1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling 11 // of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 16 #include "llvm/ADT/IntEqClasses.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/PseudoSourceValue.h" 28 #include "llvm/CodeGen/RegisterPressure.h" 29 #include "llvm/CodeGen/ScheduleDFS.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/Format.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "misched" 45 46 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 47 cl::ZeroOrMore, cl::init(false), 48 cl::desc("Enable use of AA during MI DAG construction")); 49 50 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 51 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 52 53 // Note: the two options below might be used in tuning compile time vs 54 // output quality. Setting HugeRegion so large that it will never be 55 // reached means best-effort, but may be slow. 56 57 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) 58 // together hold this many SUs, a reduction of maps will be done. 59 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, 60 cl::init(1000), cl::desc("The limit to use while constructing the DAG " 61 "prior to scheduling, at which point a trade-off " 62 "is made to avoid excessive compile time.")); 63 64 static cl::opt<unsigned> ReductionSize( 65 "dag-maps-reduction-size", cl::Hidden, 66 cl::desc("A huge scheduling region will have maps reduced by this many " 67 "nodes at a time. Defaults to HugeRegion / 2.")); 68 69 static unsigned getReductionSize() { 70 // Always reduce a huge region with half of the elements, except 71 // when user sets this number explicitly. 72 if (ReductionSize.getNumOccurrences() == 0) 73 return HugeRegion / 2; 74 return ReductionSize; 75 } 76 77 static void dumpSUList(ScheduleDAGInstrs::SUList &L) { 78 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 79 dbgs() << "{ "; 80 for (const SUnit *su : L) { 81 dbgs() << "SU(" << su->NodeNum << ")"; 82 if (su != L.back()) 83 dbgs() << ", "; 84 } 85 dbgs() << "}\n"; 86 #endif 87 } 88 89 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 90 const MachineLoopInfo *mli, 91 bool RemoveKillFlags) 92 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 93 RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false), 94 TrackLaneMasks(false), AAForDep(nullptr), BarrierChain(nullptr), 95 UnknownValue(UndefValue::get( 96 Type::getVoidTy(mf.getFunction()->getContext()))), 97 FirstDbgValue(nullptr) { 98 DbgValues.clear(); 99 100 const TargetSubtargetInfo &ST = mf.getSubtarget(); 101 SchedModel.init(ST.getSchedModel(), &ST, TII); 102 } 103 104 /// getUnderlyingObjectFromInt - This is the function that does the work of 105 /// looking through basic ptrtoint+arithmetic+inttoptr sequences. 106 static const Value *getUnderlyingObjectFromInt(const Value *V) { 107 do { 108 if (const Operator *U = dyn_cast<Operator>(V)) { 109 // If we find a ptrtoint, we can transfer control back to the 110 // regular getUnderlyingObjectFromInt. 111 if (U->getOpcode() == Instruction::PtrToInt) 112 return U->getOperand(0); 113 // If we find an add of a constant, a multiplied value, or a phi, it's 114 // likely that the other operand will lead us to the base 115 // object. We don't have to worry about the case where the 116 // object address is somehow being computed by the multiply, 117 // because our callers only care when the result is an 118 // identifiable object. 119 if (U->getOpcode() != Instruction::Add || 120 (!isa<ConstantInt>(U->getOperand(1)) && 121 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 122 !isa<PHINode>(U->getOperand(1)))) 123 return V; 124 V = U->getOperand(0); 125 } else { 126 return V; 127 } 128 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 129 } while (1); 130 } 131 132 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects 133 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. 134 static void getUnderlyingObjects(const Value *V, 135 SmallVectorImpl<Value *> &Objects, 136 const DataLayout &DL) { 137 SmallPtrSet<const Value *, 16> Visited; 138 SmallVector<const Value *, 4> Working(1, V); 139 do { 140 V = Working.pop_back_val(); 141 142 SmallVector<Value *, 4> Objs; 143 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 144 145 for (Value *V : Objs) { 146 if (!Visited.insert(V).second) 147 continue; 148 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 149 const Value *O = 150 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 151 if (O->getType()->isPointerTy()) { 152 Working.push_back(O); 153 continue; 154 } 155 } 156 Objects.push_back(const_cast<Value *>(V)); 157 } 158 } while (!Working.empty()); 159 } 160 161 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference 162 /// information and it can be tracked to a normal reference to a known 163 /// object, return the Value for that object. 164 static void getUnderlyingObjectsForInstr(const MachineInstr *MI, 165 const MachineFrameInfo &MFI, 166 UnderlyingObjectsVector &Objects, 167 const DataLayout &DL) { 168 auto allMMOsOkay = [&]() { 169 for (const MachineMemOperand *MMO : MI->memoperands()) { 170 if (MMO->isVolatile()) 171 return false; 172 173 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 174 // Function that contain tail calls don't have unique PseudoSourceValue 175 // objects. Two PseudoSourceValues might refer to the same or 176 // overlapping locations. The client code calling this function assumes 177 // this is not the case. So return a conservative answer of no known 178 // object. 179 if (MFI.hasTailCall()) 180 return false; 181 182 // For now, ignore PseudoSourceValues which may alias LLVM IR values 183 // because the code that uses this function has no way to cope with 184 // such aliases. 185 if (PSV->isAliased(&MFI)) 186 return false; 187 188 bool MayAlias = PSV->mayAlias(&MFI); 189 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 190 } else if (const Value *V = MMO->getValue()) { 191 SmallVector<Value *, 4> Objs; 192 getUnderlyingObjects(V, Objs, DL); 193 194 for (Value *V : Objs) { 195 if (!isIdentifiedObject(V)) 196 return false; 197 198 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 199 } 200 } else 201 return false; 202 } 203 return true; 204 }; 205 206 if (!allMMOsOkay()) 207 Objects.clear(); 208 } 209 210 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 211 BB = bb; 212 } 213 214 void ScheduleDAGInstrs::finishBlock() { 215 // Subclasses should no longer refer to the old block. 216 BB = nullptr; 217 } 218 219 /// Initialize the DAG and common scheduler state for the current scheduling 220 /// region. This does not actually create the DAG, only clears it. The 221 /// scheduling driver may call BuildSchedGraph multiple times per scheduling 222 /// region. 223 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 224 MachineBasicBlock::iterator begin, 225 MachineBasicBlock::iterator end, 226 unsigned regioninstrs) { 227 assert(bb == BB && "startBlock should set BB"); 228 RegionBegin = begin; 229 RegionEnd = end; 230 NumRegionInstrs = regioninstrs; 231 } 232 233 /// Close the current scheduling region. Don't clear any state in case the 234 /// driver wants to refer to the previous scheduling region. 