can transfer control back to the
110       // regular getUnderlyingObjectFromInt.
111       if (U->getOpcode() == Instruction::PtrToInt)
112         return U->getOperand(0);
113       // If we find an add of a constant, a multiplied value, or a phi, it's
114       // likely that the other operand will lead us to the base
115       // object. We don't have to worry about the case where the
116       // object address is somehow being computed by the multiply,
117       // because our callers only care when the result is an
118       // identifiable object.
119       if (U->getOpcode() != Instruction::Add ||
120           (!isa<ConstantInt>(U->getOperand(1)) &&
121            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
122            !isa<PHINode>(U->getOperand(1))))
123         return V;
124       V = U->getOperand(0);
125     } else {
126       return V;
127     }
128     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
129   } while (1);
130 }
131 
132 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
133 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
134 static void getUnderlyingObjects(const Value *V,
135                                  SmallVectorImpl<Value *> &Objects,
136                                  const DataLayout &DL) {
137   SmallPtrSet<const Value *, 16> Visited;
138   SmallVector<const Value *, 4> Working(1, V);
139   do {
140     V = Working.pop_back_val();
141 
142     SmallVector<Value *, 4> Objs;
143     GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
144 
145     for (Value *V : Objs) {
146       if (!Visited.insert(V).second)
147         continue;
148       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
149         const Value *O =
150           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
151         if (O->getType()->isPointerTy()) {
152           Working.push_back(O);
153           continue;
154         }
155       }
156       Objects.push_back(const_cast<Value *>(V));
157     }
158   } while (!Working.empty());
159 }
160 
161 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference
162 /// information and it can be tracked to a normal reference to a known
163 /// object, return the Value for that object.
164 static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
165                                          const MachineFrameInfo &MFI,
166                                          UnderlyingObjectsVector &Objects,
167                                          const DataLayout &DL) {
168   auto allMMOsOkay = [&]() {
169     for (const MachineMemOperand *MMO : MI->memoperands()) {
170       if (MMO->isVolatile())
171         return false;
172 
173       if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
174         // Function that contain tail calls don't have unique PseudoSourceValue
175         // objects. Two PseudoSourceValues might refer to the same or
176         // overlapping locations. The client code calling this function assumes
177         // this is not the case. So return a conservative answer of no known
178         // object.
179         if (MFI.hasTailCall())
180           return false;
181 
182         // For now, ignore PseudoSourceValues which may alias LLVM IR values
183         // because the code that uses this function has no way to cope with
184         // such aliases.
185         if (PSV->isAliased(&MFI))
186           return false;
187 
188         bool MayAlias = PSV->mayAlias(&MFI);
189         Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
190       } else if (const Value *V = MMO->getValue()) {
191         SmallVector<Value *, 4> Objs;
192         getUnderlyingObjects(V, Objs, DL);
193 
194         for (Value *V : Objs) {
195           if (!isIdentifiedObject(V))
196             return false;
197 
198           Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
199         }
200       } else
201         return false;
202     }
203     return true;
204   };
205 
206   if (!allMMOsOkay())
207     Objects.clear();
208 }
209 
210 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
211   BB = bb;
212 }
213 
214 void ScheduleDAGInstrs::finishBlock() {
215   // Subclasses should no longer refer to the old block.
216   BB = nullptr;
217 }
218 
219 /// Initialize the DAG and common scheduler state for the current scheduling
220 /// region. This does not actually create the DAG, only clears it. The
221 /// scheduling driver may call BuildSchedGraph multiple times per scheduling
222 /// region.
223 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
224                                     MachineBasicBlock::iterator begin,
225                                     MachineBasicBlock::iterator end,
226                                     unsigned regioninstrs) {
227   assert(bb == BB && "startBlock should set BB");
228   RegionBegin = begin;
229   RegionEnd = end;
230   NumRegionInstrs = regioninstrs;
231 }
232 
233 /// Close the current scheduling region. Don't clear any state in case the
234 /// driver wants to refer to the previous scheduling region.
235 void ScheduleDAGInstrs::exitRegion() {
236   // Nothing to do.
237 }
238 
239 /// addSchedBarrierDeps - Add dependencies from instructions in the current
240 /// list of instructions being scheduled to scheduling barrier by adding
241 /// the exit SU to the register defs and use list. This is because we want to
242 /// make sure instructions which define registers that are either used by
243 /// the terminator or are live-out are properly scheduled. This is
244 /// especially important when the definition latency of the return value(s)
245 /// are too high to be hidden by the branch or when the liveout registers
246 /// used by instructions in the fallthrough block.
247 void ScheduleDAGInstrs::addSchedBarrierDeps() {
248   MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
249   ExitSU.setInstr(ExitMI);
250   bool AllDepKnown = ExitMI &&
251     (ExitMI->isCall() || ExitMI->isBarrier());
252   if (ExitMI && AllDepKnown) {
253     // If it's a call or a barrier, add dependencies on the defs and uses of
254     // instruction.
255     for (const MachineOperand &MO : ExitMI->operands()) {
256       if (!MO.isReg() || MO.isDef()) continue;
257       unsigned Reg = MO.getReg();
258       if (Reg == 0) continue;
259 
260       if (TRI->isPhysicalRegister(Reg))
261         Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
262       else if (MO.readsReg()) // ignore undef operands
263         addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO));
264     }
265   } else {
266     // For others, e.g. fallthrough, conditional branch, assume the exit
267     // uses all the registers that are livein to the successor blocks.
268     assert(Uses.empty() && "Uses in set before adding deps?");
269     for (const MachineBasicBlock *Succ : BB->successors()) {
270       for (const auto &LI : Succ->liveins()) {
271         if (!Uses.contains(LI.PhysReg))
272           Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
273       }
274     }
275   }
276 }
277 
278 /// MO is an operand of SU's instruction that defines a physical register. Add
279 /// data dependencies from SU to any uses of the physical register.
280 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
281   const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
282   assert(MO.isDef() && "expect physreg def");
283 
284   // Ask the target if address-backscheduling is desirable, and if so how much.
285   const TargetSubtargetInfo &ST = MF.getSubtarget();
286 
287   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
288        Alias.isValid(); ++Alias) {
289     if (!Uses.contains(*Alias))
290       continue;
291     for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
292       SUnit *UseSU = I->SU;
293       if (UseSU == SU)
294         continue;
295 
296       // Adjust the dependence latency using operand def/use information,
297       // then allow the target to perform its own adjustments.
298       int UseOp = I->OpIdx;
299       MachineInstr *RegUse = nullptr;
300       SDep Dep;
301       if (UseOp < 0)
302         Dep = SDep(SU, SDep::Artificial);
303       else {
304         // Set the hasPhysRegDefs only for physreg defs that have a use within
305         // the scheduling region.