235 void ScheduleDAGInstrs::exitRegion() { 236 // Nothing to do. 237 } 238 239 /// addSchedBarrierDeps - Add dependencies from instructions in the current 240 /// list of instructions being scheduled to scheduling barrier by adding 241 /// the exit SU to the register defs and use list. This is because we want to 242 /// make sure instructions which define registers that are either used by 243 /// the terminator or are live-out are properly scheduled. This is 244 /// especially important when the definition latency of the return value(s) 245 /// are too high to be hidden by the branch or when the liveout registers 246 /// used by instructions in the fallthrough block. 247 void ScheduleDAGInstrs::addSchedBarrierDeps() { 248 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 249 ExitSU.setInstr(ExitMI); 250 bool AllDepKnown = ExitMI && 251 (ExitMI->isCall() || ExitMI->isBarrier()); 252 if (ExitMI && AllDepKnown) { 253 // If it's a call or a barrier, add dependencies on the defs and uses of 254 // instruction. 255 for (const MachineOperand &MO : ExitMI->operands()) { 256 if (!MO.isReg() || MO.isDef()) continue; 257 unsigned Reg = MO.getReg(); 258 if (Reg == 0) continue; 259 260 if (TRI->isPhysicalRegister(Reg)) 261 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 262 else if (MO.readsReg()) // ignore undef operands 263 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO)); 264 } 265 } else { 266 // For others, e.g. fallthrough, conditional branch, assume the exit 267 // uses all the registers that are livein to the successor blocks. 268 assert(Uses.empty() && "Uses in set before adding deps?"); 269 for (const MachineBasicBlock *Succ : BB->successors()) { 270 for (const auto &LI : Succ->liveins()) { 271 if (!Uses.contains(LI.PhysReg)) 272 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 273 } 274 } 275 } 276 } 277 278 /// MO is an operand of SU's instruction that defines a physical register. Add 279 /// data dependencies from SU to any uses of the physical register. 280 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 281 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 282 assert(MO.isDef() && "expect physreg def"); 283 284 // Ask the target if address-backscheduling is desirable, and if so how much. 285 const TargetSubtargetInfo &ST = MF.getSubtarget(); 286 287 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 288 Alias.isValid(); ++Alias) { 289 if (!Uses.contains(*Alias)) 290 continue; 291 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 292 SUnit *UseSU = I->SU; 293 if (UseSU == SU) 294 continue; 295 296 // Adjust the dependence latency using operand def/use information, 297 // then allow the target to perform its own adjustments. 298 int UseOp = I->OpIdx; 299 MachineInstr *RegUse = nullptr; 300 SDep Dep; 301 if (UseOp < 0) 302 Dep = SDep(SU, SDep::Artificial); 303 else { 304 // Set the hasPhysRegDefs only for physreg defs that have a use within 305 // the scheduling region. 306 SU->hasPhysRegDefs = true; 307 Dep = SDep(SU, SDep::Data, *Alias); 308 RegUse = UseSU->getInstr(); 309 } 310 Dep.setLatency( 311 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 312 UseOp)); 313 314 ST.adjustSchedDependency(SU, UseSU, Dep); 315 UseSU->addPred(Dep); 316 } 317 } 318 } 319 320 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from 321 /// this SUnit to following instructions in the same scheduling region that 322 /// depend the physical register referenced at OperIdx. 323 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 324 MachineInstr *MI = SU->getInstr(); 325 MachineOperand &MO = MI->getOperand(OperIdx); 326 327 // Optionally add output and anti dependencies. For anti 328 // dependencies we use a latency of 0 because for a multi-issue 329 // target we want to allow the defining instruction to issue 330 // in the same cycle as the using instruction. 331 // TODO: Using a latency of 1 here for output dependencies assumes 332 // there's no cost for reusing registers. 333 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 334 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 335 Alias.isValid(); ++Alias) { 336 if (!Defs.contains(*Alias)) 337 continue; 338 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 339 SUnit *DefSU = I->SU; 340 if (DefSU == &ExitSU) 341 continue; 342 if (DefSU != SU && 343 (Kind != SDep::Output || !MO.isDead() || 344 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 345 if (Kind == SDep::Anti) 346 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 347 else { 348 SDep Dep(SU, Kind, /*Reg=*/*Alias); 349 Dep.setLatency( 350 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 351 DefSU->addPred(Dep); 352 } 353 } 354 } 355 } 356 357 if (!MO.isDef()) { 358 SU->hasPhysRegUses = true; 359 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 360 // retrieve the existing SUnits list for this register's uses. 361 // Push this SUnit on the use list. 362 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); 363 if (RemoveKillFlags) 364 MO.setIsKill(false); 365 } 366 else { 367 addPhysRegDataDeps(SU, OperIdx); 368 unsigned Reg = MO.getReg(); 369 370 // clear this register's use list 371 if (Uses.contains(Reg)) 372 Uses.eraseAll(Reg); 373 374 if (!MO.isDead()) { 375 Defs.eraseAll(Reg); 376 } else if (SU->isCall) { 377 // Calls will not be reordered because of chain dependencies (see 378 // below). Since call operands are dead, calls may continue to be added 379 // to the DefList making dependence checking quadratic in the size of 380 // the block. Instead, we leave only one call at the back of the 381 // DefList. 382 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 383 Reg2SUnitsMap::iterator B = P.first; 384 Reg2SUnitsMap::iterator I = P.second; 385 for (bool isBegin = I == B; !isBegin; /* empty */) { 386 isBegin = (--I) == B; 387 if (!I->SU->isCall) 388 break; 389 I = Defs.erase(I); 390 } 391 } 392 393 // Defs are pushed in the order they are visited and never reordered. 394 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 395 } 396 } 397 398 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 399 { 400 unsigned Reg = MO.getReg(); 401 // No point in tracking lanemasks if we don't have interesting subregisters. 402 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 403 if (!RC.HasDisjunctSubRegs) 404 return ~0u; 405 406 unsigned SubReg = MO.getSubReg(); 407 if (SubReg == 0) 408 return RC.getLaneMask(); 409 return TRI->getSubRegIndexLaneMask(SubReg); 410 } 411 412 /// addVRegDefDeps - Add register output and data dependencies from this SUnit 413 /// to instructions that occur later in the same scheduling region if they read 414 /// from or write to the virtual register defined at OperIdx. 415 /// 416 /// TODO: Hoist loop induction variable increments. This has to be 417 /// reevaluated. Generally, IV scheduling should be done before coalescing. 418 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 419 MachineInstr *MI = SU->getInstr(); 420 MachineOperand &MO = MI->getOperand(OperIdx); 421 unsigned Reg = MO.getReg(); 422 423 LaneBitmask DefLaneMask; 424 LaneBitmask KillLaneMask; 425 if (TrackLaneMasks) { 426 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 427 DefLaneMask = getLaneMaskForMO(MO); 428 // If we have a <read-undef> flag, none of the lane values comes from an 429 // earlier instruction. 430 KillLaneMask = IsKill ? ~0u : DefLaneMask; 431 432 // Clear undef flag, we'll re-add it later once we know which subregister 433 // Def is first. 