306         SU->hasPhysRegDefs = true;
307         Dep = SDep(SU, SDep::Data, *Alias);
308         RegUse = UseSU->getInstr();
309       }
310       Dep.setLatency(
311         SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
312                                          UseOp));
313 
314       ST.adjustSchedDependency(SU, UseSU, Dep);
315       UseSU->addPred(Dep);
316     }
317   }
318 }
319 
320 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
321 /// this SUnit to following instructions in the same scheduling region that
322 /// depend the physical register referenced at OperIdx.
323 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
324   MachineInstr *MI = SU->getInstr();
325   MachineOperand &MO = MI->getOperand(OperIdx);
326 
327   // Optionally add output and anti dependencies. For anti
328   // dependencies we use a latency of 0 because for a multi-issue
329   // target we want to allow the defining instruction to issue
330   // in the same cycle as the using instruction.
331   // TODO: Using a latency of 1 here for output dependencies assumes
332   //       there's no cost for reusing registers.
333   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
334   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
335        Alias.isValid(); ++Alias) {
336     if (!Defs.contains(*Alias))
337       continue;
338     for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
339       SUnit *DefSU = I->SU;
340       if (DefSU == &ExitSU)
341         continue;
342       if (DefSU != SU &&
343           (Kind != SDep::Output || !MO.isDead() ||
344            !DefSU->getInstr()->registerDefIsDead(*Alias))) {
345         if (Kind == SDep::Anti)
346           DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
347         else {
348           SDep Dep(SU, Kind, /*Reg=*/*Alias);
349           Dep.setLatency(
350             SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
351           DefSU->addPred(Dep);
352         }
353       }
354     }
355   }
356 
357   if (!MO.isDef()) {
358     SU->hasPhysRegUses = true;
359     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
360     // retrieve the existing SUnits list for this register's uses.
361     // Push this SUnit on the use list.
362     Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
363     if (RemoveKillFlags)
364       MO.setIsKill(false);
365   }
366   else {
367     addPhysRegDataDeps(SU, OperIdx);
368     unsigned Reg = MO.getReg();
369 
370     // clear this register's use list
371     if (Uses.contains(Reg))
372       Uses.eraseAll(Reg);
373 
374     if (!MO.isDead()) {
375       Defs.eraseAll(Reg);
376     } else if (SU->isCall) {
377       // Calls will not be reordered because of chain dependencies (see
378       // below). Since call operands are dead, calls may continue to be added
379       // to the DefList making dependence checking quadratic in the size of
380       // the block. Instead, we leave only one call at the back of the
381       // DefList.
382       Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
383       Reg2SUnitsMap::iterator B = P.first;
384       Reg2SUnitsMap::iterator I = P.second;
385       for (bool isBegin = I == B; !isBegin; /* empty */) {
386         isBegin = (--I) == B;
387         if (!I->SU->isCall)
388           break;
389         I = Defs.erase(I);
390       }
391     }
392 
393     // Defs are pushed in the order they are visited and never reordered.
394     Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
395   }
396 }
397 
398 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
399 {
400   unsigned Reg = MO.getReg();
401   // No point in tracking lanemasks if we don't have interesting subregisters.
402   const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
403   if (!RC.HasDisjunctSubRegs)
404     return ~0u;
405 
406   unsigned SubReg = MO.getSubReg();
407   if (SubReg == 0)
408     return RC.getLaneMask();
409   return TRI->getSubRegIndexLaneMask(SubReg);
410 }
411 
412 /// addVRegDefDeps - Add register output and data dependencies from this SUnit
413 /// to instructions that occur later in the same scheduling region if they read
414 /// from or write to the virtual register defined at OperIdx.
415 ///
416 /// TODO: Hoist loop induction variable increments. This has to be
417 /// reevaluated. Generally, IV scheduling should be done before coalescing.
418 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
419   MachineInstr *MI = SU->getInstr();
420   MachineOperand &MO = MI->getOperand(OperIdx);
421   unsigned Reg = MO.getReg();
422 
423   LaneBitmask DefLaneMask;
424   LaneBitmask KillLaneMask;
425   if (TrackLaneMasks) {
426     bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
427     DefLaneMask = getLaneMaskForMO(MO);
428     // If we have a <read-undef> flag, none of the lane values comes from an
429     // earlier instruction.
430     KillLaneMask = IsKill ? ~0u : DefLaneMask;
431 
432     // Clear undef flag, we'll re-add it later once we know which subregister
433     // Def is first.
434     MO.setIsUndef(false);
435   } else {
436     DefLaneMask = ~0u;
437     KillLaneMask = ~0u;
438   }
439 
440   if (MO.isDead()) {
441     assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() &&
442            "Dead defs should have no uses");
443   } else {
444     // Add data dependence to all uses we found so far.
445     const TargetSubtargetInfo &ST = MF.getSubtarget();
446     for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
447          E = CurrentVRegUses.end(); I != E; /*empty*/) {
448       LaneBitmask LaneMask = I->LaneMask;
449       // Ignore uses of other lanes.
450       if ((LaneMask & KillLaneMask) == 0) {
451         ++I;
452         continue;
453       }
454 
455       if ((LaneMask & DefLaneMask) != 0) {
456         SUnit *UseSU = I->SU;
457         MachineInstr *Use = UseSU->getInstr();
458         SDep Dep(SU, SDep::Data, Reg);
459         Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
460                                                         I->OperandIndex));
461         ST.adjustSchedDependency(SU, UseSU, Dep);
462         UseSU->addPred(Dep);
463       }
464 
465       LaneMask &= ~KillLaneMask;
466       // If we found a Def for all lanes of this use, remove it from the list.
467       if (LaneMask != 0) {
468         I->LaneMask = LaneMask;
469         ++I;
470       } else
471         I = CurrentVRegUses.erase(I);
472     }
473   }
474 
475   // Shortcut: Singly defined vregs do not have output/anti dependencies.
476   if (MRI.hasOneDef(Reg))
477     return;
478 
479   // Add output dependence to the next nearest defs of this vreg.
480   //
481   // Unless this definition is dead, the output dependence should be
482   // transitively redundant with antidependencies from this definition's
483   // uses. We're conservative for now until we have a way to guarantee the uses
484   // are not eliminated sometime during scheduling. The output dependence edge
485   // is also useful if output latency exceeds def-use latency.
486   LaneBitmask LaneMask = DefLaneMask;
487   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
488                                      CurrentVRegDefs.end())) {
489     // Ignore defs for other lanes.
490     if ((V2SU.LaneMask & LaneMask) == 0)
491       continue;
492     // Add an output dependence.
493     SUnit *DefSU = V2SU.SU;
494     // Ignore additional defs of the same lanes in one instruction. This can
495     // happen because lanemasks are shared for targets with too many
496     // subregisters. We also use some representration tricks/hacks where we
497     // add super-register defs/uses, to imply that although we only access parts
498     // of the reg we care about the full one.
499     if (DefSU == SU)
500       continue;
501     SDep Dep(SU, SDep::Output, Reg);
502     Dep.setLatency(
503       SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
504     DefSU->addPred(Dep);
505 
506     // Update current definition. This can get tricky if the def was about a
507     // bigger lanemask before. We then have to shrink it and create a new
508     // VReg2SUnit for the non-overlapping part.
509     LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
510     LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
511     V2SU.SU = SU;
512     V2SU.LaneMask = OverlapMask;
513     if (NonOverlapMask != 0)
514       CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
515   }
516   // If there was no CurrentVRegDefs entry for some lanes yet, create one.
517   if (LaneMask != 0)
518     CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
519 }
520 
521 /// addVRegUseDeps - Add a register data dependency if the instruction that
522 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
523 /// register antidependency from this SUnit to instructions that occur later in
524 /// the same scheduling region if they write the virtual register.
525 ///
526 /// TODO: Handle ExitSU "uses" properly.
527 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
528   const MachineInstr *MI = SU->getInstr();
529   const MachineOperand &MO = MI->getOperand(OperIdx);
530   unsigned Reg = MO.getReg();
531 
532   // Remember the use. Data dependencies will be added when we find the def.
533   LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u;
534   CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
535 
536   // Add antidependences to the following defs of the vreg.
537   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
538                                      CurrentVRegDefs.end())) {
539     // Ignore defs for unrelated lanes.
540     LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
541     if ((PrevDefLaneMask & LaneMask) == 0)
542       continue;
543     if (V2SU.SU == SU)
544       continue;
545 
546     V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
547   }
548 }
549 
550 /// Return true if MI is an instruction we are unable to reason about
551 /// (like a call or something with unmodeled side effects).
552 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
553   return MI->isCall() || MI->hasUnmodeledSideEffects() ||
554          (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA));
555 }
556 
557 /// This returns true if the two MIs need a chain edge between them.
558 /// This is called on normal stores and loads.
559 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
560                              const DataLayout &DL, MachineInstr *MIa,
561                              MachineInstr *MIb) {
562   const MachineFunction *MF = MIa->getParent()->getParent();
563   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
564 
565   assert ((MIa->mayStore() || MIb->mayStore()) &&
566           "Dependency checked between two loads");
567 
568   // Let the target decide if memory accesses cannot possibly overlap.
569   if (TII->areMemAccessesTriviallyDisjoint(*MIa, *MIb, AA))
570     return false;
571 
572   // To this point analysis is generic. From here on we do need AA.
573   if (!AA)
574     return true;
575 
576   // FIXME: Need to handle multiple memory operands to support all targets.
577   if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
578     return true;
579 
580   MachineMemOperand *MMOa = *MIa->memoperands_begin();
581   MachineMemOperand *MMOb = *MIb->memoperands_begin();
582 
583   if (!MMOa->getValue() || !MMOb->getValue())
584     return true;
585 
586   // The following interface to AA is fashioned after DAGCombiner::isAlias
587   // and operates with MachineMemOperand offset with some important
588   // assumptions:
589   //   - LLVM fundamentally assumes flat address spaces.
590   //   - MachineOperand offset can *only* result from legalization and
591   //     cannot affect queries other than the trivial case of overlap
592   //     checking.
593   //   - These offsets never wrap and never step outside
594   //     of allocated objects.
595   //   - There should never be any negative offsets here.
596   //
597   // FIXME: Modify API to hide this math from "user"
598   // FIXME: Even before we go to AA we can reason locally about some
599   // memory objects. It can save compile time, and possibly catch some
600   // corner cases not currently covered.
601 
602   assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
603   assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
604 
605   int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
606   int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
607   int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
608 
609   AliasResult AAResult =
610       AA->alias(MemoryLocation(MMOa->getValue(), Overlapa,
611                                UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
612                 MemoryLocation(MMOb->getValue(), Overlapb,
613                                UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
614 
615   return (AAResult != NoAlias);
616 }
617 
618 /// Check whether two objects need a chain edge and add it if needed.
619 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
620                                             unsigned Latency) {
621   if (MIsNeedChainEdge(AAForDep, &MFI, MF.getDataLayout(), SUa->getInstr(),
622                        SUb->getInstr())) {
623     SDep Dep(SUa, SDep::MayAliasMem);
624     Dep.setLatency(Latency);
625     SUb->addPred(Dep);
626   }
627 }
628 
629 /// Create an SUnit for each real instruction, numbered in top-down topological
630 /// order. The instruction order A < B, implies that no edge exists from B to A.
631 ///
632 /// Map each real instruction to its SUnit.
633 ///
634 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
635 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
636 /// instead of pointers.
637 ///
638 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
639 /// the original instruction list.
640 void ScheduleDAGInstrs::initSUnits() {
641   // We'll be allocating one SUnit for each real instruction in the region,
642   // which is contained within a basic block.
643   SUnits.reserve(NumRegionInstrs);
644 
645   for (MachineInstr &MI : llvm::make_range(RegionBegin, RegionEnd)) {
646     if (MI.isDebugValue())
647       continue;
648 
649     SUnit *SU = newSUnit(&MI);
650     MISUnitMap[&MI] = SU;
651 
652     SU->isCall = MI.isCall();
653     SU->isCommutable = MI.isCommutable();
654 
655     // Assign the Latency field of SU using target-provided information.
656     SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
657 
658     // If this SUnit uses a reserved or unbuffered resource, mark it as such.
659     //
660     // Reserved resources block an instruction from issuing and stall the
661     // entire pipeline. These are identified by BufferSize=0.
662     //
663     // Unbuffered resources prevent execution of subsequent instructions that
664     // require the same resources. This is used for in-order execution pipelines
665     // within an out-of-order core. These are identified by BufferSize=1.
666     if (SchedModel.hasInstrSchedModel()) {
667       const MCSchedClassDesc *SC = getSchedClass(SU);
668       for (const MCWriteProcResEntry &PRE :
669            make_range(SchedModel.getWriteProcResBegin(SC),
670                       SchedModel.getWriteProcResEnd(SC))) {
671         switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) {
672         case 0:
673           SU->hasReservedResource = true;
674           break;
675         case 1:
676           SU->isUnbuffered = true;
677           break;
678         default:
679           break;
680         }
681       }
682     }
683   }
684 }
685 
686 void ScheduleDAGInstrs::collectVRegUses(SUnit *SU) {
687   const MachineInstr *MI = SU->getInstr();
688   for (const MachineOperand &MO : MI->operands()) {
689     if (!MO.isReg())
690       continue;
691     if (!MO.readsReg())
692       continue;
693     if (TrackLaneMasks && !MO.isUse())
694       continue;
695 
696     unsigned Reg = MO.getReg();
697     if (!TargetRegisterInfo::isVirtualRegister(Reg))
698       continue;
699 
700     // Ignore re-defs.
701     if (TrackLaneMasks) {
702       bool FoundDef = false;
703       for (const MachineOperand &MO2 : MI->operands()) {
704         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
705           FoundDef = true;
706           break;
707         }
708       }
709       if (FoundDef)
710         continue;
711     }
712 
713     // Record this local VReg use.