434 MO.setIsUndef(false); 435 } else { 436 DefLaneMask = ~0u; 437 KillLaneMask = ~0u; 438 } 439 440 if (MO.isDead()) { 441 assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() && 442 "Dead defs should have no uses"); 443 } else { 444 // Add data dependence to all uses we found so far. 445 const TargetSubtargetInfo &ST = MF.getSubtarget(); 446 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 447 E = CurrentVRegUses.end(); I != E; /*empty*/) { 448 LaneBitmask LaneMask = I->LaneMask; 449 // Ignore uses of other lanes. 450 if ((LaneMask & KillLaneMask) == 0) { 451 ++I; 452 continue; 453 } 454 455 if ((LaneMask & DefLaneMask) != 0) { 456 SUnit *UseSU = I->SU; 457 MachineInstr *Use = UseSU->getInstr(); 458 SDep Dep(SU, SDep::Data, Reg); 459 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 460 I->OperandIndex)); 461 ST.adjustSchedDependency(SU, UseSU, Dep); 462 UseSU->addPred(Dep); 463 } 464 465 LaneMask &= ~KillLaneMask; 466 // If we found a Def for all lanes of this use, remove it from the list. 467 if (LaneMask != 0) { 468 I->LaneMask = LaneMask; 469 ++I; 470 } else 471 I = CurrentVRegUses.erase(I); 472 } 473 } 474 475 // Shortcut: Singly defined vregs do not have output/anti dependencies. 476 if (MRI.hasOneDef(Reg)) 477 return; 478 479 // Add output dependence to the next nearest defs of this vreg. 480 // 481 // Unless this definition is dead, the output dependence should be 482 // transitively redundant with antidependencies from this definition's 483 // uses. We're conservative for now until we have a way to guarantee the uses 484 // are not eliminated sometime during scheduling. The output dependence edge 485 // is also useful if output latency exceeds def-use latency. 486 LaneBitmask LaneMask = DefLaneMask; 487 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 488 CurrentVRegDefs.end())) { 489 // Ignore defs for other lanes. 490 if ((V2SU.LaneMask & LaneMask) == 0) 491 continue; 492 // Add an output dependence. 493 SUnit *DefSU = V2SU.SU; 494 // Ignore additional defs of the same lanes in one instruction. This can 495 // happen because lanemasks are shared for targets with too many 496 // subregisters. We also use some representration tricks/hacks where we 497 // add super-register defs/uses, to imply that although we only access parts 498 // of the reg we care about the full one. 499 if (DefSU == SU) 500 continue; 501 SDep Dep(SU, SDep::Output, Reg); 502 Dep.setLatency( 503 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 504 DefSU->addPred(Dep); 505 506 // Update current definition. This can get tricky if the def was about a 507 // bigger lanemask before. We then have to shrink it and create a new 508 // VReg2SUnit for the non-overlapping part. 509 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 510 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 511 V2SU.SU = SU; 512 V2SU.LaneMask = OverlapMask; 513 if (NonOverlapMask != 0) 514 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); 515 } 516 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 517 if (LaneMask != 0) 518 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 519 } 520 521 /// addVRegUseDeps - Add a register data dependency if the instruction that 522 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a 523 /// register antidependency from this SUnit to instructions that occur later in 524 /// the same scheduling region if they write the virtual register. 525 /// 526 /// TODO: Handle ExitSU "uses" properly. 527 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 528 const MachineInstr *MI = SU->getInstr(); 529 const MachineOperand &MO = MI->getOperand(OperIdx); 530 unsigned Reg = MO.getReg(); 531 532 // Remember the use. Data dependencies will be added when we find the def. 533 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u; 534 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 535 536 // Add antidependences to the following defs of the vreg. 537 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 538 CurrentVRegDefs.end())) { 539 // Ignore defs for unrelated lanes. 540 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 541 if ((PrevDefLaneMask & LaneMask) == 0) 542 continue; 543 if (V2SU.SU == SU) 544 continue; 545 546 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 547 } 548 } 549 550 /// Return true if MI is an instruction we are unable to reason about 551 /// (like a call or something with unmodeled side effects). 552 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 553 return MI->isCall() || MI->hasUnmodeledSideEffects() || 554 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA)); 555 } 556 557 /// This returns true if the two MIs need a chain edge between them. 558 /// This is called on normal stores and loads. 559 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 560 const DataLayout &DL, MachineInstr *MIa, 561 MachineInstr *MIb) { 562 const MachineFunction *MF = MIa->getParent()->getParent(); 563 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 564 565 assert ((MIa->mayStore() || MIb->mayStore()) && 566 "Dependency checked between two loads"); 567 568 // Let the target decide if memory accesses cannot possibly overlap. 569 if (TII->areMemAccessesTriviallyDisjoint(*MIa, *MIb, AA)) 570 return false; 571 572 // To this point analysis is generic. From here on we do need AA. 573 if (!AA) 574 return true; 575 576 // FIXME: Need to handle multiple memory operands to support all targets. 577 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 578 return true; 579 580 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 581 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 582 583 if (!MMOa->getValue() || !MMOb->getValue()) 584 return true; 585 586 // The following interface to AA is fashioned after DAGCombiner::isAlias 587 // and operates with MachineMemOperand offset with some important 588 // assumptions: 589 // - LLVM fundamentally assumes flat address spaces. 590 // - MachineOperand offset can *only* result from legalization and 591 // cannot affect queries other than the trivial case of overlap 592 // checking. 593 // - These offsets never wrap and never step outside 594 // of allocated objects. 595 // - There should never be any negative offsets here. 596 // 597 // FIXME: Modify API to hide this math from "user" 598 // FIXME: Even before we go to AA we can reason locally about some 599 // memory objects. It can save compile time, and possibly catch some 600 // corner cases not currently covered. 601 602 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 603 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 604 605 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 606 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 607 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 608 609 AliasResult AAResult = 610 AA->alias(MemoryLocation(MMOa->getValue(), Overlapa, 611 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 612 MemoryLocation(MMOb->getValue(), Overlapb, 613 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 614 615 return (AAResult != NoAlias); 616 } 617 618 /// Check whether two objects need a chain edge and add it if needed. 619 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, 620 unsigned Latency) { 621 if (MIsNeedChainEdge(AAForDep, &MFI, MF.getDataLayout(), SUa->getInstr(), 622 SUb->getInstr())) { 623 SDep Dep(SUa, SDep::MayAliasMem); 624 Dep.setLatency(Latency); 625 SUb->addPred(Dep); 626 } 627 } 628 629 /// Create an SUnit for each real instruction, numbered in top-down topological 630 /// order. The instruction order A < B, implies that no edge exists from B to A. 631 /// 632 /// Map each real instruction to its SUnit. 633 /// 634 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 635 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 636 /// instead of pointers. 637 /// 638 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 639 /// the original instruction list. 640 void ScheduleDAGInstrs::initSUnits() { 641 // We'll be allocating one SUnit for each real instruction in the region, 642 // which is contained within a basic block. 643 SUnits.reserve(NumRegionInstrs); 644 645 for (MachineInstr &MI : llvm::make_range(RegionBegin, RegionEnd)) { 646 if (MI.isDebugValue()) 647 continue; 648 649 SUnit *SU = newSUnit(&MI); 650 MISUnitMap[&MI] = SU; 651 652 SU->isCall = MI.isCall(); 653 SU->isCommutable = MI.isCommutable(); 654 655 // Assign the Latency field of SU using target-provided information. 656 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 657 658 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 659 // 660 // Reserved resources block an instruction from issuing and stall the 661 // entire pipeline. These are identified by BufferSize=0. 662 // 663 // Unbuffered resources prevent execution of subsequent instructions that 664 // require the same resources. This is used for in-order execution pipelines 665 // within an out-of-order core. These are identified by BufferSize=1. 666 if (SchedModel.hasInstrSchedModel()) { 667 const MCSchedClassDesc *SC = getSchedClass(SU); 668 for (const MCWriteProcResEntry &PRE : 669 make_range(SchedModel.getWriteProcResBegin(SC), 670 SchedModel.getWriteProcResEnd(SC))) { 671 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) { 672 case 0: 673 SU->hasReservedResource = true; 674 break; 675 case 1: 676 SU->isUnbuffered = true; 677 break; 678 default: 679 break; 680 } 681 } 682 } 683 } 684 } 685 686 void ScheduleDAGInstrs::collectVRegUses(SUnit *SU) { 687 const MachineInstr *MI = SU->getInstr(); 688 for (const MachineOperand &MO : MI->operands()) { 689 if (!MO.isReg()) 690 continue; 691 if (!MO.readsReg()) 692 continue; 693 if (TrackLaneMasks && !MO.isUse()) 694 continue; 695 696 unsigned Reg = MO.getReg(); 697 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 698 continue; 699 700 // Ignore re-defs. 701 if (TrackLaneMasks) { 702 bool FoundDef = false; 703 for (const MachineOperand &MO2 : MI->operands()) { 704 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 705 FoundDef = true; 706 break; 707 } 708 } 709 if (FoundDef) 710 continue; 711 } 712 713 // Record this local VReg use. 714 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 715 for (; UI != VRegUses.end(); ++UI) { 716 if (UI->SU == SU) 717 break; 718 } 719 if (UI == VRegUses.end()) 720 VRegUses.insert(VReg2SUnit(Reg, 0, SU)); 721 } 722 } 723 724 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { 725 726 /// Current total number of SUs in map. 727 unsigned NumNodes; 728 729 /// 1 for loads, 0 for stores. (see comment in SUList) 730 unsigned TrueMemOrderLatency; 731 public: 732 733 Value2SUsMap(unsigned lat = 0) : NumNodes(0), TrueMemOrderLatency(lat) {} 734 735 /// To keep NumNodes up to date, insert() is used instead of 736 /// this operator w/ push_back(). 737 ValueType &operator[](const SUList &Key) { 738 llvm_unreachable("Don't use. Use insert() instead."); }; 739 740 /// Add SU to the SUList of V. If Map grows huge, reduce its size 741 /// by calling reduce(). 742 void inline insert(SUnit *SU, ValueType V) { 743 MapVector::operator[](V).push_back(SU); 744 NumNodes++; 745 } 746 747 /// Clears the list of SUs mapped to V. 748 void inline clearList(ValueType V) { 749 iterator Itr = find(V); 750 if (Itr != end()) { 751 assert (NumNodes >= Itr->second.size()); 752 NumNodes -= Itr->second.size(); 753 754 Itr->second.clear(); 755 } 756 } 757 758 /// Clears map from all contents. 759 void clear() { 760 MapVector<ValueType, SUList>::clear(); 761 NumNodes = 0; 762 } 763 764 unsigned inline size() const { return NumNodes; } 765 766 /// Count the number of SUs in this map after a reduction. 767 void reComputeSize(void) { 768 NumNodes = 0; 769 for (auto &I : *this) 770 NumNodes += I.second.size(); 771 } 772 773 unsigned inline getTrueMemOrderLatency() const { 774 return TrueMemOrderLatency; 775 } 776 777 void dump(); 778 }; 779 780 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 781 Value2SUsMap &Val2SUsMap) { 782 for (auto &I : Val2SUsMap) 783 addChainDependencies(SU, I.second, 784 Val2SUsMap.getTrueMemOrderLatency()); 785 } 786 787 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 788 Value2SUsMap &Val2SUsMap, 789 ValueType V) { 790 Value2SUsMap::iterator Itr = Val2SUsMap.find(V); 791 if (Itr != Val2SUsMap.end()) 792 addChainDependencies(SU, Itr->second, 793 Val2SUsMap.getTrueMemOrderLatency()); 794 } 795 796 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { 797 assert (BarrierChain != nullptr); 798 799 for (auto &I : map) { 800 SUList &sus = I.second; 801 for (auto *SU : sus) 802 SU->addPredBarrier(BarrierChain); 803 } 804 map.clear(); 805 } 806 807 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { 808 assert (BarrierChain != nullptr); 809 810 // Go through all lists of SUs. 811 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { 812 Value2SUsMap::iterator CurrItr = I++; 813 SUList &sus = CurrItr->second; 814 SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); 815 for (; SUItr != SUEE; ++SUItr) { 816 // Stop on BarrierChain or any instruction above it. 817 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) 818 break; 819 820 (*SUItr)->addPredBarrier(BarrierChain); 821 } 822 823 // Remove also the BarrierChain from list if present. 824 if (SUItr != SUEE && *SUItr == BarrierChain) 825 SUItr++; 826 827 // Remove all SUs that are now successors of BarrierChain. 828 if (SUItr != sus.begin()) 829 sus.erase(sus.begin(), SUItr); 830 } 831 832 // Remove all entries with empty su lists. 833 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { 834 return (mapEntry.second.empty()); }); 835 836 // Recompute the size of the map (NumNodes). 837 map.reComputeSize(); 838 } 839 840 /// If RegPressure is non-null, compute register pressure as a side effect. The 841 /// DAG builder is an efficient place to do it because it already visits 842 /// operands. 843 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 844 RegPressureTracker *RPTracker, 845 PressureDiffs *PDiffs, 846 LiveIntervals *LIS, 847 bool TrackLaneMasks) { 848 const TargetSubtargetInfo &ST = MF.getSubtarget(); 849 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 850 : ST.useAA(); 851 AAForDep = UseAA ? AA : nullptr; 852 853 BarrierChain = nullptr; 854 855 this->TrackLaneMasks = TrackLaneMasks; 856 MISUnitMap.clear(); 857 ScheduleDAG::clearDAG(); 858 859 // Create an SUnit for each real instruction. 860 initSUnits(); 861 862 if (PDiffs) 863 PDiffs->init(SUnits.size()); 864 865 // We build scheduling units by walking a block's instruction list 866 // from bottom to top. 867 868 // Each MIs' memory operand(s) is analyzed to a list of underlying 869 // objects. The SU is then inserted in the SUList(s) mapped from the 870 // Value(s). Each Value thus gets mapped to lists of SUs depending 871 // on it, stores and loads kept separately. Two SUs are trivially 872 // non-aliasing if they both depend on only identified Values and do 873 // not share any common Value. 