714     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
715     for (; UI != VRegUses.end(); ++UI) {
716       if (UI->SU == SU)
717         break;
718     }
719     if (UI == VRegUses.end())
720       VRegUses.insert(VReg2SUnit(Reg, 0, SU));
721   }
722 }
723 
724 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
725 
726   /// Current total number of SUs in map.
727   unsigned NumNodes;
728 
729   /// 1 for loads, 0 for stores. (see comment in SUList)
730   unsigned TrueMemOrderLatency;
731 public:
732 
733   Value2SUsMap(unsigned lat = 0) : NumNodes(0), TrueMemOrderLatency(lat) {}
734 
735   /// To keep NumNodes up to date, insert() is used instead of
736   /// this operator w/ push_back().
737   ValueType &operator[](const SUList &Key) {
738     llvm_unreachable("Don't use. Use insert() instead."); };
739 
740   /// Add SU to the SUList of V. If Map grows huge, reduce its size
741   /// by calling reduce().
742   void inline insert(SUnit *SU, ValueType V) {
743     MapVector::operator[](V).push_back(SU);
744     NumNodes++;
745   }
746 
747   /// Clears the list of SUs mapped to V.
748   void inline clearList(ValueType V) {
749     iterator Itr = find(V);
750     if (Itr != end()) {
751       assert (NumNodes >= Itr->second.size());
752       NumNodes -= Itr->second.size();
753 
754       Itr->second.clear();
755     }
756   }
757 
758   /// Clears map from all contents.
759   void clear() {
760     MapVector<ValueType, SUList>::clear();
761     NumNodes = 0;
762   }
763 
764   unsigned inline size() const { return NumNodes; }
765 
766   /// Count the number of SUs in this map after a reduction.
767   void reComputeSize(void) {
768     NumNodes = 0;
769     for (auto &I : *this)
770       NumNodes += I.second.size();
771   }
772 
773   unsigned inline getTrueMemOrderLatency() const {
774     return TrueMemOrderLatency;
775   }
776 
777   void dump();
778 };
779 
780 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
781                                              Value2SUsMap &Val2SUsMap) {
782   for (auto &I : Val2SUsMap)
783     addChainDependencies(SU, I.second,
784                          Val2SUsMap.getTrueMemOrderLatency());
785 }
786 
787 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
788                                              Value2SUsMap &Val2SUsMap,
789                                              ValueType V) {
790   Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
791   if (Itr != Val2SUsMap.end())
792     addChainDependencies(SU, Itr->second,
793                          Val2SUsMap.getTrueMemOrderLatency());
794 }
795 
796 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
797   assert (BarrierChain != nullptr);
798 
799   for (auto &I : map) {
800     SUList &sus = I.second;
801     for (auto *SU : sus)
802       SU->addPredBarrier(BarrierChain);
803   }
804   map.clear();
805 }
806 
807 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
808   assert (BarrierChain != nullptr);
809 
810   // Go through all lists of SUs.
811   for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
812     Value2SUsMap::iterator CurrItr = I++;
813     SUList &sus = CurrItr->second;
814     SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
815     for (; SUItr != SUEE; ++SUItr) {
816       // Stop on BarrierChain or any instruction above it.
817       if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
818         break;
819 
820       (*SUItr)->addPredBarrier(BarrierChain);
821     }
822 
823     // Remove also the BarrierChain from list if present.
824     if (SUItr != SUEE && *SUItr == BarrierChain)
825       SUItr++;
826 
827     // Remove all SUs that are now successors of BarrierChain.
828     if (SUItr != sus.begin())
829       sus.erase(sus.begin(), SUItr);
830   }
831 
832   // Remove all entries with empty su lists.
833   map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
834       return (mapEntry.second.empty()); });
835 
836   // Recompute the size of the map (NumNodes).
837   map.reComputeSize();
838 }
839 
840 /// If RegPressure is non-null, compute register pressure as a side effect. The
841 /// DAG builder is an efficient place to do it because it already visits
842 /// operands.
843 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
844                                         RegPressureTracker *RPTracker,
845                                         PressureDiffs *PDiffs,
846                                         LiveIntervals *LIS,
847                                         bool TrackLaneMasks) {
848   const TargetSubtargetInfo &ST = MF.getSubtarget();
849   bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
850                                                        : ST.useAA();
851   AAForDep = UseAA ? AA : nullptr;
852 
853   BarrierChain = nullptr;
854 
855   this->TrackLaneMasks = TrackLaneMasks;
856   MISUnitMap.clear();
857   ScheduleDAG::clearDAG();
858 
859   // Create an SUnit for each real instruction.
860   initSUnits();
861 
862   if (PDiffs)
863     PDiffs->init(SUnits.size());
864 
865   // We build scheduling units by walking a block's instruction list
866   // from bottom to top.
867 
868   // Each MIs' memory operand(s) is analyzed to a list of underlying
869   // objects. The SU is then inserted in the SUList(s) mapped from the
870   // Value(s). Each Value thus gets mapped to lists of SUs depending
871   // on it, stores and loads kept separately. Two SUs are trivially
872   // non-aliasing if they both depend on only identified Values and do
873   // not share any common Value.
874   Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
875 
876   // Certain memory accesses are known to not alias any SU in Stores
877   // or Loads, and have therefore their own 'NonAlias'
878   // domain. E.g. spill / reload instructions never alias LLVM I/R
879   // Values. It would be nice to assume that this type of memory
880   // accesses always have a proper memory operand modelling, and are
881   // therefore never unanalyzable, but this is conservatively not
882   // done.
883   Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
884 
885   // Remove any stale debug info; sometimes BuildSchedGraph is called again
886   // without emitting the info from the previous call.
887   DbgValues.clear();
888   FirstDbgValue = nullptr;
889 
890   assert(Defs.empty() && Uses.empty() &&
891          "Only BuildGraph should update Defs/Uses");
892   Defs.setUniverse(TRI->getNumRegs());
893   Uses.setUniverse(TRI->getNumRegs());
894 
895   assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
896   assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
897   unsigned NumVirtRegs = MRI.getNumVirtRegs();
898   CurrentVRegDefs.setUniverse(NumVirtRegs);
899   CurrentVRegUses.setUniverse(NumVirtRegs);
900 
901   VRegUses.clear();
902   VRegUses.setUniverse(NumVirtRegs);
903 
904   // Model data dependencies between instructions being scheduled and the
905   // ExitSU.
906   addSchedBarrierDeps();
907 
908   // Walk the list of instructions, from bottom moving up.