874 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); 875 876 // Certain memory accesses are known to not alias any SU in Stores 877 // or Loads, and have therefore their own 'NonAlias' 878 // domain. E.g. spill / reload instructions never alias LLVM I/R 879 // Values. It would be nice to assume that this type of memory 880 // accesses always have a proper memory operand modelling, and are 881 // therefore never unanalyzable, but this is conservatively not 882 // done. 883 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); 884 885 // Remove any stale debug info; sometimes BuildSchedGraph is called again 886 // without emitting the info from the previous call. 887 DbgValues.clear(); 888 FirstDbgValue = nullptr; 889 890 assert(Defs.empty() && Uses.empty() && 891 "Only BuildGraph should update Defs/Uses"); 892 Defs.setUniverse(TRI->getNumRegs()); 893 Uses.setUniverse(TRI->getNumRegs()); 894 895 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 896 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 897 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 898 CurrentVRegDefs.setUniverse(NumVirtRegs); 899 CurrentVRegUses.setUniverse(NumVirtRegs); 900 901 VRegUses.clear(); 902 VRegUses.setUniverse(NumVirtRegs); 903 904 // Model data dependencies between instructions being scheduled and the 905 // ExitSU. 906 addSchedBarrierDeps(); 907 908 // Walk the list of instructions, from bottom moving up. 909 MachineInstr *DbgMI = nullptr; 910 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 911 MII != MIE; --MII) { 912 MachineInstr &MI = *std::prev(MII); 913 if (DbgMI) { 914 DbgValues.push_back(std::make_pair(DbgMI, &MI)); 915 DbgMI = nullptr; 916 } 917 918 if (MI.isDebugValue()) { 919 DbgMI = &MI; 920 continue; 921 } 922 SUnit *SU = MISUnitMap[&MI]; 923 assert(SU && "No SUnit mapped to this MI"); 924 925 if (RPTracker) { 926 collectVRegUses(SU); 927 928 RegisterOperands RegOpers; 929 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); 930 if (TrackLaneMasks) { 931 SlotIndex SlotIdx = LIS->getInstructionIndex(MI); 932 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 933 } 934 if (PDiffs != nullptr) 935 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 936 937 RPTracker->recedeSkipDebugValues(); 938 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); 939 RPTracker->recede(RegOpers); 940 } 941 942 assert( 943 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && 944 "Cannot schedule terminators or labels!"); 945 946 // Add register-based dependencies (data, anti, and output). 947 // For some instructions (calls, returns, inline-asm, etc.) there can 948 // be explicit uses and implicit defs, in which case the use will appear 949 // on the operand list before the def. Do two passes over the operand 950 // list to make sure that defs are processed before any uses. 951 bool HasVRegDef = false; 952 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 953 const MachineOperand &MO = MI.getOperand(j); 954 if (!MO.isReg() || !MO.isDef()) 955 continue; 956 unsigned Reg = MO.getReg(); 957 if (Reg == 0) 958 continue; 959 960 if (TRI->isPhysicalRegister(Reg)) 961 addPhysRegDeps(SU, j); 962 else { 963 HasVRegDef = true; 964 addVRegDefDeps(SU, j); 965 } 966 } 967 // Now process all uses. 968 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 969 const MachineOperand &MO = MI.getOperand(j); 970 // Only look at use operands. 971 // We do not need to check for MO.readsReg() here because subsequent 972 // subregister defs will get output dependence edges and need no 973 // additional use dependencies. 974 if (!MO.isReg() || !MO.isUse()) 975 continue; 976 unsigned Reg = MO.getReg(); 977 if (Reg == 0) 978 continue; 979 980 if (TRI->isPhysicalRegister(Reg)) 981 addPhysRegDeps(SU, j); 982 else if (MO.readsReg()) // ignore undef operands 983 addVRegUseDeps(SU, j); 984 } 985 986 // If we haven't seen any uses in this scheduling region, create a 987 // dependence edge to ExitSU to model the live-out latency. This is required 988 // for vreg defs with no in-region use, and prefetches with no vreg def. 989 // 990 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 991 // check currently relies on being called before adding chain deps. 992 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { 993 SDep Dep(SU, SDep::Artificial); 994 Dep.setLatency(SU->Latency - 1); 995 ExitSU.addPred(Dep); 996 } 997 998 // Add memory dependencies (Note: isStoreToStackSlot and 999 // isLoadFromStackSLot are not usable after stack slots are lowered to 1000 // actual addresses). 1001 1002 // This is a barrier event that acts as a pivotal node in the DAG. 1003 if (isGlobalMemoryObject(AA, &MI)) { 1004 1005 // Become the barrier chain. 1006 if (BarrierChain) 1007 BarrierChain->addPredBarrier(SU); 1008 BarrierChain = SU; 1009 1010 DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" 1011 << BarrierChain->NodeNum << ").\n";); 1012 1013 // Add dependencies against everything below it and clear maps. 1014 addBarrierChain(Stores); 1015 addBarrierChain(Loads); 1016 addBarrierChain(NonAliasStores); 1017 addBarrierChain(NonAliasLoads); 1018 1019 continue; 1020 } 1021 1022 // If it's not a store or a variant load, we're done. 1023 if (!MI.mayStore() && 1024 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))) 1025 continue; 1026 1027 // Always add dependecy edge to BarrierChain if present. 1028 if (BarrierChain) 1029 BarrierChain->addPredBarrier(SU); 1030 1031 // Find the underlying objects for MI. The Objs vector is either 1032 // empty, or filled with the Values of memory locations which this 1033 // SU depends on. An empty vector means the memory location is 1034 // unknown, and may alias anything. 1035 UnderlyingObjectsVector Objs; 1036 getUnderlyingObjectsForInstr(&MI, MFI, Objs, MF.getDataLayout()); 1037 1038 if (MI.mayStore()) { 1039 if (Objs.empty()) { 1040 // An unknown store depends on all stores and loads. 1041 addChainDependencies(SU, Stores); 1042 addChainDependencies(SU, NonAliasStores); 1043 addChainDependencies(SU, Loads); 1044 addChainDependencies(SU, NonAliasLoads); 1045 1046 // Map this store to 'UnknownValue'. 1047 Stores.insert(SU, UnknownValue); 1048 } else { 1049 // Add precise dependencies against all previously seen memory 1050 // accesses mapped to the same Value(s). 1051 for (const UnderlyingObject &UnderlObj : Objs) { 1052 ValueType V = UnderlObj.getValue(); 1053 bool ThisMayAlias = UnderlObj.mayAlias(); 1054 1055 // Add dependencies to previous stores and loads mapped to V. 1056 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 1057 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); 1058 } 1059 // Update the store map after all chains have been added to avoid adding 1060 // self-loop edge if multiple underlying objects are present. 1061 for (const UnderlyingObject &UnderlObj : Objs) { 1062 ValueType V = UnderlObj.getValue(); 1063 bool ThisMayAlias = UnderlObj.mayAlias(); 1064 1065 // Map this store to V. 1066 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); 1067 } 1068 // The store may have dependencies to unanalyzable loads and 1069 // stores. 1070 addChainDependencies(SU, Loads, UnknownValue); 1071 addChainDependencies(SU, Stores, UnknownValue); 1072 } 1073 } else { // SU is a load. 1074 if (Objs.empty()) { 1075 // An unknown load depends on all stores. 