909   MachineInstr *DbgMI = nullptr;
910   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
911        MII != MIE; --MII) {
912     MachineInstr &MI = *std::prev(MII);
913     if (DbgMI) {
914       DbgValues.push_back(std::make_pair(DbgMI, &MI));
915       DbgMI = nullptr;
916     }
917 
918     if (MI.isDebugValue()) {
919       DbgMI = &MI;
920       continue;
921     }
922     SUnit *SU = MISUnitMap[&MI];
923     assert(SU && "No SUnit mapped to this MI");
924 
925     if (RPTracker) {
926       collectVRegUses(SU);
927 
928       RegisterOperands RegOpers;
929       RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
930       if (TrackLaneMasks) {
931         SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
932         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
933       }
934       if (PDiffs != nullptr)
935         PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
936 
937       RPTracker->recedeSkipDebugValues();
938       assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
939       RPTracker->recede(RegOpers);
940     }
941 
942     assert(
943         (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
944         "Cannot schedule terminators or labels!");
945 
946     // Add register-based dependencies (data, anti, and output).
947     // For some instructions (calls, returns, inline-asm, etc.) there can
948     // be explicit uses and implicit defs, in which case the use will appear
949     // on the operand list before the def. Do two passes over the operand
950     // list to make sure that defs are processed before any uses.
951     bool HasVRegDef = false;
952     for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
953       const MachineOperand &MO = MI.getOperand(j);
954       if (!MO.isReg() || !MO.isDef())
955         continue;
956       unsigned Reg = MO.getReg();
957       if (Reg == 0)
958         continue;
959 
960       if (TRI->isPhysicalRegister(Reg))
961         addPhysRegDeps(SU, j);
962       else {
963         HasVRegDef = true;
964         addVRegDefDeps(SU, j);
965       }
966     }
967     // Now process all uses.
968     for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
969       const MachineOperand &MO = MI.getOperand(j);
970       // Only look at use operands.
971       // We do not need to check for MO.readsReg() here because subsequent
972       // subregister defs will get output dependence edges and need no
973       // additional use dependencies.
974       if (!MO.isReg() || !MO.isUse())
975         continue;
976       unsigned Reg = MO.getReg();
977       if (Reg == 0)
978         continue;
979 
980       if (TRI->isPhysicalRegister(Reg))
981         addPhysRegDeps(SU, j);
982       else if (MO.readsReg()) // ignore undef operands
983         addVRegUseDeps(SU, j);
984     }
985 
986     // If we haven't seen any uses in this scheduling region, create a
987     // dependence edge to ExitSU to model the live-out latency. This is required
988     // for vreg defs with no in-region use, and prefetches with no vreg def.
989     //
990     // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
991     // check currently relies on being called before adding chain deps.
992     if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
993       SDep Dep(SU, SDep::Artificial);
994       Dep.setLatency(SU->Latency - 1);
995       ExitSU.addPred(Dep);
996     }
997 
998     // Add memory dependencies (Note: isStoreToStackSlot and
999     // isLoadFromStackSLot are not usable after stack slots are lowered to
1000     // actual addresses).
1001 
1002     // This is a barrier event that acts as a pivotal node in the DAG.
1003     if (isGlobalMemoryObject(AA, &MI)) {
1004 
1005       // Become the barrier chain.
1006       if (BarrierChain)
1007         BarrierChain->addPredBarrier(SU);
1008       BarrierChain = SU;
1009 
1010       DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
1011             << BarrierChain->NodeNum << ").\n";);
1012 
1013       // Add dependencies against everything below it and clear maps.
1014       addBarrierChain(Stores);
1015       addBarrierChain(Loads);
1016       addBarrierChain(NonAliasStores);
1017       addBarrierChain(NonAliasLoads);
1018 
1019       continue;
1020     }
1021 
1022     // If it's not a store or a variant load, we're done.
1023     if (!MI.mayStore() &&
1024         !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)))
1025       continue;
1026 
1027     // Always add dependecy edge to BarrierChain if present.
1028     if (BarrierChain)
1029       BarrierChain->addPredBarrier(SU);
1030 
1031     // Find the underlying objects for MI. The Objs vector is either
1032     // empty, or filled with the Values of memory locations which this
1033     // SU depends on. An empty vector means the memory location is
1034     // unknown, and may alias anything.
1035     UnderlyingObjectsVector Objs;
1036     getUnderlyingObjectsForInstr(&MI, MFI, Objs, MF.getDataLayout());
1037 
1038     if (MI.mayStore()) {
1039       if (Objs.empty()) {
1040         // An unknown store depends on all stores and loads.
1041         addChainDependencies(SU, Stores);
1042         addChainDependencies(SU, NonAliasStores);
1043         addChainDependencies(SU, Loads);
1044         addChainDependencies(SU, NonAliasLoads);
1045 
1046         // Map this store to 'UnknownValue'.
1047         Stores.insert(SU, UnknownValue);
1048       } else {
1049         // Add precise dependencies against all previously seen memory
1050         // accesses mapped to the same Value(s).
1051         for (const UnderlyingObject &UnderlObj : Objs) {
1052           ValueType V = UnderlObj.getValue();
1053           bool ThisMayAlias = UnderlObj.mayAlias();
1054 
1055           // Add dependencies to previous stores and loads mapped to V.
1056           addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
1057           addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
1058         }
1059         // Update the store map after all chains have been added to avoid adding
1060         // self-loop edge if multiple underlying objects are present.
1061         for (const UnderlyingObject &UnderlObj : Objs) {
1062           ValueType V = UnderlObj.getValue();
1063           bool ThisMayAlias = UnderlObj.mayAlias();
1064 
1065           // Map this store to V.
1066           (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
1067         }
1068         // The store may have dependencies to unanalyzable loads and
1069         // stores.
1070         addChainDependencies(SU, Loads, UnknownValue);
1071         addChainDependencies(SU, Stores, UnknownValue);
1072       }
1073     } else { // SU is a load.
1074       if (Objs.empty()) {
1075         // An unknown load depends on all stores.
1076         addChainDependencies(SU, Stores);
1077         addChainDependencies(SU, NonAliasStores);
1078 
1079         Loads.insert(SU, UnknownValue);
1080       } else {
1081         for (const UnderlyingObject &UnderlObj : Objs) {
1082           ValueType V = UnderlObj.getValue();
1083           bool ThisMayAlias = UnderlObj.mayAlias();
1084 
1085           // Add precise dependencies against all previously seen stores
1086           // mapping to the same Value(s).
1087           addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
1088 
1089           // Map this load to V.
1090           (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
1091         }
1092         // The load may have dependencies to unanalyzable stores.
1093         addChainDependencies(SU, Stores, UnknownValue);
1094       }
1095     }
1096 
1097     // Reduce maps if they grow huge.