1076 addChainDependencies(SU, Stores); 1077 addChainDependencies(SU, NonAliasStores); 1078 1079 Loads.insert(SU, UnknownValue); 1080 } else { 1081 for (const UnderlyingObject &UnderlObj : Objs) { 1082 ValueType V = UnderlObj.getValue(); 1083 bool ThisMayAlias = UnderlObj.mayAlias(); 1084 1085 // Add precise dependencies against all previously seen stores 1086 // mapping to the same Value(s). 1087 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 1088 1089 // Map this load to V. 1090 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); 1091 } 1092 // The load may have dependencies to unanalyzable stores. 1093 addChainDependencies(SU, Stores, UnknownValue); 1094 } 1095 } 1096 1097 // Reduce maps if they grow huge. 1098 if (Stores.size() + Loads.size() >= HugeRegion) { 1099 DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); 1100 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); 1101 } 1102 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { 1103 DEBUG(dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); 1104 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); 1105 } 1106 } 1107 1108 if (DbgMI) 1109 FirstDbgValue = DbgMI; 1110 1111 Defs.clear(); 1112 Uses.clear(); 1113 CurrentVRegDefs.clear(); 1114 CurrentVRegUses.clear(); 1115 } 1116 1117 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { 1118 PSV->printCustom(OS); 1119 return OS; 1120 } 1121 1122 void ScheduleDAGInstrs::Value2SUsMap::dump() { 1123 for (auto &Itr : *this) { 1124 if (Itr.first.is<const Value*>()) { 1125 const Value *V = Itr.first.get<const Value*>(); 1126 if (isa<UndefValue>(V)) 1127 dbgs() << "Unknown"; 1128 else 1129 V->printAsOperand(dbgs()); 1130 } 1131 else if (Itr.first.is<const PseudoSourceValue*>()) 1132 dbgs() << Itr.first.get<const PseudoSourceValue*>(); 1133 else 1134 llvm_unreachable("Unknown Value type."); 1135 1136 dbgs() << " : "; 1137 dumpSUList(Itr.second); 1138 } 1139 } 1140 1141 /// Reduce maps in FIFO order, by N SUs. This is better than turning 1142 /// every Nth memory SU into BarrierChain in buildSchedGraph(), since 1143 /// it avoids unnecessary edges between seen SUs above the new 1144 /// BarrierChain, and those below it. 1145 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, 1146 Value2SUsMap &loads, unsigned N) { 1147 DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; 1148 stores.dump(); 1149 dbgs() << "Loading SUnits:\n"; 1150 loads.dump()); 1151 1152 // Insert all SU's NodeNums into a vector and sort it. 1153 std::vector<unsigned> NodeNums; 1154 NodeNums.reserve(stores.size() + loads.size()); 1155 for (auto &I : stores) 1156 for (auto *SU : I.second) 1157 NodeNums.push_back(SU->NodeNum); 1158 for (auto &I : loads) 1159 for (auto *SU : I.second) 1160 NodeNums.push_back(SU->NodeNum); 1161 std::sort(NodeNums.begin(), NodeNums.end()); 1162 1163 // The N last elements in NodeNums will be removed, and the SU with 1164 // the lowest NodeNum of them will become the new BarrierChain to 1165 // let the not yet seen SUs have a dependency to the removed SUs. 1166 assert (N <= NodeNums.size()); 1167 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; 1168 if (BarrierChain) { 1169 // The aliasing and non-aliasing maps reduce independently of each 1170 // other, but share a common BarrierChain. Check if the 1171 // newBarrierChain is above the former one. If it is not, it may 1172 // introduce a loop to use newBarrierChain, so keep the old one. 1173 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { 1174 BarrierChain->addPredBarrier(newBarrierChain); 1175 BarrierChain = newBarrierChain; 1176 DEBUG(dbgs() << "Inserting new barrier chain: SU(" 1177 << BarrierChain->NodeNum << ").\n";); 1178 } 1179 else 1180 DEBUG(dbgs() << "Keeping old barrier chain: SU(" 1181 << BarrierChain->NodeNum << ").\n";); 1182 } 1183 else 1184 BarrierChain = newBarrierChain; 1185 1186 insertBarrierChain(stores); 1187 insertBarrierChain(loads); 1188 1189 DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; 1190 stores.dump(); 1191 dbgs() << "Loading SUnits:\n"; 1192 loads.dump()); 1193 } 1194 1195 /// \brief Initialize register live-range state for updating kills. 1196 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { 1197 // Start with no live registers. 1198 LiveRegs.reset(); 1199 1200 // Examine the live-in regs of all successors. 1201 for (const MachineBasicBlock *Succ : BB->successors()) { 1202 for (const auto &LI : Succ->liveins()) { 1203 // Repeat, for reg and all subregs. 1204 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 1205 SubRegs.isValid(); ++SubRegs) 1206 LiveRegs.set(*SubRegs); 1207 } 1208 } 1209 } 1210 1211 /// \brief If we change a kill flag on the bundle instruction implicit register 1212 /// operands, then we also need to propagate that to any instructions inside 1213 /// the bundle which had the same kill state. 1214 static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg, 1215 bool NewKillState, 1216 const TargetRegisterInfo *TRI) { 1217 if (MI->getOpcode() != TargetOpcode::BUNDLE) 1218 return; 1219 1220 // Walk backwards from the last instruction in the bundle to the first. 1221 // Once we set a kill flag on an instruction, we bail out, as otherwise we 1222 // might set it on too many operands. We will clear as many flags as we 1223 // can though. 1224 MachineBasicBlock::instr_iterator Begin = MI->getIterator(); 1225 MachineBasicBlock::instr_iterator End = getBundleEnd(*MI); 1226 while (Begin != End) { 1227 if (NewKillState) { 1228 if ((--End)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 1229 return; 1230 } else 1231 (--End)->clearRegisterKills(Reg, TRI); 1232 } 1233 } 1234 1235 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) { 1236 // Setting kill flag... 1237 if (!MO.isKill()) { 1238 MO.setIsKill(true); 1239 toggleBundleKillFlag(MI, MO.getReg(), true, TRI); 1240 return false; 1241 } 1242 1243 // If MO itself is live, clear the kill flag... 1244 if (LiveRegs.test(MO.getReg())) { 1245 MO.setIsKill(false); 1246 toggleBundleKillFlag(MI, MO.getReg(), false, TRI); 1247 return false; 1248 } 1249 1250 // If any subreg of MO is live, then create an imp-def for that 1251 // subreg and keep MO marked as killed. 1252 MO.setIsKill(false); 1253 toggleBundleKillFlag(MI, MO.getReg(), false, TRI); 1254 bool AllDead = true; 1255 const unsigned SuperReg = MO.getReg(); 1256 MachineInstrBuilder MIB(MF, MI); 1257 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { 1258 if (LiveRegs.test(*SubRegs)) { 1259 MIB.addReg(*SubRegs, RegState::ImplicitDefine); 1260 AllDead = false; 1261 } 1262 } 1263 1264 if(AllDead) { 1265 MO.setIsKill(true); 1266 toggleBundleKillFlag(MI, MO.getReg(), true, TRI); 1267 } 1268 return false; 1269 } 1270 1271 // FIXME: Reuse the LivePhysRegs utility for this. 1272 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { 1273 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); 1274 1275 LiveRegs.resize(TRI->getNumRegs()); 1276 BitVector killedRegs(TRI->getNumRegs()); 1277 1278 startBlockForKills(MBB); 1279 1280 // Examine block from end to start... 1281 unsigned Count = MBB->size(); 1282 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); 1283 I != E; --Count) { 1284 MachineInstr &MI = *--I; 1285 if (MI.isDebugValue()) 1286 continue; 1287 1288 // Update liveness. Registers that are defed but not used in this 1289 // instruction are now dead. Mark register and all subregs as they 1290 // are completely defined. 