1098     if (Stores.size() + Loads.size() >= HugeRegion) {
1099       DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
1100       reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
1101     }
1102     if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
1103       DEBUG(dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
1104       reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
1105     }
1106   }
1107 
1108   if (DbgMI)
1109     FirstDbgValue = DbgMI;
1110 
1111   Defs.clear();
1112   Uses.clear();
1113   CurrentVRegDefs.clear();
1114   CurrentVRegUses.clear();
1115 }
1116 
1117 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
1118   PSV->printCustom(OS);
1119   return OS;
1120 }
1121 
1122 void ScheduleDAGInstrs::Value2SUsMap::dump() {
1123   for (auto &Itr : *this) {
1124     if (Itr.first.is<const Value*>()) {
1125       const Value *V = Itr.first.get<const Value*>();
1126       if (isa<UndefValue>(V))
1127         dbgs() << "Unknown";
1128       else
1129         V->printAsOperand(dbgs());
1130     }
1131     else if (Itr.first.is<const PseudoSourceValue*>())
1132       dbgs() <<  Itr.first.get<const PseudoSourceValue*>();
1133     else
1134       llvm_unreachable("Unknown Value type.");
1135 
1136     dbgs() << " : ";
1137     dumpSUList(Itr.second);
1138   }
1139 }
1140 
1141 /// Reduce maps in FIFO order, by N SUs. This is better than turning
1142 /// every Nth memory SU into BarrierChain in buildSchedGraph(), since
1143 /// it avoids unnecessary edges between seen SUs above the new
1144 /// BarrierChain, and those below it.
1145 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
1146                                               Value2SUsMap &loads, unsigned N) {
1147   DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n";
1148         stores.dump();
1149         dbgs() << "Loading SUnits:\n";
1150         loads.dump());
1151 
1152   // Insert all SU's NodeNums into a vector and sort it.
1153   std::vector<unsigned> NodeNums;
1154   NodeNums.reserve(stores.size() + loads.size());
1155   for (auto &I : stores)
1156     for (auto *SU : I.second)
1157       NodeNums.push_back(SU->NodeNum);
1158   for (auto &I : loads)
1159     for (auto *SU : I.second)
1160       NodeNums.push_back(SU->NodeNum);
1161   std::sort(NodeNums.begin(), NodeNums.end());
1162 
1163   // The N last elements in NodeNums will be removed, and the SU with
1164   // the lowest NodeNum of them will become the new BarrierChain to
1165   // let the not yet seen SUs have a dependency to the removed SUs.
1166   assert (N <= NodeNums.size());
1167   SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
1168   if (BarrierChain) {
1169     // The aliasing and non-aliasing maps reduce independently of each
1170     // other, but share a common BarrierChain. Check if the
1171     // newBarrierChain is above the former one. If it is not, it may
1172     // introduce a loop to use newBarrierChain, so keep the old one.
1173     if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
1174       BarrierChain->addPredBarrier(newBarrierChain);
1175       BarrierChain = newBarrierChain;
1176       DEBUG(dbgs() << "Inserting new barrier chain: SU("
1177             << BarrierChain->NodeNum << ").\n";);
1178     }
1179     else
1180       DEBUG(dbgs() << "Keeping old barrier chain: SU("
1181             << BarrierChain->NodeNum << ").\n";);
1182   }
1183   else
1184     BarrierChain = newBarrierChain;
1185 
1186   insertBarrierChain(stores);
1187   insertBarrierChain(loads);
1188 
1189   DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n";
1190         stores.dump();
1191         dbgs() << "Loading SUnits:\n";
1192         loads.dump());
1193 }
1194 
1195 /// \brief Initialize register live-range state for updating kills.
1196 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
1197   // Start with no live registers.
1198   LiveRegs.reset();
1199 
1200   // Examine the live-in regs of all successors.
1201   for (const MachineBasicBlock *Succ : BB->successors()) {
1202     for (const auto &LI : Succ->liveins()) {
1203       // Repeat, for reg and all subregs.
1204       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
1205            SubRegs.isValid(); ++SubRegs)
1206         LiveRegs.set(*SubRegs);
1207     }
1208   }
1209 }
1210 
1211 /// \brief If we change a kill flag on the bundle instruction implicit register
1212 /// operands, then we also need to propagate that to any instructions inside
1213 /// the bundle which had the same kill state.
1214 static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg,
1215                                  bool NewKillState,
1216                                  const TargetRegisterInfo *TRI) {
1217   if (MI->getOpcode() != TargetOpcode::BUNDLE)
1218     return;
1219 
1220   // Walk backwards from the last instruction in the bundle to the first.
1221   // Once we set a kill flag on an instruction, we bail out, as otherwise we
1222   // might set it on too many operands.  We will clear as many flags as we
1223   // can though.
1224   MachineBasicBlock::instr_iterator Begin = MI->getIterator();
1225   MachineBasicBlock::instr_iterator End = getBundleEnd(*MI);
1226   while (Begin != End) {
1227     if (NewKillState) {
1228       if ((--End)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
1229          return;
1230     } else
1231         (--End)->clearRegisterKills(Reg, TRI);
1232   }
1233 }
1234 
1235 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
1236   // Setting kill flag...
1237   if (!MO.isKill()) {
1238     MO.setIsKill(true);
1239     toggleBundleKillFlag(MI, MO.getReg(), true, TRI);
1240     return false;
1241   }
1242 
1243   // If MO itself is live, clear the kill flag...
1244   if (LiveRegs.test(MO.getReg())) {
1245     MO.setIsKill(false);
1246     toggleBundleKillFlag(MI, MO.getReg(), false, TRI);
1247     return false;
1248   }
1249 
1250   // If any subreg of MO is live, then create an imp-def for that
1251   // subreg and keep MO marked as killed.
1252   MO.setIsKill(false);
1253   toggleBundleKillFlag(MI, MO.getReg(), false, TRI);
1254   bool AllDead = true;
1255   const unsigned SuperReg = MO.getReg();
1256   MachineInstrBuilder MIB(MF, MI);
1257   for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
1258     if (LiveRegs.test(*SubRegs)) {
1259       MIB.addReg(*SubRegs, RegState::ImplicitDefine);
1260       AllDead = false;
1261     }
1262   }
1263 
1264   if(AllDead) {
1265     MO.setIsKill(true);
1266     toggleBundleKillFlag(MI, MO.getReg(), true, TRI);
1267   }
1268   return false;
1269 }
1270 
1271 // FIXME: Reuse the LivePhysRegs utility for this.
1272 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
1273   DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
1274 
1275   LiveRegs.resize(TRI->getNumRegs());
1276   BitVector killedRegs(TRI->getNumRegs());
1277 
1278   startBlockForKills(MBB);
1279 
1280   // Examine block from end to start...
1281   unsigned Count = MBB->size();
1282   for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
1283        I != E; --Count) {
1284     MachineInstr &MI = *--I;
1285     if (MI.isDebugValue())
1286       continue;
1287 
1288     // Update liveness.  Registers that are defed but not used in this
1289     // instruction are now dead. Mark register and all subregs as they
1290     // are completely defined.
1291     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1292       MachineOperand &MO = MI.getOperand(i);
1293       if (MO.isRegMask())
1294         LiveRegs.clearBitsNotInMask(MO.getRegMask());
1295       if (!MO.isReg()) continue;
1296       unsigned Reg = MO.getReg();
1297       if (Reg == 0) continue;
1298       if (!MO.isDef()) continue;
1299       // Ignore two-addr defs.
1300       if (MI.isRegTiedToUseOperand(i)) continue;
1301 
1302       // Repeat for reg and all subregs.
1303       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1304            SubRegs.isValid(); ++SubRegs)
1305         LiveRegs.reset(*SubRegs);
1306     }
1307 
1308     // Examine all used registers and set/clear kill flag. When a
1309     // register is used multiple times we only set the kill flag on
1310     // the first use. Don't set kill flags on undef operands.
1311     killedRegs.reset();
1312 
1313     // toggleKillFlag can append new operands (implicit defs), so using
1314     // a range-based loop is not safe. The new operands will be appended
1315     // at the end of the operand list and they don't need to be visited,
1316     // so iterating until the currently last operand is ok.
1317     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1318       MachineOperand &MO = MI.getOperand(i);
1319       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1320       unsigned Reg = MO.getReg();
1321       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1322 
1323       bool kill = false;
1324       if (!killedRegs.test(Reg)) {
1325         kill = true;
1326         // A register is not killed if any subregs are live...
1327         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
1328           if (LiveRegs.test(*SubRegs)) {
1329             kill = false;
1330             break;
1331           }
1332         }
1333 
1334         // If subreg is not live, then register is killed if it became
1335         // live in this instruction
1336         if (kill)
1337           kill = !LiveRegs.test(Reg);
1338       }
1339 
1340       if (MO.isKill() != kill) {
1341         DEBUG(dbgs() << "Fixing " << MO << " in ");
1342         toggleKillFlag(&MI, MO);
1343         DEBUG(MI.dump());
1344         DEBUG({
1345           if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1346             MachineBasicBlock::instr_iterator Begin = MI.getIterator();
1347             MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
1348             while (++Begin != End)
1349               DEBUG(Begin->dump());
1350           }
1351         });
1352       }
1353 
1354       killedRegs.set(Reg);
1355     }
1356 
1357     // Mark any used register (that is not using undef) and subregs as
1358     // now live...
1359     for (const MachineOperand &MO : MI.operands()) {
1360       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1361       unsigned Reg = MO.getReg();
1362       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1363 
1364       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1365            SubRegs.isValid(); ++SubRegs)
1366         LiveRegs.set(*SubRegs);
1367     }
1368   }
1369 }
1370 
1371 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
1372 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1373   SU->getInstr()->dump();
1374 #endif
1375 }
1376 
1377 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1378   std::string s;
1379   raw_string_ostream oss(s);
1380   if (SU == &EntrySU)
1381     oss << "<entry>";
1382   else if (SU == &ExitSU)
1383     oss << "<exit>";
1384   else
1385     SU->getInstr()->print(oss, /*SkipOpers=*/true);
1386   return oss.str();
1387 }
1388 
1389 /// Return the basic block label. It is not necessarilly unique because a block
1390 /// contains multiple scheduling regions. But it is fine for visualization.
1391 std::string ScheduleDAGInstrs::getDAGName() const {
1392   return "dag." + BB->getFullName();
1393 }
1394 
1395 //===----------------------------------------------------------------------===//
1396 // SchedDFSResult Implementation
1397 //===----------------------------------------------------------------------===//
1398 
1399 namespace llvm {
1400 /// \brief Internal state used to compute SchedDFSResult.
1401 class SchedDFSImpl {
1402   SchedDFSResult &R;
1403 
1404   /// Join DAG nodes into equivalence classes by their subtree.
1405   IntEqClasses SubtreeClasses;
1406   /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1407   std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1408 
1409   struct RootData {
1410     unsigned NodeID;
1411     unsigned ParentNodeID;  // Parent node (member of the parent subtree).
1412     unsigned SubInstrCount; // Instr count in this tree only, not children.
1413 
1414     RootData(unsigned id): NodeID(id),
1415                            ParentNodeID(SchedDFSResult::InvalidSubtreeID),
1416                            SubInstrCount(0) {}
1417 
1418     unsigned getSparseSetIndex() const { return NodeID; }
1419   };
1420 
1421   SparseSet<RootData> RootSet;
1422 
1423 public:
1424   SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1425     RootSet.setUniverse(R.DFSNodeData.size());
1426   }
1427 
1428   /// Return true if this node been visited by the DFS traversal.
1429   ///
1430   /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1431   /// ID. Later, SubtreeID is updated but remains valid.
1432   bool isVisited(const SUnit *SU) const {
1433     return R.DFSNodeData[SU->NodeNum].SubtreeID
1434       != SchedDFSResult::InvalidSubtreeID;
1435   }
1436 
1437   /// Initialize this node's instruction count. We don't need to flag the node
1438   /// visited until visitPostorder because the DAG cannot have cycles.
1439   void visitPreorder(const SUnit *SU) {
1440     R.DFSNodeData[SU->NodeNum].InstrCount =
1441       SU->getInstr()->isTransient() ? 0 : 1;
1442   }
1443 
1444   /// Called once for each node after all predecessors are visited. Revisit this
1445   /// node's predecessors and potentially join them now that we know the ILP of
1446   /// the other predecessors.
1447   void visitPostorderNode(const SUnit *SU) {
1448     // Mark this node as the root of a subtree. It may be joined with its
1449     // successors later.
1450     R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1451     RootData RData(SU->NodeNum);
1452     RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1453 
1454     // If any predecessors are still in their own subtree, they either cannot be
1455     // joined or are large enough to remain separate. If this parent node's
1456     // total instruction count is not greater than a child subtree by at least
1457     // the subtree limit, then try to join it now since splitting subtrees is
1458     // only useful if multiple high-pressure paths are possible.
1459     unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1460     for (const SDep &PredDep : SU->Preds) {
1461       if (PredDep.getKind() != SDep::Data)
1462         continue;
1463       unsigned PredNum = PredDep.getSUnit()->NodeNum;
1464       if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1465         joinPredSubtree(PredDep, SU, /*CheckLimit=*/false);
1466 
1467       // Either link or merge the TreeData entry from the child to the parent.
1468       if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1469         // If the predecessor's parent is invalid, this is a tree edge and the
1470         // current node is the parent.
1471         if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1472           RootSet[PredNum].ParentNodeID = SU->NodeNum;
1473       }
1474       else if (RootSet.count(PredNum)) {
1475         // The predecessor is not a root, but is still in the root set. This
1476         // must be the new parent that it was just joined to. Note that
1477         // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1478         // set to the original parent.
1479         RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1480         RootSet.erase(PredNum);
1481       }
1482     }
1483     RootSet[SU->NodeNum] = RData;
1484   }
1485 
1486   /// Called once for each tree edge after calling visitPostOrderNode on the
1487   /// predecessor. Increment the parent node's instruction count and
1488   /// preemptively join this subtree to its parent's if it is small enough.
1489   void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1490     R.DFSNodeData[Succ->NodeNum].InstrCount
1491       += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1492     joinPredSubtree(PredDep, Succ);
1493   }
1494 
1495   /// Add a connection for cross edges.