1291 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1292 MachineOperand &MO = MI.getOperand(i); 1293 if (MO.isRegMask()) 1294 LiveRegs.clearBitsNotInMask(MO.getRegMask()); 1295 if (!MO.isReg()) continue; 1296 unsigned Reg = MO.getReg(); 1297 if (Reg == 0) continue; 1298 if (!MO.isDef()) continue; 1299 // Ignore two-addr defs. 1300 if (MI.isRegTiedToUseOperand(i)) continue; 1301 1302 // Repeat for reg and all subregs. 1303 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1304 SubRegs.isValid(); ++SubRegs) 1305 LiveRegs.reset(*SubRegs); 1306 } 1307 1308 // Examine all used registers and set/clear kill flag. When a 1309 // register is used multiple times we only set the kill flag on 1310 // the first use. Don't set kill flags on undef operands. 1311 killedRegs.reset(); 1312 1313 // toggleKillFlag can append new operands (implicit defs), so using 1314 // a range-based loop is not safe. The new operands will be appended 1315 // at the end of the operand list and they don't need to be visited, 1316 // so iterating until the currently last operand is ok. 1317 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1318 MachineOperand &MO = MI.getOperand(i); 1319 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1320 unsigned Reg = MO.getReg(); 1321 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1322 1323 bool kill = false; 1324 if (!killedRegs.test(Reg)) { 1325 kill = true; 1326 // A register is not killed if any subregs are live... 1327 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 1328 if (LiveRegs.test(*SubRegs)) { 1329 kill = false; 1330 break; 1331 } 1332 } 1333 1334 // If subreg is not live, then register is killed if it became 1335 // live in this instruction 1336 if (kill) 1337 kill = !LiveRegs.test(Reg); 1338 } 1339 1340 if (MO.isKill() != kill) { 1341 DEBUG(dbgs() << "Fixing " << MO << " in "); 1342 toggleKillFlag(&MI, MO); 1343 DEBUG(MI.dump()); 1344 DEBUG({ 1345 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1346 MachineBasicBlock::instr_iterator Begin = MI.getIterator(); 1347 MachineBasicBlock::instr_iterator End = getBundleEnd(MI); 1348 while (++Begin != End) 1349 DEBUG(Begin->dump()); 1350 } 1351 }); 1352 } 1353 1354 killedRegs.set(Reg); 1355 } 1356 1357 // Mark any used register (that is not using undef) and subregs as 1358 // now live... 1359 for (const MachineOperand &MO : MI.operands()) { 1360 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1361 unsigned Reg = MO.getReg(); 1362 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1363 1364 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1365 SubRegs.isValid(); ++SubRegs) 1366 LiveRegs.set(*SubRegs); 1367 } 1368 } 1369 } 1370 1371 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1372 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1373 SU->getInstr()->dump(); 1374 #endif 1375 } 1376 1377 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1378 std::string s; 1379 raw_string_ostream oss(s); 1380 if (SU == &EntrySU) 1381 oss << "<entry>"; 1382 else if (SU == &ExitSU) 1383 oss << "<exit>"; 1384 else 1385 SU->getInstr()->print(oss, /*SkipOpers=*/true); 1386 return oss.str(); 1387 } 1388 1389 /// Return the basic block label. It is not necessarilly unique because a block 1390 /// contains multiple scheduling regions. But it is fine for visualization. 1391 std::string ScheduleDAGInstrs::getDAGName() const { 1392 return "dag." + BB->getFullName(); 1393 } 1394 1395 //===----------------------------------------------------------------------===// 1396 // SchedDFSResult Implementation 1397 //===----------------------------------------------------------------------===// 1398 1399 namespace llvm { 1400 /// \brief Internal state used to compute SchedDFSResult. 1401 class SchedDFSImpl { 1402 SchedDFSResult &R; 1403 1404 /// Join DAG nodes into equivalence classes by their subtree. 1405 IntEqClasses SubtreeClasses; 1406 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1407 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 1408 1409 struct RootData { 1410 unsigned NodeID; 1411 unsigned ParentNodeID; // Parent node (member of the parent subtree). 1412 unsigned SubInstrCount; // Instr count in this tree only, not children. 1413 1414 RootData(unsigned id): NodeID(id), 1415 ParentNodeID(SchedDFSResult::InvalidSubtreeID), 1416 SubInstrCount(0) {} 1417 1418 unsigned getSparseSetIndex() const { return NodeID; } 1419 }; 1420 1421 SparseSet<RootData> RootSet; 1422 1423 public: 1424 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1425 RootSet.setUniverse(R.DFSNodeData.size()); 1426 } 1427 1428 /// Return true if this node been visited by the DFS traversal. 1429 /// 1430 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1431 /// ID. Later, SubtreeID is updated but remains valid. 1432 bool isVisited(const SUnit *SU) const { 1433 return R.DFSNodeData[SU->NodeNum].SubtreeID 1434 != SchedDFSResult::InvalidSubtreeID; 1435 } 1436 1437 /// Initialize this node's instruction count. We don't need to flag the node 1438 /// visited until visitPostorder because the DAG cannot have cycles. 1439 void visitPreorder(const SUnit *SU) { 1440 R.DFSNodeData[SU->NodeNum].InstrCount = 1441 SU->getInstr()->isTransient() ? 0 : 1; 1442 } 1443 1444 /// Called once for each node after all predecessors are visited. Revisit this 1445 /// node's predecessors and potentially join them now that we know the ILP of 1446 /// the other predecessors. 1447 void visitPostorderNode(const SUnit *SU) { 1448 // Mark this node as the root of a subtree. It may be joined with its 1449 // successors later. 1450 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1451 RootData RData(SU->NodeNum); 1452 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1453 1454 // If any predecessors are still in their own subtree, they either cannot be 1455 // joined or are large enough to remain separate. If this parent node's 1456 // total instruction count is not greater than a child subtree by at least 1457 // the subtree limit, then try to join it now since splitting subtrees is 1458 // only useful if multiple high-pressure paths are possible. 1459 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1460 for (const SDep &PredDep : SU->Preds) { 1461 if (PredDep.getKind() != SDep::Data) 1462 continue; 1463 unsigned PredNum = PredDep.getSUnit()->NodeNum; 1464 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1465 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false); 1466 1467 // Either link or merge the TreeData entry from the child to the parent. 1468 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1469 // If the predecessor's parent is invalid, this is a tree edge and the 1470 // current node is the parent. 1471 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1472 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1473 } 1474 else if (RootSet.count(PredNum)) { 1475 // The predecessor is not a root, but is still in the root set. This 1476 // must be the new parent that it was just joined to. Note that 1477 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1478 // set to the original parent. 1479 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1480 RootSet.erase(PredNum); 1481 } 1482 } 1483 RootSet[SU->NodeNum] = RData; 1484 } 1485 1486 /// Called once for each tree edge after calling visitPostOrderNode on the 1487 /// predecessor. Increment the parent node's instruction count and 1488 /// preemptively join this subtree to its parent's if it is small enough. 