1496   void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1497     ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1498   }
1499 
1500   /// Set each node's subtree ID to the representative ID and record connections
1501   /// between trees.
1502   void finalize() {
1503     SubtreeClasses.compress();
1504     R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1505     assert(SubtreeClasses.getNumClasses() == RootSet.size()
1506            && "number of roots should match trees");
1507     for (const RootData &Root : RootSet) {
1508       unsigned TreeID = SubtreeClasses[Root.NodeID];
1509       if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1510         R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID];
1511       R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount;
1512       // Note that SubInstrCount may be greater than InstrCount if we joined
1513       // subtrees across a cross edge. InstrCount will be attributed to the
1514       // original parent, while SubInstrCount will be attributed to the joined
1515       // parent.
1516     }
1517     R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1518     R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1519     DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1520     for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1521       R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1522       DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1523             << R.DFSNodeData[Idx].SubtreeID << '\n');
1524     }
1525     for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) {
1526       unsigned PredTree = SubtreeClasses[P.first->NodeNum];
1527       unsigned SuccTree = SubtreeClasses[P.second->NodeNum];
1528       if (PredTree == SuccTree)
1529         continue;
1530       unsigned Depth = P.first->getDepth();
1531       addConnection(PredTree, SuccTree, Depth);
1532       addConnection(SuccTree, PredTree, Depth);
1533     }
1534   }
1535 
1536 protected:
1537   /// Join the predecessor subtree with the successor that is its DFS
1538   /// parent. Apply some heuristics before joining.
1539   bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1540                        bool CheckLimit = true) {
1541     assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1542 
1543     // Check if the predecessor is already joined.
1544     const SUnit *PredSU = PredDep.getSUnit();
1545     unsigned PredNum = PredSU->NodeNum;
1546     if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1547       return false;
1548 
1549     // Four is the magic number of successors before a node is considered a
1550     // pinch point.
1551     unsigned NumDataSucs = 0;
1552     for (const SDep &SuccDep : PredSU->Succs) {
1553       if (SuccDep.getKind() == SDep::Data) {
1554         if (++NumDataSucs >= 4)
1555           return false;
1556       }
1557     }
1558     if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1559       return false;
1560     R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1561     SubtreeClasses.join(Succ->NodeNum, PredNum);
1562     return true;
1563   }
1564 
1565   /// Called by finalize() to record a connection between trees.
1566   void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1567     if (!Depth)
1568       return;
1569 
1570     do {
1571       SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1572         R.SubtreeConnections[FromTree];
1573       for (SchedDFSResult::Connection &C : Connections) {
1574         if (C.TreeID == ToTree) {
1575           C.Level = std::max(C.Level, Depth);
1576           return;
1577         }
1578       }
1579       Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1580       FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1581     } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1582   }
1583 };
1584 } // namespace llvm
1585 
1586 namespace {
1587 /// \brief Manage the stack used by a reverse depth-first search over the DAG.
1588 class SchedDAGReverseDFS {
1589   std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1590 public:
1591   bool isComplete() const { return DFSStack.empty(); }
1592 
1593   void follow(const SUnit *SU) {
1594     DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1595   }
1596   void advance() { ++DFSStack.back().second; }
1597 
1598   const SDep *backtrack() {
1599     DFSStack.pop_back();
1600     return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1601   }
1602 
1603   const SUnit *getCurr() const { return DFSStack.back().first; }
1604 
1605   SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1606 
1607   SUnit::const_pred_iterator getPredEnd() const {
1608     return getCurr()->Preds.end();
1609   }
1610 };
1611 } // anonymous
1612 
1613 static bool hasDataSucc(const SUnit *SU) {
1614   for (const SDep &SuccDep : SU->Succs) {
1615     if (SuccDep.getKind() == SDep::Data &&
1616         !SuccDep.getSUnit()->isBoundaryNode())
1617       return true;
1618   }
1619   return false;
1620 }
1621 
1622 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1623 /// search from this root.
1624 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1625   if (!IsBottomUp)
1626     llvm_unreachable("Top-down ILP metric is unimplemnted");
1627 
1628   SchedDFSImpl Impl(*this);
1629   for (const SUnit &SU : SUnits) {
1630     if (Impl.isVisited(&SU) || hasDataSucc(&SU))
1631       continue;
1632 
1633     SchedDAGReverseDFS DFS;
1634     Impl.visitPreorder(&SU);
1635     DFS.follow(&SU);
1636     for (;;) {
1637       // Traverse the leftmost path as far as possible.
1638       while (DFS.getPred() != DFS.getPredEnd()) {
1639         const SDep &PredDep = *DFS.getPred();
1640         DFS.advance();
1641         // Ignore non-data edges.
1642         if (PredDep.getKind() != SDep::Data
1643             || PredDep.getSUnit()->isBoundaryNode()) {
1644           continue;
1645         }
1646         // An already visited edge is a cross edge, assuming an acyclic DAG.
1647         if (Impl.isVisited(PredDep.getSUnit())) {
1648           Impl.visitCrossEdge(PredDep, DFS.getCurr());
1649           continue;
1650         }
1651         Impl.visitPreorder(PredDep.getSUnit());
1652         DFS.follow(PredDep.getSUnit());
1653       }
1654       // Visit the top of the stack in postorder and backtrack.
1655       const SUnit *Child = DFS.getCurr();
1656       const SDep *PredDep = DFS.backtrack();
1657       Impl.visitPostorderNode(Child);
1658       if (PredDep)
1659         Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1660       if (DFS.isComplete())
1661         break;
1662     }
1663   }
1664   Impl.finalize();
1665 }
1666 
1667 /// The root of the given SubtreeID was just scheduled. For all subtrees
1668 /// connected to this tree, record the depth of the connection so that the
1669 /// nearest connected subtrees can be prioritized.
1670 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1671   for (const Connection &C : SubtreeConnections[SubtreeID]) {
1672     SubtreeConnectLevels[C.TreeID] =
1673       std::max(SubtreeConnectLevels[C.TreeID], C.Level);
1674     DEBUG(dbgs() << "  Tree: " << C.TreeID
1675           << " @" << SubtreeConnectLevels[C.TreeID] << '\n');
1676   }
1677 }
1678 
1679 LLVM_DUMP_METHOD
1680 void ILPValue::print(raw_ostream &OS) const {
1681   OS << InstrCount << " / " << Length << " = ";
1682   if (!Length)
1683     OS << "BADILP";
1684   else
1685     OS << format("%g", ((double)InstrCount / Length));
1686 }
1687 
1688 LLVM_DUMP_METHOD
1689 void ILPValue::dump() const {
1690   dbgs() << *this << '\n';
1691 }
1692 
1693 namespace llvm {
1694 
1695 LLVM_DUMP_METHOD
1696 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1697   Val.print(OS);
1698   return OS;
1699 }
1700 
1701 } // namespace llvm
1702