1489 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1490 R.DFSNodeData[Succ->NodeNum].InstrCount 1491 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1492 joinPredSubtree(PredDep, Succ); 1493 } 1494 1495 /// Add a connection for cross edges. 1496 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1497 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1498 } 1499 1500 /// Set each node's subtree ID to the representative ID and record connections 1501 /// between trees. 1502 void finalize() { 1503 SubtreeClasses.compress(); 1504 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1505 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1506 && "number of roots should match trees"); 1507 for (const RootData &Root : RootSet) { 1508 unsigned TreeID = SubtreeClasses[Root.NodeID]; 1509 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1510 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; 1511 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; 1512 // Note that SubInstrCount may be greater than InstrCount if we joined 1513 // subtrees across a cross edge. InstrCount will be attributed to the 1514 // original parent, while SubInstrCount will be attributed to the joined 1515 // parent. 1516 } 1517 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1518 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1519 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1520 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1521 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1522 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1523 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1524 } 1525 for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) { 1526 unsigned PredTree = SubtreeClasses[P.first->NodeNum]; 1527 unsigned SuccTree = SubtreeClasses[P.second->NodeNum]; 1528 if (PredTree == SuccTree) 1529 continue; 1530 unsigned Depth = P.first->getDepth(); 1531 addConnection(PredTree, SuccTree, Depth); 1532 addConnection(SuccTree, PredTree, Depth); 1533 } 1534 } 1535 1536 protected: 1537 /// Join the predecessor subtree with the successor that is its DFS 1538 /// parent. Apply some heuristics before joining. 1539 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1540 bool CheckLimit = true) { 1541 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1542 1543 // Check if the predecessor is already joined. 1544 const SUnit *PredSU = PredDep.getSUnit(); 1545 unsigned PredNum = PredSU->NodeNum; 1546 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1547 return false; 1548 1549 // Four is the magic number of successors before a node is considered a 1550 // pinch point. 1551 unsigned NumDataSucs = 0; 1552 for (const SDep &SuccDep : PredSU->Succs) { 1553 if (SuccDep.getKind() == SDep::Data) { 1554 if (++NumDataSucs >= 4) 1555 return false; 1556 } 1557 } 1558 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1559 return false; 1560 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1561 SubtreeClasses.join(Succ->NodeNum, PredNum); 1562 return true; 1563 } 1564 1565 /// Called by finalize() to record a connection between trees. 1566 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1567 if (!Depth) 1568 return; 1569 1570 do { 1571 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1572 R.SubtreeConnections[FromTree]; 1573 for (SchedDFSResult::Connection &C : Connections) { 1574 if (C.TreeID == ToTree) { 1575 C.Level = std::max(C.Level, Depth); 1576 return; 1577 } 1578 } 1579 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1580 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1581 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1582 } 1583 }; 1584 } // namespace llvm 1585 1586 namespace { 1587 /// \brief Manage the stack used by a reverse depth-first search over the DAG. 1588 class SchedDAGReverseDFS { 1589 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 1590 public: 1591 bool isComplete() const { return DFSStack.empty(); } 1592 1593 void follow(const SUnit *SU) { 1594 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1595 } 1596 void advance() { ++DFSStack.back().second; } 1597 1598 const SDep *backtrack() { 1599 DFSStack.pop_back(); 1600 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1601 } 1602 1603 const SUnit *getCurr() const { return DFSStack.back().first; } 1604 1605 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1606 1607 SUnit::const_pred_iterator getPredEnd() const { 1608 return getCurr()->Preds.end(); 1609 } 1610 }; 1611 } // anonymous 1612 1613 static bool hasDataSucc(const SUnit *SU) { 1614 for (const SDep &SuccDep : SU->Succs) { 1615 if (SuccDep.getKind() == SDep::Data && 1616 !SuccDep.getSUnit()->isBoundaryNode()) 1617 return true; 1618 } 1619 return false; 1620 } 1621 1622 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first 1623 /// search from this root. 1624 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1625 if (!IsBottomUp) 1626 llvm_unreachable("Top-down ILP metric is unimplemnted"); 1627 1628 SchedDFSImpl Impl(*this); 1629 for (const SUnit &SU : SUnits) { 1630 if (Impl.isVisited(&SU) || hasDataSucc(&SU)) 1631 continue; 1632 1633 SchedDAGReverseDFS DFS; 1634 Impl.visitPreorder(&SU); 1635 DFS.follow(&SU); 1636 for (;;) { 1637 // Traverse the leftmost path as far as possible. 1638 while (DFS.getPred() != DFS.getPredEnd()) { 1639 const SDep &PredDep = *DFS.getPred(); 1640 DFS.advance(); 1641 // Ignore non-data edges. 1642 if (PredDep.getKind() != SDep::Data 1643 || PredDep.getSUnit()->isBoundaryNode()) { 1644 continue; 1645 } 1646 // An already visited edge is a cross edge, assuming an acyclic DAG. 1647 if (Impl.isVisited(PredDep.getSUnit())) { 1648 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1649 continue; 1650 } 1651 Impl.visitPreorder(PredDep.getSUnit()); 1652 DFS.follow(PredDep.getSUnit()); 1653 } 1654 // Visit the top of the stack in postorder and backtrack. 1655 const SUnit *Child = DFS.getCurr(); 1656 const SDep *PredDep = DFS.backtrack(); 1657 Impl.visitPostorderNode(Child); 1658 if (PredDep) 1659 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1660 if (DFS.isComplete()) 1661 break; 1662 } 1663 } 1664 Impl.finalize(); 1665 } 1666 1667 /// The root of the given SubtreeID was just scheduled. For all subtrees 1668 /// connected to this tree, record the depth of the connection so that the 1669 /// nearest connected subtrees can be prioritized. 1670 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1671 for (const Connection &C : SubtreeConnections[SubtreeID]) { 1672 SubtreeConnectLevels[C.TreeID] = 1673 std::max(SubtreeConnectLevels[C.TreeID], C.Level); 1674 DEBUG(dbgs() << " Tree: " << C.TreeID 1675 << " @" << SubtreeConnectLevels[C.TreeID] << '\n'); 1676 } 1677 } 1678 1679 LLVM_DUMP_METHOD 1680 void ILPValue::print(raw_ostream &OS) const { 1681 OS << InstrCount << " / " << Length << " = "; 1682 if (!Length) 1683 OS << "BADILP"; 1684 else 1685 OS << format("%g", ((double)InstrCount / Length)); 1686 } 1687 1688 LLVM_DUMP_METHOD 1689 void ILPValue::dump() const { 1690 dbgs() << *this << '\n'; 1691 } 1692 1693 namespace llvm { 1694 1695 LLVM_DUMP_METHOD 1696 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1697 Val.print(OS); 1698 return OS; 1699 } 1700 1701 } // namespace llvm 1702